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We provide a characterization for vector measure games v = f o y in pNA , with y vector of nonatomic probability measures,
analogous to the one of Tauman for games in pNA, and also provide a necessary and sufficient condition for a particular class of

vector measure games to belong to AC,.

1. Introduction

Measure games, that is, transferable utility (TU) games of the
form v = f oy, where y is a nonatomic measure on o-algebra
> of a space Q) and f is a function defined on the range of
u, with f(0) = 0, arise in several contexts including game
theory, mathematical economics, and even finance (where,
under suitable hypotheses on f and y, they are termed as
distorted probabilities). One of the reasons of their popularity
lies in the fact that they generate fundamental spaces of
games and that many games of interest, such as, for instance,
market games of finite type, fall into this category. Classically
in the literature, one distinguishes between scalar measure
games where y is a nonnegative scalar measure and vector
measure games where y is an n-dimensional measure with
nonnegative components. The extension to signed measure
is also customary.

The most classical space related to measure games is
PNA, that is, the closed linear subspace of BV generated
by all powers (with respect to pointwise multiplication)
of nonatomic probability measures. Several results exist,
concerning scalar measure games in pNA [1, 2], while the
only characterization of vector measure games in this space
is the one of Tauman [2].

Besides the BV -norm, one encounters in the literature the
| - llo-norm that defines the subspace AC., c BV of the so-
called Lipschitz games. Then clearly one may define also the
space pNA , as the | - || ,-closure of the space generated by
all powers of nonatomic probability measures. In this space,
the only characterization of vector measure games we are
aware of up to now is due to Milchtaich [3], and it requires
the function f to be continuously differentiable.

All these results put in evidence how measure games are
difficult to characterize once the differentiability assumption
is dropped, though economically significant measure games
that do not fall into this category exist in the literature.
For example, Milchtaich’s characterization shows that if f is
piecewise linear, then measure games of the form f oy do not
belong to pNA ; on the other side the linear span of games
with f piecewise linear and y vector of mutually singular
nonatomic probability measures plays a role for example in
value theory [4].

In this paper, we face the problem of characterizing
measure games both in pNA  and in AC_,. Our starting
point is the characterization for scalar measure games in
AC,, given in [5]; there we proved that f o y € AC if
and only if f is Lipschitz. Here we introduce a generalization
of the Lipschitz condition, namely, lipschitzianity in link
directions, which proves to characterize vector measure
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games f o pin AC_ , when the range of y has finitely many
exposed points and which thus covers interesting cases in
literature. As a consequence, we extend the characterization
in [5] to measure games of the form f o y where ¢ is a signed
measure.

Another interesting subspace is the class BC of Burkill-
Cesari (BC) integrable games, introduced in [6]. The investi-
gation on this space has been further developed in [5]; there
it has been proved that the Burkill-Cesari integral isa || - ||, -
continuous (semi)value (but in general not BV -continuous)
and that it differs from the Aumann and Shapley value.
Actually, the BC integral and the space BC turned out to be
fruitful to provide a proper subspace of AC strictly larger
than pNA on which a value can be defined; remember that
existence and uniqueness of a value on pNA are well known,
while the question is still open on AC. In force of these results,
a better understanding of the structure of the space BC n
AC,,, starting from its simplest elements, that is, measure
games, seems to be an interesting task.

The outline of the paper is as follows. In Section 3 we
characterize vector measure games in pNA ; although the
statement of the result is formally analogous to the one of
Tauman, the proof differs from his, and this is essentially
due to the difficulties arising in handling the || - || ,,-norm on
this space. In Section 4 we first characterize a particular class
of vector measure games in AC., and, as a corollary, also
measure games where p is a signed measure are characterized
through lipschitzianity. The final part of the section is devoted
to the investigation of BC integrable Lipschitz measure
games; we completely characterize the one-dimensional ones
and provide a necessary condition in larger dimensions; also
a topological condition is given, to ensure that a Lipschitz
measure game is || - [|,-close to a BC integrable one.

2. Preliminaries

In the following we will deal with the following elements, as
in [1].

(Q,%) denotes a measurable space isomorphic to
([0,1], B) (where A denotes the Borel o-algebra on [0, 1]).

A transferable utility (TU) game v is a real valued function
on X such that »(@) = 0.

