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We provide a characterization for vector measure games ] = 𝑓 ∘ 𝜇 in 𝑝𝑁𝐴
∞
, with 𝜇 vector of nonatomic probability measures,

analogous to the one of Tauman for games in 𝑝𝑁𝐴, and also provide a necessary and sufficient condition for a particular class of
vector measure games to belong to 𝐴𝐶

∞
.

1. Introduction

Measure games, that is, transferable utility (TU) games of the
form ] = 𝑓 ∘𝜇, where 𝜇 is a nonatomic measure on 𝜎-algebra
Σ of a space Ω and 𝑓 is a function defined on the range of
𝜇, with 𝑓(0) = 0, arise in several contexts including game
theory, mathematical economics, and even finance (where,
under suitable hypotheses on 𝑓 and 𝜇, they are termed as
distorted probabilities). One of the reasons of their popularity
lies in the fact that they generate fundamental spaces of
games and that many games of interest, such as, for instance,
market games of finite type, fall into this category. Classically
in the literature, one distinguishes between scalar measure
games where 𝜇 is a nonnegative scalar measure and vector
measure games where 𝜇 is an 𝑛-dimensional measure with
nonnegative components. The extension to signed measure
is also customary.

The most classical space related to measure games is
𝑝𝑁𝐴, that is, the closed linear subspace of 𝐵𝑉 generated
by all powers (with respect to pointwise multiplication)
of nonatomic probability measures. Several results exist,
concerning scalar measure games in 𝑝𝑁𝐴 [1, 2], while the
only characterization of vector measure games in this space
is the one of Tauman [2].

Besides the𝐵𝑉-norm, one encounters in the literature the
‖ ⋅ ‖

∞
-norm that defines the subspace 𝐴𝐶

∞
⊂ 𝐵𝑉 of the so-

called Lipschitz games. Then clearly one may define also the
space 𝑝𝑁𝐴

∞
as the ‖ ⋅ ‖

∞
-closure of the space generated by

all powers of nonatomic probability measures. In this space,
the only characterization of vector measure games we are
aware of up to now is due to Milchtaich [3], and it requires
the function 𝑓 to be continuously differentiable.

All these results put in evidence how measure games are
difficult to characterize once the differentiability assumption
is dropped, though economically significant measure games
that do not fall into this category exist in the literature.
For example, Milchtaich’s characterization shows that if 𝑓 is
piecewise linear, thenmeasure games of the form𝑓∘𝜇 do not
belong to 𝑝𝑁𝐴

∞
; on the other side the linear span of games

with 𝑓 piecewise linear and 𝜇 vector of mutually singular
nonatomic probability measures plays a role for example in
value theory [4].

In this paper, we face the problem of characterizing
measure games both in 𝑝𝑁𝐴

∞
and in 𝐴𝐶

∞
. Our starting

point is the characterization for scalar measure games in
𝐴𝐶

∞
given in [5]; there we proved that 𝑓 ∘ 𝜇 ∈ 𝐴𝐶

∞
if

and only if 𝑓 is Lipschitz. Here we introduce a generalization
of the Lipschitz condition, namely, lipschitzianity in link
directions, which proves to characterize vector measure
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games 𝑓 ∘ 𝜇 in 𝐴𝐶
∞
, when the range of 𝜇 has finitely many

exposed points and which thus covers interesting cases in
literature. As a consequence, we extend the characterization
in [5] to measure games of the form 𝑓 ∘ 𝜇 where 𝜇 is a signed
measure.

Another interesting subspace is the class 𝐵𝐶 of Burkill-
Cesari (𝐵𝐶) integrable games, introduced in [6]. The investi-
gation on this space has been further developed in [5]; there
it has been proved that the Burkill-Cesari integral is a ‖ ⋅ ‖

∞
-

continuous (semi)value (but in general not 𝐵𝑉-continuous)
and that it differs from the Aumann and Shapley value.
Actually, the 𝐵𝐶 integral and the space 𝐵𝐶 turned out to be
fruitful to provide a proper subspace of 𝐴𝐶 strictly larger
than 𝑝𝑁𝐴 on which a value can be defined; remember that
existence and uniqueness of a value on 𝑝𝑁𝐴 are well known,
while the question is still open on𝐴𝐶. In force of these results,
a better understanding of the structure of the space 𝐵𝐶 ∩

𝐴𝐶
∞
, starting from its simplest elements, that is, measure

games, seems to be an interesting task.
The outline of the paper is as follows. In Section 3 we

characterize vector measure games in 𝑝𝑁𝐴
∞
; although the

statement of the result is formally analogous to the one of
Tauman, the proof differs from his, and this is essentially
due to the difficulties arising in handling the ‖ ⋅ ‖

∞
-norm on

this space. In Section 4 we first characterize a particular class
of vector measure games in 𝐴𝐶

∞
and, as a corollary, also

measure games where 𝜇 is a signedmeasure are characterized
through lipschitzianity.Thefinal part of the section is devoted
to the investigation of 𝐵𝐶 integrable Lipschitz measure
games; we completely characterize the one-dimensional ones
and provide a necessary condition in larger dimensions; also
a topological condition is given, to ensure that a Lipschitz
measure game is ‖ ⋅ ‖

∞
-close to a 𝐵𝐶 integrable one.

2. Preliminaries

In the following we will deal with the following elements, as
in [1].

(Ω, Σ) denotes a measurable space isomorphic to
([0, 1],B) (whereB denotes the Borel 𝜎-algebra on [0, 1]).

A transferable utility (TU) game ] is a real valued function
on Σ such that ](0) = 0.

