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Abstract

In this paper we provide a semantic reconstruction of rational closure. We first con-
sider rational closure as defined by Lehman and Magidor [33] for propositional logic,
and we provide a semantic characterization based on a minimal models mechanism on
rational models. Then we extend the whole formalism and semantics to Description
Logics, by focusing our attention to the standardALC: we first naturally adapt to De-
scription Logics Lehman and Magidor’s propositional rational closure, starting from an
extension ofALC with a typicality operatorT that selects the most typical instances
of a conceptC (henceT(C) stands for typicalC). Then, for the Description Logics,
we define a minimal model semantics for the logicALC and we show that it provides
a semantic characterization for the rational closure of a Knowledge base. We consider
both the rational closure of the TBox and the rational closure of the ABox.

Keywords: Description Logics, Nonmonotonic Reasoning, Knowledge
Representation, Rational Closure

1. Introduction

In [31] Kraus Lehmann and Magidor (henceforth KLM) proposedan axiomatic ap-
proach to nonmonotonic reasoning based on the notion of plausible inference. Plausible
inferences are represented by conditionals of the formA |∼ B, to be read as “typically or
normallyA entailsB”. For instance, the conditional assertionmonday|∼ go work can
be used in order to represent that “normally if it is Monday I go to work”. Conditional
entailment is nonmonotonic since fromA |∼ B one cannot deriveA∧C |∼ B, in our exam-
ple frommonday|∼ go workone cannot monotonically derivemonday∧ ill |∼ go work
(“normally if it is Monday, even if I am ill I go to work”).
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KLM presented a hierarchy of axiomatic systems for plausible inference, each sys-
tem specifies a set of postulates characterising plausible inference. The systems are,
from the weakest to the strongest: cumulative logicC, loop-cumulative logicCL, and
most important preferential logicP. In subsequent work [33] Preferential logic was
strengthened to rational logicR and the latter was proposed as the most adequate sys-
tem to represent (nonmontonic) plausible inference.

Although it is arguable whether, KLM systems, and in particular R, represent ad-
equately all types of nonmonotonic inferences1, we think that KLM systems and the
strongestR in particular, are still a significant proposal for nonmonotonic reasoning for
two reasons: on a theoretical level, they define a set of inferential properties which are
useful (even if not necessarily wanted) to classify and analyze concrete nonmonotonic
inference, (b) they provide a simple anddirect language to express plausible inferences
and to reason about them.

In this work we take KLM logicR as the basis of our approach to nonmonotonic
reasoning. Even ifR formalizes some properties of nonmonotonic inference it istoo
weak in itself to perform useful nonmonotonic inferences.

We have just seen that by the nonmonotonicity of|∼, A |∼ B does not entailA∧C |∼

B (monday |∼ go work does not entailmonday ∧ ill |∼ go work), and this is a
wanted property of|∼: it is what allows to express sets of conditionals that in classi-
cal logic would lead to contradictory or absurd conclusions(for instance{monday→
go work,monday∧ ill → ¬go work} gives¬(monday∧ ill ) in classical logic, that
is that it is impossible to be ill on Monday). However, there are cases in which, in the
absence of information to the contrary, we would like to be able to tentatively infer that
alsoA∧C |∼ B, with the possibility of withdrawing the inference in case we discovered
that it is inconsistent. For instance, we might want to inferthat A ∧ C |∼ B whenC
is irrelevant with respect to the propertyB: in the example, we might want to tenta-
tively infer from monday|∼ go work (“normally if it is Monday, I go to work”) that
monday∧ shines|∼ go work (“normally if it is Monday, even if the sun shines I go to
work”), with the possibility of withdrawing the conclusionif we discovered that indeed
the sun shining prevents from going to work.R cannot handle irrelevant information
in conditionals, and the inferences just exemplified are notsupported.

Partially motivated by this weakness, Lehmann and Magidor have proposed a true
nonmonotonic mechanism on the top ofR. Rational closure[33] on the one hand pre-
serves the properties ofR, on the other hand it allows to perform some truthful non-
monotonic inferences, like the one just mentioned (monday∧ shines|∼ go work). In
[33] the authors give a syntactic procedure to calculate theset of conditionals entailed
by the rational closure as well as a quite complex semantic construction. It is worth
noticing that a strongly related construction has been proposed by Pearl [38] with his
notion of 1-entailment, originating from a probabilistic interpretation of conditionals
within the well-established System Z.

1It has been shown that existing nonmonotonic systems do not satisfy in general all the properties of KLM
systems: in particular circumscription (for well-foundedtheories) satisfies all postulates of preferential logic,
but it does not satisfy rational monotony ofR, whereas default logic fails to satisfy even the cumulativity
postulate of the weakest logicC. Of course, a nonmonotonic mechanism may give rise to different inference
relations (skeptical, credulous, etc) with different properties.
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In this paper we provide a semantic reconstruction of rational closure for proposi-
tional logic as well as for Description Logics (DLs for short) with a specific attention to
the standardALC. We first consider rational closure as defined by Lehman and Magi-
dor [33] for propositional logic, and we provide a semantic characterization based on
a minimal models mechanism on rational models. Then we extend the whole formal-
ism and semantics to Description Logics: we first naturally adapt to DLs Lehman and
Magidor’s propositional rational closure, starting from an extension ofALC with a
typicality operatorT that selects the most typical instances of a conceptC (the exten-
sion is calledALC+TR). ForALC+TR, we provide both a syntactic and a semantical
notion of rational closure, along the same lines used for thepropositional case: we first
define rational closure over the TBox, and subsequently rational closure for the ABox.

The first problem we tackle in this work is that of giving a purely semantical char-
acterization of the syntactic notion of rational closure. Our semantic characterization
has as its main ingredient the modal semantics of logicR, over which we build a mini-
mal models’ mechanism, based on the minimization of the rankof worlds. Intuitively,
we prefer the models that minimize the rank of domain elements: the lower the rank
of a world, the more normal (or less exceptional) is the worldand our minimization
corresponds intuitively to the idea of minimizing less-normal or less-plausible worlds
(or maximizing most plausible ones). We show that a semanticreconstruction of ratio-
nal closure can be obtained as a specific instance of a generalsemantic framework for
nonmonotonic reasoning. Within this general framework we give two characterizations
of rational closure: one based on a fixed interpretations semantics and the other with a
variable interpretations semantics.

The theoretical question we address in this first part of the paper is the following:

A) Given the fact that logicR is characterized by a specific class of Kripke mod-
els, what are the Kripke models that characterize the rational closure of a set of
positive conditionals?

We notice in passim that our semantic characterization of rational closure in terms
of minimal models is different from the one given by Lehmann and Magidor’s in [33]
which is based on a different notion of minimal models. Moreover we consider our
semantic characterization as a specific case of a general minimal models’ mechanism
for nonmonotonic reasoning, and in this paper we show under what conditions we
capture rational closure. The generality of our semanticalcharacterization is well-
suited to study variants of rational closure. Finally, the semantic characterization does
also easily extend to other logics, as Description Logics (ALC), that we discuss next.
In the second part of the paper we consider Description Logics. If propositional
KLM systems deal with propositions (“I go to work”) and relations among proposi-
tions (“usually, if it is Monday, then I go to work”), Description Logics deal with
concepts, relations among concepts, as well as with individuals. In Description Log-
ics one can use concept inclusion in order to express that allthe members of a class
have a given property (thusCats⊑ Mammalexpresses the general property that “cats
are mammals”, andPet ⊑ ∃HasOwner.⊤ that “all pets have an owner”). One can
also use assertions in order to represent the fact that an individual has a given prop-
erty, e.g.Cat(tom) (“Tom is a cat”) or∃HasOwner.⊤(tom) (“Tom has an owner”) or
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HasOwner(tom, nadeem) (“Nadeem is Tom’s owner”). A distinguishing quality of
Description Logics is their controlled complexity: the trade-off between expressivity
of the languages and good computational complexities is oneof the main reasons jus-
tifying the success of DLs.

Many works in the literature have considered how to extend the basic formalism of
Description Logics with nonmonotonic reasoning features [1, 2, 8, 12, 13, 23, 32, 30,
5, 37, 40, 21]; the purpose of these extensions is to allow to reason about prototypical
properties of individuals or classes of individuals. In these extensions one can repre-
sent, for instance, knowledge expressing the fact that the heart isusuallypositioned in
the left-hand side of the chest, with the exception of peoplewith situs inversus, that
have the heart positioned in the right-hand side. Also, one can infer that an individual
enjoys all thetypical properties of the classes it belongs to. So, for instance, inthe
absence of information that someone has situs inversus, onewould assume that it has
the heart positioned in the left-hand side.

In spite of the number of work in this direction, the problem of extending DLs for
reasoning about prototypical properties seems far from being solved. The most well-
known semantics for nonmonotonic reasoning have been used to the purpose, from
default logic [1], to circumscription [2], from Lifschitz’s nonmonotonic logic MKNF
[12, 37] to KLM logics. In particular, concerning KLM logics, in [17] a preferential
extension ofALC (calledALC + T) is defined, based on the KLM logicP, and in
[5] a defeasible description logic based on the KLM logicR is introduced. In [23] a
minimal model semantics for the logicALC + T is presented.

An approach to the definition of rational closure for DLs has been proposed by
Casini and Straccia in [8], where a notion of rational closure is defined forALC
through an algorithmic construction similar to the one introduced by Freund in [14]
for the propositional calculus. For propositional logic, this construction can be proved
to be equivalent to the notion of rational closure proposed by Lehmann and Magidor in
[33]. [8] explores the axiomatic properties of this notion of rational closure forALC,
and shows that the notion ofdefault assumption consequenceis a rational consequence
relation validating the knowledge base. On the other hand, [8] does not consider a
semantics for rational closure.

In this paper, we take our moves from the notion of propositional rational closure
given by Lehmann and Magidor, and we show that it can be naturally extended to
the description logicALC. Furthermore, we investigate its semantics, by extending
to ALC the minimal model semantics introduced at the propositional level in order
to address questionA. The questions we address in the second part of the paper are
therefore the following:

B) What is the natural extension of the well-established notion of rational closure in
[33] to Description Logics?

C) What is the corresponding semantics?

D) How can this mechanism deal with the ABox?

As we will see, for concept inclusions (TBox) the extension of both the syntactic and
the semantical characterization of rational closure from propositional logic to DLs is
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relatively direct, although the presence of typicality assertions in the ABox makes
things not straightforward. Furthermore,the algorithmic construction we propose for
ABox reasoning is novel and it entirely relies on the semantical characterization: only
once we have extended the semantics for rational closure to take into account ABox
individuals, we can provide the corresponding mechanism tocompute rational closure
of the ABox.

As matter of fact, we do not consider our adaption of Lehmann and Magidor’s
rational closure to DLs as the conclusive solution to the issue of nonmonotonic exten-
sions of Description Logics. Rational closure has some known weaknesses that come
together with its recognised advantages (among which, its computational lightness,
which is crucial in Description Logics). Both advantages and weaknesses are inher-
ited by its extension to Description Logics. Nevertheless,since rational closure is one
of the most established formalisms for nonmonotonic reasoning and it has good com-
putational properties, we think that its application to Description Logics significantly
contributes to the quest of nonmonotonic extensions of Description Logics. Further-
more, this work can be regarded as a first step towards the exploration of semantics
for more refined versions of rational closure, that overcomesome of the known weak-
nesses of this mechanism (see for instance [9, 11] which combines rational closure with
inheritance networks).

To summarize the resulting approach: our starting point is the standard Descrip-
tion LogicALC, more preciselyALC extended with a typicality operatorT. The
operatorT, first introduced in [17], allows to directly express typical properties such
asT(HeartPosition) ⊑ Left, T(Bird) ⊑ Fly, andT(Penguin) ⊑ ¬Fly, whose intuitive
meaning is that, normally, the heart is positioned in the left-hand side of the chest,
that typical birds fly, whereas penguins do not. In this paper, the T operator is in-
tended to enjoy the well-established properties of rational logic R . Even if T is a
nonmonotonic operator (so that for instanceT(HeartPosition) ⊑ Left does not entail
thatT(HeartPosition⊓ SitusInversus) ⊑ Left), the logic itself is monotonic. Indeed, in
this logic it is not possible to monotonically infer fromT(Bird) ⊑ Fly, in the absence
of information to the contrary, that alsoT(Bird⊓Black) ⊑ Fly. Nor can it be nonmono-
tonically inferred fromBird(tweety), in the absence of information to the contrary, that
T(Bird)(tweety). Nonmonotonicity is achieved first by adapting toALC with T the
propositional construction of rational closure. This nonmonotonic extension allows to
infer typical subsumptions from the TBox (TBox reasoning).Intuitively and similarly
to the propositional case, the rational closure construction amounts to assigning arank
(a level of exceptionality) to every concept; this rank is used to evaluate typical inclu-
sions of the formT(C) ⊑ D: the inclusion is supported by the rational closure whenever
the rank ofC is strictly smaller than the rank ofC⊓¬D. From a semantic point of view,
nonmonotonicity is achieved by defining, on the top ofALC with typicality, a mini-
mal model semantics which is similar to the one in [23]. Differently from [23], the
notion of minimality used here is based on the minimization of the ranks of the domain
elements, rather than on the minimization of the extension of specific concepts. This
semantics provides a characterization to the rational closure construction forALC.

Last, we tackle the problem of extending rational closure toABox reasoning: in
order to ascribe typical properties to individuals, we maximize the typicality of an
individual. This is done by minimizing its rank (that is, itslevel of exceptionality).
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As we will see, because of the interaction between individuals (due to roles) it is not
possible to separately assign a unique minimal rank to each individual and alternative
minimal ranks must be considered. We end up with a kind ofskepticalinference with
respect to the ABox.

The rational closure construction we propose forALC has not just a theoretical
interest and a simple minimal model semantics. We show that it retains the same com-
plexity of the underlying description logic. ForALC, the problem of deciding whether
a typical inclusion belongs to the rational closure of the TBox is in EXPTIME as well
as the problem of deciding whether an assertionC(a) belongs to the rational closure
of the knowledge base over the ABox. In this respect, the proposed approach is less
complex than other approaches to nonmonotonic reasoning inDLs such as [23, 2] and
comparable in complexity with the approaches in [8, 6, 37], and thus a good candidate
to define effective nonmonotonic extensions of DLs. The results on the rational closure
inALC (as an extension of Lehmann and Magidor’s rational closure [33]) extensively
rely on the finite model property, which holds forALC. However, the construction of
rational closure can be extended to more expressive description logics that do not enjoy
the finite model property. Some preliminary results on the rational closure forSHIQ
[29] can be found in [26].

2. Propositional rational closure: a semantic characterization

2.1. KLM rational systemR

The language of logicR consists just of conditional assertionsA |∼ B. We here
consider a richer language which also allows boolean combinations of assertions. Our
languageL is defined from a set of propositional variablesATM, the boolean con-
nectives and the conditional operator|∼. From propositional variables, propositional
formulas are defined as usual in the propositional logic. We useA, B,C, . . . to denote
propositional formulas (that do not contain conditional formulas), whereasF,G, . . . are
used to denote all formulas (including conditionals). The formulas ofL are defined as
follows: if A is a propositional formula,A ∈ L; if A andB are propositional formulas,
A |∼ B ∈ L; if F is a boolean combination of formulas ofL, thenF ∈ L. A knowledge
base Kis a set of conditional assertionsA |∼ B. In this work, we restrict our attention
to finite knowledge bases.

Before presenting the axiomatization ofR, let us clarify one point: in its original
presentation [33], a conditionalA |∼ B is considered as a consequence relation between
a pair of propositional formulasA andB, so that their systems provide a set of “pos-
tulates” (or closure conditions) that the intended consequence relation must satisfy.
Alternatively, these postulates may be seen asrules to derive new conditionals from
given ones. We take a slightly different viewpoint, shared,among others, by Halpern
and Friedman [15] (see Section 8) and Boutilier [4], who proposed a modal interpre-
tation ofR: in our understanding, this system is an ordinary logical system in which a
conditionalA |∼ B is a formula belonging to the object language. Whenever we restrict
our consideration, as done by Lehmann and Magidor in [33], tothe entailment of a
conditional from a set of conditionals, the two viewpointscoincide, and a conditional
is a logical consequence of a set of conditionals in logicR if and only if it belongs
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to all rational consequence relations extending that set ofconditionals, or (in semantic
terms), it is valid in all rational models (as defined by [33])of that set.

Here is the axiomatization of logicR. In our presentation Lehmann and Magidor’s
postulates/rules are justaxioms. We use⊢PC (resp. |=PC) to denote provability (resp.
validity) in the propositional calculus .

All axioms and rules of propositional logic (PC)
A |∼ A (REF)
if ⊢PC A↔ B then (A |∼ C)→ (B |∼ C) (LLE)
if ⊢PC A→ B then (C |∼ A)→ (C |∼ B) (RW)
((A |∼ B) ∧ (A |∼ C))→ (A∧ B |∼ C) (CM)
((A |∼ B) ∧ (A |∼ C))→ (A |∼ B∧C) (AND)
((A |∼ C) ∧ (B |∼ C))→ (A∨ B |∼ C) (OR)
((A |∼ B) ∧ ¬(A |∼ ¬C))→ (A∧C |∼ B) (RM)

The axiom (CM) is called cumulative monotony and it is characteristic of all KLM
logics, axiom (RM) is called rational monotony and it characterizes the logic of ra-
tional entailmentR (it is what distinguishes rational from the weaker preferential en-
tailment). In [15], Friedman and Halpern have shown that theaxiom system ofR
is complete with respect to a wide spectrum of different semantics (e.g. possibilistic
structures andk-rankings), proposed in order to formalize some forms of nonmono-
tonic reasoning. This can be explained by the fact that all these models are examples
of plausibility structures, and the truth in them is captured by the axioms ofR.

The logicR enjoys a very simple modal semantics, actually it turns out that it cor-
responds to the flat fragment of the well-known conditional logicVC [34]. The modal
semantics is defined by considering a set of worldsW equipped by an accessibility (or
preference) relation<. Intuitively the meaning ofx < y is thatx is more typical/more
normal/less exceptional thany. We say that a conditionalA |∼ B is true in a model ifB
holds in all most normal worlds whereA is true, i.e. in all<-minimal worlds satisfying
A.

Definition 1. A rational model is a triple

M = 〈W, <,V〉

where:

• W is a non-empty set of worlds;

• < is an irreflexive, transitive relation onW satisfying modularity: for allx, y, z,
if x < y then eitherx < z or z < y. < further satisfies the Smoothness condition
defined below;

• V is a functionV : W 7−→ 2ATM, which assigns to every worldw the set of
atoms holding in that world. IfF is a boolean combination of formulas, its
truth conditions (M, w |= F) are defined as for propositional logic. LetA be a
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propositional formula; we defineMinM< (A) = {w ∈ W | M,w |= A and∀w′,
w′ < w impliesM,w′ 6|= A}. Moreover:

M,w |= A |∼ B

if for all w′, if w′ ∈ MinM< (A) thenM,w′ |= B.

At this point we can define theSmoothness condition: if M,w |= A, then eitherw ∈
MinM< (A) or there isw′ ∈ MinM< (A) such thatw′ < w.

Validity and satisfiability of a formula are defined as usual.We say that a formulaF
is satisfiableif there is a rational modelM = 〈W, <,V〉 and a worldw ∈ W such that
M,w |= F. We say that a formulaF is valid in a rational modelM = 〈W, <,V〉, and
we writeM |= F, if, for all w ∈ W, it holds thatM,w |= F. We say that a formulaF is
valid if it is valid in all rational models, i.e. if, for all rational modelsM = 〈W, <,V〉,
it holds thatM |= F.

Given a set of formulasK of L and a modelM= 〈W, <,V〉, we say thatM is
a model ofK, writtenM |= K, if for every F ∈ K and everyw ∈ W, we have that
M,w |= F. K rationally entailsa formulaF, written K |= F if F is valid in all rational
models ofK.

It is easy to see from Definition 1 that the truth condition ofA |∼ B is “global” in a
modelM = 〈W, <,V〉: given a worldw, we have thatM,w |= A |∼ B if, for all w′, if
w′ ∈ MinM< (A) thenM,w′ |= B. It immediately follows thatA |∼ B holds inw if and
only if A |∼ B is valid in a model, i.e. it holds thatM,w′ |= A |∼ B for all w′ inW; for
this reason we will often writeM |= A |∼ B. Moreover, when the reference to the model
M is unambiguous, we will simply writeMin<(A) instead ofMinM< (A).

Theorems 6.8 and 6.9 in [18] provide a constructive proof of the following finite
model property ofR.

Fact 1. Given a set of formulas K, if it is satisfiable, then it is satisfiable in afinite
model. Furthermore, if a given F is satisfiable in a model of K (for K 6|= ¬F), then F
is satisfiable in a finite model of K.

From now on, we will restrict our consideration to rational models with a finite set
of worlds.

Given a rational modelM = 〈W, <,V〉, let us now define the rankkM(w) of a
world w and the rankkM(F) of a formulaF.

Definition 2 (Rank kM(w) of a world in M). Given a (finite) rational modelM = 〈W, <
,V〉, the rankkM of a worldw ∈ W, writtenkM(w), is the length of the longest chain
w0 < . . . < w from w to a minimalw0 (i.e. there is now′ such thatw′ < w0).

This definition makes sense even if the relation< is not modular. Observe that, for a
modular relation on a finite set, all maximal chains2 from an elementw to a minimal
w0 have the same length.

2A chainw0 < w1 < . . . < wn is maximal if there is no elementw′ such that for somei = 0, . . . ,n− 1 it
holdswi < w′ < wi+1.
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The previous definition defines from< a rank functionkM : W 7−→ N. The
opposite is also possible and in general in rational models the rank functionkM and
< can be defined from each other by lettingx < y if and only if kM(x) < kM(y) (this
is similarly stated by [33] where a rank functionk over a possibly infinite set is used,
since there is no restriction to finite models) Hence, modular preferential models are
calledranked models.