The set of all nonatomic measures on (€, X) is denoted
by NA, the cone of nonnegative measures of NA by NA",
while the set of probability measures in NA is indicated by
NA'. Given y € NA, the variation measure is denoted by |u|.
For a vector measure 4 = (y, ..., H,) € (NA)", the variation
measure is defined by || = Y| il

A game v is said to be Lipschitz if there exists y € NA"
such that for every link § ¢ T' ¢ Q) in X it holds

[v(T) =v ()| < u(T) = u(S). )

The space of Lipschitz games is denoted by AC, for it is a
Banach space under the norm ||v||, defined in the following
way; for every y € NA™ such that (1) holds, write -y < v < p.
Then set

IVl = inf {p (Q),u € NA",—pu < v < p}. ()

To simplify notation, given a game v € AC,,, and for
fixed H € X we will denote as usual by II(H) the class of
finite partitions of H consisting of elements in X; for every
D e II(H), say, D = {D;,....,Di}, let T, = {Tp =
{T},...,Ti} with T; ¢ D;, T; € X}. Then denote

SDT) =S pDuT) - w(r)]. O

i=1
For a game v € AC_, define, according to [7], the measures

v" (H) =sup{S(»,D,Tp),D € [1(H),Tp € T p},
(4)
v, (H) =inf{S(»,D,Tp),D € 1(H),Tp € T p}.

Then
1l = sup {|»*| (H) + |v,| (H),H € 5}. (5)

It is clear that if v is a monotone game, then v*,v, are
nonnegative and in this case |||, = v*(Q).
Note that for every H € X, D € II(H), Ty, € I , one has

|S (%D, Tp)| < Vloo- (6)

On the other side, since v*, v, are measures, there are Hahn
decompositions (P;, Ny), (P,, N,) which allow us to rewrite
(5) as

VMlo =sup{v" (ENP)—2"(ENN,)+v, (E°NP,)
-v,(E°NN,),E € z}.

Hence, if for a game v one has [S(v, D, Tp)| < e for each D €
II(H), T € I pand every H € %, then clearly ||v]|, < 4e.

Given a vector measure y = (4y,...,4,) € (NA")" and
denoting its range by R(u), a vector measure game is a game v
ofthe form v = fou, where f isareal valued function defined
on the range of g and f(0) = 0. In the case n = 1, this type of
games is called scalar measure games.

Analogously to what is usually done in the space BV,
the symbol pNA _ denotes the | - [|,-closure of the space
generated by all powers of nonatomic probability measures.

Given a convex subset X of R”, a vector z is called X
admissible if z = x — y for some x,y € X. A real
valued function f defined on X is said to be continuously
differentiable on X if for each X admissible z the derivative
df (x + hz)/dh exists at each point in the relative interior of X
and it can be continuously extended at each point of X. The
space of continuously differentiable functions on a set X will
be denoted by &H(X).

Given a convex compact subset K of R”, a point x € K
is said to be exposed if {x} is the intersection of K with some
supporting hyperplane of K.

As in [8], given a monotone nonatomic game A, one
defines the mesh of a partition D as

8, (D) = max{A(I),I € D}. (8)

A game v is Burkill-Cesari (BC) integrable with respect to
9, if the following limit exists, for each E € X
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We denote by BC the space of games v such that there exists
A € NAT so that v is BC integrable with respect to the mesh
0y.

The BC integral does not depend upon the integration
mesh (see Proposition 5.2 in [6]); in other words, for every
A € NA" such that v is §,-BC integrable, the BC integral
remains the same. Moreover, the BC integral of a game vis a
finitely additive measure.

3. Measure Games in pNA

In [5] we have obtained a characterization (Proposition 12) of
scalar measure games (made through a nonnegative measure)
for the whole space AC,. Anyway the Lipschitz condition on
f is not sufficient to ensure that a measure game belongs to
PNA_, that is, to the | - || ,-closure of the space generated
by all powers of nonatomic probability measures. Indeed,
in [3] Milchtaich has shown that continuous differentiability
is required, and it guarantees that a vector measure game
belongs to pNA .. To our knowledge, this is also the unique
characterization of vector measure games in pNA  so far. It
is well known that pNA  is strictly contained in pNA and
that many games of interest belong to this space [4].

Our first goal is to obtain a characterization for vector
measure games in pNA_, similar to the one given by
Tauman for pNA [2]. We point out that the technique of
the proof is different, due to the difficulties in dealing with
approximations in the | - ||,-norm instead of in the BV-
norm.

We begin with a Lemma.

Lemmal. Let y € (NAY", f e %l([R(y)]). Then for every
€ > 0 there exists a polynomial in n variables p such that

|(Few - omle <& (10)
Proof. According to [1] for every ¢ > 0 there exists a
polynomial p on R(y) such that the norm || f — p||; < &, where
one defines

ol == pl e YL -2
If = el =0F = pho+ 250 - 5

i=1

(11)

u

and || - ||,, is the usual uniform norm on continuous functions.
Without loss of generality we assume p(0) = 0.
FixH € £, D ¢ II(H),Tp € I p. From the Mean Value
Theorem we have the following:

IS[(peu)—(fou),D Tp)|
<D (pew) (D;0T) = (f o) (DU T)]