The set of all nonatomic measures on (Ω, Σ) is denoted
by 𝑁𝐴, the cone of nonnegative measures of 𝑁𝐴 by 𝑁𝐴

+,
while the set of probability measures in 𝑁𝐴 is indicated by
𝑁𝐴

1. Given 𝜇 ∈ 𝑁𝐴, the variation measure is denoted by |𝜇|.
For a vector measure 𝜇 = (𝜇

1
, . . . , 𝜇

𝑛
) ∈ (𝑁𝐴)

𝑛, the variation
measure is defined by |𝜇| = ∑

𝑛

𝑖=1
|𝜇
𝑖
|.

A game ] is said to be Lipschitz if there exists 𝜇 ∈ 𝑁𝐴

+

such that for every link 𝑆 ⊂ 𝑇 ⊂ Ω in Σ it holds

|] (𝑇) − ] (𝑆)| ≤ 𝜇 (𝑇) − 𝜇 (𝑆) . (1)

The space of Lipschitz games is denoted by 𝐴𝐶
∞

for it is a
Banach space under the norm ‖]‖

∞
defined in the following

way; for every 𝜇 ∈ 𝑁𝐴

+ such that (1) holds, write −𝜇 ⪯ ] ⪯ 𝜇.
Then set

‖]‖
∞

= inf {𝜇 (Ω) , 𝜇 ∈ 𝑁𝐴

+

, −𝜇 ⪯ ] ⪯ 𝜇} . (2)

To simplify notation, given a game ] ∈ 𝐴𝐶
∞
, and for

fixed 𝐻 ∈ Σ we will denote as usual by Π(𝐻) the class of
finite partitions of 𝐻 consisting of elements in Σ; for every
𝐷 ∈ Π(𝐻), say, 𝐷 = {𝐷

1
, . . . , 𝐷

𝑘
}, let T

𝐷
= {𝑇

𝐷
=

{𝑇
1
, . . . , 𝑇

𝑘
} with 𝑇

𝑖
⊂ 𝐷

𝑐

𝑖
, 𝑇

𝑖
∈ Σ}. Then denote

𝑆 (], 𝐷, 𝑇
𝐷
) =

𝑘

∑

𝑖=1

[] (𝐷
𝑖
∪ 𝑇

𝑖
) − ] (𝑇

𝑖
)] . (3)

For a game ] ∈ 𝐴𝐶
∞

define, according to [7], the measures

]∗ (𝐻) = sup {𝑆 (], 𝐷, 𝑇
𝐷
) , 𝐷 ∈ Π (𝐻) , 𝑇

𝐷
∈ T

𝐷
} ,

]
∗
(𝐻) = inf {𝑆 (], 𝐷, 𝑇

𝐷
) , 𝐷 ∈ Π (𝐻) , 𝑇

𝐷
∈ T

𝐷
} .

(4)

Then

‖]‖
∞

= sup {

󵄨
󵄨
󵄨
󵄨

]∗󵄨󵄨󵄨
󵄨

(𝐻) +

󵄨
󵄨
󵄨
󵄨

]
∗

󵄨
󵄨
󵄨
󵄨

(𝐻

𝑐

) ,𝐻 ∈ Σ} . (5)

It is clear that if ] is a monotone game, then ]∗, ]
∗
are

nonnegative and in this case ‖]‖
∞

= ]∗(Ω).
Note that for every 𝐻 ∈ Σ,𝐷 ∈ Π(𝐻), 𝑇

𝐷
∈ T

𝐷
one has

󵄨
󵄨
󵄨
󵄨

𝑆 (], 𝐷, 𝑇
𝐷
)

󵄨
󵄨
󵄨
󵄨

≤ ‖]‖
∞

. (6)

On the other side, since ]∗, ]
∗
are measures, there are Hahn

decompositions (𝑃
1
, 𝑁

1
), (𝑃

2
, 𝑁

2
) which allow us to rewrite

(5) as

‖]‖
∞

= sup {]∗ (𝐸 ∩ 𝑃
1
) − ]∗ (𝐸 ∩ 𝑁

1
) + ]

∗
(𝐸

𝑐

∩ 𝑃
2
)

−]
∗
(𝐸

𝑐

∩ 𝑁
2
) , 𝐸 ∈ Σ} .

(7)

Hence, if for a game ] one has |𝑆(], 𝐷, 𝑇
𝐷
)| ≤ 𝜀 for each 𝐷 ∈

Π(𝐻), 𝑇
𝐷

∈ T
𝐷
and every 𝐻 ∈ Σ, then clearly ‖]‖

∞
≤ 4𝜀.

Given a vector measure 𝜇 = (𝜇
1
, . . . , 𝜇

𝑛
) ∈ (𝑁𝐴

+

)

𝑛 and
denoting its range by 𝑅(𝜇), a vector measure game is a game ]
of the form ] = 𝑓∘𝜇, where𝑓 is a real valued function defined
on the range of 𝜇 and 𝑓(0) = 0. In the case 𝑛 = 1, this type of
games is called scalar measure games.

Analogously to what is usually done in the space 𝐵𝑉,
the symbol 𝑝𝑁𝐴

∞
denotes the ‖ ⋅ ‖

∞
-closure of the space

generated by all powers of nonatomic probability measures.
Given a convex subset 𝑋 of R𝑛, a vector 𝑧 is called 𝑋

admissible if 𝑧 = 𝑥 − 𝑦 for some 𝑥, 𝑦 ∈ 𝑋. A real
valued function 𝑓 defined on 𝑋 is said to be continuously
differentiable on 𝑋 if for each 𝑋 admissible 𝑧 the derivative
𝑑𝑓(𝑥+ℎ𝑧)/𝑑ℎ exists at each point in the relative interior of𝑋
and it can be continuously extended at each point of 𝑋. The
space of continuously differentiable functions on a set 𝑋 will
be denoted byC1

(𝑋).
Given a convex compact subset 𝐾 of R𝑛, a point 𝑥 ∈ 𝐾

is said to be exposed if {𝑥} is the intersection of 𝐾 with some
supporting hyperplane of 𝐾.