Definition 3 (Rank kM(F) of a formula in a model). The rankkM(F) of a formulaF
in a modelM is i = min{kM(w) : M, w |= F}. If there is now such thatM, w |= F,
then we sayF has no rank inM.

It is easy to observe that:

Proposition 1. For anyM = 〈W, <,V〉, we haveM |= A |∼ B if and only if kM(A∧B) <
kM(A∧ ¬B) or A has no rank inM.

2.2. Lehmann and Magidor’s definition of rational closure

Although the operator|∼ is nonmonotonic, the notion of rational entailment (defined in
Definition 1) in itself ismonotonic: if K |= F andK ⊆ K∗ then alsoK∗ |= F.

In order to strengthenR, Lehmann and Magidor in [33] propose the well-known
mechanism of rational closure. As already mentioned, the main motivation of Lehmann
and Magidor leading to the definition of rational closure wastechnical: it turns out that
the intersection of all rational consequence relations satisfying a set of conditionals
coincides with the weakerpreferentialconsequence relation satisfying that set (that is
weaker in that it does not satisfy (RM)), so that (i) the axiom/rule (RM) does not add
anything and (ii) such relation in itselffails to satisfy (RM). Lehmann and Magidor’s
notion of rational closure provides a solution to both problems and can be seen as the
“minimal” (in some sense) rational consequence completinga set of conditionals.

Since in rational closure no boolean combination of conditionals is allowed, in the
following, the knowledge baseK is just a finite set of positive conditional assertions
of the form A |∼ B. In such a case, rational entailment is equivalent to preferential
entailment.

Definition 4 (Exceptionality of propositional formulas and conditional formulas).
Let K be a knowledge base (i.e. a finite set of positive conditionalassertions) andA a
propositional formula.A is said to beexceptionalfor K if and only if K |= ⊤ |∼ ¬A. A
conditional formulaA |∼ B is exceptional forK if its antecedentA is exceptional forK.
The set of conditional formulas ofK which are exceptional forK will be denoted as
E(K).

It is possible to define a non increasing sequence of subsets of K, C0 ⊇ C1,C1 ⊇ C2, . . .

by lettingC0 = K and, fori > 0,Ci the set of conditionals ofCi−1 exceptional forCi−1,
i.e. Ci = E(Ci−1). Observe that, beingK finite, there is ann ≥ 0 such thatCn = ∅ or
for all m > n,Cm = Cn. The setsCi are used to define the rank of a formula, as in the
next definition. Notice that if there is anm such thatCm = Cm+1, then for allk > m, it
will hold thatCm = Ck (indeedE(Cm) = E(Cm+1) = . . . = E(Ck)).
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Definition 5 (Rank of a formula). A propositional formulaA hasrank i (for K), writ-
tenrank(A) = i, if and only if i is the least natural number for whichA is not exceptional
for Ci . If A is exceptional for allCi thenA has no rank.

As mentioned above, we can restrict our consideration to sequencesC0, . . . ,Cn where
Cn is the first set in the sequence such that eitherCn = ∅ or Cn = Cn+1: in both cases
for all t > n, Ct = Cn, therefore the formulas exceptional forCt andCn coincide. For
this reason, if a formulaA has a rank, thenrank(A) ≤ n.

The notion of rank of a formula allows to define the rational closure of a knowledge
baseK.

Definition 6 (Rational closureK of K). Let K be a conditional knowledge base. The
rational closureK of K is the set of allA |∼ B such that either (1) the rank ofA is strictly
less than the rank ofA∧¬B (this includes the caseA has a rank andA∧¬B has none),
or (2) A has no rank.

This mechanism, which is now well-established, allows to overcome some weaknesses
of R. First of all, it is closed under rational monotonicity (RM): if ( A |∼ B) ∈ K and
(A |∼ ¬C) < K then (A ∧ C) |∼ B ∈ K. Furthermore, rational closure supports some
of the wanted inferences thatR does not support. For instance rational closure allows
to deal with irrelevance: frommonday|∼ go work, it does support the nonmonotonic
conclusion thatmonday∧ shines|∼ go work. In order to see thatmonday∧ shines|∼
go work belongs to the rational closure ofK = {monday |∼ go work}, observe that
K 6|= ⊤ |∼ ¬(monday∧ shines), thereforerank(monday∧ shines) = 0. On the other
hand,K |= ⊤ |∼ ¬(monday∧ shines∧¬ go work), thereforerank(monday∧ shines∧
¬go work) > 0, from which we derive our nonmonotonic conclusion.

2.3. A semantic characterization of rational closure

Can we capture rational closure semantically?
We aim to provide a semantic reconstruction of rational closure in terms of a mini-

mal models’ mechanism, thus providing an instantiation of the following general recipe
for nonmonotonic reasoning:

(i) fix an underlying modal semantics for conditionals (herewe concentrate onR
but another possible choice could have been the weakerP, as done for instance
in [19, 23, 17]),

(ii) obtain nonmonotonic inference by restricting semantic consequence to a class
of “minimal” models. These minimal models should be chosen on the basis
of semantic considerations, independent from thelanguageand from theset of
conditionals(knowledge base) whose nonmonotonic consequences we want to
determine.

In some respects, this approach is similar in spirit to “minimal models” approaches
to nonmonotonic reasoning, such as circumscription [35]. However, as a difference
with circumscription, the models (i) have a modal semantics, and (ii) the preference
relation among models is independent from the language. This second aspect is also
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what differentiates this general recipe from other previous proposals such as [19], in
which the idea is that preferred models are those ones that minimize the truth of specific
formulas of the form¬�¬A.

The minimal model mechanism is based on comparing differentmodels in order
to see which one is preferred. As for circumscription, thereare mainly two ways of
comparing models with the same domain:

• by keeping the valuation function fixed (only comparingM andM′ if V andV′

in the two models coincide);

or

• by comparingM andM′ also in caseV , V′.

We consider the two possible semantics resulting from thesealternatives.
As already mentioned, in this paper we limit our attention toknowledge bases

K that are finite and that contain only positive conditionals.We begin by proving
a property that links the rankkM of a formula in any rational modelM of a given
knowledge baseK and the rank of that formula as calculated in the definition ofrational
closure (Definition 5). The proof is similar to that of Lemma 5.18 in [33].

In the next proposition we shall use the notion ofMi defined as follows. LetM =
〈W, <,V〉 be any rational model ofK. LetM0 =M and, for alli, letMi = 〈Wi , <i,Vi〉

be the rational model obtained fromM by removing all the worldsw with kM(w) < i,
i.e.,Wi = {w ∈ W | kM(w) ≥ i}. TheCi sets are those ones used to define the rank of
a formula in Definition 5.

Proposition 2. LetM= 〈W, <,V〉 be any rational model of K. For any propositional
formula A, if rank(A)≥ i, then 1) kM(A) ≥ i, and 2) if A |∼ B is rationally entailed by
Ci , thenMi satisfies A|∼ B.

Proof. By induction oni. For i = 0, statement 1) holds, since it always holds that
kM(A) ≥ 0. Statement 2) also holds trivially.

For i > 0, 1) holds: if rank(A)≥ i, then by Definition 5 for allj < i, C j |= ⊤ |∼ ¬A.
By inductive hypothesis on 2), for allj < i we haveM j |= ⊤ |∼ ¬A. Hence, for all
w with kM(w) < i, M,w |= ¬A, andkM(A) ≥ i. To prove 2), we reason as follows.
SinceCi ⊆ C0, M |= Ci . Furthermore by definition of rank , for allA |∼ B ∈ Ci ,
rank(A) ≥ i, hence by 1) just provedkM(A) ≥ i. HenceMinM< (A) ⊆ Wi , and (given
thatM |= A |∼ B) alsoMi |= A |∼ B. ThereforeMi |= Ci .

A consequence of the previous proposition is the following.

Proposition 3. LetM =〈W, <,V〉 be any rational model of K. For all w such that
kM(w) = i, it holds thatM,w |= {A→ B | A |∼ B ∈ Ci}.

Proof. LetM =〈W, <,V〉 be any rational model ofK. If i = 0, then for a contradiction
suppose for somew with kM(w) = 0, and for someA → B : A |∼ B ∈ C0, M,w |=
A∧ ¬B. In this case obviouslyw ∈ MinM< (A), which contradicts thatMinM< (A) ⊆ {w ∈
W | M,w |= B} (beingM a model ofK andA |∼ B ∈ K). Therefore the proposition
must hold. Ifi > 0 we repeat the same reasoning just done by consideringMi instead
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ofM: by Proposition 2,Mi satisfiesCi . By reasoning as fori = 0 we conclude that for
all w with kMi (w) = 0,Mi ,w |= {A→ B : A |∼ B ∈ Ci}. By definition ofMi it follows
that, for allw, it holdskM(w) = i, thenM,w |= {A→ B : A |∼ B ∈ Ci}.

Before we conclude the section we introduce one last proposition that we will use
in the following.

Proposition 4. For all K and A, if K |= A |∼⊥, then for all Ci , Ci |= A |∼⊥, and
Ci |= ⊤ |∼ ¬A, i.e. A has no rank.

Proof. Suppose for a contradiction thatK |= A |∼⊥, but for somei, Ci 6|= A |∼⊥. In
particular, let us consider the leasti such thatCi 6|= A |∼⊥. By definition of Ci we
can assume thatC0 ⊃ . . . ⊃ Ci−1 ⊃ Ci . Consider a modelM = 〈W, <,V〉 of Ci

in which it does not hold thatA |∼⊥, i.e. in which {w ∈ W | M |= A} , ∅. By
definition of Ci , for all conditionalsA1 |∼ B1 . . .An |∼ Bn in Ci−1 − Ci , it holds that
Ci−1 6|= ⊤ |∼ ¬A1, . . . ,Ci−1 6|= ⊤ |∼ ¬An, i.e. there are rational modelsM1 = 〈W1, <1

,V1〉, . . . ,Mn = 〈Wn, <n,Vn〉 of Ci−1 in which⊤ |∼ ¬A1, . . . ,⊤ |∼ ¬An does not hold,
respectively, i.e., in which there are worldsx1, . . . , xn (respectively) such thatkM1(x1) =
0, . . . , kMn(xn) = 0, andM1, x1 |= A1, . . . ,Mn, xn |= An. Consider now the model
M′ = 〈W′, <′,V′〉 obtained fromM by lettingW′

= W ∪ {x1, . . . , xn}, V′ = V for
all worlds ofW, whereasV = V1, . . . ,Vn for the worldsx1, . . . , xn respectively. Let
kM′(x1) = 0, . . . , kM′(xn) = 0, whereas for allw ∈ W, let kM′(w) = kM(w) + 1. Define
<′ accordingly. We can prove thatM′ satisfiesCi−1: for conditionalsAi |∼ Bi in Ci this
follows since for sure the minimalAi-worlds will be worlds already in the startingM
(sinceCi−1 |= ⊤ |∼ ¬Ai hence none of thex1, . . . , xn is anAi-world), and keep satisfying
Ai |∼ Bi as they did it inM. ForAi |∼ Bi ∈ Ci−1−Ci , by construction ofM′, the minimal
Ai-worlds will be one of thex1, . . . , xn just introduced, and they satisfy the conditional
since they did so in the original models. Furthermore inM′ there is anA-world (for the
A of the proposition), which shows thatCi−1 6|= A |∼⊥. This contradicts the assumption
that i is the least natural number such thatCi 6|= A |∼⊥.

2.3.1. Fixed versus Variable Interpretations Minimal Models Semantics
The first semantics we consider is afixed interpretations minimal semantics, for

shortFIMS.

Definition 7 (FIMS). Given modelsM =〈W, <,V〉 andM′ = 〈W′, <′,V′〉, we say
thatM is preferred toM′ with respect to the fixed interpretations minimal semantics,
and we writeM <FIMSM

′, if

• W =W′

• V = V′

• for all x, kM(x) ≤ kM′(x) whereas there existsx′ such thatkM(x′) < kM′(x′).

Given a knowledge baseK, we say thatM is a minimal model ofK with respect to
<FIMS if M is a model ofK and there is noM′ such thatM′ is a model ofK and
M′ <FIMSM. We say thatK minimally entails a formulaF with respect toFIMS, and
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we write K |=FIMS F, if F is valid in all models ofK that are minimal with respect to
<FIMS (among all the possible models ofK).

Proposition 5. Given a finite modelM of K, eitherM is a minimal FIMS model of K
or there is a finite minimal FIMS modelM′ of K such thatM′ <FIMS M.

In our second semantics, we let the interpretations vary. The semantics is called vari-
able interpretations minimal semantics, for shortVIMS.

Definition 8 (VIMS). Given modelsM =〈W, <,V〉 andM′ = 〈W′, <′,V′〉 we say
thatM is preferred toM′ with respect to the variable interpretations minimal seman-
tics, and writeM <VIMSM

′, if

• W =W′

• for all x, kM(x) ≤ kM′(x) whereas there existsx′ such thatkM(x′) < kM′(x′).

Given a knowledge baseK, we say thatM is a minimal model ofK with respect to
<VIMS if M is a model ofK and there is noM′ such thatM′ is a model ofK and
M′ <VIMS M. K minimally entails a formulaF with respect toVIMS, and we write
K |=VIMS F, if F is valid in all models ofK that are minimal with respect to<VIMS

(among all the possible models ofK).

It is easy to realize that the two semantics,FIMS andVIMS, define different sets of
minimal models. This is illustrated by the following example.

Example 1. Let K = {penguin |∼ bird, penguin |∼ ¬ f ly, bird |∼ f ly}. We derive
that K 6|=FIMS penguin∧ black |∼ ¬ f ly. Indeed inFIMS there can be a modelM
in whichW= {x, y, z}, V(x) = {penguin, bird, f ly, black}, V(y) = {penguin, bird},
V(z) = {bird, f ly}, andz< y < x.M is a model ofK, and it is minimal with respect to
FIMS (indeed once fixedV(x),V(y),V(z) as above, it is not possible to lower the rank
of x nor of y nor of z unless we falsifyK). Furthermore, inM x is a typical world
in which “it is a penguin” and “it is black” hold (since there is no other world satis-
fying the same propositions which is preferred to it) where “it flies” holds. Therefore,
K 6|=FIMS penguin∧ black |∼ ¬ f ly.

On the other hand,M is not minimal with respect toVIMS. Indeed, consider the
modelM′ = 〈W, <′,V′〉 obtained fromM by lettingV′(x) = {penguin, bird, black},
V′(y) = V(y), V′(z) = V(z) and by defining<′ as:z <′ y andz <′ x. ClearlyM′|= K,
andM′<VIMS M, sincekM′(x) < kM(x), while kM′ = kM for all other worlds.

The example above shows thatFIMSandVIMSlead to different sets of minimal models
for a givenK. Notice, however, that the modelM′ we have used to illustrate this fact
is not a minimal model forK in VIMS. A minimal model inVIMS for K that can be
defined on the set of worldsW is given byV(x) = V(y) = V(z) = {bird, f ly}, and
the empty relation<. This is quite a degenerate model ofK in which “it is a penguin”
is never true. This illustrates the strength ofVIMS: in case of knowledge bases that
only contain positive conditionals, logical entailment inVIMScollapses into classical
logic entailment. This feature corresponds to a similar feature of the nonmonotonic
logic Pmin in [19] (see Section 2.4), can be proven in the same way, and leads to the
following proposition.
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Proposition 6. Let K be a set of positive conditionals. Let us replace all formulas of
the form A|∼ B in K with A→ B, and call K◦ the resulting set of formulas. We have
that K |=VIMS A |∼ B if and only if K◦ |=PC A→ B.

As forPmin this strong feature ofVIMScan be prevented by addingexistence assertions
to the knowledge base, in the example we could add, for instance, ¬(penguin |∼⊥)
to force us to consider non-trivial models where the proposition “it is a penguin” is
satisfied. In the next section, we will applyVIMS in a similar way, by restricting
our consideration to knowledge bases that include existence assertions (expressed by
negated conditionals).

2.3.2. A semantic reconstruction of Rational Closure
Can we capture rational closure within one or the other of thesemantics above?

A first conjecture might be that theFIMS of Definition 7 could capture rational clo-
sure. However, we are soon forced to recognize that this is not the case. For instance,
Example 1 above illustrates that{penguin|∼ bird, penguin|∼ ¬ f ly, bird |∼ f ly} 6|=FIMS

penguin∧black |∼ ¬ f ly. On the contrary, it can be easily verified thatpenguin∧black |∼
¬ f ly is in the rational closure of{penguin|∼ bird, penguin|∼ ¬ f ly, bird |∼ f ly}. There-
fore, FIMS as it is does not allow us to define a semantics corresponding to rational
closure. Things change if we considerFIMS applied to models that containall pos-
sible valuations compatible with a given knowledge base K. We call these models
canonical models.

Example 2. Consider Example 1 above. If we restrict our attention to models that also
contain a worldw with V(w) = {penguin, bird, black}which satisfies “it is a penguin”,
“it is black” and “it does not fly” in whichw is a typical world satisfying “it is a
penguin”, we are able to conclude thattypically it holds that if it is a penguin and it
is black then it does not fly, the same as in rational closure. Indeed, in all minimal
FIMSmodels ofK that also containw with V(w) = {penguin, bird, black}, it holds that
penguin∧ black |∼ ¬ f ly (in particular, in Example 1 above, addingw toM would give
z< w andw < x).

We are led to the conjecture thatFIMS restricted to canonical models could be the
right semantics for rational closure. Canonical models aredefined with respect to the
languageL restricted to the propositional variables occurring in theknowledge base
and in the query. Given a knowledge baseK and a queryQ, let ATMK,Q be the set of
all the propositional variables ofATM occurring inK or in the queryQ, and letLK,Q

be the restriction of the languageL to the propositional variables inATMK,Q.
A truth assignmentv : ATMK,Q −→ {true, f alse} is compatiblewith K, if there is

no propositional formulaA ∈ LK,Q such thatv(A) = true andK |= A |∼ ⊥ (wherev is
extended to arbitrary propositional formulas as usual).

Definition 9 (Canonical Model). A modelM =〈W, <,V〉 satisfying a knowledge
baseK is said to becanonicalif it contains (at least) a world associated to each truth
assignment compatible withK, that is to say: ifv is compatible withK, then there
exists a worldw inW such that, for all propositional formulasB ∈ LK,Q,M,w |= B if
and only ifv(B) = true.
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It can be easily shown that, for any knowledge base, a minimalcanonicalFIMSmodel
exists: this is any canonical model in which every possible world w has the rank asso-
ciated to the conjunction of all atoms and negated atoms inLK,Q that it satisfies. This
is stated by the following theorem.

Theorem 1. For any satisfiable K there exists a finite minimal canonical FIMS model
M.

Proof. SinceK is satisfiable consider a modelM = 〈W, <,V〉 of K. Given the fi-
nite model property ofR, we can assume, without loss of generality thatM has
a finite set of worlds. Letv1, . . . , vr be any enumeration of the truth assignments
vi : ATMK,Q −→ {true, f alse} compatible withK. Observe that, sinceATMK,Q is a fi-
nite set of propositional variables, the truth assignmentsvi as defined above are finitely
many.

We proceed starting fromM and extending it by the addition of new worlds. Let
M0 = M. For eachi, from 1 tor, we reason as follows. If there is no world inMi−1

associated tovi , consider a modelM′ = 〈W′, <′,V′〉 of K in which there is at least
a world associated tovi . Such a modelM′ exists sincevi is compatible withK. By
Fact 1, we can assumeM′ to be finite as well. We add toMi−1 all the worlds inM′,
to getMi = 〈Wi , <i ,Vi〉, where: (1)Wi = Wi−1 ∪W

′; (2) <i is defined as<i−1 on
the worlds inWi−1; it is defined as<′ on the worlds inW′ and, for allx ∈ Wi−1 and
y ∈ W′, x <i y; (3) Vi is defined asVi−1 on the worlds inWi−1 and it is defined asV′

on the worlds inW′.
Observe, that the resulting modelMi is the juxtaposition of the two modelsMi−1

andM′, where the rank of each world inMi−1 is lower than the rank of each world in
M′. It is finite, as bothMi−1 andM′ are finite.

It is easy to see that, ifMi−1 satisfiesK, thenMi satisfiesK as well. Consider
any conditionalC |∼ B ∈ K, and any worldw ∈ MinMi

<i
(C). Then eitherw ∈ Wi−1 or

w ∈ W′. If w ∈ Wi−1, thenw ∈ MinMi−1
<i

(C), by the definition of<i . SinceMi−1 is a
model ofK,Mi−1 |= C |∼ B andMi−1,w |= B. By construction,Vi(w) = Vi−1(w), so
thatMi ,w |= B, andMi |= C |∼ B. If w ∈ W′, thenw ∈ MinM

′

<i
(C), by the definition

of <i . SinceM′ is a model ofK, M′ |= C |∼ B andM′,w |= B. By construction,
Vi(w) = V′(w), so thatMi ,w |= B, andMi |= C |∼ B.

Given thatM0 = M is a model ofK, we conclude that all theM1,M2, . . . ,Mr

are models ofK. After all the valuationsv1, . . . , vr have been considered, we obtain a
modelMr of K which is canonical and is finite as well, as we have only considered
finite models in the construction ofMr . FromMr , by Proposition 5, we can obtain a
minimal canonicalFIMS model.

In the following, we show that the canonical models that are minimal with respect to
FIMSare an adequate semantic counterpart of rational closure.

Proposition 7. LetM =〈W, <,V〉 be a canonical model of K, minimal with respect
to <FIMS. Given i∈ N, for all w ∈ W it holds that: ifM,w |= A→ B for all A |∼ B in
Ci , then kM(w) ≤ i.

Proof. The proof is by induction oni. If i = 0, suppose for a contradiction that there
is a w such thatM,w |= A → B for all A |∼ B in C0, but kM(w) > 0. Then it can be

15



easily seen that the canonical model obtained fromM by simply changingkM(w) into
0 is still a model ofC0 = K and it is preferred toM, thus contradicting the minimality
ofM.