=[(pow)(T;) = (f o) (T)]|
= Z [V(f=p)lau(D;uT)+(1-¢)u(T;)] - u(D))]

(% - 887})) [Gu (D UT;) + (1= ) u(T;)]

(12)

Now ¢u(D; UT;) + (1 — ¢;)u(T;) € R(u) foreachi = 1,...,n
and hence

(i - a_p) [u(D;UT;) + (1 -¢)u(T;)]

ax]- axj
(13)
of o
= ox;  0x;| <&
Thus
IS[(pou) = (fou),D,Tp]]
(14)
< sZZyj (D,) = sZyj (H) = ¢|u| (H).
ij j
O

Tauman [2] gave the definition of || - || z,,-continuity at p
for a function f defined on the range of a vector measure y €
(NAY", which we recall below.

Given p € (NA)", denote with B(u) the set of measures
n € (NA)" having the same range of y and, for & > 0, define

B(u,€) = { € B(u) suchthat |- p|(Q) <e}. (15)

Fixed u € (NAYH", a function f on R(u) (with f(0) =
0), is || - lgy-continuous at p, if for every € > 0 there
exists § > 0 such that for each € B(y,d) there follows
I(few—(fenly < e Tauman proved that a vector
measure game f oy, u € (NA')", belongs to pNA if and only
if fis | - |z -continuous at .

We translate the same definition using the | - ||,,-norm;
that is, we say that a function f on R(y) is || - ||, -continuous
at p if for every € > 0 there exists § > 0 such that for each # €
B(u, 6) there follows [|(f o p) = (f ep)ll,, < & Then we are
able to prove that the analogous characterization of Tauman
holds for vector measure games in pNA .

Theorem 2. f is | - || -continuous at y € (NAH" if and only
if (f ou) € pNA,.

Proof. We first prove the sufficient condition; namely, we
assume that f is || - |, -continuous at y € (NAYHY™.

Note first that without loss of generality we can assume
that R(y¢) has nonempty interior.

Asin [2], fix a > 0 such that the cube

n

c=@+[—“g R (u), (16)

2 2’2
and for 6 €]0, 1] define
£ (%) = ij f[(1—5)x+5y]dy—ij £(8y)dy
a* Jc a* Jc ’
(17)

Thus f°(0) =

@R
We also need the following structure Lemma [2,
Lemma 9].

0 and according to [2, Lemma 7] f° €



Lemma 3. Let 1 € (NA")" and let Q, ¢ Q, ¢ Q be a link
with both Q, Q\Q, uncountable. Then, for every § €0, 1[ and
for every y € R(n) there exists n,, € B(n,2nd) with n,(H) =
(1-0)n(H) + 6y foreachH e ZwithQ, ¢ H C Q,.

Let § be momentarily fixed, and let {T, S U T} be any link
in X, with T, Q\ (SUT) uncountable. Consider the difference
y =75 — vwhere vs = %o u,v = f o u. We have

y(SuT)-y(T)
= P lpSUT)] - fFluSUD)] = £ [u (] + f [u(T)]

- | fla-ousun o ay
a” Jc

- fluSuT)] —ainjcf[u—a)y(nwy]dy
+ f [u(D)]
=£L{f[(1—8)u(SuT)+8y] ~ fluSuT)]

- flA=8) u(T) +8y] + f [u(D)]} dy.
(18)

Now by Lemma 3 applied with T = Q,, SUT = Q,, and
n = ufor every y € C thereis#, € B(u,2nd) such that
ny(S UT) =(1-8)u(SUT)+6yand r]y(T) =(1-8)u(T)+6y.
Hence, continuing the computation (18) we reach

y(SUT)-y(T)

- [ len)sun-(remsun] a9

=[(fom) = (Fom) D]} dy.

By the assumption corresponding to € > 0 there exists §, > 0
such that for m € B(u,d,) one has [|(f e m) — (f o ), <&
Let us now fix § < §,/2n,andlet H € £,D € II(H), T €
I p be fixed also, in such a way that T;,Q \ (D; U T;) are
uncountable.
Then we have

S (V’ D, TD)
= ZV (D;uT;) - y(Ty)

- JC{[(f°Wy)(DiUTi)—(f°M) (D;uT)] (20)

a4
~[(Fom) (@) = (f o) (T)]} dy
- [ s{l(Fom) - (Fom]. D10} ay.
Since 17, € B(u,2nd) < B(p,d,) we know that [|(f - 7,) -
(f el < & and from (6), IS{[(f °7,) = (f e )], D, Tp}l <

e for each y € [0, 1]. Hence |S(y, D, Tp)| < & for each pair
D e II(H),Tp € T p that satisfies the cardinality conditions
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at each link that proves that £ o u approximates f o y in the
Il - lloo-norm.