As in [8], given a monotone nonatomic game 𝜆, one
defines themesh of a partition 𝐷 as

𝛿
𝜆
(𝐷) = max {𝜆 (𝐼) , 𝐼 ∈ 𝐷} . (8)

A game ] is Burkill-Cesari (BC) integrable with respect to
𝛿
𝜆
if the following limit exists, for each 𝐸 ∈ Σ:

𝐸 󳨃󳨀→ ∫

𝐸

] = lim
𝛿𝜆(𝐷)→0

𝐷∈Π(𝐸)

∑

𝐼∈𝐷

] (𝐼) . (9)



International Journal of Mathematics and Mathematical Sciences 3

We denote by 𝐵𝐶 the space of games ] such that there exists
𝜆 ∈ 𝑁𝐴

+ so that ] is 𝐵𝐶 integrable with respect to the mesh
𝛿
𝜆
.
The 𝐵𝐶 integral does not depend upon the integration

mesh (see Proposition 5.2 in [6]); in other words, for every
𝜆 ∈ 𝑁𝐴

+ such that ] is 𝛿
𝜆
-𝐵𝐶 integrable, the 𝐵𝐶 integral

remains the same. Moreover, the 𝐵𝐶 integral of a game ] is a
finitely additive measure.

3. Measure Games in 𝑝𝑁𝐴
∞

In [5] we have obtained a characterization (Proposition 12) of
scalarmeasure games (made through a nonnegativemeasure)
for the whole space𝐴𝐶

∞
. Anyway the Lipschitz condition on

𝑓 is not sufficient to ensure that a measure game belongs to
𝑝𝑁𝐴

∞
, that is, to the ‖ ⋅ ‖

∞
-closure of the space generated

by all powers of nonatomic probability measures. Indeed,
in [3] Milchtaich has shown that continuous differentiability
is required, and it guarantees that a vector measure game
belongs to 𝑝𝑁𝐴

∞
. To our knowledge, this is also the unique

characterization of vector measure games in 𝑝𝑁𝐴
∞

so far. It
is well known that 𝑝𝑁𝐴

∞
is strictly contained in 𝑝𝑁𝐴 and

that many games of interest belong to this space [4].
Our first goal is to obtain a characterization for vector

measure games in 𝑝𝑁𝐴
∞
, similar to the one given by

Tauman for 𝑝𝑁𝐴 [2]. We point out that the technique of
the proof is different, due to the difficulties in dealing with
approximations in the ‖ ⋅ ‖

∞
-norm instead of in the 𝐵𝑉-

norm.
We begin with a Lemma.

Lemma 1. Let 𝜇 ∈ (𝑁𝐴

1

)

𝑛, 𝑓 ∈ C1

([𝑅(𝜇)]). Then for every
𝜀 > 0 there exists a polynomial in 𝑛 variables 𝑝 such that

󵄩
󵄩
󵄩
󵄩

(𝑓 ∘ 𝜇) − (𝑝 ∘ 𝜇)

󵄩
󵄩
󵄩
󵄩∞

< 𝜀. (10)

Proof. According to [1] for every 𝜀 > 0 there exists a
polynomial 𝑝 on𝑅(𝜇) such that the norm ‖𝑓−𝑝‖

𝐼
< 𝜀, where

one defines

󵄩
󵄩
󵄩
󵄩

𝑓 − 𝑝

󵄩
󵄩
󵄩
󵄩𝐼

=

󵄩
󵄩
󵄩
󵄩

𝑓 − 𝑝

󵄩
󵄩
󵄩
󵄩𝑢

+

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑓

𝜕𝑥
𝑖

−

𝜕𝑝

𝜕𝑥
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝑢

(11)

and ‖ ⋅ ‖
𝑢
is the usual uniformnormon continuous functions.

Without loss of generality we assume 𝑝(0) = 0.
Fix 𝐻 ∈ Σ, 𝐷 ∈ Π(𝐻), 𝑇

𝐷
∈ T

𝐷
. From the Mean Value

Theorem we have the following:
󵄨
󵄨
󵄨
󵄨

𝑆 [(𝑝 ∘ 𝜇) − (𝑓 ∘ 𝜇) , 𝐷, 𝑇
𝐷
]

󵄨
󵄨
󵄨
󵄨

≤ ∑

𝑖

󵄨
󵄨
󵄨
󵄨

[(𝑝 ∘ 𝜇) (𝐷
𝑖
∪ 𝑇

𝑖
) − (𝑓 ∘ 𝜇) (𝐷

𝑖
∪ 𝑇

𝑖
)]

− [(𝑝 ∘ 𝜇) (𝑇
𝑖
) − (𝑓 ∘ 𝜇) (𝑇

𝑖
)]

󵄨
󵄨
󵄨
󵄨

= ∑

𝑖

󵄨
󵄨
󵄨
󵄨

∇ (𝑓 − 𝑝) [𝑐
𝑖
𝜇 (𝐷

𝑖
∪ 𝑇

𝑖
) + (1 − 𝑐

𝑖
) 𝜇 (𝑇

𝑖
)] ⋅ 𝜇 (𝐷

𝑖
)

󵄨
󵄨
󵄨
󵄨

≤ ∑

𝑖

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝜕𝑓

𝜕𝑥
𝑗

−

𝜕𝑝

𝜕𝑥
𝑗

) [𝑐
𝑖
𝜇 (𝐷

𝑖
∪ 𝑇

𝑖
) + (1 − 𝑐

𝑖
) 𝜇 (𝑇

𝑖
)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× 𝜇
𝑗
(𝐷

𝑖
) .