For i > 0, we reason in a similar way: let us considerw ∈ W such that for all
A |∼ B in Ci , M,w |= A → B but kM(w) > i. LetM′ be a model obtained fromM
by changing< in order to havekM′(w) = i. M′ is preferred toM and it is a model of
K, as it satisfies all the conditionals inK. Let A |∼ B ∈ K. It is clear that, for all the
worldsw′ ∈ W with w′ , w, w′ satisfiesA |∼ B inM′, as it satisfies it inM. To show
thatw satisfiesA |∼ B, let w ∈ MinM

′

< (A). If A |∼ B in Ci , we know from the hypothesis
thatw satisfiesA → B, and hence,w satisfiesB. If A |∼ B in K − Ci , there is aj < i
such thatA |∼ B ∈ C j , C j 6|= ⊤ |∼ ¬A while C j−1 |= ⊤ |∼ ¬A. FromC j 6|= ⊤ |∼ ¬A, it
follows that there is a modelM j of C j with aw◦ such thatkM j (w

◦) = 0 andw◦ satisfies
A. By Proposition 3, we have thatM j ,w◦ satisfies{A → B : A |∼ B ∈ C j} ∪ {A},
henceC j 6|= A1 → B1 ∧ . . . ∧ Am → Bm ∧ A |∼⊥ and, by Proposition 4, we have that
K 6|= A1→ B1 ∧ . . . ∧ Am→ Bm∧ A |∼⊥. SinceM′ (asM) is canonical, it follows that
there is a worldw∗ ∈ W such thatw∗ satisfies all the implicationsA′ → B′ s.t. A′ |∼ B′

in C j andw∗ satisfiesA. By inductive hypothesis,kM(w∗) < i, and thereforekM(A) < i.
By construction ofM′, kM′(w∗) < i, and thereforekM′(A) < i which contradicts the
hypothesis thatw ∈ MinM

′

< (A). Hence,M′ satisfies all the conditionals inK. The fact
that kM(w) > i andkM′(w) = i contradicts the minimality ofM. Hence, it must be
kM(w) ≤ i, and the proof is over.

Proposition 8. LetM be a canonical model of K minimal with respect to<FIMS. Then,
given i∈ N, rank(A) = i if and only if kM(A) = i.

Proof. (Only if part)Let us assume thatrank(A) = i. By definition of rank, we know
that Ci 6|= ⊤ |∼ ¬A. Then there is a rational modelM′ of Ci that does not satisfy
⊤ |∼ ¬A. InM′ there must be a worldw′, with kM′(w′) = 0 such thatM′,w′ |= A.
For all propositional formulasB ∈ L, such thatM′,w′ |= B, it must be the case that
Ci that does not satisfy⊤ |∼ ¬B inM′. Hence, for all propositional formulasB ∈ L,
such thatM′,w′ |= B, Ci 6|= ⊤ |∼ ¬B. Let B′ be the conjunction of all theseBs. Clearly,
A is one of the conjuncts ofB′. Furthermore,Ci 6|= ⊤ |∼ ¬B′. By Proposition 4, from
Ci 6|= ⊤ |∼ ¬B′, it follows thatK 6|= B′ |∼ ⊥. Let v be the truth assignment associated
with the worldw′ ofM′. Thenv is compatible withK. SinceM is a canonical model,
there must be a worldw ∈ W of M such that for all propositional formulasB ∈ L,
M,w |= B if and only if v(B) = true. In particular, we have thatM,w |= A. We show
that, for all D |∼ B ∈ Ci , M,w |= D → B. Observe thatD and B are propositional
formulas and that their valuation is the same inw and inw′. Hence it is sufficient to
show thatM′,w′ |= D → B, for all D |∼ B ∈ Ci . This follows from the fact that
M′,w′ |= D |∼ B holds for allD |∼ B ∈ Ci . Indeed, ifM′,w′ 6|= D, it trivially holds that
M′,w′ |= D→ B. IfM′,w′ |= D, then (sincekM′(w′) = 0), w′ ∈ MinM

′

<′ (D), and hence
M′,w′ |= B. Thus,M′,w′ |= D→ B.

Now, there is a worldw ∈ W such that, for allD |∼ B ∈ Ci , w satisfiesD → B .
By Proposition 7,kM(w) ≤ i. Sincew satisfiesA, kM(A) ≤ i. As by Proposition 2 we
know thatkM(A) ≥ i, we can conclude thatkM(A) = i.

(If part) This direction is obvious, given theonly if part: if kM(A) = i, then
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rank(A) = i. Indeed, by absurd, ifrank(A) = j , i, thenkM(A) = j , i, against
the hypothesis.

A direct consequence of Proposition 8 together with the observation that if a formula
has a rank then its maximal value isn wheren is the last element ofC0 ⊃ . . . ⊃ Cn such
thatCn = ∅ or such that for allm> n, Cm = Cn is stated in the following proposition.

Proposition 9. Let n be the last element of C0 ⊃ . . . ⊃ Cn such that Cn = ∅ or such
that for all m> n Cm = Cn, then in all minimal canonical modelsM, for all worlds w,
kM(w) ≤ n.

We can now prove the following theorem:

Theorem 2. Let K be a knowledge base andM be a canonical model of K minimal
with respect to<FIMS. We show that, for all conditionals A|∼ B ∈ L:

M |= A |∼ B if and only if A|∼ B ∈ K,

whereK is the rational closure of K.

Proof. (Only if part)Let us assume thatM = 〈W, <,V〉 satisfiesA |∼ B. Then, for each
world w ∈ Min<(A), w satisfiesB. If Min<(A) = ∅, then there is now s.t.M,w |= A,
henceA has no rank inM and, by Proposition 8,A has no rank. In this case, by
Definition 6,A |∼ B ∈ K. Let us assume thatkM(A) = i. As kM(A∧ B) < kM(A∧ ¬B),
thenkM(A∧ ¬B) > i. By Proposition 8,rank(A) = i andrank(A∧ ¬B) > i. Hence, by
Definition 6,A |∼ B ∈ K.

(If part) If A |∼ B belongs toK, then, by Definition 6, either (a)rank(A) < rank(A∧
¬B) (or A has a rank andA∧ ¬B has not), or (b)A has no rank. In the first case (a), by
Proposition 8 we have thatkM(A) < kM(A∧¬B), which entailskM(A∧B) < kM(A∧¬B).
HenceM satisfiesA |∼ B. In case,A has a rank andA∧¬Bhas not, supposerank(A) = i.
By Proposition 8,kM(A) = i. It is easy to show thatkM(A∧ ¬B) > i. If, by absurdum,
kM(A ∧ ¬B) ≤ i, by Proposition 8, we would haverank(A ∧ ¬B) ≤ i, against the
hypothesis thatA∧ ¬B has no rank.

In case (b), by Proposition 8,A has no rank inM, henceM satisfiesA |∼ B.

In Theorem 2 we have shown a correspondence between rationalclosure and minimal
models with fixed interpretations,on the proviso thatwe restrict our attention to mini-
malcanonicalmodels. We can obtain the same effect by extendingK into K′ by adding
negated conditionals:

Definition 10. Let K be a knowledge base. We define

K′ = K ∪ {¬(C |∼⊥) | C = (¬)A1 ∧ (¬)A2 ∧ . . . ∧ (¬)An,
such thatAi ∈ ATMK,Q, with i = 1, 2, . . . , n, andK 6|= (C |∼⊥)}

(that isC is a conjunction of literals whose propositional variablesoccur in the knowl-
edge base or in the query).

Indeed it can be easily verified that all models ofK′ are canonical, hence restricting
FIMS to canonical models on the one hand and considering the extension ofK asK′ on
the other hand amounts to the same effect. We can therefore restate Theorem 2 above
as follows:
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Theorem 3. Let K be a knowledge base and let K′ be defined as in Definition 10. It
holds that

K′ |=FIMS A |∼ B if and only if A|∼ B ∈ K,

whereK is the rational closure of K.

Notice that the size ofK′ is exponential in that ofK.
Before we go any further, let us point out that this characterization of rational clo-

sure, in terms of minimal canonicalFIMSmodels, is related to Lehmann and Magidor’s
semantical characterization in [33]: we use canonical models, as they do, and we show
a correspondence between the rank of a formula (syntactically defined in terms of ex-
ceptionality) and the rank of the formula in minimal canonical FIMSmodels. However
the definition of minimal canonicalFIMS models that we use here, based on a specific
preference relation between different canonical models, is different from the definition
provided in [33] (see Section 5.3, Definition 20) where the involved preference relation
is defined in terms of conditionals satisfied in the compared models.

We may wonder whether the restriction to canonical models can be lifted by adopt-
ing a semantics based on variable valuations. In general theanswer is negative. We
have already mentioned that, if we consider knowledge basescontaining only positive
conditionals, logical entailment inVIMS collapses into classical logic entailment. To
avoid this collapse, we can require that, when we are checking for entailment of a con-
ditional A |∼ B from a K, at least anA ∧ B-world and anA ∧ ¬B-world be present in
the models ofK. This can be obtained by adding toK the conditionals¬(A∧ B |∼ ⊥)
and¬(A ∧ ¬B |∼ ⊥). Also in this case, however, we cannot give a positive answer to
the above question. Indeed, it is possible to build a model ofK, minimal with respect
to VIMS, which falsifies a conditionalA |∼ B which, on the contrary, is satisfied in all
the canonical minimal models ofK underFIMS. This is shown by the following:

Example 3. Let K be as follows:

{⊤ |∼ S,
S |∼ ¬D,
L |∼ P,
R |∼ Q,
E |∼ F,
H |∼ G,
D |∼ ¬P∧ ¬Q∧ ¬F ∧ ¬G,
S |∼ ¬(L ∧R),
S |∼ ¬(L ∧ E),
S |∼ ¬(L ∧ H),
S |∼ ¬(R∧ E),
S |∼ ¬(R∧ H),
S |∼ ¬(E ∧ H)}.

Let

A = D ∧ S ∧ R∧ L ∧ E ∧ H,
B = ¬Q∧ ¬P∧ ¬F ∧ ¬G
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and let
K′ = K ∪ {¬(A∧ B |∼ ⊥), ¬(A∧ ¬B |∼ ⊥)}.

We define a modelM = (W, <,V) of K′, which is minimal with respect toVIMS, as
follows:W = {x,w, y1.y2, y3}, where:

V(y1) = {S,¬D,¬R,¬L,¬E,¬H,P,Q, F,G}
V(y2) = {¬S,¬D,R, L,E,H,P,Q, F,G}
V(y3) = {¬S,D,¬P,¬Q,¬F,¬G,¬R,¬L,¬E,¬H}
V(x) = {D,S,R, L,E,H,¬Q,¬P,¬F,¬G}
V(w) = {D,S,R, L,E,H,Q,¬P,¬F,¬G}

with kM(y1) = 0, kM(y2) = 1, kM(y3) = 1, kM(x) = 2 andkM(w) = 2. Observe
that: x is anA∧ B-minimal world;w is anA∧ ¬B-minimal world;y1 is anS-minimal
world; y2 is a minimal world forR, L,E andH; andy3 is aD-minimal world.
M is a model ofK which is minimal with respect toVIMS. Also, A |∼ B is falsified

inM, while, on the contrary,A |∼ B holds in all the canonical models minimal with
respect toFIMS. Indeed, in all such models the rank ofk(A ∧ B) = 1 while k(A ∧
¬B) = 2. However, it is not possible to construct a modelM′ with 5 worlds so that
M′ <VIMS M. In particular, lowering the rank ofw is never possible, sincew is a non-
typical D-world, and typicalD−worlds are non typical⊤-worlds, hencew will always
have rank at least 2. Forx we reason in a different way: although in principle it could
have rank 1, assigning tox rank 1 entails that there are at least 4 distinctR, L,E and
H-worlds with rank 0. But this is impossible given that we haveonly 5 worlds in the
model. In order to satisfy all these formulas by a single world, we have to introduce a
world at level 1 (which can be a nonS and therefore satisfy pairs of these formulas).
This is worldy2, whose rank cannot therefore be lowered.y2 cannot be aD−world, we
therefore needy3 which is a minimalD−world that can have rank at least 1 and whose
rank cannot therefore be lowered.

As suggested by this example, in order to characterize rational closure in terms of
VIMS, we should restrict our consideration to models which contain “enough” worlds.
In the following, as in Theorem 3, we enrichK with negated conditionals but, as a
difference withK′ of Theorem 3, we only need to add toK a polynomial number of
negated conditionals (instead of an exponential number). The purpose of the addition
is that of restricting our attention to models that are minimal with respect to<VIMS and
that have a set of worlds “large” enough to have, in principle, a distinct most-preferred
world for each antecedent of conditionals inK. Intuitively, this condition discards the
models, as the one illustrated by the example above, in whicha formula (e.g.A ∧ B)
has a rank higher than the rank it could have just because there are not enough worlds
(and lowering the rank of a formula would lead to the falsification of some conditionals
in K).

For this reason, we expandK into K′′ by adding, for each antecedentC of a con-
ditional formulas inK, a new corresponding atomφC, and by requiring that all these
new atoms are mutually disjoint. This will guarantee that all models ofK′′ will have
a distinct world satisfying each newly introduced atomφC and its corresponding for-
mulaC. Furthermore, if the problem to be addressed is that of knowing whetherA |∼ B
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is logically entailed byK, we also introduceφA∧B andφA∧¬B in order to also have a
distinct world associated toA ∧ B andA ∧ ¬B. This is stated in a formal way in the
following definition.

Definition 11. Given a knowledge baseK, we define:

• AK,A|∼B = {C | either, for someD, C |∼ D ∈ K or C = A∧ B or C = A∧ ¬B, and
K 6|= C |∼⊥};

• K′′ = K ∪ {¬(C ∧ φC |∼⊥) : C ∈ AK,A|∼B} ∪ {(φCi ∧ φC j |∼⊥) : Ci ,C j ∈ AK,A|∼B}.

We can now establish a correspondence betweenFIMS andVIMS. By virtue of Theo-
rem 2, this allows us to establish a correspondence between rational closure andVIMS,
as stated by Theorem 1.

Theorem 4. LetM be a canonical model of K, minimal with respect to FIMS, and let
K′′ be the extension of K defined as in Definition 11. We have that:

M |= A |∼ B if and only if K′′ |=VIMS A |∼ B.

Proof. We show the contrapositive of the two directions.
First, supposeK′′ 6|=VIMS A |∼ B. LetM′ = 〈W′, <′,V′〉 be a model ofK′′ minimal

with respect to<VIMS that does not satisfyA |∼ B, i.e., such thatkM′ (A∧¬B) ≤ kM′(A∧
B). We want to show that alsoM6|= A |∼ B, i.e., kM(A ∧ ¬B) ≤ kM(A ∧ B). For a
contradiction, suppose in the canonicalM, kM(A ∧ ¬B) = j > kM(A ∧ B) = i. By
Propositions 2 and 8,kM′(A ∧ ¬B) ≥ j andkM′(A ∧ B) ≥ i, and since by hypothesis
kM′(A∧ ¬B) ≤ kM′(A∧ B), it follows thatkM′ (A∧ B) ≥ j > i. We show that this goes
against the minimality ofM′.

FromM andM′ we build a modelM∗ = 〈W∗, <∗,V∗〉 such thatM∗ is a model
of K′′ andM∗ <VIMS M

′. In particular, for each formula inAK,A|∼B, we include in
W∗ a minimal world fromM satisfying that formula. More precisely, we introduce
inW∗ the following worlds fromM: x ∈ MinM< (A ∧ B), x′ ∈ MinM< (A ∧ ¬B) and a
world y ∈ MinM< (C), for eachC antecedent of a conditional inK s.t. K 6|= C |∼⊥. For
these worlds, we defineV∗ = V andkM∗ = kM. If the same elementy is associated
to two different formulas it must be duplicated intoy andy′ (andV∗(y′) = V∗(y) and
kM∗(y′) = kM∗(y)). Furthermore, for each worldy introduced as a representative of
MinM< (C), V∗(y) is extended in order to includeφC. <∗ is straightly defined fromkM∗
in the obvious way. The construction is almost finished. Notice that up to this point
we have introduced inW∗ no more elements than those inW′. To conclude we have
to rename the elements ofW∗ with the names as the elements ofW′ that satisfy the
sameφC, and we have to add toW∗ the elements ofW′ that are eventually missing
(we let for these casesV∗ = V′ andkM∗ = kM′ ).

It can be shown thatM∗ is a model ofK′′, andM∗ <VIMS M
′, against the mini-

mality ofM′. First of all, we show thatM∗ is a model ofK′′. Indeed, by construction
we have introduced a new elementy ofM for eachC antecedent of a conditional in
K or equal toA ∧ B or A ∧ ¬B, and this element is still inMinM

∗

< (C) (otherwise,
kM∗(C) < kM∗ (y) = kM(y) = kM(C), against Propositions 2 and 8). Furthermore,
V∗(y) includesφC. Hence,M∗ satisfies all conditionals introduced inK′′ with form
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¬(C ∧ φC) |∼⊥. Consider now the positive conditionalsC |∼ D in K′′, that were already
in K. Hence, consider anyy inserted inM∗ fromM. Let y ∈ MinM

∗

< (C). Then also
y ∈ MinM< (C) (otherwise there would be anothery′ ∈ MinM< (C) withM,y′ |= C and
kM(y′) < kM(y) that would have been taken in the construction; and by construction
inM∗ it would hold thatM∗, y′ |= C andkM∗(y′) < kM∗(y), againsty ∈ MinM

∗

< (C)).
SinceM is a model ofK, andC |∼ D ∈ K,M,y |= D, hence alsoM∗, y |= D. Con-
sider nowy introduced inM∗ fromM′. If y ∈ MinM

∗

< (C), then we reason as follows
to show thaty ∈ MinM

′

< (C). First of all, we know thatkM∗(y) = kM(C). Indeed in
M∗ we have inserted ay′ that was inMinM< (C). As shown above,y′ ∈ MinM

∗

< (C).
HencekM∗ (y) = kM∗(y′) andkM∗(y) = kM(C). But by constructionkM∗ (y) = kM′(y)
and if y < MinM

′

< (C), there would be ay′ s.t.M′,y′ |= C andkM′(y′) < kM′ (y), hence
kM′(C) < kM(C), against Propositions 2 and 8. Hence, sinceC |∼ D holds inM′,
M′,y |= D and by construction alsoM,y |= D.

For the conditionals with formφCi∧φC j |∼⊥: they hold inM∗ since we have suitably
extendedV∗ in order to include at most oneφC at a time.

Last, it obviously holds thatM∗ <VIMS M
′. Indeed the set of worlds of the two

models coincide, and for ally taken fromM′, kM∗ (y) = kM′(y), and for ally taken from
M, they were introduced as representatives of a givenC antecedent of a conditional or
equal toA ∧ B, A ∧ ¬B. For all these formulas by Proposition 2 and 8, it holds that
kM∗(C) = kM(C) ≤ kM′(C), hencekM∗ (y) ≤ kM′ (C). Furthermore, forA∧ B we have
shown above thatkM∗(A ∧ B) = kM(A ∧ B) = i < kM′(A ∧ B), henceM∗ <VIMSM

′,
which contradicts the minimality ofM′. We conclude that ifK′′ 6|=VIMS A |∼ B, then
alsoK 6|=FIMS A |∼ B.

For the other direction, supposeM 6|= A |∼ B, i.e.,kM(A∧ ¬B) ≤ kM(A∧ B). Let
kM(A∧ ¬B) = i andkM(A∧ B) = j. Consider the modelM∗ built as in the first part
of the construction used above. More preciselyM∗ = 〈W∗, <∗,V∗〉 is built fromM by
cutting out its portion containing:x in MinM< (A∧B), x′ ∈ MinM< (A∧¬B) and an element
y ∈ MinM< (C) for each antecedentC of a conditional inK. V∗ = V andkM∗ = kM. If the
same elementy is associated to two different formulas, it must be duplicated intoy and
y′ (andV∗(y′) = V∗(y) andkM∗(y′) = kM∗(y)). Furthermore, for each worldy associated
to a formulaC, V∗(y) is extended in order to includeφC. Last,<∗ is defined fromkM∗
in the obvious way. By reasoning similarly to what we have done above, we can show
thatM∗ is a model ofK′′. Furthermore, there cannot be aM∗

′

<VIMSM
∗. Indeed, any

model ofK′′ must have a distinct elementx satisfyingC ∧ φC for eachC in AK,A|∼B.
Now suppose there was a modelM∗

′

of K′′ withM∗
′

<VIMS M
∗. If M∗

′

<VIMS M
∗,

then for somex, kM∗′ (x) < kM∗ (x). Suppose inM∗, x |= C ∧ φC (and hence also
M∗

′

, x |= C ∧ φC). By construction ofM∗, kM∗ (x) = kM(C). If kM∗′ (x) < kM∗ (x),
then kM∗′ (C) < kM∗ (C), against Propositions 2 and 8. We conclude that it cannot
holdM∗

′

<VIMS M
∗, henceM∗ is a minimalVIMS model of K′′. Furthermore by

constructionkM∗(A∧ ¬B) ≤ kM∗(A∧ B). We conclude thatK′′ 6|=VIMS A |∼ B.

From Theorem 2 and Theorem 4 just shown, it follows that:

Corollary 1. Let K be a knowledge base. Given K′′ defined as in Definition 11, it
holds that

A |∼ B ∈ K if and only if K′′ |=VIMS A |∼ B,
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whereK is the rational closure of K.

We conclude the section with a comparison with the related works on rational closure.