To conclude our proof, we will prove that for every H ¢
%,D € II(H), T, € T can be replaced by a choice H* €
3, D! € TI(HY), T}, € Ty so thateach link (T?, DFUTY) fulfills
the cardinality requirements for each link, and S[y, D, Tp] =
Sly, D!, T2 1.

To this aim, let ,6,H € %X,D € II(H), T, € I be
fixed, with D = {D,,..., D;}. Without loss of generality we
can assume that each D; is not y-null.

Let I c {1,...,k} be the set of indexes for which the
corresponding link (T}, D; UT;) does not fulfill the cardinality
requirements; then I can be split into two disjoint subsets I,
and I,, where I, is the set of indexes for which Q \ (D, U T;)
is at most countable.

For each i € I, one can choose an uncountable y-null set
N, in Q\ (D; UT;) and then replace T, with T, = T; U Nj; since
i € I,, we have T; countable, and, therefore, u(T;) = 0; thus
the replacement does not affect the corresponding summand
in S(y, D, Tp).

For each index i € I; choose an uncountable y-null set
N; ¢ D, and replace D; with D: = D;\N;,, T; with T, =T,UN,.

Then we can replace D with D¥ = {Df, i=1,...,n}setting

D, ifiel
Df =17 v 21
! {Di otherwise @)
and analogously Tp, with Tg = {Tin,i =1,...,n} where
T, ifiel
Th=1 ’ 22
! {Ti otherwise @2)

and finally set H' = ULD?. By construction then
S(y, D, Tp) = S(y, D, TE).

To prove the converse implication, according to [1,
Lemma 7.2 page 41], it is enough to prove that monomials
of the form cp®, withc € R, u € NAL « € N*, are I lloo-

continuous at each u € NA'.

.....

II(H), p € N, then

k
Y |m? (D) - u* (D)) < po. (23)
i=1

In fact, for each summand we have
m? (D;) = u (Dy)] < mP™ (D) [m (D;) - (D)
+u(D;) 'mp_l (D;) - P‘P_l (Di)|

<m(D;) |[m—u|(D;) +u(D;) (p-1)8,
(24)

where the last inequality follows from Lipschitz condition on
[0,1] and the fact that m € NA!. Then in B(m,d) we have
further [m?(D;) — u? (D;)| < dm(D;) + (p — 1)u(D;)8, whence
for the whole sum we obtain (23).
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Letnowasusual H € X, D € [I(H), D = {D;}, T, € T p
be fixed. Consider the single summand in S(m® — u*, D, Tp,)
m* (T; U D;) — u* (T; U D;) = m* (T;) + u* (T;)

= mi* (D) ~ " (D)

(25)

+z()w”anww)‘”w ).

In the sum S(m* — u%, D, Tp,) there will then appear a sum of
the form in (23) which we can estimate with «§.
Let us now treat the summands of the form
[m*/(D))m’(T;) — u*(D;) i/’ (T})]. Clearly
m*~ (D)) m’ (T;) - P‘a_j (D)) P‘j (%)
= (D) [ (T,) - 4 (1) (26)
+ .”j (%) [ma_j (D;) - .”a_j (Di)]

and so in the whole |S(m™ — u*, D, Tp)| we can apply the
following bound from above:

2
< Ym (D

+4 (T) 'm‘x_j (D) - (Di)l .

))m (1) = (D) (T;)|

) [m’ (1) = o/ ()| (27)

Now each term |m/ (T - ;Aj (T;)] < jo again by Lipschitz
condition and the choice of m € B(y, ). Also meJ (D)) <
m(D;) since m € NA' and u(T;) < 1 for the same reason.
Hence, because of (23),

Z |m* (D) m (1) = u*™ (Dy) o/ (T)]
< jazm (D,) + Z |m*7 (D) - (D)|  (28)

<jo+(a—j)6=ad.

Finally

S5 (%)t 1) - (040 )

i j=1 J
a-1 (29)
(04 o o
=3 (5) b @am () - 0 ()
j=1
<(2"-1)ad
from which we conclude according to (25) and (23)
S (m"™ — u*, D, Tp)| < a2%8 (30)

which only depends upon o. Hence the proofis complete. [

Note that, in proving the “if” part of the above theorem,
we have incidentally proven that, for a measure game f o
pu € pNA, for each ¢ > 0 there exists § > 0 such that

ICf ow) = (P omlly, <&

On the other side, as f° € @'[R(w)], we can
apply Lemmal and find a polynomial p, such that
I ow) = (peowll, <&

In other words we have proven the following statement.

Theorem 4. Let y € (NA')", f: R(u) — R. The following are
equivalent.

(i) (f o p)isin pNA ;
(ii) for each € > 0 there exists a polynomial p : R" — R
vanishing at 0 such that

(fow) = (pewly, <& 31)

4. Measure Games in AC

Throughout this section we will deal with maps f: R} — R
with f(0) = 0, namely, admissible maps.