(12)

Now 𝑐
𝑖
𝜇(𝐷

𝑖
∪ 𝑇

𝑖
) + (1 − 𝑐

𝑖
)𝜇(𝑇

𝑖
) ∈ 𝑅(𝜇) for each 𝑖 = 1, . . . , 𝑛

and hence
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝜕𝑓

𝜕𝑥
𝑗

−

𝜕𝑝

𝜕𝑥
𝑗

) [𝑐
𝑖
𝜇 (𝐷

𝑖
∪ 𝑇

𝑖
) + (1 − 𝑐

𝑖
) 𝜇 (𝑇

𝑖
)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑓

𝜕𝑥
𝑗

−

𝜕𝑝

𝜕𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝑢

< 𝜀.

(13)

Thus
󵄨
󵄨
󵄨
󵄨

𝑆 [(𝑝 ∘ 𝜇) − (𝑓 ∘ 𝜇) , 𝐷, 𝑇
𝐷
]

󵄨
󵄨
󵄨
󵄨

≤ 𝜀∑

𝑖

∑

𝑗

𝜇
𝑗
(𝐷

𝑖
) = 𝜀∑

𝑗

𝜇
𝑗
(𝐻) = 𝜀

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

(𝐻) .

(14)

Tauman [2] gave the definition of ‖ ⋅ ‖
𝐵𝑉
-continuity at 𝜇

for a function 𝑓 defined on the range of a vector measure 𝜇 ∈

(𝑁𝐴

1

)

𝑛, which we recall below.
Given 𝜇 ∈ (𝑁𝐴)

𝑛, denote with 𝐵(𝜇) the set of measures
𝜂 ∈ (𝑁𝐴)

𝑛 having the same range of 𝜇 and, for 𝜀 > 0, define

𝐵 (𝜇, 𝜀) = {𝜂 ∈ 𝐵 (𝜇) such that 󵄨
󵄨
󵄨
󵄨

𝜂 − 𝜇

󵄨
󵄨
󵄨
󵄨

(Ω) < 𝜀} . (15)

Fixed 𝜇 ∈ (𝑁𝐴

1

)

𝑛, a function 𝑓 on 𝑅(𝜇) (with 𝑓(0) =

0), is ‖ ⋅ ‖
𝐵𝑉
-continuous at 𝜇, if for every 𝜀 > 0 there

exists 𝛿 > 0 such that for each 𝜂 ∈ 𝐵(𝜇, 𝛿) there follows
‖(𝑓 ∘ 𝜇) − (𝑓 ∘ 𝜂)‖

𝐵𝑉
< 𝜀. Tauman proved that a vector

measure game 𝑓 ∘ 𝜇, 𝜇 ∈ (𝑁𝐴

1

)

𝑛, belongs to 𝑝𝑁𝐴 if and only
if 𝑓 is ‖ ⋅ ‖

𝐵𝑉
-continuous at 𝜇.

We translate the same definition using the ‖ ⋅ ‖
∞
-norm;

that is, we say that a function 𝑓 on 𝑅(𝜇) is ‖ ⋅ ‖
∞
-continuous

at 𝜇 if for every 𝜀 > 0 there exists 𝛿 > 0 such that for each 𝜂 ∈

𝐵(𝜇, 𝛿) there follows ‖(𝑓 ∘ 𝜇) − (𝑓 ∘ 𝜂)‖

∞
< 𝜀. Then we are

able to prove that the analogous characterization of Tauman
holds for vector measure games in 𝑝𝑁𝐴

∞
.

Theorem 2. 𝑓 is ‖ ⋅ ‖
∞
-continuous at 𝜇 ∈ (𝑁𝐴

1

)

𝑛 if and only
if (𝑓 ∘ 𝜇) ∈ 𝑝𝑁𝐴

∞
.

Proof. We first prove the sufficient condition; namely, we
assume that 𝑓 is ‖ ⋅ ‖

∞
-continuous at 𝜇 ∈ (𝑁𝐴

1

)

𝑛.
Note first that without loss of generality we can assume

that 𝑅(𝜇) has nonempty interior.
As in [2], fix 𝑎 > 0 such that the cube

𝐶 =

𝜇 (Ω)

2

+ [−

𝑎

2

,

𝑎

2

]

𝑛

⊂ 𝑅

𝑜

(𝜇) , (16)

and for 𝛿 ∈ ]0, 1[ define

𝑓

𝛿

(𝑥) =

1

𝑎

𝑛
∫

𝐶

𝑓 [(1 − 𝛿) 𝑥 + 𝛿𝑦] 𝑑𝑦 −

1

𝑎

𝑛
∫

𝐶

𝑓 (𝛿𝑦) 𝑑𝑦.

(17)

Thus 𝑓

𝛿

(0) = 0 and according to [2, Lemma 7] 𝑓

𝛿

∈

C1

[𝑅(𝜇)].
We also need the following structure Lemma [2,

Lemma 9].
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Lemma 3. Let 𝜂 ∈ (𝑁𝐴

1

)

𝑛 and let Ω
1

⊂ Ω
2

⊂ Ω be a link
with bothΩ

1
, Ω\Ω

2
uncountable.Then, for every 𝛿 ∈]0, 1[ and

for every 𝑦 ∈ 𝑅(𝜂) there exists 𝜂
𝑦

∈ 𝐵(𝜂, 2𝑛𝛿) with 𝜂
𝑦
(𝐻) =

(1 − 𝛿)𝜂(𝐻) + 𝛿𝑦 for each 𝐻 ∈ Σ with Ω
1
⊂ 𝐻 ⊂ Ω

2
.