2.4. Relation withPmin and Pearl’s System Z

In [19] an alternative nonmonotonic extension of preferential logic P calledPmin

is proposed. Similarly to the semantics presented in this work, Pmin is based on a
minimal modal semantics. However the preference relation among models is defined
in a different way. Intuitively, inPmin the fact that a worldx is a minimalA-world is
expressed by the fact thatx satisfiesA∧ �¬A, where� is defined with respect to the
inverse of the preference relation (i.e. with respect to theaccessibility relation given
by Ruvif and only if v < u). The idea is that preferred models are those that minimize
the set of worlds where¬�¬A holds, that isA-worlds which are not minimal. As a
difference from the approach presented in this work, the semantics ofPmin is defined
starting from preferential models, in which the relation< is irreflexive and transitive
(thus, no longer modular).

Pmin is a nonmonotonic logic considering onlyP models that, intuitively, minimize
the non-typical worlds. More precisely, given a set of formulasK, a modelM =〈WM,

<M,VM〉 of K and a modelN = 〈WN , <N ,VN 〉 of K, we say thatM is preferred to
N if WM =WN , and the set of pairs (w,¬�¬A) such thatM,w |= ¬�¬A is strictly
included in the corresponding set forN. A modelM is aminimal modelfor K if it is
a model ofK and there is not a modelM′ of K which is preferred toM. Entailment
in Pmin is restricted to minimal models of a given set of formulasK. In Section 3 of
[19] it is observed that the logicPmin turns out to be quite strong. In general, if we
only consider knowledge bases containing only positive conditionals, we get the same
trivialization result (part of Proposition 1 in [19]) as theone contained in Proposition
6 for VIMS. This does not hold for rational closure. This is the reason why we have
introduced the additional assumptions in order to obtain anequivalence with rational
closure. Similarly, in order to tackle this trivializationin Pmin, Section 3 in [19] is
focused on the so calledwell− behaved knowledge bases, that explicitly include that
A is possible (¬(A |∼ ⊥)) for all conditional assertionsA |∼ B in the knowledge base.

We may now wonder whetherPmin is equivalent toVIMS, which is seemingly the
closer semantics.

Or whetherVIMS is equivalent to a stronger version ofPmin obtained by replacing
P with R as the underlying logic. We callRmin this stronger version ofPmin.

Example 4. Let K = {PhD |∼ ¬worker,PhD |∼ adult, adult |∼ worker, italian |∼ houseowner,
PhD |∼ ¬houseowner}. What do we derive inPmin andRmin, and what inVIMS? By
what said above, sinceK only contains positive conditionals, both inPmin andRmin,
on the one side, and inVIMS, on the other side, we derive thatitalian ∧ PhD |∼⊥. So
let us add toK the constraint that people who are italian and have a PhD do exist by
introducing inK a conditional¬(italian ∧ PhD |∼⊥), thus obtaining:K′ = {PhD |∼

¬worker,PhD |∼ adult, adult |∼ worker,italian |∼ houseowner,PhD |∼ ¬houseowner,
¬(italian ∧ PhD |∼⊥)}.

Notice that, since¬(italian ∧ PhD |∼⊥) entails both that¬(italian |∼⊥) and that
¬(PhD |∼⊥), and that this in turn entails¬(adult |∼⊥), K′ is also well-behaved.
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It can be easily verified that the logical consequences ofK′ in Pmin, Rmin andVIMS
differ. In both Pmin and Rmin, for instance, we derive neither thatitalian ∧ PhD |∼

houseownernor thatitalian ∧ PhD |∼ ¬houseowner: the two alternatives are equiva-
lent. On the other hand, inVIMSwe derive thatitalian ∧ PhD |∼ ¬houseowner.

The previous example shows that in some casesVIMS is stronger than bothPmin and
Rmin. The following one shows that the two approaches are incomparable, since there
are also logical consequences that hold for bothPmin andRmin but not forVIMS.

Example 5. Let K = {PhD |∼ adult, adult |∼ work,PhD |∼ ¬work, italian |∼ houseowner}.
What do we derive about typicalitalian ∧ PhD∧ work, for instance? Do they inherit
the property of typical Italians of beinghouseowner?

Again, in order to prevent the entailment ofitalian ∧ PhD∧ work |∼⊥ from K both
in VIMSand inPmin andRmin, we add toK the constraint that italians with a PhD who
work exist, henceforth they also have typical instances. Therefore we expandK into:

K′ = {PhD |∼ adult, adult |∼ work,PhD |∼ ¬work,
italian |∼ houseowner,¬(italian ∧ PhD∧ work |∼⊥)}.

By reasoning as in Example 4 we can show thatK′ is a well-behaved knowledge base.
Now it can be easily shown that the conditional assertion

italian ∧ PhD∧ work |∼ houseowner

is entailed inPmin andRmin, whereas nothing is entailed inVIMS. This difference can
be explained intuitively as follows. The set of properties for which an individual is
atypical matters inPmin andRmin, where one has to minimize the set of distinct¬�¬C:
even if anitalian ∧ PhD ∧ work is an atypical PhD,Pmin and Rmin still maximize
its typicality as an italian, and therefore entail that it isa houseowner, as all typical
italians. As a difference, inVIMS, what matters isthe set of individuals which are more
typical than a givenx, rather thanthe set of propertiesby which they are more typical.
As a consequence, since anx which is italian ∧ PhD∧ work is an atypical PhD, there
is no need to maximize its typicality as an italian, as long asthis does not increase the
set of individuals more typical thanx.

In [38] Pearl has introduced two notions of 0-entailment and1-entailment to perform
nonmonotonic reasoning. We recall here the semantic definition of both and then we
remark upon their relation with our semantics and rational closure. A modelM for a fi-
nite knowledge baseK has the formM= ({true, f alse}ATM, kM) where{true, f alse}ATM

is the set of propositional interpretations for, say, a fixedfinite propositional language,
andkM is our height function mapping propositional interpretations toN, the definition
of heightkM(A) of a formula is the same as in our semantic. A conditionalA |∼ B is
true in a modelM if kM(A∧ B) < kM(A∧ ¬B). Then the two entailment relations are
defined as follows:

K |=0−ent A |∼ B if A |∼ B is true in all models ofK
K |=1−ent A |∼ B if A |∼ B is true in the (unique) modelM of K which is
minimalwith respect tokM,
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where minimal with respect tokM means that no other modelM′ assigns a lower value
kM′ to any propositional interpretation. First, observe that Pearl’s semantics (both 0
and 1 entailment) cannot cope with conditionals having an inconsistent antecedent.
This limitation is deliberate and is motivated by a probabilistic interpretation of con-
ditionals: in assertingA |∼ B, A must not be impossible, no matter how it is unlikely.
For this reason, a knowledge base such asK = {A |∼ P,A |∼ ¬P, B |∼ Q} is out of the
scope of Pearl’s semantics, and nothing can be said about itsconsequences. As a dif-
ference with respect to Pearl’s approach we are able to consider suchK, we just derive
that A is impossible, without concluding thatK is inconsistent or trivial, in the sense
that everything follows from it. Moreover both 0-entailment and 1-entailment fail to
validate:

∅ |=0−ent/1−ent A |∼⊥ whenever⊢PC ¬A

which is valid in any KLM logic, whence in rational closure (as well as in our seman-
tics). However, two definitions should make apparent the relations with our semantics
and rational closure. If we consider aK such that∀A |∼ B ∈ K,K 6|=R A |∼ ⊥, we get
an obvious correspondence between ourcanonicalmodels (which will contain worlds
for very possible propositional interpretation) and models of Pearl’s semantics. The
correspondence preservesFIMS minimality, so that we immediately get:

Proposition 10. K |=1−ent A |∼ B if and only ifM |= A |∼ B for all canonical modelsM
of K that are minimal with respect to FIMS.

By Theorem 2, we therefore obtainK |=1−ent A |∼ B if and only if A |∼ B ∈ K̄. This
is not a surprise, the correspondence between 1-entailmentand rational closure was
already observed by Pearl in [38, 39]. However, it only worksfor knowledge bases
with the strong consistency assumption as above.

3. Rational closure in Description Logics

As recalled in the Introduction, nonmonotonic reasoning inDescription Logic has
attracted an increasing interest in the last years [40, 2, 1,12, 30, 8, 23, 5, 32, 13,
37]. Our purpose is to investigate whether rational closurecan be extended in order to
support nonmonotonic reasoning to Description Logics.

In this section, we extend toALC the notion of rational closure proposed by
Lehmann and Magidor [33], recalled in Section 2.2, and we define a semantic char-
acterization of this notion of rational closure by introducing a minimal model seman-
tics forALC with typical inclusions. This semantics is a direct generalization of the
minimal (canonical) model semantics introduced in Section2.3

To express typical inclusions,ALC is extended with a typicality operatorT, fol-
lowing the approach in [17, 23]. Differently from [23], herewe consider special kinds
of preferential models, namely,rationalmodels, to define the semantics of theT opera-
tor, and we use a different notion of preference between models, namely, the preference
relation<FIMS, introduced in Section 2.3. Given the typicality operator,the typical as-
sertionT(C) ⊑ D (all the typicalC’s areD’s) plays the role of the conditional assertion
C |∼ D in R. We show that the correspondence result established by Theorem 2 can be
lifted from the propositional calculus toALC.
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3.1. The logicALC + TR

In order to apply rational closure to DLs we proceed in two steps. First, similarly to
[17], we extend the standardALC by a typicality operatorT that allows to single out
the typical instances of a concept. Since we are dealing herewith rational closure (that
builds overR), we attribute toT properties related toR. The resulting logic is called
ALC + TR. As a second step, we build overALC + TR a rational closure mechanism.

Our starting point is therefore the extension of logicALCwith a typicality operator
T: we allow concepts of the formT(C), whose intuitive meaning is thatT(C) selects the
typical instances of a conceptC. We can therefore distinguish between the properties
that hold for all instances of conceptC (C ⊑ D), and those that only hold for the typical
such instances (T(C) ⊑ D).

Definition 12. We consider an alphabet of concept namesC, of role namesR, and of
individual constantsO. GivenA ∈ C andR ∈ R, we define:

CR := A | ⊤ | ⊥ | ¬CR | CR ⊓CR | CR ⊔CR | ∀R.CR | ∃R.CR

CL := CR | T(CR)

A knowledge base is a pair (TBox, ABox). TBox contains a finiteset of concept
inclusionsCL ⊑ CR. ABox contains assertions of the formCL(a) andR(a, b), where
a, b ∈ O.

The semantics ofALC + TR can be formulated in terms of rational models: ordi-
nary models ofALC are equipped with apreference relation< on the domain, whose
intuitive meaning is to compare the “typicality” of domain elements, that is to sayx < y
means thatx is more typical thany. Typical members of a conceptC, that is members of
T(C), are the membersx of C that are minimal with respect to this preference relation
(s.t. there is no other member ofC more typical thanx).

Definition 13 (Semantics ofALC + TR). A modelM of ALC + TR is any structure
〈∆, <, I〉 where:

• ∆ is the domain;

• < is an irreflexive, transitive and modular (ifx < y then eitherx < z or z < y)
relation over∆;

• I is the extension function that maps each conceptC to CI ⊆ ∆, and each roleR
to RI ⊆ ∆ × ∆. For concepts ofALC, CI is defined in the usual way. For theT
operator, we have

(T(C))I
= Min<(CI ),

whereMin<(S) = {u : u ∈ S and∄z ∈ S s.t.z< u}.

Furthermore,< satisfies theWell− Foundedness Condition, i.e., for allS ⊆ ∆, for all
x ∈ S, eitherx ∈ Min<(S) or ∃y ∈ Min<(S) such thaty < x. 3

3Observe that, although in [17, 23] we have called the above condition Smoothness condition, this con-
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The semantics with one single preference relation< is the one that, as we will show,
corresponds to rational closure. One may think of considering a sharper semantics with
several preference relations, we briefly discuss this variant in the last section.

An alternative equivalent semantics of theT operator by means of a set of postu-
lates that are essentially a reformulation of axioms and rules of nonmonotonic entail-
ment in rational logicR can be found in the Appendix, together with the proof of the
equivalence.

Definition 14 (Model satisfying a knowledge base).Given anALC+TR modelM=
〈∆, <, I〉, we assume thatI is extended to assign a domain elementaI of ∆ to each
individual constanta of O. We say that:

• a modelM satisfies an inclusionC ⊑ D (writtenM |=ALC+TR C ⊑ D) if it holds
CI ⊆ DI ;

• M satisfies an assertionC(a) (writtenM |=ALC+TR C(a)) if aI ∈ CI andM
satisfies an assertionR(a, b) (writtenM |=ALC+TR R(a, b)) if (aI , bI ) ∈ RI .

Given a knowledge baseK=(TBox,ABox), we say that:

• M satisfies TBox ifM satisfies all inclusions in TBox (writtenM |=ALC+TR

TBox);

• M satisfies ABox ifM satisfies all assertions in ABox (writtenM |=ALC+TR

ABox);

• M satisfiesK if it satisfies both its TBox and its ABox (writtenM |=ALC+TR K);

• a conceptC is satisfiable with respect toK, if there is a modelM = 〈∆, <, I〉
satisfyingK and such thatCI

, ∅.

It is worth noticing that, as a difference with our previous approach in [23], here we
do not assume theunique name assumption, that is to say we do not assume that, in a
modelM, I is extended to assign a distinct elementaI of ∆ to each individual constant
a of O. In [23], UNA is needed since the properties of the preference relation< are
built from preferential logicP: in that case, the unique name assumption avoids that
models in which two names are mapped into the same individualof the domain are
preferred to those in which they are mapped into distinct ones. This is needed in order
to perform useful reasoning about two different individuals named in the ABox. As we
will see in Definition 23 below, we restrict our concern to theonly case of an FIMS
semantics based on the minimization of ranks, therefore theunique name assumption
is no longer needed.

dition is stronger than the smoothness condition introduced in the propositional case (Definition 1). Indeed,
the condition above considers all subsetsS of ∆ and does not only apply to the interpretationsCI of the
conceptsC of the language. It is easy to prove that such a condition is equivalent to require that (∆, <) is
well-founded, i.e. there is no infinite descending chain of individuals. In the following, we keep the same
condition as in previous work, but we call itwell-foundednesscondition.
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By a construction similar to that used in Theorem 2.3 of [17] for the weaker logic
ALC + T, we can prove the following theorem. The proofs and further details are
provided in the technical report [25].

Theorem 5(Complexity ofALC+TR). Given anALC+TR knowledge base K=(TBox,
ABox), the problem of deciding satisfiability of K isEXPTIME-complete.

The finite model property ofALC + TR follows as an easy consequence of the
terminating tableau construction in Section 4.1 of [16].

Theorem 6 (Finite model property forALC + TR). Given a knowledge base K, if it
is satisfiable inALC + TR then there exists a finiteALC + TR model satisfying K, i.e.
ALC + TR has the finite model property.

Let us define the derivability of an inclusion and of an assertion inALC + TR:

Definition 15. Given a knowledge baseK, an inclusionCL ⊑ CR and an assertion
CL(a), with a ∈ O, we say that:

• the inclusionCL ⊑ CR is entailedfrom K, written K |=ALC+TR CL ⊑ CR, if
CL

I ⊆ CR
I holds in all modelsM =〈∆, <, I〉 satisfyingK;

• the assertionCL(a) is entailedfrom K, written K |=ALC+TR CL(a), if aI ∈ CL
I

holds in all modelsM =〈∆, <, I〉 satisfyingK.

As usual, when, for a given knowledge baseK and a conceptC, it holds thatK 6|=ALC+TR

C ⊑ ⊥ we say thatC is satisfiablewith respect toK.
As an easy consequence of Theorem 6, we prove the following corollary:

Corollary 2. Given a knowledge base K and a concept C satisfiable with respect to K,
then there exists a finiteALC+TR modelM = 〈∆, <, I〉 satisfying K, such that CI , ∅.

Proof. Let K=(TBox,ABox) and let us assume thatC is satisfiable with respect toK.
Then there is a modelM = 〈∆, <, I〉 satisfyingK such thatCI

, ∅. Let x ∈ CI , let d be
a new individual name not occurring inK and letK′ =(TBox,ABox’), where ABox’=
ABox ∪ {C(d)}. Clearly, K′ is satisfiable, as the model obtained fromM by letting
dI
= x satisfiesK′. By the finite model property (Theorem 6) there exists a finite

model satisfyingK′. LetM′ be such a model.M′ is a finite model ofK such that
CI ′
, ∅.

As for propositional rational models, finiteALC+TR models (to which we can restrict
attention by Theorem 6) can be equivalently defined by postulating the existence of a
functionkM : ∆ 7−→ N, wherekM assigns a finite rank to each world, and is defined as
follows.

Definition 16 (Rank of a domain elementkM(x)). Given a modelM =〈∆, <, I〉, the
rankkM of a domain elementx ∈ ∆, is the length of the longest chainx0 < . . . < x
from x to a minimalx0 (i.e. such that there is nox′ such thatx′ < x0).

As for the propositional case, the rank functionkM and< can be defined from each
other by lettingx < y if and only if kM(x) < kM(y).
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Definition 17 (Rank of a conceptkM(CR) in a model). Given a modelM =〈∆, <, I〉,
therank kM(CR) of a concept CR in the modelM is defined as

kM(CR) = min{kM(x) | x ∈ CR
I }.

If CR
I
= ∅, thenCR has no rank and we writekM(CR) = ∞.

It is immediate to verify that:

Proposition 11. For anyM =〈∆, <, I〉, we have thatM satisfiesT(C) ⊑ D if and only
if kM(C ⊓ D) < kM(C ⊓ ¬D).

As already mentioned, although the typicality operatorT itself is nonmonotonic (i.e.
T(C) ⊑ D does not implyT(C ⊓ E) ⊑ D), the logicALC + TR is monotonic: what
is inferred fromK can still be inferred from anyK′ with K ⊆ K′. This is a clear
limitation in DLs. As a consequence of the monotonicity ofALC + TR, one cannot
deal with irrelevance, for instance. So one cannot derive from K = {Penguin⊑ Bird,
T(Bird) ⊑ Fly, T(Penguin) ⊑ ¬Fly} thatK |=ALC+TR T(Penguin⊓Black) ⊑ ¬Fly, even
if the property of being black is irrelevant with respect to flying. In the same way, if
we add toK the information that Jim is a bird (Bird( jim)), in ALC + TR one cannot
tentatively derive, in the absence of information to the contrary, that it is a typical bird
and therefore it flies (T(Bird)( jim) andFly( jim)).

In the following section we investigate the possibility of overcoming this weakness
by extending toALC+TR the notion of rational closure. As we will see, this extension
allows to deal with irrelevance and allows to attribute typical properties to individuals.

3.2. Rational Closure of the TBox inALC + TR

In this section, we extend toALC+TR the definition of rational closure introduced
by Lehmann and Magidor for the propositional case.

We first consider the rational closure with respect to TBox, in which essentially we
only consider which concept inclusions belong to the rational closure of K. Next we
will consider rational closure with respect to ABox, in which we consider the individ-
uals explicitly named in the Abox, and derive their properties.

Let us first define the notion ofquery: a query is either an inclusion relation or an
assertion of the ABox; we want to check whether it is entailedfrom a given knowledge
base.

Definition 18 (Query). A query F is either an assertionCL(a) or an inclusion relation
CL ⊑ CR. Given a modelM =〈∆, <, I〉, a queryF holds inM if M satisfiesF, i.e. if
aI ∈ (CL(a))I or CI

L ⊆ CI
R, respectively.4

4The notion of query we have just defined does not consider the case of querying about role instances,
that is to say of the formR(a, b), whereR is a role name anda, b are individual names occurring in the ABox.
The reason is that inALC + TR, like in the basicALC, for any knwoledge baseK = T Box∪ ABox, and
any role instanceR(a,b) as above, it holds that ifK is satisfiable, thenK |=ALC+TR R(a, b) if and only if
R(a,b) ∈ ABox(if K is not satisfiable everything follows), thus neither the logic ALC + TR, nor the rational
closure construction add any inferential power. This of course would not necessarily be true in extensions of
ALC containing for instance role constructors.
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Definition 19 (Exceptionality of concepts and inclusions).Let K=(TBox,ABox) be
a knowledge base. A conceptC is said to beexceptionalfor K if and only if K |=ALC+TR

T(⊤) ⊑ ¬C. A T-inclusionT(C) ⊑ D is exceptional forK if C is exceptional forK.
The set ofT-inclusions ofK which are exceptional inK will be denoted asE(K).

Note that, differently from Lehmann and Magidor’s notion ofexceptionality in Section
2.2, the exceptionality of a concept is defined also taking into account theABox. This
is needed when the ABox contains typicality assertions of the formT(C)(a). Indeed,
as we will see later with an example, the construction of the rational closure of the
TBox of a knowledge baseK is affected by the presence of typicality assertions in the
ABox: if the assertionsT(C)(a) and¬D(a) are in the ABox, it is not the case that all
the typicalC’s areD’s, so that the defeasible inclusionT(C) ⊑ D does not hold.

Similarly to the propositional case, in the following we introduce a sequence of
knowledge bases, starting from the initial one,K, in order to iteratively use exception-
ality in the construction of the rational closure. At each step, in order to reason about
the following exceptional subset ofK, we remove the inclusionsT(C) ⊑ D of K that
are not exceptional forK. Before we do this, if there is an assertionT(C)(a) in ABox,
we add toa all the typical properties ofC that we are removing. Because we want
to reason in the same way for equivalent concepts, this leadsus to the slightly more
complicated formulation of ABoxi below.

Definition 20. Given a DL knowledge baseK=(TBox,ABox), it is possible to define
a sequence of knowledge basesE0, . . . ,Ei , . . . ,En by letting E0 = (TBox0, ABox0)
where TBox0 = TBox and ABox0 = ABox and, fori > 0, Ei = (TBoxi, ABoxi) where

• TBoxi = E(Ei−1) ∪ {C ⊑ D ∈ TBox | T does not occur inC}

• ABoxi = ABoxi−1 ∪ {(¬C ⊔ D)(a) | T(C) ⊑ D in (Ei−1 − Ei) and there is a
T(B)(a) ∈ ABox such thatEi−1 6|=ALC+TR T(⊤) ⊑ ¬B andE j |=ALC+TR T(⊤) ⊑
¬B for all j < i − 1}

(as a consequence of the next Definition 21, these are theBs such thatrank(B) = i −1).