For two vectors x,y € R’ we will adopt the notation
x <y for the usual componentwise order. We introduce the
following definitions, which extend Lipschitz condition when
n>1.

Definition 5. The map f is said to be Lipschitz in increasing
directions when L > 0 exists such that for each pair x <y in
R’ one has

[fE-fmI<L-x-yl. (32)

Definition 6. Lety : ¥ — R beameasure;apairx,y € R(y)
is said to be a y-link direction when there exists a link (S, SUT')
in ¥ such that u(S) =x, u(SUT) =y.

Amap f: R? — R is then said to be Lipschitz in u-
link directions if there exists L > 0 such that for every y-link
direction x, y there holds

lf&-fy)|<L-|x-y]|. (33)

Note that if f is Lipschitz in increasing directions, then
it is Lipschitz in p-link directions for each n-dimensional
nonnegative measure p.

Let now n € N" and p € (NA")" be fixed, and consider
the spaces

(i) o = {f : RT — R admissible and Lipschitz in the
increasing dlrectlons}

(ii)) Z(u) = {f : RT — R admissible and Lipschitz in
p-link directions}.

Note that if f € &/, then f o u € AC,, for every pu € (NA")",
while we can assert the same for f € &(u) only for precisely

Now, given f,u, let v = f o y and define the subsets of
NAT™. Consider

A = {de NA"A <« |y|,-A v <A},

(34)
c@:%«w ﬁquw}



Note that if v is a vector measure game in AC_,, then A(v) # 0.
Indeed, let A € NA™ be such that —A < v < A and consider the
Jordan decomposition A = A, + A, with A, < |u], A, L |yl
Then there are two disjoint sets Q,, Q, which support A, A,,
respectively. This means that y vanishes on Q,; hence, A, €
Ap).

In fact, for each link § ¢ T, setting §; = S n Q,, T =
T N Q, since u(S;) = u(S), u(T;) = u(T) one has

(1) = v = |v(T) = v(S)] < AM(T1) - A(S,)
=M (T1) =4, (S1) = A, (T) = A, ().
We can now state the following.

Proposition 7. Let u € (NA")" and v = f o . The following
are equivalent:

() f € L(w);
(ii) there exists ¢ > 0 such that c|u| € A(v);
(iii) A(v) N C(u) # 0.

Proof. (i) implies (ii), since, if f € Z(u), then immediately
Liul € A() 0 C(y).

The implication (ii) = (iii) is immediate.

Finally, let A € A(v) N C(u). This immediately implies
that there exists L > 0 such that dA/d|u| < L|ul-a.e., and
this in turn implies that A < L|u| on Z. On the other side, as
mentioned in Section 2, we have that [v(SUT) —v»(T)| < A(S)
for every pair of disjoint sets S, T € X. Then immediately, on
each p-link direction x <y and every link S, S U T such that
p(S) =x, w(SUT) =y one finds

f@-fMI<AS <L =L-|x-y] (o)
that says that f € ZL(p). O

Each of the conditions of Proposition 7 implies that v €
AC,,. It is, therefore, rather natural to ask whether condition
f € Z(u) characterizes vector measure games f o yin AC,.
We already know from Proposition 12 in [5] that this is the
case forn = 1.

In the more general case, we have the following result.

Theorem 8. Let y € (NA")" be such that its range R(u) has
only finitely many exposed points. Then a vector measure game

v=foueAC ifandonlyif f € L(u).

Proof. We only need to prove that if v € AC,, then f €
L),

Let P,,..., P, be the exposed points of R(y), and let
Ay, ..., A besetsin X such that u(A;) =P,i=1,...,k.

Consider the partition generated by A,,..., Ay, say,
D = {Q,,...,Q,}, and assume that each (; has nonnull y-
measure.

If X, denotes the algebra generated by D, we have that
u(Z,) = R(p); in fact by additivity each P, € u(X,) and
from Lyapunov Theorem pu(X,) is convex; hence u(X,) >
co{P,,..., P} = R(u) where the last equality is deduced from
Straszewicz Theorem.
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Letx < y be a fixed p-link direction. Thenx = x; +- - - +x,,,
Y =V, +---+V,, where, for each i, x;, y; € {tu(Q;),t € [0, 1]}.
Moreover, easily x; < ;.

Set now x = v,,v; =
Lv,=Yy.