Let 𝛿 be momentarily fixed, and let {𝑇, 𝑆 ∪ 𝑇} be any link
in Σ, with 𝑇,Ω\ (𝑆∪𝑇) uncountable. Consider the difference
𝛾 = ]

𝛿
− ] where ]

𝛿
= 𝑓

𝛿

∘ 𝜇, ] = 𝑓 ∘ 𝜇. We have

𝛾 (𝑆 ∪ 𝑇) − 𝛾 (𝑇)

= 𝑓

𝛿

[𝜇 (𝑆 ∪ 𝑇)] − 𝑓 [𝜇 (𝑆 ∪ 𝑇)] − 𝑓

𝛿

[𝜇 (𝑇)] + 𝑓 [𝜇 (𝑇)]

=

1

𝑎

𝑛
∫

𝐶

𝑓 [(1 − 𝛿) 𝜇 (𝑆 ∪ 𝑇) + 𝛿𝑦] 𝑑𝑦

− 𝑓 [𝜇 (𝑆 ∪ 𝑇)] −

1

𝑎

𝑛
∫

𝐶

𝑓 [(1 − 𝛿) 𝜇 (𝑇) + 𝛿𝑦] 𝑑𝑦

+ 𝑓 [𝜇 (𝑇)]

=

1

𝑎

𝑛
∫

𝐶

{𝑓 [(1 − 𝛿) 𝜇 (𝑆 ∪ 𝑇) + 𝛿𝑦] − 𝑓 [𝜇 (𝑆 ∪ 𝑇)]

− 𝑓 [(1 − 𝛿) 𝜇 (𝑇) + 𝛿𝑦] + 𝑓 [𝜇 (𝑇)]} 𝑑𝑦.

(18)

Now by Lemma 3 applied with 𝑇 = Ω
1
, 𝑆 ∪ 𝑇 = Ω

2
, and

𝜂 = 𝜇 for every 𝑦 ∈ 𝐶 there is 𝜂
𝑦

∈ 𝐵(𝜇, 2𝑛𝛿) such that
𝜂
𝑦
(𝑆∪𝑇) = (1−𝛿)𝜇(𝑆∪𝑇)+𝛿𝑦 and 𝜂

𝑦
(𝑇) = (1−𝛿)𝜇(𝑇)+𝛿𝑦.

Hence, continuing the computation (18) we reach

𝛾 (𝑆 ∪ 𝑇) − 𝛾 (𝑇)

=

1

𝑎

𝑛
∫

𝐶

{[(𝑓 ∘ 𝜂
𝑦
) (𝑆 ∪ 𝑇) − (𝑓 ∘ 𝜇) (𝑆 ∪ 𝑇)]

− [(𝑓 ∘ 𝜂
𝑦
) (𝑇) − (𝑓 ∘ 𝜇) (𝑇)]} 𝑑𝑦.

(19)

By the assumption corresponding to 𝜀 > 0 there exists 𝛿
𝑜
> 0

such that for 𝑚 ∈ 𝐵(𝜇, 𝛿
𝑜
) one has ‖(𝑓 ∘ 𝑚) − (𝑓 ∘ 𝜇)‖

∞
< 𝜀.

Let us now fix 𝛿 < 𝛿
𝑜
/2𝑛, and let 𝐻 ∈ Σ,𝐷 ∈ Π(𝐻), 𝑇

𝐷
∈

T
𝐷
be fixed also, in such a way that 𝑇

𝑖
, Ω \ (𝐷

𝑖
∪ 𝑇

𝑖
) are

uncountable.
Then we have

𝑆 (𝛾,𝐷, 𝑇
𝐷
)

= ∑

𝑖

𝛾 (𝐷
𝑖
∪ 𝑇

𝑖
) − 𝛾 (𝑇

𝑖
)

=

1

𝑎

𝑛
∑

𝑖

∫

𝐶

{[(𝑓 ∘ 𝜂
𝑦
) (𝐷

𝑖
∪ 𝑇

𝑖
) − (𝑓 ∘ 𝜇) (𝐷

𝑖
∪ 𝑇

𝑖
)]

− [(𝑓 ∘ 𝜂
𝑦
) (𝑇

𝑖
) − (𝑓 ∘ 𝜇) (𝑇

𝑖
)]} 𝑑𝑦

=

1

𝑎

𝑛
∫

𝐶

𝑆 {[(𝑓 ∘ 𝜂
𝑦
) − (𝑓 ∘ 𝜇)] , 𝐷, 𝑇

𝐷
} 𝑑𝑦.

(20)

Since 𝜂
𝑦

∈ 𝐵(𝜇, 2𝑛𝛿) ⊂ 𝐵(𝜇, 𝛿
𝑜
) we know that ‖(𝑓 ∘ 𝜂

𝑦
) −

(𝑓 ∘ 𝜇)‖
∞

< 𝜀, and from (6), |𝑆{[(𝑓 ∘ 𝜂
𝑦
) − (𝑓 ∘ 𝜇)], 𝐷, 𝑇

𝐷
}| <

𝜀 for each 𝑦 ∈ [0, 1]. Hence |𝑆(𝛾, 𝐷, 𝑇
𝐷
)| < 𝜀 for each pair

𝐷 ∈ Π(𝐻), 𝑇
𝐷

∈ T
𝐷
that satisfies the cardinality conditions

at each link that proves that 𝑓𝛿 ∘ 𝜇 approximates 𝑓 ∘ 𝜇 in the
‖ ⋅ ‖

∞
-norm.

To conclude our proof, we will prove that for every 𝐻 ∈

Σ,𝐷 ∈ Π(𝐻), 𝑇
𝐷

∈ T
𝐷
can be replaced by a choice 𝐻

♯

∈

Σ,𝐷

♯

∈ Π(𝐻

♯

), 𝑇

♯

𝐷
∈ T

𝐷
so that each link (𝑇

♯

𝑖
, 𝐷

♯

𝑖
∪𝑇

♯

𝑖
) fulfills

the cardinality requirements for each link, and 𝑆[𝛾, 𝐷, 𝑇
𝐷
] =

𝑆[𝛾, 𝐷

♯

, 𝑇

♯

𝐷
♯
].