Clearly TBox0 ⊇ TBox1 ⊇ TBox2, . . ., while ABox0 ⊆ ABox1 ⊆ ABox2, . . .

Observe that, beingK finite, there is a leastn ≥ 0 such that, for allm> n,TBoxm =

TBoxn or TBoxm = ∅. We take (TBoxn,ABoxn) as the last element of the sequence
of knowledge bases starting fromK. Observe also that the definition of the TBoxi ’s is
the same as the definition of theCi ’s in Lehmann and Magidor’s definition of rational
closure in Section 2.2, except for the fact that here, at eachstep, we also add all the
“strict” inclusionsC ⊑ D (whereT does not occur inC).

Informally, for the definition of ABoxi , if T(B)(a) ∈ABox (i.e., a is a typicalB-
element), andB has ranki − 1, then, for all the inclusionsT(C) ⊑ D in (Ei−1 − Ei),
sinceC has also ranki−1 we have that: ifa is aC-element, then it is a typicalC-element
and the assertion (¬C ⊔ D)(a) must hold.

Note that, when the ABox does not contain typicality assertions of the formT(C)(a),
we have that, for alli, ABoxi = ABox. In this case, ABoxi is irrelevant to de-
termine the exceptionality of concepts asEi |=ALC+TR T(⊤) ⊑ ¬C if and only if
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TBoxi |=ALC+TR T(⊤) ⊑ ¬C, for all conceptsC. As in this case the definition of ex-
ceptionality of concepts does not depend on the ABox, the construction above can be
simplified, by takingE0 = TBox andEi = TBoxi , and evaluating exceptionality only
with respect to the TBox. Hence, we can avoid the computationof the ABoxis and
the construction becomes quite similar to the one of Lehmannand Magidor recalled in
Section 2.2. This simplified construction can be found in [24].

Definition 21 (Rank of a concept).A conceptC hasrank i (denoted byrank(C) = i)
for K=(TBox,ABox), if and only if i is the least natural number for whichC is not
exceptional forEi . If C is exceptional for allEi thenrank(C) = ∞, and we say thatC
has no rank.

Consider the leastn ≥ 0 such that, for allm > n,TBoxm = TBoxn or TBoxm = ∅.
Then from the above definition it follows that if a conceptC has a rank, its highest
possible value isn. As for propositional logic, the notion of rank of a formula allows
to define the rational closure of a knowledge baseK with respect to TBox .

Definition 22 (Rational closure of TBox). Let K=(TBox,ABox) be a DL knowledge
base. We defineTBox, therational closureof TBox, as

TBox= {T(C) ⊑ D | eitherrank(C) < rank(C ⊓ ¬D)
or rank(C) = ∞} ∪ {C ⊑ D | K |=ALC+TR C ⊑ D}

It can be easily seen that the rational closure of TBox is a nonmonotonic strengthening
ofALC+TR. For instance, it allows to deal with irrelevance, as the following example
shows.

Example 6. Let K = (TBox, ABox) where ABox= ∅ and TBox ={Penguin⊑ Bird,
T(Bird) ⊑ Fly, T(Penguin) ⊑ ¬Fly}. It can be verified thatT(Bird ⊓ Black) ⊑ Fly ∈
TBox. This is a nonmonotonic inference that does no longer followif we know that
typical black birds do not fly:given TBox′= TBox ∪ {T(Bird ⊓ Black) ⊑ ¬Fly}, we
have thatT(Bird ⊓ Black) ⊑ Fly < TBox′. Similarly, as for the propositional case,
rational closure is closed under rational monotonicity: fromT(Bird) ⊑ Fly ∈ TBoxand
T(Bird) ⊑ ¬LivesEurope< TBoxit follows thatT(Bird ⊓ LivesEurope) ⊑ Fly ∈ TBox.

We can show that the presence of typicality assertions in theABox has an impact
on the construction of the rational closure.

Example 7. Let K = (TBox, ABox), where TBox is as in Example 6 and ABox=
{T(Bird⊓Black)(opus),¬Fly(opus)}. Asopusis a typical black bird and it does not fly,
it is clear the we are no longer ready to accept that typical black birds fly, otherwise we
get an inconsistency with the ABox. Indeed, using the construction of rational closure
given above, we have thatK |=ALC+TR T(⊤) ⊑ ¬(Bird ⊓ Black), so thatrank(Bird ⊓
Black) , 0. In particular,rank(Bird ⊓ Black) = 1 andrank(Bird ⊓ Black⊓ ¬Fly) = 1
as well. Hence,T(Bird ⊓ Black) ⊑ Fly < TBox.

The next example shows that a sequence of ABoxes in the construction of the ra-
tional closure is actually needed.
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Example 8. Let K = (TBox, ABox) where TBox ={Penguin ⊑ Bird, T(Bird) ⊑
Fly, T(Penguin) ⊑ ¬Fly, T(Bird) ⊑ ∀HasFriend.Fly} and ABox= {T(Bird)(opus),
HasFriend(opus, pio),T(Penguin⊓ Violet)(pio)}.

From the construction in Definition 20, we have:

• TBox0 ={Penguin ⊑ Bird, T(Bird) ⊑ Fly, T(Penguin) ⊑ ¬Fly, T(Bird) ⊑
∀HasFriend.Fly},
ABox0 = {T(Bird)(opus),HasFriend(opus, pio),T(Penguin⊓ Violet)(pio)}.

• TBox1 ={Penguin⊑ Bird, T(Penguin) ⊑ ¬Fly},
ABox1 = {T(Bird)(opus),HasFriend(opus, pio),T(Penguin⊓Violet)(pio), (¬Bird
⊔ Fly)(opus), (¬Bird ⊔ ∀HasFriend.Fly)(opus)}.

• TBox2 ={Penguin⊑ Bird},
ABox2 = {T(Bird)(opus),HasFriend(opus, pio),T(Penguin⊓Violet)(pio), (¬Bird
⊔ Fly)(opus), (¬Bird ⊔ ∀HasFriend.Fly)(opus)}.

Observe that the last two assertions in ABox1 have been introduced asT(Bird)(opus) ∈
ABox, and Bird is not exceptional inE0. Observe also thatE1 |=ALC+TR T(⊤) ⊑
¬(Penguin⊓ Violet) and the assertion (¬Bird ⊔ ∀HasFriend.Fly)(opus) in ABox1 is
needed to infer thatpio flies and hence, although it is a typical violet penguin,pio
cannot be a typical penguin.

We getrank(Penguin⊓ Violet) = 2, while rank(Penguin) = 1, andrank(Bird) = 0.
Hence, we can conclude that typical penguins are not violet,T(Penguin) ⊑ ¬Violet ∈
TBox, asrank(Penguin) < rank(Penguin⊓ Violet).

So far we have extended toALC + TR the syntactic notion of rational closure. We
wonder whether we provide a semantic characterization of this notion by extending the
semantic characterization given at the propositional level.

As for the propositional case (in the case ofFIMS), in order to semantically char-
acterize the rational closure, we first restrict our attention to minimal rational models
that minimizethe rank of domain elements. Informally, given two models ofK, one
in which a given domain elementx has rank 2 (because for instancez < y < x) , and
another in which it has rank 1 (because onlyy < x), we prefer the latter, as in this
model the elementx is assumed to be “more typical” than in the former.

Definition 23 (Minimal models). GivenM =〈∆, <, I〉 andM′ = 〈∆′, <′, I ′〉 we say
thatM is preferred toM′ (M <FIMSM

′) if:

• ∆ = ∆
′

• CI
= CI ′ for all conceptsC

• for all x ∈ ∆, it holds thatkM(x) ≤ kM′ (x) whereas there existsy ∈ ∆ such that
kM(y) < kM′(y).

Given a knowledge baseK, we say thatM is a minimal model ofK with respect to
<FIMS if it is a model satisfyingK and there is noM′ model satisfyingK such that
M′ <FIMSM.
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It is worth noticing that roles are not considered in Definition 23, in other words, they
are allowed tovary in the proposed preferential semantics. Subsequently, as for the
propositional case, we restrict our attention to minimal canonical models. We define
S as the set of all the concepts (and subconcepts) occurring inK or in the queryF
together with their complements (observe thatS is finite).

In order to define canonical models, we consider all the sets of concepts{C1,C2, . . . ,

Cn} ⊆ S that areconsistent with K, i.e., s.t.K 6|=ALC+TR C1 ⊓C2 ⊓ . . . ⊓Cn ⊑ ⊥.

Definition 24 (Canonical model with respect toS). GivenK=(TBox,ABox) and a query
F, a modelM =〈∆, <, I〉 satisfyingK is canonical with respect toS if, for each set of
concepts{C1,C2, . . . ,Cn} ⊆ S consistent withK, there exists (at least) a domain ele-
mentx ∈ ∆ such thatx ∈ (C1 ⊓C2 ⊓ . . . ⊓Cn)I .

The intuition is that a canonical model contains all the individuals that enjoy prop-
erties that are consistent with the knowledge base. This is needed when reasoning
about the (relative) rank of the concepts: it is important tohave them all represented.
As we will see in Theorem 7, inALC the existence of a canonical model is guaranteed
for any consistent knowledge base. However, this may be not true for more expressive
logics and, in particular, this is not true forSHOIQ [28] (see example 4 in [27]).

Next we define the notion of minimal canonical model.

Definition 25 (Minimal canonical models (with respect to TBox)). M is a minimal
canonical model ofK if it satisfiesK, it is minimal (with respect to Definition 23) and
it is canonical (according to Definition 24).

We can now prove the following:

Theorem 7. For any consistent knowledge base K, there exists a finite, minimal canon-
ical model of K with respect to TBox.

Proof. LetM = 〈∆, <, I〉 be a finite model ofK (which exists by the finite model
property, sinceK is consistent), and let{C1,C2, . . . ,Cn} ⊆ S be any subset ofS con-
sistent withK. We show that we can expandM in order to obtain a finite model ofK
that contains an instance ofC1 ⊓ C2 ⊓ . . . ⊓ Cn. By repeating the same construction
for all maximal consistent subsets{C1,C2, . . . ,Cn} of S, we eventually obtain a finite
canonical model ofK.

Indeed, for each{C1,C2, . . . ,Cn} consistent withK, it holds thatK 6|=ALC+TR C1 ⊓

C2 ⊓ . . . ⊓Cn ⊑ ⊥, i.e. conceptC1 ⊓C2 ⊓ . . . ⊓Cn is satisfiable with respect toK. By
Corollary 2 there exists a finiteALC + TR modelM′ = 〈∆′, <′, I ′〉 satisfyingK, such
that (C1 ⊓C2 ⊓ . . . ⊓Cn)I ′

, ∅.
LetM

′∗ be the union ofM andM′, i.e.M
′∗
= 〈∆

′∗, <
′∗, I

′∗〉, where∆
′∗
= ∆ ∪ ∆

′

.
As far as individuals named in the ABox are concerned, we define I

′∗ as I , that is to
sayaI

′∗

= aI for all a ∈ O occurring in ABox. For concepts and roles,I
′∗ is defined as

I for elements in∆ and asI ′ on elements in∆′, that is to say, for all atomic concepts
C ∈ C and all rolesR∈ R:

• x ∈ CI
′ ∗

for all x ∈ ∆, if x ∈ CI ;

• x ∈ CI
′ ∗

for all x ∈ ∆′, if x ∈ CI ′ ;
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• (x, y) ∈ RI
′∗

for all x, y ∈ ∆, if (x, y) ∈ RI ;

• (x, y) ∈ RI
′∗

for all x, y ∈ ∆′, if (x, y) ∈ RI ′ .

Also, kM′∗ (x) = kM(x) for the elements inx ∈ ∆, andkM′∗ (x) = n+ kM′(x) for all
the elementsx ∈ ∆′, wheren is the maximum value ofkM inM (n is finite, as each
element ofM has a finite rank).<

′∗ is straightforwardly defined fromkM′∗ by letting
x <

′∗ y if and only if kM′∗ (x) < kM′∗ (y). It can be verified thatM
′∗ is a finite model of

K which contains an instance ofC1 ⊓C2 ⊓ . . . ⊓Cn. For the inclusions and assertions
of K that do not containT this is obviously true. For the inclusions containingT, for
eachT(C) ⊑ D, if x ∈ Min<′∗(C) inM

′∗, alsox ∈ Min<(C) inM or x ∈ Min<′ (C) in
M′. In both casesx is an instance ofD (since bothM andM′ satisfyK), therefore
x ∈ DI

′∗

, andM
′∗ satisfiesK.

By repeating the same construction for all the (finitely many) maximal consistent
subsets{C1,C2, . . . ,Cn} of S, we obtain a finite canonical model ofK, call itM+. We
do not know whetherM+ is minimal. Observe that, as the domain∆+ ofM+ is finite,
the rank of each element in∆+ is finite. IfM+ is not minimal, then there is a modelM1

(over the same domain∆+) preferred toM+, such that, for allx ∈ ∆+ kM1(x) ≤ kM+(x)
and for somey ∈ ∆+ kM1(y) < kM+(y). Again, ifM1 is not minimal there must be
anotherM2 preferred toM1. And so on, lowering the ranks. As the domain∆+ is
finite, this descending chain of models cannot be infinite and, eventually, we reach a
minimal canonical model ofK.

To prove the correspondence between minimal canonical models and the rational
closure of a TBox, we need to introduce some propositions. Given anALC + TR

modelM =〈∆, <, I〉, we define a sequenceM0,M1,M2, . . . of models as follows: We
letM0 = M and, for alli, we letMi = 〈∆, <i , I〉 be theALC + TR model obtained
from M by assigning a rank 0 to all the domain elementsx with kM(x) ≤ i, i.e.,
kMi (x) = kM(x) − i if kM(x) > i, andkMi (x) = 0 otherwise.

Proposition 12. Let K = 〈T Box,ABox〉 and letM =〈∆, <, I〉 be a minimal canonical
ALC + TR model satisfying K. For any concept C, if rank(C)≥ i, then

1) kM(C) ≥ i, and
2)Mi satisfies Ei .

Proof. By induction oni. For i = 0, 1) holds (since it always holds thatkM(C) ≥ 0).
2) holds trivially asM0 =M.

For i > 0, 1) holds: if rank(C)≥ i, then, by Definition 21, for allj < i, we have that
E j |=ALC+TR T(⊤) ⊑ ¬C. By inductive hypothesis on 2), for allj < i M j |=ALC+TR

T(⊤) ⊑ ¬C. Hence, for allx with kM(x) < i, x < CI , andkM(C) ≥ i.
To prove 2), we reason as follows. Since TBoxi ⊆ TBox0, M |=ALC+TR TBoxi.

Furthermore by definition of rank, for allT(B) ⊑ D ∈ TBoxi, rank(B) ≥ i, hence by 1)
just provedkM(B) ≥ i. Hence, inM, the rank of all elements inMin<(BI ) is ≥ i , and
alsoMi |=ALC+TR T(B) ⊑ D.

To prove thatMi |=ALC+TR Ei , we also need to show thatMi |=ALC+TR ABoxi .
By construction, for all the assertionsC(a) ∈ ABox,M |=ALC+TR C(a) and there is an
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elementx ∈ ∆ such thatx ∈ CI andaI
= x. AsMi only differs fromM for the ranks,

if C , T(B),Mi |=ALC+TR C(a). If C = T(B), as inM it holds thatx ∈ (T(B))I , x is a
B-minimal element inM, and it can be proven that it remains aB-minimal element in
Mi . Thus,Mi satisfiesT(B)(a).

For each assertion (¬C ⊔ D)(a) ∈ ABoxi such that (¬C ⊔ D)(a) <ABox, we dis-
tinguish two cases: either (¬C ⊔ D)(a) ∈ ABoxi−1 or (¬C ⊔ D)(a) < ABoxi−1. In
the first case, by inductive hypothesis,Mi−1 |=ALC+TR Ei−1, and henceMi−1 |=ALC+TR

(¬C⊔D)(a) and alsoMi |=ALC+TR (¬C⊔D)(a) (sinceT does not occur inC). In the sec-
ond case, the assertion (¬C ⊔ D)(a) has been added to ABoxi and was not in ABoxi−1.
Hence, there is an inclusionT(C) ⊑ D in (Ei−1 − Ei) and there is aT(B)(a) ∈ABox
(and hence in ABoxi) such thatEi−1 6|=ALC+TR T(⊤) ⊑ ¬B. As T(B)(a) ∈ABox,
M |=ALC+TR T(B)(a) and for somex ∈ ∆, x ∈ Min<(BI ) andx = aI . We want to show
that x ∈ (¬C ⊔ D)I , for all T(C) ⊑ D in Ei−1, so that (¬C ⊔ D)(a) is satisfied inMi−1

and hence inMi .
By construction,rank(B) = i−1, and by inductive hypothesis, part 1),kM(B) ≥ i−1.

We show thatkM(B) = i − 1 andkMi−1(B) = 0.
From Ei−1 6|=ALC+TR T(⊤) ⊑ ¬B, we know there is a model,M′′ satisfyingEi−1

and such that, for some domain elementy, kM′′ (y) = 0 andy ∈ BI ′′ . Clearly, for all
T(C) ⊑ D ∈ TBoxi−1, y ∈ (¬C ⊔ D)I ′′ . Let {C1, . . . ,Cr } be the maximal consistent set
of concepts of whichy is an instance. We can show that{C1, . . . ,Cr } is consistent with
K. Indeed, we can define a new model ofK by adding toM all the domain elements
in M′′, includingy, by keeping the interpretation of concepts and relations onsuch
elements as inM′′ and by letting the rankkM(y) = i − 1 andkM(z) = n+ 1 (wheren is
the highest rank inM ), for all z ∈ ∆′′ such thatz, y. The obtained model is clearly a
model ofK satisfying{C1, . . . ,Cr }, which proves the consistency of this set w.r.t.K.

AsM is a canonical model, and{C1, . . . ,Cr } is consistent with K, there must be a
y′ in ∆ such thaty′ is an instance ofC1 ⊓ . . . ⊓ Cr . Furthermore, for allT(C) ⊑ D ∈
T Boxi−1, y′ ∈ (¬C⊔D)I , andy′ must have rankkM(y′) = i−1 (asM is a minimal model
of K). Hence,kMi−1(B) = 0, and, sinceMi−1 satisfiesT(B)(a), it must bekMi−1(x) = 0
for x = aI . Thus, inMi−1, if x ∈ CI , thenx ∈ (T(C))I , and from the fact thatMi−1

satisfiesT(C) ⊑ D, we can conclude thatx ∈ DI . Hence,x ∈ (¬C ⊔ D)I for x = aI , so
that (¬C ⊔ D)(a) is satisfied inMi−1. It is easy to see that (¬C ⊔ D)(a) is satisfied in
Mi as well. ThereforeMi |=ALC+TR Ei .

The next proposition is still concerned with minimal canonical models, to prove the
correspondence between the rank of a concept (as in Definition 21) and the rank of a
concept in a minimal canonical model (as in Definition 17).

Proposition 13. Given a consistent K andS, for all C ∈ S, if rank(C) = i, then:

(1) there is a{C1,C2, . . . ,Cr } ⊆ S maximal and consistent with K such that C∈
{C1,C2, . . . ,Cr } and rank(C1 ⊓C2 ⊓ . . . ⊓Cr ) = i

(2) for anyMminimal canonical model of K, it holds that kM(C) = i

Proof. We prove (1). Ifi = 0, we have thatK 6|=ALC+TR T(⊤) ⊑ ¬C. Then there is a
modelM0 of K with a domain elementx such thatkM0(x) = 0 andx is an instance of
C. Consider the maximal consistent set of concepts inS of which x is an instance in
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M0. This is a maximal consistent set{C1,C2, . . . ,Cr } ⊆ S containingC. Furthermore,
rank(C1 ⊓C2 ⊓ . . . ⊓Cr ) = 0 since clearlyK 6|=ALC+TR T(⊤) ⊑ ¬(C1 ⊓C2 ⊓ . . . ⊓Cr )
(given thatkM0(x) = 0).

For all i > 0 we proceed as follows. We have thatEi 6|=ALC+TR T(⊤) ⊑ ¬C,
then there must be a modelMi = 〈∆i , <i , I i〉 of Ei , and a domain elementx such
that kMi (x) = 0 andx is an instance ofC. Consider the maximal consistent set of
concepts{C1, . . . ,Cr } ⊆ S of which x is an instance inMi . Clearly,C ∈ {C1, . . . ,Cr }.
Furthermore,rank(C1 ⊓C2 ⊓ . . .⊓Cr ) = i. IndeedEi−1 |=ALC+TR T(⊤) ⊑ ¬(C1 ⊓C2 ⊓

. . . ⊓ Cr ) (sinceEi−1 |=ALC+TR T(⊤) ⊑ ¬C andC ∈ {C1, . . . ,Cr }), whereas clearly by
the existence ofx, Ei 6|=ALC+TR T(⊤) ⊑ ¬(C1 ⊓C2 ⊓ . . . ⊓Cr ).

We have to prove that the set{C1, . . . ,Cr } is consistent withK. The proof is the
same fori = 0 and fori > 0. LetMi = 〈∆i , <i, I i〉 be the model, considered few lines
above in this proof, such thatx ∈ ∆i is an instance ofC. Starting from a finite model
M = 〈∆, <, I〉 of K (M exists by the finite model property, Theorem 6), we add toM
all the domain elements ofMi .