FixA € A(v)andi=1,...,n

We know that there are t; < tl(' € [0,1] such that x; =
tiu(Q,),y; = t; u(€,). Choosethen S; € S;'  Q; such that for
the (n + 1)-dimensional measure (A, 4) one has (A, ‘M)(S; ) =
£ w(Q), L) =t (L (), and let T; ¢ Q\ Q
with

i n .
ijlyj + Zj:iﬂxj,z =1,...,n-

i—1 n
u(T;) = ZY]' + Z X;. (37)
=

jeitl
This is possible forxj,yj € R(/AIQJ_) and fori # j, Q,NQ; =
' Then S; UT;, S;' UT; is a link and hence
P (SiuT)—v(S/uT)| < A(S/\S)) = (£ —t]) A ().
(38)

But ‘u(S; uT;) = ‘u(S;) +u(T;) = vi_y, y(S;' UT;) = v,. Thus
(38) becomes

|f (v)) = f (viy)| < (tz{’ - t:) A(Cy). (39)

Now
v =vieall = lyi = xill = (&' = £7) | (2]
40)
= (1 = 17) |ul (@)
Thus
A(Q;)
V,- - Vl; S —1 Vl- _Vi* . (41)
0= 5 Gl < ey vl
Since v; — v,_; =y; — X;, we have that [|v; — v;_{[| < [ly — x||.
In conclusion we have that
If@-f@)l<Lly-x| (42)
with L =n- Y7 (AMQ)/1ul(Q)). O

Observe that the above result includes two interesting
cases: the case of y; L u; for each pair of components
ui>pj of p and the case of vector measures y which can
be represented as integral measures (y;, 4, (¢)) where ¢ is a
(n — 1)-dimensional simple function.

Also, from Theorem 8 one derives the following corollary
that generalizes Proposition 12 in [5] to the case of signed
scalar measure games, namely, games of the form v = f o u
with u signed measure.

Corollary 9. Let y: X — R be a nonatomic signed measure,
andlet f: [-u (Q),u"(Q)] — R. Then f oy € AC,, if and
only if f is Lipschitz on R(u).
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Proof. Consider the nonatomic two-dimensional measure
m = (u',u") and the function g : R*> — R defined by
g, y) = f(x—y). Thusv = f oy = g om. Since R(m) is a
rectangle, if v € AC_,, from Theorem 8 g € Z(m), namely, a
constant L > 0 exists, such that for each m-link direction x, y

|90 -g )< Lly-x]. (43)

Then f is also Lipschitz with constant L. O

So far, we have not been able to answer the question
whether the condition in Theorem 8 actually characterizes
vector measure games in AC .

We now turn our attention to a smaller subspace of AC_.
In [5, 6] we have introduced and studied the space BC of
Burkill-Cesari (BC) integrable games. In particular in [5] we
considered the space Q = BC N AC,, of Lipschitz games that
are indeed BC integrable.

Here we will consider the subspace 7 of vector measure
games in Q.

First of all, observe that AC,, \ BC and BC \ AC, are
nonempty. Indeed a scalar measure game f o u € AC if
and only if f is Lipschitz on [0, u(€2)], while, according to
Proposition 14 in [5], f e 4 € BC if and only if f admits right
hand side derivative at 0.

Therefore, for instance, if f(x) = 1-v1 - xand P € NAY,
(foP) e BC\ AC,,.

On the other side, let u be a signed measure with (Q) =
0, and let v = |y[; then easily v € AC.

In fact, if S, T is a link, then

[v(T) = v (S)| = || (T) -1 ()|
< (M) = u(©)] < [u(T\5)

and so |y| € A(v). On the other side, v ¢ BC; indeed, the
following extension of Proposition 14 in [5] can be derived
from Corollary 9.

Proposition10. Takey € NAandlet f : [-u (Q), u" (Q)] —
R. Then fou € ¥ ifand onlyif f is Lipschitz on R(u) and f'(0)
exists.

Proof. The proof of the sufficiency goes along the same lines
of the proof of Theorem 6.11in [6].

Conversely, since v € AC,, we know from Corollary 9
that f is Lipschitz; hence the ratios f(x)/x, x # 0 are
bounded. Assume that v € BC but f '(0) does not exist. We
have then the following cases:

(i) at least one between fi(O) and fl(O) does not exist;
(i) £7(0) # £,(0).

The first case can be treated analogously to proof of
Proposition 14 in [5], simply working with a set F ¢ P,
F c N, respectively, where (P, N) is a Hahn decomposition
of Q.

Assume then that f'(0) = ¢, # ¢, = fi(O)-

Let then x,, | 0 and let us fix F € X with y*(F) =y (F) >
0, so that u(F) = 0. Choose ¢ €]0, " (F)]. Then there exists
7 € N such that for eachn > n

f(x) £
x,, Y 3ut(F)
(45)
f (_xn) _ 3
—x,, 2| T 3u (F)

By means of the continuity of f at 0, choose next 77 > 7 such
that | f(x)| < &/3 whenever x < x; also # can be chosen so
that |€;|x;| < /3 and such that x;(A(F)/u"(F)) < 8(¢/3)
where & is the parameter of §, BC integrability.