To this aim, let 𝜀, 𝛿,𝐻 ∈ Σ,𝐷 ∈ Π(𝐻), 𝑇
𝐷

∈ T
𝐷
be

fixed, with 𝐷 = {𝐷
1
, . . . , 𝐷

𝑘
}. Without loss of generality we

can assume that each 𝐷
𝑖
is not 𝜇-null.

Let 𝐼 ⊂ {1, . . . , 𝑘} be the set of indexes for which the
corresponding link (𝑇

𝑖
, 𝐷

𝑖
∪𝑇

𝑖
) does not fulfill the cardinality

requirements; then 𝐼 can be split into two disjoint subsets 𝐼
1

and 𝐼
2
, where 𝐼

1
is the set of indexes for which Ω \ (𝐷

𝑖
∪ 𝑇

𝑖
)

is at most countable.
For each 𝑖 ∈ 𝐼

2
one can choose an uncountable 𝜇-null set

𝑁
𝑖
inΩ\ (𝐷

𝑖
∪𝑇

𝑖
) and then replace 𝑇

𝑖
with ̃

𝑇
𝑖
= 𝑇

𝑖
∪𝑁

𝑖
; since

𝑖 ∈ 𝐼
2
, we have 𝑇

𝑖
countable, and, therefore, 𝜇(𝑇

𝑖
) = 0; thus

the replacement does not affect the corresponding summand
in 𝑆(𝛾, 𝐷, 𝑇

𝐷
).

For each index 𝑖 ∈ 𝐼
1
choose an uncountable 𝜇-null set

𝑁
𝑖
⊂ 𝐷

𝑖
and replace𝐷

𝑖
with ̃

𝐷
𝑖
= 𝐷

𝑖
\𝑁

𝑖
, 𝑇

𝑖
with ̃

𝑇
𝑖
= 𝑇

𝑖
∪𝑁

𝑖
.

Thenwe can replace𝐷with𝐷

♯

= {𝐷

♯

𝑖
, 𝑖 = 1, . . . , 𝑛} setting

𝐷

♯

𝑖
= {

̃
𝐷
𝑖

if 𝑖 ∈ 𝐼
1
,

𝐷
𝑖

otherwise
(21)

and analogously 𝑇
𝐷
with 𝑇

♯

𝐷
= {𝑇

♯

𝑖
, 𝑖 = 1, . . . , 𝑛} where

𝑇

♯

𝑖
= {

̃
𝑇
𝑖

if 𝑖 ∈ 𝐼,

𝑇
𝑖

otherwise
(22)

and finally set 𝐻

♯

= ⋃

𝑘

𝑖=1
𝐷

♯

𝑖
. By construction then

𝑆(𝛾, 𝐷, 𝑇
𝐷
) = 𝑆(𝛾, 𝐷

♯

, 𝑇

♯

𝐷
♯
).

To prove the converse implication, according to [1,
Lemma 7.2 page 41], it is enough to prove that monomials
of the form 𝑐𝜇

𝛼, with 𝑐 ∈ R, 𝜇 ∈ 𝑁𝐴

1, 𝛼 ∈ N+, are ‖ ⋅ ‖
∞
-

continuous at each 𝜇 ∈ 𝑁𝐴

1.
We first prove that if𝜇 ∈ 𝐵(𝑚, 𝛿),𝐻 ∈ Σ,𝐷 = {𝐷

𝑖
}
𝑖=1,...,𝑘

∈

Π(𝐻), 𝑝 ∈ N, then

𝑘

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨

𝑚

𝑝

(𝐷
𝑖
) − 𝜇

𝑝

(𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨

< 𝑝𝛿. (23)

In fact, for each summand we have
󵄨
󵄨
󵄨
󵄨

𝑚

𝑝

(𝐷
𝑖
) − 𝜇

𝑝

(𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨

≤ 𝑚

𝑝−1

(𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨

𝑚 (𝐷
𝑖
) − 𝜇 (𝐷

𝑖
)

󵄨
󵄨
󵄨
󵄨

+ 𝜇 (𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝑝−1

(𝐷
𝑖
) − 𝜇

𝑝−1

(𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑚 (𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨

𝑚 − 𝜇

󵄨
󵄨
󵄨
󵄨

(𝐷
𝑖
) + 𝜇 (𝐷

𝑖
) (𝑝 − 1) 𝛿,

(24)

where the last inequality follows from Lipschitz condition on
[0, 1] and the fact that 𝑚 ∈ 𝑁𝐴

1. Then in 𝐵(𝑚, 𝛿) we have
further |𝑚𝑝

(𝐷
𝑖
) − 𝜇

𝑝

(𝐷
𝑖
)| < 𝛿𝑚(𝐷

𝑖
) + (𝑝− 1)𝜇(𝐷

𝑖
)𝛿, whence

for the whole sum we obtain (23).
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Let now as usual 𝐻 ∈ Σ, 𝐷 ∈ Π(𝐻), 𝐷 = {𝐷
𝑖
}, 𝑇

𝐷
∈ T

𝐷

be fixed. Consider the single summand in 𝑆(𝑚

𝛼

− 𝜇

𝛼

, 𝐷, 𝑇
𝐷
)

𝑚

𝛼

(𝑇
𝑖
∪ 𝐷

𝑖
) − 𝜇

𝛼

(𝑇
𝑖
∪ 𝐷

𝑖
) − 𝑚

𝛼

(𝑇
𝑖
) + 𝜇

𝛼

(𝑇
𝑖
)

= 𝑚

𝛼

(𝐷
𝑖
) − 𝜇

𝛼

(𝐷
𝑖
)

+

𝛼−1

∑

𝑗=1

(

𝛼

𝑗

) [𝑚

𝛼−𝑗

(𝐷
𝑖
)𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
) 𝜇

𝑗

(𝑇
𝑖
)] .