We define the resulting modelM′ = 〈∆′, <′, I ′〉 as follows:∆′ = ∆ ∪ ∆i ; I ′ is
defined on the elements of∆ asI inM, and on the elements of∆i asI i inMi . For the
interpretation of concepts: forx ∈ ∆, x ∈ CI ′ if and only if x ∈ CI ; for x ∈ ∆i , x ∈ CI ′

if and only if x ∈ CI i . For the interpretation of roles: forx, y ∈ ∆, (x, y) ∈ RI ′ if and
only if (x, y) ∈ RI ; for x, y ∈ ∆i , (x, y) ∈ RI ′ if and only if (x, y) ∈ RI i ; and, for any two
elementsx ∈ ∆ andy ∈ ∆i , (x, y) < RI ′ and (y, x) < RI ′ . For all individual constants
a ∈ O, we letaI ′

= aI . Finally, for allw ∈ ∆, we letkM′(w) = kM(w) and, for ally ∈ ∆i ,
we letkM′(y) = n+ 1+ kMi (y), wheren is the highest value ofkM inM (n is finite as
each element inM has a finite rank).

We can show that by construction the resulting model satisfies K. Let C ⊑ D be
an inclusion in TBox. We distinguish two cases:C does not contain the typicality
operator andC = T(B) for someB. In the first case,C ⊆ D is a strict inclusion. Let
x ∈ CI ′ . There are two cases: eitherx ∈ ∆ or x ∈ ∆i . In the first case,x ∈ CI in
M. AsM satisfiesK, x ∈ DI and, by definition ofM′, x ∈ DI ′ . In the second case,
x ∈ CI i . AsMi satisfies all the strict inclusions inK (which belong toEi), x ∈ DI i and,
by definition ofM′, x ∈ DI ′ .

In caseC = T(B) for someB, observe that ifx ∈ (T(B))I ′ , then eitherx ∈ ∆ or
x ∈ ∆i . In the first case,x is B-minimal inM andx ∈ DI . Hence, by definition ofM′,
x ∈ DI ′ . In the second case,x is B-minimal inMi andx ∈ DI i . Hence, by definition of
M′, x ∈ DI ′ .

Observe that all the assertions in the ABox are satisfied inM and we have inter-
preted individual constants over the elements of∆ as inM: aI ′

= aI , for all a ∈ O. By
construction, forx ∈ ∆, x ∈ CI ′ iff x ∈ CI . Hence, ifB(a) ∈ ABox is satisfied inM,
then it is satisfied inM′ as well.

From this, we can conclude thatM′ is a model satisfyingK and (C1 ⊓ C2 ⊓ . . . ⊓

Cr )I ′
, ∅. From this, point (1) follows.

Let us prove point (2). By point (1), ifrank(C) = i there is a{C1,C2, . . . ,Cr } ⊆ S

maximal and consistent withK containingC and such thatrank(C1⊓C2⊓ . . .⊓Cr ) = i.
By Definition 24, we know that in all canonical models there isat least an instance of
(C1⊓C2⊓. . .⊓Cr ). To prove point (2) we show that in all minimal canonical modelsM
of K, kM(C1⊓C2⊓ . . .⊓Cr ) = i, which entailskM(C) = i (sinceC ∈ {C1,C2, . . . ,Cr }).
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By Proposition 12 we know thatkM(C1⊓C2⊓ . . .⊓Cr ) ≥ i. We need to show that also
kM(C1 ⊓C2 ⊓ . . . ⊓Cr ) ≤ i. For a contradiction supposekM(C1 ⊓C2 ⊓ . . . ⊓ Cr ) > i,
i.e., for all the domain elementsx instances ofC1 ⊓ C2 ⊓ . . . ⊓ Cr , kM(x) > i. We
show that this contradicts the minimality ofM. FromM we build another model
M′ = 〈∆′, <′, I ′〉 of K by lowering the ranks of some elements inM and leaving
all the rest unchanged. We let∆′ = ∆ and I ′ = I . For each elementy ∈ ∆, let
{C1,C2, . . . ,Cr } ⊆ S be the maximal set of concepts consistent withK of whichy is an
instance. Ifrank(C1 ⊓ C2 ⊓ . . . ⊓ Cr ) = i < kM(y), we letkM′ (y) = i. Otherwise, we
let kM′ (y) = kM(y). Observe that we can obtainM′ from the modelM by repeatedly
lowering the rank of the elements in∆ rank by rank, starting from ranki = 0.
M′ would still be a model ofT Box: at each step, when the rank of an elementy is

lowered toi (together with all the other elements whose rank is lowered to i), the only
thing that changes with respect toM is thaty might have become inM′ a minimal
instance of a concept of which it was only a non-typical instance inM. This might
compromise the satisfaction inM′ of a typicality inclusion asT(E) ⊑ G. We show
that this cannot happen by reasoning by induction oni to prove that, after lowering the
rank of an elementy in ∆, the modified model still satisfies all the inclusions inK. Let
rank(C1 ⊓C2 ⊓ . . . ⊓Cr ) = i < kM(y), consider a step in which we letkM′ (y) = i.

For i = 0, let T(E) ⊑ G ∈ K. It can be easily proven that being rank(C1 ⊓ C2 ⊓

. . . ⊓ Cr ) = 0, then ifE ∈ {C1,C2, . . . ,Cr } alsoG ∈ {C1,C2, . . . ,Cr } (indeed if on the
contrary¬G ∈ {C1,C2, . . . ,Cr }, then clearlyK |=ALC+TR T(⊤) ⊑ ¬(C1⊓C2⊓ . . .⊓Cr ),
against the hypothesis that rank(C1 ⊓ C2 ⊓ . . . ⊓ Cr ) = 0). Therefore ify ∈ EI ′ , also
y ∈ GI ′ , andT(E) ⊑ G holds inM′.

For i > 0, letT(E) ⊑ G ∈ K. We consider two cases:rank(E) ≥ i andrank(E) < i.
If rank(E) ≥ i we reason as above (withEi instead ofK andi instead of 0) to conclude
that if E ∈ {C1,C2, . . . ,Cr } alsoG ∈ {C1,C2, . . . ,Cr }, hence ify ∈ EI ′ , alsoy ∈ GI ′ ,
andT(E) ⊑ G holds inM′. If rank(E) < i, then rank(E) ≤ i − 1, and we know
by construction thatkM′ (E) < i andy is not a minimal instance ofE inM′. Hence
lowering the rank ofy does not compromise the satisfaction ofT(E) ⊑ G ∈ Ei .

The resultingM′ is such that for all maximal set of concepts consistent withK,
{C1, . . . ,Cr }, kM′(C1 ⊓ . . . ⊓ Cr ) = rank(C1 ⊓ . . . ⊓ Cr ). Furthermore, by the above
reasoning,M′ satisfies TBox. We show thatM′ also satisfies ABox, and in particular
it is not the case that aT(B)(a) ∈ ABoxmight turn false inM′.

For all assertionsT(B)(a) ∈ABox, from the hypothesis we know thatM satisfies
T(B)(a). Hence, there is az ∈ ∆ such thataI

= z andz ∈ (T(B))I . We show that it
must be the case thatz ∈ (T(B))I ′ and, therefore,T(B)(a) is satisfied inM′ as well. Let
{C1, . . . ,Cr } be the maximal consistent set of concepts of whichz is an instance inM.
We prove that, rank(C1 ⊓ . . . ⊓Cr ) = rank(B).

Clearly rank(C1⊓ . . .Cr ) ≥ rank(B) (sinceB ∈ {C1, . . . ,Cr }). Suppose for a contra-
diction that rank(C1⊓. . .⊓Cr ) > rank(B) , i.e. there is anEi s.t. Ei 6|=ALC+TR T(⊤) ⊑ ¬B
but Ei |=ALC+TR T(⊤) ⊑ ¬(C1 ⊓ . . . ⊓Ck). Take the minimali for which this happens,
we show a contradiction. AsT(B)(a) ∈ ABox, for all T(C) ⊑ D ∈ Ei , (¬C ⊔ D)(a) has
been added to ABoxi . We know by Proposition 12 thatMi satisfiesEi and, in partic-
ular, it satisfies ABoxi . ThusMi |=ALC+TR (¬C ⊔ D)(a), andz ∈ (¬C ⊔ D)I , for all
T(C) ⊑ D ∈ Ei . AsM is a minimal model, it must be the case thatkM(z) = i (otherwise
we can define a canonical modelM′′ such thatM′′<FIMS M). Therefore,kMi (z) = 0
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and, asMi satisfiesEi ,Mi is a model ofEi such thatkMi (C1 ⊓ . . .⊓Ck) = 0, thus con-
tradicting the fact thatEi |=ALC+TR T(⊤) ⊑ ¬(C1⊓ . . .⊓Ck). Hence, rank(C1⊓ . . .⊓Cr )
= rank(B).

As by the construction ofM′, it must be thatkM′ (aI ′)=rank(C1 ⊓ . . . ⊓ Cr ). To
conclude thatz ∈ (T(B))I ′ , observe that it is not possible that there is an elementy ∈ BI ′

such thatkM′(y) < kM′(aI ′ ). In fact, otherwise it would be:kM′(y) < rank(B), which
contradicts Proposition 12, point (a). This concludes the proof thatM′ satisfies ABox.

It follows thatM′ would be a model ofK, andM′<FIMSM, against the minimality
ofM. We are therefore forced to conclude thatkM(C1 ⊓C2 ⊓ . . .⊓Cr ) = i, hence also
kM(C) = i, and 2) holds.

As a consequence of Proposition 13 and by what we know about the highest rank
of a concept (in case it has a rank) we state the following proposition.

Proposition 14. Let us consider the least n≥ 0 such that, for all m> n,TBoxm =
TBoxn or TBoxm = ∅. Then, in all minimal canonical modelsM, for all domain ele-
ments x, kM(x) ≤ n.

We can now prove the following theorem:

Theorem 8. Let K=(TBox,ABox) be a knowledge base and C⊑ D a query. We have
that C ⊑ D ∈ TBox if and only if C⊑ D holds in all minimal canonical models of K
with respect to TBox.

Proof. (If part)Assume thatC ⊑ D holds in all minimal canonical models ofK with
respect to TBox, and letM =〈∆, <, I〉 be a minimal canonical model ofK satisfying
C ⊑ D. Observe thatC andD (and their complements) belong toS. We consider two
cases: (1) the left hand side of the inclusionC does not contain the typicality operator,
and (2) the left hand side of the inclusion isT(C).

In case (1), the minimal canonical modelM of K satisfiesC ⊑ D. Then,CI ⊆ DI .
For a contradiction, let us assume thatC ⊑ D < TBox. Then, by definition ofTBox,
it must be: K 6|=ALC+TR C ⊑ D. Hence,K 6|=ALC+TR C ⊓ ¬D ⊑ ⊥, and the set of
concepts{C,¬D} is consistent withK. AsM is a canonical model ofK, there must be
an elementx ∈ ∆ such thatx ∈ (C ⊓ ¬D)I . This contradicts the fact thatCI ⊆ DI .

In case (2), assumeM satisfiesT(C) ⊑ D. Then, T(C)I ⊆ DI , i.e., for each
x ∈ Min<(CI ), x ∈ DI . If Min<(CI ) = ∅, then there is nox ∈ CI (by the smooth-
ness condition), henceC has no rankkM inM and, by Proposition 13,C has no rank
(rank(C) = ∞). In this case, by Definition 22,T(C) ⊑ D ∈ TBox. Otherwise, let us
assume thatkM(C) = i. SinceM satisfiesT(C) ⊑ D, kM(C ⊓ D) < kM(C ⊓ ¬D), then
kM(C ⊓ ¬D) > i. By Proposition 13,rank(C) = i andrank(C ⊓ ¬D) > i. Hence, by
Definition 22,T(C) ⊑ D ∈ TBox.

(Only if part) If C ⊑ D ∈ TBox, then, by definition ofTBox, K |=ALC+TR C ⊑ D.
Therefore, each minimal canonical modelM of K satisfiesC ⊑ D.

If T(C) ⊑ D ∈ TBox, then by Definition 22, either (a)rank(C) < rank(C ⊓ ¬D),
or (b)C has no rank. LetM be any minimal canonical model ofK. In the case (a), by
Proposition 13,kM(C) < kM(C⊓¬D), which entailskM(C⊓D) < kM(C⊓¬D). Hence
M satisfiesT(C) ⊑ D. In case (b), by Proposition 13,C has no rank inM, henceM
satisfiesT(C) ⊑ D.
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For a strict inclusionC ⊑ D the problem of deciding whetherC ⊑ D ∈ TBox
is clearly in EXPTIME as, by definition ofTBox(Definition 22), it amounts to check
whetherK |=ALC+TR C ⊑ D (Theorem 5). The problem of deciding whetherT(C) ⊑
D ∈ TBoxis in EXPTIME as well.

Theorem 9 (Complexity of rational closure over the TBox). Given a knowledge base
K = (T Box,ABox), the problem of deciding whetherT(C) ⊑ D ∈ TBox is inEXPTIME.

Proof. Checking ifT(C) ⊑ D ∈ TBoxcan be done by computing the finite sequence
TBox0,TBox1, . . . ,TBoxn of non increasing subsets of TBox inclusions and the se-
quence ABox0,ABox1, . . . ,ABoxn of non decreasing supersets of ABox in the con-
struction of the rational closure. Note that the numbern of the TBoxi (and ABoxi) is
O(|K|), where|K| is the size of the knowledge baseK.

Computing each TBoxi = E(TBoxi−1), requires to check, for all conceptsC′ oc-
curring on the left hand side of aT-inclusion in the TBox, whether TBoxi−1 |=ALC+TR

T(⊤) ⊑ ¬C′, which requires an exponential time [25] in the size of TBoxi−1 (and hence
in the size ofK). The number of the conceptsC′ to be considered isO(|K|).

Computing each ABoxi requires to to check whetherEi−1 6|=ALC+TR T(⊤) ⊑ ¬B
which requires an exponential time in the size of Ei−1 (and hence in the size ofK).

If not already checked, the exceptionality ofC and ofC ⊓ ¬D have to be checked
for each TBoxi , to determine the ranks ofC and ofC ⊓ ¬D (which also requires an
exponential time in the size ofK). Hence, verifying ifT(C) ⊑ D ∈ TBox is in EXP-
TIME.

The above result provides an EXPTIME upper bound for deciding whetherT(C) ⊑
D ∈ TBox(the EXPTIME lower bound comes from the fact that subsumption inALC
is EXPTIME-hard). It requires a quadratic (in the size ofK) number of calls to an
EXPTIME algorithm for checking subsumption inALC + TR. In the case the ABox
does not contain typicality assertions, it is possible to see that subsumption inALC+TR

can be polynomialy reduced to subsumption inALC so that optimizedALC prover
can be used to this purpose. The encoding is the same as the oneintroduced in [26] for

reducing subsumption inSHIQRT to subsumption inSHIQ (see [26] Proposition
3).

To conclude the session, we want to observe that our definition of exceptionality
(Definition 19), which exploits preferential entailment, cannot be equivalently replaced
with a notion of exceptionality which directly exploits entailment inALC over the
materialization of the KB, in the spirit of the other proposals of rational closure in [8, 7].
In particular, consider a knowledge baseK =(TBox,ABox) and letKS = {A ⊑ B | A ⊑
B ∈ TBox} be the set of strict inclusions inK andK̃D =

�
{¬A⊔B | T(A) ⊑ B ∈ TBox}

be the materialization of the defeasible inclusions in K. One can wonder whether the
following notion of exceptionality:“B is exceptional with respect to K if and only if
(KS,ABox) |=ALC K̃D ⊑ ¬B” is equivalent to the notion of exceptionality introduced in
Definition 19 . The next example shows that this is not the caseat least in the context
of our rational closure construction (Definition 20).

38



Example 9. Let K = (TBox, ABox) where TBox ={Faun⊑ ∃HasFriend.WingedHorse,
T(WingedHorse) ⊑ Fly, T(WingedHorse) ⊑ ¬Fly} and ABox= ∅.

From the construction in Definition 20, we have that ABoxm = ABox and TBoxm =
TBox, for all m, asWingedHorseis exceptional forK, that is,K |=ALC+TR T(⊤) ⊑
¬WingedHorse. Furthermore,Faun is exceptional forK (that is,K |=ALC+TR T(⊤) ⊑
¬Faun) and is exceptional for all theEi = (ABoxi ,TBoxi) in the construction. Hence
rank(Faun) = ∞. Observe that, inALC + TR, any modelM satisfyingK contains
neither aWingedHorsenor a Faun-element, i.e.,K |=ALC+TR WingedHorse⊑ ⊥,
K |=ALC+TR Faun ⊑ ⊥ and, of course, alsoK |=ALC+TR T(Faun) ⊑ ⊥. Therefore,
T(Faun) ⊑ ⊥ holds in all the minimal canonical models ofK and this is in accordance
with the fact that, beingrank(Faun) = ∞, T(Faun) ⊑ ⊥ is in the rational closure of
TBox.

If we adopt the definition of exceptionality introduced justabove, we get a different
result. We have:KS = {Faun⊑ ∃HasFriend.WingedHorse} andK̃D = ((¬WingedHorse
⊔ Fly) ⊓ (¬WingedHorse⊔ ¬Fly)), therefore

KS |=ALC K̃D ⊑ ¬WingedHorsebut
KS 6|=ALC K̃D ⊑ ¬Faun

For the second statement, observe that there is anALCmodel satisfyingKS containing
a Faun-elementx, which is an instance of̃KD and is not a Winged Horse, but is in the
relationHasFriendwith a WingedHorse-elementy. Also, y is not required to be an
instance ofK̃D. Hence,Faunis not exceptional with respect toK while WingedHorseis
exceptional, and we getrank(Faun) = 0 andrank(WingedHorse) = ∞. Therefore, with
this notion of exceptionality,T(Faun) ⊑ ⊥would not be in the rational closure of TBox,
asrank(Faun) ≮ rank(Faun⊓ ¬⊥), since , clearly,rank(Faun⊓ ¬⊥) = rank(Faun).

The same example knowledge baseK above can be used to show the difference between
our notion of exceptionality in Definition 19 and the notion of exceptionality in [7],
which exploits the materialization of both the strict and the defeasible part in the TBox.
For simplicity, let us consider the case when ABox is empty and is not considered
in the construction of the rational closure of TBox. Following [7], we could define
exceptionality as follows:“B is exceptional with respect to K if and only if|=ALC
K̃S ⊓ K̃D ⊑ ¬B” , whereK̃S = ⊓ {¬A ⊔ B | A ⊑ B ∈ KS} is the materialization of the
strict inclusions inK andK̃D is the materialization of the defeasible inclusions inK (as
defined above). Consider the following example:

Example 10. Let K be the knowledge base in Example 9. We haveKS = (¬Faun⊔
∃HasFriend.WingedHorse) and K̃D = ((¬WingedHorse⊔ Fly) ⊓(¬WingedHorse⊔
¬Fly)). Therefore,6|=ALC K̃S ⊓ K̃D ⊑ ¬Faun, i.e.,Faun is not exceptional forK if we
adopt the notion of exceptionality from [7] and hencerank(Faun) = 0. Again, with this
notion of exceptionality,T(Faun) ⊑ ⊥ would not be in the rational closure of TBox, as
rank(Faun) ≮ rank(Faun⊓¬⊥)), while, as we have seen in Example 9, with the notion
of exceptionality in Definition 19 we getrank(Faun) = ∞ andT(Faun) ⊑ ⊥ ∈ TBox.

An alternative notion of exceptionality can be defined alongthe lines of [8]. Consider
a knowledge baseK =(TBox,ABox) (again we assume ABox is empty). We can define
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exceptionality as follows:“B is exceptional with respect to K if and only if KS ∪

KD |=ALC ⊤ ⊑ ¬B” , whereKS = {A ⊑ B | A ⊑ B ∈ TBox} is the set of strict inclusions
in K andKD = {A ⊑ B | T(A) ⊑ B ∈ TBox} is the set containing a strict inclusion for
each defeasible inclusion inK. This notion of exceptionality is not equivalent to the
one in Definition 19 when used in the context of our rational closure construction, as
shown by the following example.

Example 11. Let K = (TBox, ABox) where TBox ={Penguin⊑ Bird, Bird ⊑∃HasEnemy.
Penguin, T(Bird) ⊑ Fly, T(Penguin) ⊑ ¬Fly} and ABox= ∅.

We haveKS = {Penguin⊑ Bird, Bird ⊑ ∃HasEnemy.Penguin} andKD = {Bird ⊑
Fly, Penguin⊑ ¬Fly}.

It holds that:KS ∪ KD |=ALC ⊤ ⊑ ¬PenguinandKS ∪ KD |=ALC ⊤ ⊑ ¬Bird. For
the first entailment, ifM were anALC model satisfying the inclusionsKS ∪ KD and
x an instance ofPenguininM, thenx would also be an instance ofBird and, by the
inclusionsBird ⊑ Fly, Penguin⊑ ¬Fly in KD, x would be an instance of bothFly and
¬Fly. For the second entailment, as there is no model satisfyingKS ∪ KD that contains
an instance ofPenguin, then, there is no model containing an instance ofBird, since
any instance ofBird must be in the relationHasEnemywith an instance ofPenguin.

Therefore,PenguinandBird are both exceptional forK, so thatrank(Bird) = ∞
andrank(Penguin) = ∞. Hence, with this notion of exceptionality,T(Bird) ⊑ ⊥ and
T(Bird) ⊑ ¬Fly would be in the rational closure of TBox. Conversly, with ournotion
of exceptionality in Definition 19, we get thatBird is not exceptional forK, and that
rank(Bird) = 0. Thus,T(Bird) ⊑ ⊥ andT(Bird) ⊑ ¬Fly are not in the rational closure
of TBox (in agreement with the fact that these inclusions do not hold in all the minimal
models ofK).

In conclusion, if we replace, in our definition of rational closure (Definition 20), the
notion of exceptionality in Definition 19 (based on the entailment inALC + TR) with
a different notion of exceptionality which exploits the materialization of the KB and
entailment inALC, inspired to the notions of exceptionality used in [8, 7], the rational
closure we obtain is different from the rational closure obtained based on exceptionality
in Definition 19.