Choose now the following D € II(F n P); by means
of Lyapunov Theorem, divide F into finitely many sets, say
I,..., I}, each with (4, )L)(I) = (x5 (A(F)/u" (F))x5), until

y((F NnPpP)\ U] 1 1) < x; and then choose I;,; = (FN P)\
UJ , Ijs thus easily A(I,,) = (ME)/u* (F))u(Ii,,) for

k
AMIen) = A E) = YA (1) = () -k HEL
i=1 u* (F) o)
_ A (F) + _ A(F)
=) (1" (F) - kx;] = o S u(L,).

Then for D = {[,...,
We have then

Y 1f @] - eu )

IeD

I, I.., } one has 8, (D) < §(¢/3).

= Zi |f (%z) - glxﬁ| + |f (g (Te1)] = el.‘"(lk+1)|

) (47)
Z |f (xa) = €oxa| + [ f Lo (L )] + [€0] g
) — 8, X
Z f(x) 1% vt 848
n=1 X7 3
As for the first sum we have the following estimate:
k N~ lixe k
Z f (xz) - b1 X; < € Zxﬁ
Sl x (R &
(48)
e p(ENP\L) e
3 u* (F) 3
In conclusion
1D -eum]<e (49)

IeD

Clearly we can repeat this construction with —x; to find a
partition D* € II(F N N) with §,(D*) < 8(¢/3) as above;
again

DRI

IeD*

- €2M (I)I <E&. (50)
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Hence D U D* € TI(F) and

Y v -[6uFNP)+Lu(FNAN)]

IeDuD* ‘

Y v -t (F) (6 +86)

IeDuD*

(51)

< 2e.

On the other side, we can choose a decomposition D €
I1(F N P) with §,(D) < €/2 and then for each I € D choose
symmetrically J(I) ¢ F N N with u[J(I)] = —u(I) so that
D* ={J(I)} e II(FN N).

Then we can define D, = {I U J(I),I € D} to produce a
decomposition of the whole F with §,(D,) < ebut ), »(I) =
0. Since &, # £,, the game 7 is not &, -BC integrable. O

Up to this point we have been able to characterize scalar
measure games and signed measure games in 7” by means
of the existence of f '(0). What can be said for more general
vector measure games?

We will see that differentiability at zero is not necessary,
because we are considering admissible functions defined on
the whole positive orthant of R", while with BC integrability
we are taking into account the y-admissible directions.

For example, consider on R’ the classical example of
nondifferentiable map

2

x4x+y 5 whenever (x, y) # O,

floy)= (52)
0 if(x,y) =0

which is not differentiable on the whole orthant, being not
continuous at O. However, if p € NA" and 7 = (y, p), then
R(n) reduces to a line segment and f o7 = /(1 + 1) € Q
since it can be represented as go u with g(t) = t/(1+t*) which
is differentiable.

Indeed the following necessary condition derives from
the BC integrability.

Proposition 11. Let u = (py, ..., H4,) be in (NA™)", and let f :
R — Rbein L(u). If f ou € ¥, then f admits directional
derivative df,(O) along every admissible direction u (i.e., such
that u(F) = tu for some F € X, u(F) # 0 and somet > 0);
moreover, the convergence

f (hu)

lim === = d, f (0) (53)

is uniform with respect to u.
The proof of the existence of each directional derivative
is substantially the same as that of Proposition 10, while the

uniformity of the limit is deduced from the assumption of BC
integrability, where the defining limit

J;; V= al(lll)r)n—»o Z (D) (54)
€I1(

11(E) IeD

is uniform with respect to E € X.

Observe that the requirement f € Z(u) in the previous
statement could be weakened by requiring that for each radial
direction u that crosses OR(u) at a point P # O, the ratios
f(tu)/t are bounded in ]0, 1].

Unfortunately, even with this weakening, the condition
expressed in the above Proposition does not characterize
vector measure games in BC. To get convinced, we present
the following example.

Example 12. Consider f(x,y) as above which is not differ-
entiable at O, since it is not continuous, despite the fact that
it admits directional derivative at every direction u on the
positive orthant, given by

2
cos™9 ifsin9 # 0,

d.f(0)=1°" (55)
0 ifsin9d = 0,

where u = (cos 9, sin 9).
A simple computation in fact provides, for sin 9 # 0,

(t cos 9, tsin ) t*cos®9
fteosdtsind) 4 o) = — L8
t |sin 9] (t*cos*9 + sin*9)
(56)

For the sake of simplicity set « = sin9, 8 = cos”9. Then
we want to show that the ratios [33t4/ |oc|(t4[32 + o) can be
made arbitrarily small, somehow independently on the values
of a, 3.
Easily
3,4 3.4
P Bt

o (¢8> + %)~ atf? &7

which in turn is smaller than ¢ for t* < & - (|oc|3/,83) =
&(| sin 9|* /c0s®9); one immediately checks that the map 9 —
| sin 9|°/cos®9 is increasing for 0 < 9 < 71/2.