(25)

In the sum 𝑆(𝑚

𝛼

− 𝜇

𝛼

, 𝐷, 𝑇
𝐷
) there will then appear a sum of

the form in (23) which we can estimate with 𝛼𝛿.
Let us now treat the summands of the form

[𝑚

𝛼−𝑗

(𝐷
𝑖
)𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
)𝜇

𝑗

(𝑇
𝑖
)]. Clearly

𝑚

𝛼−𝑗

(𝐷
𝑖
)𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
) 𝜇

𝑗

(𝑇
𝑖
)

= 𝑚

𝛼−𝑗

(𝐷
𝑖
) [𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝑗

(𝑇
𝑖
)]

+ 𝜇

𝑗

(𝑇
𝑖
) [𝑚

𝛼−𝑗

(𝐷
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
)]

(26)

and so in the whole |𝑆(𝑚

𝛼

− 𝜇

𝛼

, 𝐷, 𝑇
𝐷
)| we can apply the

following bound from above:

∑

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝛼−𝑗

(𝐷
𝑖
)𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
) 𝜇

𝑗

(𝑇
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∑

𝑖

𝑚

𝛼−𝑗

(𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝑗

(𝑇
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

+𝜇

𝑗

(𝑇
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝛼−𝑗

(𝐷
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

.

(27)

Now each term |𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝑗

(𝑇
𝑖
)| ≤ 𝑗𝛿 again by Lipschitz

condition and the choice of 𝑚 ∈ 𝐵(𝜇, 𝛿). Also 𝑚

𝛼−𝑗

(𝐷
𝑖
) ≤

𝑚(𝐷
𝑖
) since 𝑚 ∈ 𝑁𝐴

1 and 𝜇(𝑇
𝑖
) ≤ 1 for the same reason.

Hence, because of (23),

∑

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝛼−𝑗

(𝐷
𝑖
)𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
) 𝜇

𝑗

(𝑇
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑗𝛿∑

𝑖

𝑚(𝐷
𝑖
) + ∑

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝛼−𝑗

(𝐷
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

< 𝑗𝛿 + (𝛼 − 𝑗) 𝛿 = 𝛼𝛿.

(28)

Finally

∑

𝑖

𝛼−1

∑

𝑗=1

(

𝛼

𝑗

)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝛼−𝑗

(𝐷
𝑖
)𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
) 𝜇

𝑗

(𝑇
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

𝛼−1

∑

𝑗=1

(

𝛼

𝑗

)∑

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

𝛼−𝑗

(𝐷
𝑖
)𝑚

𝑗

(𝑇
𝑖
) − 𝜇

𝛼−𝑗

(𝐷
𝑖
) 𝜇

𝑗

(𝑇
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ (2

𝛼

− 1) 𝛼𝛿

(29)

from which we conclude according to (25) and (23)
󵄨
󵄨
󵄨
󵄨

𝑆 (𝑚

𝛼

− 𝜇

𝛼

, 𝐷, 𝑇
𝐷
)

󵄨
󵄨
󵄨
󵄨

≤ 𝛼2

𝛼

𝛿 (30)

which only depends upon𝛼. Hence the proof is complete.

Note that, in proving the “if ” part of the above theorem,
we have incidentally proven that, for a measure game 𝑓 ∘

𝜇 ∈ 𝑝𝑁𝐴
∞
, for each 𝜀 > 0 there exists 𝛿 > 0 such that

‖(𝑓 ∘ 𝜇) − (𝑓

𝛿

∘ 𝜇)‖

∞
< 𝜀.

On the other side, as 𝑓

𝛿

∈ C1

[𝑅(𝜇)], we can
apply Lemma 1 and find a polynomial 𝑝

𝜀
such that

‖(𝑓

𝛿

∘ 𝜇) − (𝑝
𝜀
∘ 𝜇)‖

∞
< 𝜀.

In other words we have proven the following statement.

Theorem 4. Let 𝜇 ∈ (𝑁𝐴

1

)

𝑛,𝑓 : 𝑅(𝜇) → R. The following are
equivalent.

(i) (𝑓 ∘ 𝜇) is in 𝑝𝑁𝐴
∞
;

(ii) for each 𝜀 > 0 there exists a polynomial 𝑝 : R𝑛

→ R

vanishing at 0 such that
󵄩
󵄩
󵄩
󵄩

(𝑓 ∘ 𝜇) − (𝑝 ∘ 𝜇)

󵄩
󵄩
󵄩
󵄩∞

< 𝜀. (31)

4. Measure Games in 𝐴𝐶
∞

Throughout this section we will deal with maps 𝑓 : R𝑛

+
→ R

with 𝑓(0) = 0, namely, admissible maps.
For two vectors x, y ∈ R𝑛

+
we will adopt the notation

x≪ y for the usual componentwise order. We introduce the
following definitions, which extend Lipschitz conditionwhen
𝑛 > 1.

Definition 5. The map 𝑓 is said to be Lipschitz in increasing
directions when 𝐿 > 0 exists such that for each pair x≪ y in
R𝑛

+
one has

󵄨
󵄨
󵄨
󵄨

𝑓 (x) − 𝑓 (y)󵄨󵄨󵄨
󵄨

≤ 𝐿 ⋅

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

. (32)

Definition 6. Let 𝜇 : Σ → R𝑛

+
be ameasure; a pair x, y ∈ 𝑅(𝜇)

is said to be a 𝜇-link directionwhen there exists a link (𝑆, 𝑆∪𝑇)

in Σ such that 𝜇(𝑆) = x, 𝜇(𝑆 ∪ 𝑇) = y.
A map 𝑓 : R𝑛

+
→ R is then said to be Lipschitz in 𝜇-

link directions if there exists 𝐿 > 0 such that for every 𝜇-link
direction x, y there holds

󵄨
󵄨
󵄨
󵄨

𝑓 (x) − 𝑓 (y)󵄨󵄨󵄨
󵄨

≤ 𝐿 ⋅

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

. (33)

Note that if 𝑓 is Lipschitz in increasing directions, then
it is Lipschitz in 𝜇-link directions for each 𝑛-dimensional
nonnegative measure 𝜇.