3.3. Rational Closure Over the ABox:Maximizing the Typicality of Named Individuals

In this section we extend the notion of rational closure defined in the previous one
in order to take into account the individual constants in theABox. Consider, for in-
stance, a K with TBox={T(Bird) ⊑ Fly} and ABox={Bird(tweety)}. We would like to
be able to conclude that Tweety flies although the ABox does not contain the informa-
tion that Tweety is a typical bird. The rational closure of the TBox, in the previous
section, does not say anything about the individual constants in the ABox, although its
construction exploits the information in the ABox for consistency. We therefore ad-
dress the question: what does the rational closure of a knowledge baseK allow to infer
about a specific individual constanta occurring in the ABox ofK?

The definition of rational closure of a knowledge baseK considered so far only ex-
ploits the ABox (and, in particular, the typicality assertionsT(C)(a) in the ABox) to de-
termine the exceptionality of concepts and hence to build the sequence TBox0,TBox1,
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. . . ,TBoxn of subsets of TBox required to defineT Box, and to reason about concept
inclusions.We address the question of the ABox by first considering the semantic as-
pect, in order to treat individuals explicitly mentioned inthe ABox in a uniform way
with respect to the other domain elements: as for all the domain elements we would
like to attribute to each individual constant named in the ABox the lowest possible
rank. So we further refine Definition 25 by taking into accountthe interpretation of
individual constants of the ABox: given two minimal canonical modelsM andM′,
we will preferM toM′ if there is an individual constantb occurring in ABox such
that kM(bI ) < kM(bI ′ ) (whereaskM(aI ) ≤ kM(aI ′ ) for all other individual constants
occurring in ABox).

Definition 26 (Minimal canonical model of K minimally satisfying ABox). Given
K=(TBox,ABox), letM =〈∆, <, I〉 andM′ = 〈∆′, <′, I ′〉 be two canonical models of
K which are minimal with respect to Definition 25. We say thatM is preferred toM′

with respect to ABox, and we writeM <ABox M
′, if, for all individual constantsa

occurring in ABox, it holds thatkM(aI ) ≤ kM′ (aI ′) and there is at least one individual
constantb occurring in ABox such thatkM(bI ) < kM′ (bI ′).

As a consequence of Theorem 7 we prove the following:

Theorem 10. For any K= (T Box,ABox) there exists a finite minimal canonical model
of K minimally satisfying ABox.

Proof. Observe that, as a consequence of Theorem 7, a finite minimal canonical model
M of K (with respect to TBox) exists. In this model the rank of each element is finite
(hence for each individual constanta, kM(aI ) is finite). IfM is not minimally satisfying
ABox, then there must be a canonical modelM1 such thatM1 <ABox M, i.e., such
that:kM1(a

I1) ≤ kM(aI ) for all individual constants a of ABox, and for some individual
constantb1 occurring in ABoxkM1(b

I1
1 ) < kM(bI

1). In turn, ifM1 is not minimally
satisfying ABox, there must be a canonical modelM2, such thatM2 <ABoxM1, i.e.,
such that:kM2(a

I2) ≤ kM1(a
I1) for all individual constantsa of ABox, and for some

individual constantb2 occurring in ABoxkM2(b
I2
2 ) < kM1(b

I1
2 ). And so on. Observe

that the number of individual constants ofABoxis finite, as well as the rank associated
to each constant in each model in the chain. Hence, any descending chain of models in
the relation<ABox must be finite, and a minimal canonical model minimally satisfying
ABox exists.

In order to see the power of the above semantic notion, consider the standard birds and
penguins example.

Example 12. Suppose we have a knowledge baseK where TBox ={T(Bird) ⊑ Fly,
T(Penguin) ⊑ ¬Fly,Penguin ⊑ Bird}, and ABox = {Penguin(pio), Bird(tweety)}.
Knowing that tweety is a bird and pio is a penguin, we would like to be able to as-
sume, in the absence of other information, that tweety is a typical bird, whereas pio is a
typical penguin, and therefore tweety flies whereas pio doesnot. Consider any minimal
canonical modelM of K. Being canonical,M will contain, among other elements, the
following:
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• x ∈ (Bird)I , x ∈ (Fly)I , x ∈ (¬Penguin)I , kM(x) = 0;

• y ∈ (Bird)I , y ∈ (¬Fly)I , y ∈ (¬Penguin)I , kM(y) = 1;

• z ∈ (Penguin)I , z ∈ (Bird)I , z ∈ (¬Fly)I , kM(z) = 1;

• w ∈ (Penguin)I , w ∈ (Bird)I , w ∈ (Fly)I , kM(w) = 2;

Notice that, in the definition of minimal canonical model, there is no constraint on
the interpretation of the ABox constants tweety and pio. As far as Definition 25 is
concerned, for instance, tweety can be mapped ontox, that is to saytweetyI = x,
or onto y, i.e. tweetyI = y: the minimality ofM with respect to Definition 25 is
not affected by this choice. However in the first case it wouldhold that tweety is a
typical bird, in the second tweety is not a typical bird. We want to prefer the first
case, and this is what derives from Definition 26: if inM tweetyI = x whereas inM1

(which for the rest is identical toM) it holds thattweetyI = y, thenM is preferred
toM1. Similarly for pio. As a result, in all models ofK, minimal with respect to
both TBox and ABox (Definition 26), it holds what we wanted: that tweety is a typical
bird, i.e. T(Bird)(tweety), and therefore it flies, whereas pio is a typical penguin, i.e.
T(Penguin)(pio), and therefore it does not fly.

Our purpose is to give an algorithmic construction that we call rational closure of
the ABox, which captures entailment determined by minimal canonical models of the
ABox. The idea is that of considering all the possible minimal consistent assignments
of ranks to the individuals explicitly named in the ABox. Each assignment adds some
properties to named individuals which can be used to infer new conclusions. We adopt
a skeptical view of considering only those conclusions which hold for all assignments.
The equivalence with the semantics shows that the minimal entailment captures a skep-
tical approach when reasoning about the ABox.

More formally, in order to calculate the rational closure ofABox, written ABox,
for all individual constants of the ABox we find which is the lowest possible rank they
can have in minimal canonical models with respect to Definition 25: the idea is that an
individual constantai can have a given rankk j(ai) just in case it is compatible with all
the inclusions of the TBox that do not contain theT operator or that have aT(C) on the
left side withC’s rank≥ k j(ai) ( the inclusions whose antecedentC’s rank is< k j(ai)
do not matter since, in the minimal canonical model, there will be an instance ofC with
rank< k j(ai) and thereforeai will not be a typical instance ofC). The minimal possible
rank assignmentk j for all ai is computed in the algorithm below:µ j

i computes all the
concepts thatai would need to satisfy in case it had the rankk j(ai). The algorithm
verifies whetherµ j

i is compatible with (TBox, ABox) and whether it is minimal. Notice
that, in this phase, all constants are considered simultaneously (indeed, the possible
ranks of different individual constants depend on each other, as Example 14 below
shows). For this reason,µ j (which is the union of allµ j

i for all ai) takes into account
the ranks attributed to all individual constants. Examples13 and 14 below illustrate the
use of the algorithm.

Definition 27 (ABox: rational closure of ABox). Leta1, . . . , am be the individuals ex-
plicitly named in the ABox. Letk1, k2, . . . , kh be all the possible rank assignments
(ranging from 1 ton, for n in Proposition 14) to the individuals occurring in ABox.
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• Given a rank assignmentk j we define:

– for eachai : µ
j
i = {(¬C ⊔ D)(ai) s.t. C,D ∈ S, T(C) ⊑ D in TBox, and

k j(ai) = rank(C)} ∪ {(¬C ⊔ D)(ai) s.t.C ⊑ D in TBox};

– let µ j
= µ

j
1 ∪ . . . ∪ µ

j
m for all µ j

1 . . . µ
j
m just calculated for alla1, . . . , am in

the ABox

• We say thatk j is consistentwith (TBox, ABox) if:

– if T(C)(ai) ∈ ABox, thenk j(ai) = rank(C);

– TBox∪ ABox ∪ µ j is consistent inALC + TR;

• We say thatk j is minimal and consistentwith (TBox, ABox) if k j is consistent
with (TBox, ABox) and there is noki consistent with (TBox, ABox) s.t. for all
ai , ki(ai) ≤ k j(ai) and for someb, ki(b) < k j(b).

• The rational closure of ABox (ABox) is the set of all assertions derivable in
ALC+TR from TBox∪ ABox ∪ µ j for all minimal consistent rank assignments
k j , i.e:

ABox=
⋂

k jminimal consistent{C(a) : TBox∪ ABox ∪ µ j |=ALC+TR C(a)}

Before we provide soundness and completeness of the algorithm, let us illustrate its
use by the two following examples. The first example is the syntactic counterpart of
the semantic Example 12 above.

Example 13. Consider the standard penguin example. LetK = (TBox, ABox), where
TBox = {T(Bird) ⊑ Fly,T(Penguin) ⊑ ¬Fly,Penguin⊑ Bird}, and ABox ={Penguin(pio),
Bird(tweety)}.

Computing the ranking of concepts we get thatrank(Bird) = 0, rank(Penguin) = 1,
rank(Bird⊓¬Fly) = 1, rank(Penguin⊓Fly) = 2. It is easy to see that a rank assignment
k0 with k0(pio) = 0 is inconsistent withK asµ0 would contain (¬Penguin⊔Bird)(pio),
(¬Bird ⊔ Fly)(pio), (¬Penguin⊔ ¬Fly)(pio) andPenguin(pio). Thus we are left with
only two ranksk1 andk2 with respectivelyk1(pio) = 1, k1(tweety) = 0 andk2(pio) =
k2(tweety) = 1.

The setµ1 contains, among the others, (¬Penguin ⊔ ¬Fly)(pio) , (¬Bird ⊔

Fly)(tweety). It is tedious but easy to check thatK ∪ µ1 is consistent and thatk1 is
the only minimal consistent assignment (beingk1 preferred tok2), thus both¬Fly(pio)
andFly(tweety) belong toABox.

Example 14. This example shows the need of considering multiple ranks ofindividual
constants: normally computer science courses (CS) are taught only by academic mem-
bers (A), whereas business courses (B) are taught only by consultants (C), consultants
and academics are disjoint, this gives the following TBox:T(CS) ⊑ ∀taught.A, T(B) ⊑
∀taught.C, C ⊑ ¬A. Suppose the ABox contains:CS(c1), B(c2), taught(c1, joe),
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taught(c2, joe) and letK= (TBox, ABox). Computing the rational closure of TBox, we
get that all atomic concepts have rank 0. Any rank assignmentki , with ki(c1) = ki(c2) =
0, is inconsistent withK since the respectiveµi will contain both (¬CS⊔∀taught.A)(c1)
and (¬B⊔ ∀taught.C)(c2), from which bothC( joe) andA( joe) follow, which gives an
inconsistency.

There are two minimal consistent ranks:k1, such thatk1( joe) = 0, k1(c1) = 0, k1(c2) =
1, andk2, such thatk2( joe) = 0, k2(c1) = 1, k2(c2) = 0. We have that ABox∪ µ1 |=
A( joe) and ABox∪ µ2 |= C( joe). According to the skeptical definition ofABox, nei-
therA( joe), norC( joe) belongs toABox, however (A⊔C)( joe) belongs toABox.

We are now ready to show the completeness and soundness of thealgorithm with re-
spect to the semantic definition of rational closure of ABox.

Theorem 11(Completeness ofABox). Given K=(TBox, ABox), for all individual con-
stants a in ABox, we have that if C(a) holds in all minimal canonical models of K
minimally satisfying ABox, then C(a) ∈ ABox.

Proof. We show the contrapositive. SupposeC(a) < ABox, i.e. there is a minimalk j

consistent with (TBox, ABox) s.t. TBox∪ ABox ∪ µ j 6|=ALC+TR C(a). This means that
there is anM′ = 〈∆′, <′, I ′〉 such that for allai ∈ ABox, kM′(ai) = k j(ai),M′|=ALC+TR

TBox ∪ ABox ∪ µ j andM′ 6|=ALC+TR C(a). We build a minimal canonical model
M =〈∆, <, I〉 of K, minimally satisfying ABox and such thatC(a) does not hold in
M as follows. Since we do not know whetherM′ is minimal or canonical, we can-
not use it directly; rather, we only use it as a support to the construction ofM. In
particular we use it for the following∆1 component ofM concerning the individu-
als explicitly named in ABox. Let∆ = ∆1 ∪ ∆2 where∆1 = {ai : ai in ABox } and
∆2 = {{C1, . . . ,Ck} ⊆ S: {C1, . . . ,Ck} is maximal consistent withK andT does not
occur in{C1, . . . ,Ck}}. Notice that∆2 is necessary to make the model canonical. We
define the rankkM of each domain element as follows: for∆1, kM(ai) = k j(ai), and
for ∆2, kM({C1, . . . ,Ck}) = rank(C1 ⊓ . . . ⊓Ck). We then define< in the obvious way:
x < y if and only if kM(x) < kM(y).

We then defineI as follows. First, for allai in ABox we let aI
i = ai . For the

interpretation of concepts we reason in two different ways for ∆1 and∆2. For∆1, we
useM′: for all atomic conceptsC′, we letai ∈ C′I inM if (ai)I ′ ∈ C′ I

′

inM′. For∆2,
for all atomic conceptsC′, we let{C1, . . . ,Ck} ∈ C′I if and only if C′ ∈ {C1, . . . ,Ck}. I
then extends to boolean combinations of concepts in the usual way.

In order to conclude the model’s construction, for each roleR, we defineRI as
follows. Forai , a j ∈ ∆1, (ai, a j) ∈ RI if and only if ((ai)I ′ , (a j)I ′ ) ∈ RI ′ in M′. For
X,Y ∈ ∆2, (X,Y) ∈ RI if and only if {C′: ∀R.C′ ∈ X} ⊆ Y.

For ai ∈ ∆1, X ∈ ∆2, (ai ,X) ∈ RI if and only if there is anx ∈ ∆′ ofM′ such that
(aI ′

i , x) ∈ RI ′ inM′ and, for all conceptsC′, we havex ∈ C′I
′

if and only if X ∈ C′I .
I is extended to quantified concepts in the usual way.
By definition ofRI and ofI , it follows that for allX ∈ ∆2, X ∈ ∀R.CI iff ∀R.C ∈ X.

Also, by maximality and consistency ofX, for all X ∈ ∆2, X ∈ ∃R.CI iff ∃R.C ∈ X,
as can be easily verified. IfX ∈ ∃R.CI , then by what just stated,∀R.¬C < X, and by
maximality ofX, ∃R.C ∈ X. For the other direction, if∃R.C ∈ X then by consistency
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of X ∀R.¬C < X, hence by what just stated,X < ∀R.¬CI , and thereforeX ∈ ∃R.CI . For
ai ∈ ∆1, it obviously holds thatai ∈ ∀R.CI iff ai ∈ ∀R.CI ′ inM′.

We first consider the TBox.M satisfies TBox: for elementsai ∈ ∆1, for the
inclusionCl ⊑ C j ∈ TBox, if T does not occur inCl this obviously follows from
definition of I since it holds inM′. For T(Cl) ⊑ C j , for all ai we reason as follows.
First of all, if k j(ai) > rank(Cl) thenai < Min<(Cl

I ) and the inclusion trivially holds. On
the other side, ifk j(ai) = rank(Cl), (¬Cl⊔C j)(ai) ∈ µ j , and therefore (ai)I ′ ∈ (¬Cl⊔C j)I ′

inM′, hence (ai)I ∈ (¬Cl ⊔ C j)I inM. Last, if k j(ai) < rank(Cl), by Proposition 12
(forM′) thenai < (Cl)I , and we are done.

For the elementsX ∈ ∆2: let Cl ⊑ C j ∈ TBox. If X < (Cl)I the property trivially
holds. LetX ∈ (Cl)I , i.e. Cl ∈ X. We show thatX ∈ (C j)I . We consider two
cases: eitherCl is different fromT(C′) or Cl is T(C′). Let us consider the first case.
Suppose, for a contradiction, thatX < (C j)I and, hence,C j < X. As X = {C1, . . . ,Ck} is
consistent withK, K 6|=ALC+TR C1⊓ . . .⊓Cn ⊑ ⊥. AsC j < X andX is maximal among
the consistent sets of concepts inS, K |=ALC+TR C1 ⊓ . . . ⊓ Cn ⊓ C j ⊑ ⊥. Therefore,
K |=ALC+TR C1 ⊓ . . . ⊓Cn ⊑ ¬C j . But, from the fact thatCl ⊑ C j ∈ TBox andCl ∈ X,
we getK |=ALC+TR C1 ⊓ . . . ⊓ Cn ⊑ C j . A contradiction. Let us consider the case
thatCl is T(C′). SinceX ∈ (T(C′))I alsoX ∈ C′I and by inductive hypothesisC′ ∈ X.
We reason by contradiction: supposeC j < X, hence¬C j ∈ X. SinceT(C′) ⊑ C j ∈

TBox, it can be easily verified thatrank(C′⊓¬C j) > rank(C′). Consider anY ∈ ∆2 s.t.
C′ ∈ Y andrank(Y) = rank(C′) (by Proposition 13 thisY exists).Hence by definition
of kM, kM(X) > kM(Y) = kM(C), which contradicts the possibility thatX ∈ Min(C′)I ,
and hence thatX ∈ (T(C′))I . Also in this case we can conclude thatC j ∈ X. Notice
that by what said above about quantified concepts, this also holds in caseCi or C j are
quantified.

Furthermore,M is a minimal canonical model: it is canonical by construction. It is
minimal with respect to Definition 23: for allX ∈ ∆2, we have thatkM(X) is the lowest
possible rank it can have in any model (by Proposition 13).

We now consider the ABox.M satisfies ABox by definition ofI and sinceM′

satisfies it. This is obvious for ABox assertions that do not contain theT operator. If
T(C)(ai) ∈ ABox, then by the algorithmk j(ai) = kM(ai) = rank(C). By Proposition
13, and sinceM is minimal and canonical, we know that rank (C)= kM(C), therefore
(ai)I ∈ Min<(CI ) andM satisfiesT(C)(ai).

Last,M minimally satisfies ABox. This follows by minimality ofk j . Suppose for
a contradiction that there is another canonical modelM′ = 〈∆′, <′, I ′〉 of K such that
M′ <ABox M, for all ai kM′(ai) ≤ kM(ai), and for at least oneb, kM′(b) < kM(b).
Considerk j′ , the rank assignment corresponding toM′ (s.t. for allai ∈ ABox, k j′(ai) =
kM′(ai)I ′ ). Clearlyk j′ threatens the minimality ofk j . FurthermoreM′ |=ALC+TR TBox
∪ ABox ∪ µ j′ : it satisfies TBox∪ ABox because it is a model ofK. It satisfiesµ j′ :
for the inclusions without theT operator this is obvious. Letai ∈ ABox, and let
T(C) ⊑ D with rank C ≥ k j′ (ai). It clearly holds that (ai)I ′ ∈ (¬C ⊔ D)I ′ in M′:
indeed if rank(C)> k j′(ai), then by Proposition 13 (ai)I ′ ∈ (¬C)I ′ . On the other hand,
if rank(C)= k j′(ai) always by Proposition 13,ai ∈ min(C)I ′ , and since by hypothesis
M′ satisfies TBox, alsoai ∈ (D)I ′ . However, if all this holds, this contradicts the
hypothesis thatk j is a minimal consistent assignment. Therefore, TBox∪ ABox ∪ µ j′

is consistent inALC +TR, which contradicts the minimality ofk j . It follows that such
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M′ cannot exist, and thereforeMminimally satisfiesABox.
Last,C(a) does not hold inM, since it does not hold inM′.
We have then built a minimal canonical model ofK minimally satisfying ABox in

whichC(a) does not hold. The theorem follows by contraposition.

Theorem 12(Soundness ofABox). Given K=(TBox, ABox), for each individual con-
stant a in ABox, we have that if C(a) ∈ ABox then C(a) holds in all minimal canonical
models of K minimally satisfying ABox.

Proof. LetC(a) ∈ ABox, and suppose for a contradiction that there is a minimal canon-
ical modelM of K minimally satisfying ABox s.t.C(a) does not hold inM. Con-
sider now the rank assignmentk j corresponding toM (such thatk j(ai) = kM(ai)). if
T(C)(ai) ∈ ABox, thenk j(ai) = kM(C) = rank(C) (by Proposition 13).k j is clearly
minimal. Suppose it was not so, and there was ak j′ such that for allai k j′ (ai) ≤ k j(ai),
and for someal , k j′ (al) < k j(al). By repeating the same construction in the proof of
Theorem 11, there is a minimal canonical modelM′ of K minimally satisfying ABox
such thatk j′ (ai) = kM′(ai), thereforeM′ <ABox M, against the hypothesis of mini-
mality ofM. ClearlyM |=ALC+TR µ

j . Indeed, for allai let (¬C ⊔ D)(ai) ∈ µ
j
i . We

distinguish two cases. If (¬C ⊔ D)(ai) has been introduced inµ j
i because of aC ⊑ D

in TBox, clearlyai
I ∈ (¬C ⊔ D)I . If (¬C ⊔ D)(ai) has been introduced inµ j

i because
of a T(C) ⊑ D in TBox: if ai

I ∈ (¬C)I clearly (¬C ⊔ D)(ai) holds inM. On the other
hand, ifai

I ∈ (C)I : by hypothesisrank(C) = k j(ai) hence by the correspondence be-
tween rank of a formula in the rational closure and in minimalcanonical models (see
Proposition 13) alsokM(C) = kM(ai

I ), but sinceai
I ∈ (C)I , kM(C) = kM(ai

I ), therefore
ai

I ∈ (T(C))I . By definition ofµi , and since by Theorem 8,M |=ALC+TR TBox, D(ai)
holds inM and therefore alsoai

I ∈ (¬C⊔D)I . Furthermore by hypothesisM |=ALC+TR

ABox.
Since by hypothesisM 6|=ALC+TR C(a), it follows that TBox∪ ABox ∪ µ j 6|=ALC+TR

C(a), and by definition ofABox, C(a) < ABox, against the hypothesis.
The theorem follows by contraposition.