Consider now y : [0,1] — R defined as

2
X for0<x<x,
y (%) = ) o (58)
2x,x —x,  for x > x,
with 0 < x, < 1.
Then consider the “reverse” function G : [0,1] —» R

defined as G(x) = 1 — y(1 — x); then the subset of Ri given
by {(x, ),x € [0,1],y(x) < y < G(x)} is a zonoid, that
is, the range of a nonatomic measure y (see [9]), and the
admissible directions for such y have slopes not exceeding
2x,; this is enough to achieve the required uniformity for the
vector measure game f o j.

We will now prove that the weakened assumption is
satisfied.

Fix an admissible direction u = (u;, u,), that is, such that
span u intersects OR(y) at a point P # O.

Observe then that all the ratios along the u direction are
bounded.

However the game is not BC integrable; in fact, let F be
a set for which u(F) = (xo,xg); whichever § > 0,6 <
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x,/3 we choose, we can always find a subset I of F such
that u(I) = (0, 6?) (thanks to the Hereditarily overlapping
boundary property [10]).
Now one can always decompose F \ I into n sets J;,..., ],
in such a way that u(J,) = m(F\I)/n <8, k=1,...,n.
Thus, as u(J,) = (1/n)(x, -6, xi - 8%), one finds

(fw)(lk):f(%xﬁ-y)

_ (xo B 6)3 (xo + 5)

n3

) <(xo—<s>‘* . <x0—6>2<xo+a>2>‘ﬂ

n* n?
(59)

Consider then D ={I, ], ...

> (few)(E)=(few)D+n(fou) ()

FeD

,J,,} € TI(F); we have

1 + (xo B 6)3 (xo +8)

2 n?

< (x,-0)" | (x=0)(x,+9)’ )

X

nt n
2 2
x, -0

"t o) + (v, -0y )

N

(60)

Hence, letting n — oo we have that ) . .,(f o u)(F;) can be
made strictly greater than 1. ,

On the other side, we can decompose F into finitely many
sets Fy, ..., F, eachhaving u(F;) = p(F)/nand nlarge enough
to have p(F;) < 6. On the decompositions of this type then

D (fou)(Fy)=n(fou)(F)

D
2 4, 3
f<x_x_):L (61)

4% L A2
n o n xo/n* + x5/n

1 _
1+ 1/n?

Therefore, the BC integral does not exist.

One may be interested also in the naturally arising space
7, of games obtained as | - ||, -limit of sequences of games
in7.

Several questions arise in this space; the first open one is
Are games in V', still vector measure games?

And even in the negative, can one at least characterize
those vector measure games in terms of properties of the
function f that defines them?

It is indeed rather difficult to characterize the || - |-
closure of 7/, because we could not reach so far any satisfac-
tory result relative to || - [|,-convergence; to be more precise

given an admissible function f on R’ and a sequence of
vector measures (44;.), C (NA")", which convergence of (1)

lIlco

ensures that the sequence f o gy, — f o pu?

And, dually, one can also ask: given a sequence of
admissible functions f; : R} — R and a vector measure g,
what kind of convergence of the sequence ( f;), ensures that

the sequence of games f; o p Mo, fou?

We can give so far only a sufficient condition; to this
extent we first set the following structure on the already
defined space of; set

dlip (f’ g)
= inf {L > 0,such that L is a Lipschitz constant for (62)

f — g in the increasing directions} .
Then dy;, defines a metric on &/. The analogous dj;, is a

semimetric on each Z(y).
Then we have the following.

Proposition 13. Let yu € (NA")" and let f be admissible. If f
is a dy, cluster point for Z(u), then f oy € V.

Proof. Fixe > 0, and choose 0 = ¢/4;setd = o/(u,; () +-- - +
1, (Q)). Next,letg € & "( ) (the set of differentiable functions
in Z(u)) with dlip (f,g) <0.

This means that f — g is Lipschitz in the p-link directions
with constant L < §.

Fixnow F € X, D € II(F), Tp € T p; for the game (f o
@) — (g o u) one computes

IS[(fou)=(g°u),D.Tp]|
< D I(f - 9) e ul (D;UT) = [(f - g) o ) (T))]

(63)
<0) |lu(D;uT) - (T

=0) | =0l B+ +p, (F)] <0

from which we deduce [|(f o ) = (g o @), < 40 = &. Since
g € Z'(u) the game gou € 7 thanks to Proposition 3 in [5],
and the proof is complete. O
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