Let us conclude this section by estimating the complexity ofcomputing the rational
closure of the ABox:

Theorem 13(Complexity of rational closure over the ABox). Given a knowledge base
K =(TBox,ABox), an individual constant a and a concept C, the problem of deciding
whether C(a) ∈ ABox isEXPTIME-complete.

Proof. Let |K| be the size of the knowledge baseK and let the size of the query be
O(|K|). As the number of inclusions in the knowledge base isO(|K|), then the number
n of non-increasing subsetsEi in the construction of the rational closure isO(|K|).
Moreover, the numberk of named individuals in the knowledge base isO(|K|). Hence,
the numberkn of different rank assignments to individuals is such that both k andn are
O(|K|). Observe thatkn

= 2Log kn
= 2nLog k. Hence,kn is O(2nk), with n andk linear in

|K|, i.e., the number of different rank assignments is exponential in |K|.
To evaluate the complexity of the algorithm for computing the rational closure of

the ABox, observe that:
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(i) For eachj, the number of setsµ j
i is k (which is linear in|K|). The number of inclu-

sions in eachµ j
i is O(|K|2), as the size ofS is O(|K|) and the number ofT-inclusions

T(C) ⊑ D ∈ TBox, with C,D ∈ S is O(|K|2), while the number ofT-inclusions
C ⊑ D ∈ TBoxis O(|K|). Hence, the size of setµ j is O(|K|3).
(ii) For eachk j , the consistency with (TBox, ABox) can be verified by checking the
consistency of TBox∪ ABox ∪ µ j inALC+TR, which requires exponential time in the
size of the set of formulas TBox∪ ABox ∪ µ j (which, as we have seen, is polynomial
in the size ofK). Hence, the consistency of eachk j can be verified in exponential time
in the size ofK.
(iii) The identification of the minimal assignmentsk j among the consistent ones re-
quires the comparison of each consistent assignment with each other (i.e. k2n com-
parisons), where each comparison betweenk j and k j′ requiresk steps. Hence, the
identification of the minimal assignments requiresk× k2n steps, i.e. a number of steps
exponential in|K|.
(iv) To define the rational closureABoxof ABox, for each conceptC occurring in
K or in the query (there areO(|K|) many concepts), and for each named individual
ai , we have to check ifC(ai) is derivable inALC + TR from TBox ∪ ABox ∪ µ j

for all minimal consistent rank assignmentsk j . As the number of different minimal
consistent assignmentsk j is exponential in|K|, this requires an exponential number of
checks, each one requiring exponential time in the size of the knowledge base|K|. The
cost of the overall algorithm is therefore exponential in the size of the knowledge base.
Completeness comes from the complexity of the underlyingALC + TR, as stated in
Theorem 5.

4. Conclusions and Related works

In the first part of the paper we have provided a semantic reconstruction of the well
known notion of propositional rational closure. We have provided two minimal model
semantics, based on the idea that preferred rational modelsare those in which the rank
of the worlds is minimized. We have then shown that when adding suitable possibility
assumptions to a knowledge base, these two minimal model semantics correspond to
rational closure.

The correspondence between the proposed minimal model semantics and rational
closure suggests the possibility of defining variants of rational closure by varying the
three ingredients underlying our approach, namely: (i) theproperties of the prefer-
ence relation<: for instance just preorder, or multi-linear or weakly-connected; (ii) the
comparison relation on models: based for instance on the rank of the worlds or on the
inclusion between the relations<, or on a special kind of formulas satisfied by a world,
as in the logicPmin [19]; (iii) the choice between fixed or variable interpretations. The
systems obtained by various combinations of the three ingredients are largely unex-
plored and may give rise to useful nonmonotonic logics.

In the second part of the paper we have defined a rational closure construction
for the Description LogicALC extended with a typicality operator and provided a
minimal model semantics for it based on the idea of minimizing the rank of objects in
the domain, that is their level of “untypicality”. This semantics corresponds to a natural
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extension to DLs of Lehmann and Magidor’s notion of rationalclosure. We have also
extended the notion of rational closure to the ABox, by providing an algorithm for
computing it that is sound and complete with respect to the minimal model semantics.
Last, we have shown an EXPTIME upper bound for the algorithm. The work presented
in this paper is an extension of the work in [22] and in [24].

In another direction, we aim to develop a generalization of the notion of rational
closure introduced in this paper and of its minimal model semantics to deal with more
expressive DLs and, in particular, with DLs which do not enjoy the finite model prop-
erty, such asALCOIQ andSHOIQ, for which the notion of canonical model as
introduced in this paper appears to be too strong.

As far as rational closure is concerned, it is worth noticingthat rational closure for
Description Logics inherits both the virtues and the weakness of propositional rational
closure. We have already said about the strengths, among which there are the good
computational properties. For what concerns the weaknesses, rational closure does not
allow to separately reason about the inheritance of different properties. For instance,
in the classical birds and penguins example, rational closure does not allow to reason
in this way: penguins inherit all typical properties of birds, except those for which we
know they are an exception (as the property of flying). On the contrary, once penguins
are recognized as non typical birds, no inheritance of typical properties is possible. In
order to solve this problem, a strengthening of a rational closure-like algorithm with
defeasible inheritance networks has been studied by [9].

In future work, we aim to explore possible strengthening of the notion of rational
closure at the semantic level, to overcome the weaknesses mentioned above. One pos-
sible direction we briefly discuss here, could be to “relativize” the notion of typicality
enforced by the semantics. In order to achieve this, we aim torefine the semantics by
considering models equipped with multiple preference relations, whence with multi-
ple “typicality” operators. In this variant, it should be possible to distinguish different
aspects of typicality/exceptionality and consequently toavoid the “all or nothing” be-
havior of rational closure with respect to property inheritance. For the time being, we
just notice that in order to make this variant interesting and meaningful, one should
deal with issues like: what does differentiate one preference relation from another?
What are the dependencies between different preference relations? Can different pref-
erence relations or (syntactically) different typicalityoperators be combined? All these
issues require a suitable analysis/understanding which ispreliminary to the technical
development. Furthermore, one should also study an algorithmic counterpart of this
semantics, that is to say, a suitable reformulation of the rational closure mechanism,
with the hope of keeping a reasonable complexity.

In [23, 21] nonmonotonic extensions of DLs based on theT operator have been pro-
posed. In these extensions, the semantics ofT is based on preferential logicP. Non-
monotonic inference is obtained by restricting entailmentto minimal models, where
minimal models are those that minimize the truth of formulasof a special kind. In this
work, we have presented an alternative approach. First, thesemantics underlying the
T is R. Moreover and more importantly, we have adopted a minimal model seman-
tics, where, as a difference with the previous approach, thenotion of minimal model
is completely independent from the language and is determined only by the relational
structure of models.
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Casini and Straccia in [8] develop a notion of rational closure for DLs. They pro-
pose a construction to compute the rational closure of anALC knowledge base, which
is not directly based on Lehmann and Magidor definition of rational closure [33], but is
similar to the construction of rational closure proposed byFreund in [14] for the propo-
sitional calculus. [8] keeps the ABox into account, and defines closure operations over
individuals. It introduces a consequence relation among a knowledge baseK and
assertions, under the requirement that the TBox is unfoldable and the ABox is closed
under completion rules, such as, for instance, that ifa : ∃R.C ∈ ABox, then bothaRb
andb : C (for some individual constantb) must belong to the ABox, too. Under such
restrictions, a procedure is defined to compute the rationalclosure of the ABox, as-
suming that the individuals explicitly named are linearly ordered, and different orders
determine different sets of consequences. The authors showthat, for each orders, the
consequence relations is rational and can be computed in PSPACE. In a subsequent
work [9, 11], the authors introduce an approach based on the combination of rational
closure andDefeasible Inheritance Networks(INs). The authors first develop their ap-
proach at a propositional level, then they extend it to DLs, addressing both TBox and
ABox reasoning. The resulting construction is a nonmonotonic mechanism enjoying
the logical properties of rational entailment, but not suffering from the “all-or- noth-
ing” behavior with respect to inheritance of defeasible properties. The nonmonotonic
mechanism proposed by the authors corresponds to an algorithm to compute infer-
ences, however, as a difference with our proposal, no declarative characterization of
those inferences is provided. To overcome the limitations of rational closure, in [10]
Casini and Straccia also define a notion of lexicographic closure forALC.

In [7] a semantic characterization of a variant of the notionof rational closure
introduced in [8] has been presented, which is based on a generalization toALC of
our semantics in [22].In [7], defeasible subsumption statements have the formC ⊏

˜
D

and typicality assertions are not allowed in the ABox, whichis defined as a standard
ALC ABox. As we have seen, in this paper the presence of typicality assertions in
the ABox may force some typicality inclusion not to hold, which is similar to allowing
negated conditionals in KLM logics. While the minimal modelsemantics naturally
deals with the presence of typicality assertions, the presence of typicality assertions in
the ABox has to be taken into account, as we have done, in the definition of rational
closure of the TBox and of the ABox.

A further difference of our construction with those in [8, 7]is in the notion of
exceptionality: our definition of exceptionality exploitspreferential entailment, while
[8, 7] directly use entailment inALC over a materialization of the knowledge base.
We have seen in Section 3.2 that we cannot replace entailmentinALC + TR by entail-
ment inALC over a materialization of the knowledge base. However, whentypicality
assertions are not allowed in the ABox, our notion of rational closure for TBox can
be computed inALC by defining a linear encoding ofALC + TR entailment into
ALC (the encoding is exactly the same as the one provided in [26] for encoding of

SHIQ
RT entailment intoSHIQ).

A related approach can be found in [3]. The basic idea of theirsemantics for the
propositional case is similar to ours: to consider models ofthe K where the rank of
each world is as small as possible. This idea has its roots in the work by Pearl [38]
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and by Lehmann and Magidor [33]. The construction of [3] differs from ours as the
very notion of model is different (although equivalent): a model is a sequence of sets
of “atoms” (conjunctions of literals for every propositional variable). Each set of the
sequence represents a set of worlds with the same ranking. A unique model of the ra-
tional closure is then defined by considering all models of the K and by taking for each
level, starting from the bottom one, the union of the worlds (not already considered) at
that level. This construction corresponds to building a model where each world has a
minimal rank. In contrast, we proceed in a different way: oursemantics is defined in
terms of standard Kripke models where the rank is given by thepreference (or accessi-
bility) relation, and models of the rational closure are defined as the minimal ones with
respect to a comparison relation on models. Our presentation is then more abstract and
declarative than the one proposed in [3], whilst theirs is more “operational”, as it relies
on a specific representation of models and it provides a recipe to build a model of the
rational closure, rather than a characterization of its properties.

The logicALC+TR we consider as our base language is equivalent to the logic for
defeasible subsumptions in DLs proposed by [5]. At a syntactic level the two logics
differ, so that in [5] one finds the defeasible inclusionsC ⊏

˜
D instead ofT(C) ⊑ D of

ALC + TR, however it has be shown in [20] that the logic of defeasible subsumption
can be translated intoALC + TR by replacingC ⊏

˜
D with T(C) ⊑ D.

In [6] the semantics of the logic of defeasible subsumptionsis strengthened by a
preferential semantics. Intuitively, given a TBox, the authors first introduce a prefer-
ence ordering≪ on the class of all subsumption relations⊏

˜
including TBox, then they

define the rational closure of TBox as the most preferred relation ⊏
˜

with respect to≪,
i.e. such that there is no other relation⊏

˜
′ such that TBox⊆ ⊏

˜
′ and⊏

˜
′ ≪ ⊏

˜
. Fur-

thermore, the authors describe an EXPTIME algorithm in order to compute the rational
closure of a given TBox. [6] does not address the problem of dealing with the ABox. In
[36] a plug-in for the Protégé ontology editor implementing the mentioned algorithm
for computing the rational closure for a TBox for OWL ontologies is described.

Recent works discuss the combination of open and closed world reasoning in DLs.
In particular, formalisms have been defined for combining DLs with logic program-
ming rules (see, for instance, [13] and [37]). A grounded circumscription approach for
DLs with local closed world capabilities has been defined in [32].
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ropean Conference on Logics in Artificial Intelligence (JELIA 2010). Vol. 6341
of Lecture Notes in Artificial Intelligence. Springer, Helsinki, Finland, pp. 77–90.

[9] Casini, G., Straccia, U., July 2011. Defeasible Inheritance-Based Description
Logics. In: Walsh, T. (Ed.), Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI 2011). Morgan Kaufmann, Barcelona,
Spain, pp. 813–818.

[10] Casini, G., Straccia, U., 2012. Lexicographic Closurefor Defeasible Description
Logics. In: In Proc. of Australasian Ontology Workshop. Vol. 969. pp. 28–39.

[11] Casini, G., Straccia, U., 2013. Defeasible Inheritance-Based Description Logics.
Journal of Artificial Intelligence Research (JAIR) 48, 415–473.

[12] Donini, F. M., Nardi, D., Rosati, R., 2002. Descriptionlogics of minimal knowl-
edge and negation as failure. ACM Transactions on Computational Logic (ToCL)
3 (2), 177–225.

[13] Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits,H., June 2004. Combin-
ing Answer Set Programming with Description Logics for the Semantic Web.
In: Dubois, D., Welty, C., Williams, M. (Eds.), Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the 9th International Conference (KR
2004). AAAI Press, Whistler, Canada, pp. 141–151.

51



[14] Freund, M., 1998. Preferential reasoning in the perspective of Poole default logic.
Artif. Intell. 98 (1-2), 209–235.

[15] Friedman, N., Halpern, J. Y., 2001. Plausibility measures and default reasoning.
Journal of the ACM 48 (4), 648–685.

[16] Giordano, L., Gliozzi, V., Jalal, A., Olivetti, N., Pozzato, G. L., December 2013.
PreDeLo 1.0: a Theorem Prover for Preferential DescriptionLogics . In: Baldoni,
M., Baroglio, C., Boella, G., Micalizio, R. (Eds.), Proceedings of AI*IA 2013.
Vol. 8249 of Lecture Notes in Artificial Intelligence LNAI. Springer, Torino, pp.
60 – 72.

[17] Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G. L., 2009. ALC+T: a preferen-
tial extension of Description Logics. Fundamenta Informaticae 96, 1–32.

[18] Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G. L., 2009. Analytic Tableaux
Calculi for KLM Logics of Nonmonotonic Reasoning. ACM Transactions on
Computational Logics (ToCL) 10 (3).

[19] Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G. L., 2010. A nonmonotonic
extension of KLM preferential logic P. In: Fermüller, C. G., Voronkov, A. (Eds.),
LPAR 2010 (17th Conference on Logic for Programming, Artificial Intelligence,
and Reasoning). Vol. 6397 of ARCoSS LNCS. Springer-Verlag,Yogyakarta, In-
donesia, pp. 317–332.

[20] Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G. L., August 16-20 2010. Pref-
erential vs Rational Description Logics: which one for Reasoning About Typi-
cality? In: Coelho, H., Studer, R., Wooldridge, M. (Eds.), Proceedings of ECAI
2010 (19th European Conference on Artificial Intelligence). Vol. 215 of Fron-
tiers in Artificial Intelligence and Applications. IOS Press, Lisbon, Portugal, pp.
1069–1070.

[21] Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G. L., July 2011. Reasoning about
typicality in low complexity DLs: the logicsEL⊥Tmin and DL-liteRTmin. In:
Walsh, T. (Ed.), Proceedings of the 22nd International Joint Conference on Arti-
ficial Intelligence (IJCAI 2011). Morgan Kaufmann, Barcelona, Spain, pp. 894–
899.

[22] Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G. L., Sptember 2012. A min-
imal model semantics for nonmonotonic reasoning. In: Luis Fariñas del Cerro,
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Appendix: an alternative semantics forALC + TR

An alternative semantic characterization ofT can be given by means of a set of postu-
lates that are essentially a reformulation of axioms and rules of nonmonotonic entail-
ment in rational logicR: in this respect, theT-assertionT(C) ⊑ D is equivalent to the
conditional assertionC |∼ D in R5. Given a domain∆ and a valuation functionI , one
can define the functionfT (S) for S ⊆ ∆ that selects thetypical instances ofS, and in
caseS = CI for a conceptC, it selects the typical instances ofC. In this semantics,
we define (T(C))I

= fT (CI ), and fT has the intuitive properties for all subsetsS of ∆ of
Definition 28 below:

Definition 28 (Semantics of T with selection function).A model is any structure

〈∆, fT , I〉

where:

• ∆ is the domain;

• fT : Pow(∆) 7−→ Pow(∆) is a function satisfying the following properties (given
S ⊆ ∆):

( fT − 1) fT(S) ⊆ S
( fT − 2) if S , ∅, then alsofT (S) , ∅
( fT − 3) if fT (S) ⊆ R, then fT(S) = fT (S ∩ R)
( fT − 4) fT(

⋃
Si) ⊆

⋃
fT (Si)

( fT − 5)
⋂

fT (Si) ⊆ fT (
⋃

Si)
( fT − R) if fT(S) ∩R, ∅, then fT(S ∩ R) ⊆ fT (S)

• I is the extension function that maps each extended conceptC to CI ⊆ ∆, and
each roleR to RI ⊆ ∆ × ∆ as follows:

– I maps each roleR ∈ R to its extensionRI ;

– I maps each atomic conceptA ∈ C to its extensionAI ;

– I is extended to complex concepts in the usual way for constructors in
ALC, whereas for (T(C)) is as follows:

∗ (T(C))I
= fT (CI )

( fT − 1) enforces that typical elements ofS belong toS. ( fT − 2) enforces that if there
are elements inS, then there are alsotypicalsuch elements. (fT − 3) expresses a weak
form of monotonicity, namelycautious monotonicity. The next properties constraint
the behavior offT with respect to∩ and∪ in such a way that they do not entail mono-
tonicity. Last, (fT − R) corresponds to rational monotonicity, and forces again a form

5This can be easily proven given Proposition 5.1 of [17] that shows the equivalence between the weaker
logicALC + T in which fT satisfies (fT − 1) − ( fT − 5) above but does not satisfy (fT − R) and the KLM
logic P which is weaker thanR.
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of monotonicity: if there is a typicalS having the propertyR, then all typicalS-and-Rs
inherit the properties of typicalSs.

The following representation theorem shows that the above semantics forALC+TR

in Definition 28 is equivalent to the one in Definition 13.
First of all, we need to recall Lemma 2.1 in [17]:

Lemma 1 (Lemma 2.1 in [17], page 5). If fT satisfies( fT − 1)− ( fT − 5), then fT(S ∪
R) ∩ S ⊆ fT(S).

Now we are able to prove the representation theorem:

Theorem 14. A knowledge base is satisfiable in anALC + TR model described in
Definition 13 if and only if it is satisfiable in a modelM = 〈∆, fT , I〉 where fT satisfies
( fT − 1)− ( fT − 5) and( fT − R), and(T(C))I

= fT(CI ).

Proof. Here we only consider the property (fT − R). For the other properties, we refer
to the proof of the Representation Theorem forALC+T, as presented in [17], Theorem
2.1, page 5. Theonly if direction is trivial and left to the reader. For theif direction, as
in [17], we define the< relation as follows:

• for all x, y ∈ ∆, we let x < y if ∀S ⊆ ∆, if y ∈ fT (S), then (a)x < S and (b)
∃R⊆ ∆ such thatS ⊂ Randx ∈ fT(R).

Notice that given (fT − R), this condition is equivalent to the simplified condition that
only contains (a). Indeed, if (a) holds, it follows that also(b) holds. To be convinced,
take anyS such thaty ∈ fT(S), andx < S. We show thatx ∈ fT(S ∪ {x}), hence (b)
holds. For a contradiction, supposex < fT(S ∪ {x}), then by (fT − 1) and (fT − 2),
fT(S∪ {x}) ∩S , ∅, and by (fT −R), fT(S) = fT((S∪ {x}) ∩ S) ⊆ fT (S∪ {x}). Hence,
y ∈ fT(S ∪ {x}), which contradicts (a), given thatx ∈ S ∪ {x}. Therefore, we will
consider the simplified definition of<:

• for all x, y ∈ ∆, we letx < y if ∀S ⊆ ∆, if y ∈ fT(S), thenx < S.

We then show that iffT satisfies (fT − R), then< is modular. Letx < y. Consider
z and supposez ≮ y. This means that there isR such thaty ∈ fT (R), andz ∈ R We
reason as follows. First, notice that by Lemma 1,y ∈ fT ({y, z}) (given thaty, z ∈ R,
y ∈ fT (R∪ {y, z}) ∩ {y, z}, hencey ∈ fT({y, z})). In order to show that< is modular, we
want to show thatx < z. For a contradiction, suppose thatx ≮ z. Then there isZ such
thatz ∈ fT (Z) andx ∈ Z. ConsiderZ∪{y, z}, by (fT−1), fT(Z∪{y, z}) ⊆ Z∪{y, z}, and by
( fT −2), fT(Z∪{y, z}) , ∅. Hence, eitherfT (Z∪{y, z})∩Z , ∅ or fT (Z∪{y, z})∩Z = ∅,
and fT(Z ∪ {y, z}) ∩ {y, z} , ∅. In the last case,y ∈ fT (Z ∪ {y, z}). In the first case,
by ( fT − R), fT(Z) = fT ((Z ∪ {y, z}) ∩ Z) ⊆ fT(Z ∪ {y, z}), hencez ∈ fT(Z ∪ {y, z}).
From this, we derive thatfT(Z ∪ {y, z}) ∩ {y, z} , ∅, hence, by (fT − R), fT ({y, z}) =
fT((Z ∪ {y, z}) ∩ {y, z}) ⊆ fT(Z ∪ {y, z}), andy ∈ fT(Z ∪ {y, z}). In both cases, we have
thaty ∈ fT(Z ∪ {y, z}), however this is impossible, given thatx ∈ Z ∪ {y, z} andx < y.
We therefore conclude that ifz ≮ y, thenx < z, hence modularity holds.
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