Let now 𝑛 ∈ N+ and 𝜇 ∈ (𝑁𝐴

+

)

𝑛 be fixed, and consider
the spaces

(i) A = {𝑓 : R𝑛

+
→ R admissible and Lipschitz in the

increasing directions},
(ii) L(𝜇) = {𝑓 : R𝑛

+
→ R admissible and Lipschitz in

𝜇-link directions}.
Note that if 𝑓 ∈ A, then 𝑓 ∘ 𝜇 ∈ 𝐴𝐶

∞
for every 𝜇 ∈ (𝑁𝐴

+

)

𝑛,
while we can assert the same for 𝑓 ∈ L(𝜇) only for precisely
𝜇.

Now, given 𝑓, 𝜇, let ] = 𝑓 ∘ 𝜇 and define the subsets of
𝑁𝐴

+. Consider
𝐴 (]) = {𝜆 ∈ 𝑁𝐴

+

𝜆 ≪

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

, −𝜆 ⪯ ] ⪯ 𝜆} ,

𝐶 (𝜇) ={𝜆 ≪

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

:

𝑑𝜆

𝑑

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

∈ 𝐿

∞

(

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

)} .

(34)
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Note that if ] is a vectormeasure game in𝐴𝐶
∞
, then𝐴(]) ̸= 0.

Indeed, let 𝜆 ∈ 𝑁𝐴

+ be such that−𝜆 ⪯ ] ⪯ 𝜆 and consider the
Jordan decomposition 𝜆 = 𝜆

1
+ 𝜆

2
with 𝜆

1
≪ |𝜇|, 𝜆

2
⊥ |𝜇|.

Then there are two disjoint setsΩ
1
, Ω

2
which support 𝜆

1
, 𝜆

2
,

respectively. This means that 𝜇 vanishes on Ω
2
; hence, 𝜆

1
∈

𝐴(]).
In fact, for each link 𝑆 ⊂ 𝑇, setting 𝑆

1
= 𝑆 ∩ Ω

1
, 𝑇

1
=

𝑇 ∩ Ω
1
since 𝜇(𝑆

1
) = 𝜇(𝑆), 𝜇(𝑇

1
) = 𝜇(𝑇) one has

|] (𝑇) − ] (𝑆)| =

󵄨
󵄨
󵄨
󵄨

] (𝑇
1
) − ] (𝑆

1
)

󵄨
󵄨
󵄨
󵄨

≤ 𝜆 (𝑇
1
) − 𝜆 (𝑆

1
)

= 𝜆
1
(𝑇

1
) − 𝜆

1
(𝑆
1
) = 𝜆

1
(𝑇) − 𝜆

1
(𝑆) .

(35)

We can now state the following.

Proposition 7. Let 𝜇 ∈ (𝑁𝐴

+

)

𝑛 and ] = 𝑓 ∘ 𝜇. The following
are equivalent:

(i) 𝑓 ∈ L(𝜇);
(ii) there exists 𝑐 > 0 such that 𝑐|𝜇| ∈ 𝐴(]);
(iii) 𝐴(]) ∩ 𝐶(𝜇) ̸= 0.

Proof. (i) implies (ii), since, if 𝑓 ∈ L(𝜇), then immediately
𝐿|𝜇| ∈ 𝐴(]) ∩ 𝐶(𝜇).

The implication (ii) ⇒ (iii) is immediate.
Finally, let 𝜆 ∈ 𝐴(]) ∩ 𝐶(𝜇). This immediately implies

that there exists 𝐿 > 0 such that 𝑑𝜆/𝑑|𝜇| ≤ 𝐿|𝜇|-a.e., and
this in turn implies that 𝜆 ≤ 𝐿|𝜇| on Σ. On the other side, as
mentioned in Section 2, we have that |](𝑆 ∪ 𝑇) − ](𝑇)| ≤ 𝜆(𝑆)

for every pair of disjoint sets 𝑆, 𝑇 ∈ Σ. Then immediately, on
each 𝜇-link direction x≪ y and every link 𝑆, 𝑆 ∪ 𝑇 such that
𝜇(𝑆) = x, 𝜇(𝑆 ∪ 𝑇) = y one finds

󵄨
󵄨
󵄨
󵄨

𝑓 (x) − 𝑓 (y)󵄨󵄨󵄨
󵄨

≤ 𝜆 (𝑆) ≤ 𝐿

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

(𝑆) = 𝐿 ⋅

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

(36)

that says that 𝑓 ∈ L(𝜇).

Each of the conditions of Proposition 7 implies that ] ∈

𝐴𝐶
∞
. It is, therefore, rather natural to ask whether condition

𝑓 ∈ L(𝜇) characterizes vector measure games 𝑓 ∘ 𝜇 in 𝐴𝐶
∞
.

We already know from Proposition 12 in [5] that this is the
case for 𝑛 = 1.

In the more general case, we have the following result.

Theorem 8. Let 𝜇 ∈ (𝑁𝐴

+

)

𝑛 be such that its range 𝑅(𝜇) has
only finitely many exposed points. Then a vector measure game
] = 𝑓 ∘ 𝜇 ∈ 𝐴𝐶

∞
if and only if 𝑓 ∈ L(𝜇).

Proof. We only need to prove that if ] ∈ 𝐴𝐶
∞
, then 𝑓 ∈

L(𝜇).
Let 𝑃

1
, . . . , 𝑃

𝑘
be the exposed points of 𝑅(𝜇), and let

𝐴
1
, . . . , 𝐴

𝑘
be sets in Σ such that 𝜇(𝐴

𝑖
) = 𝑃

𝑖
, 𝑖 = 1, . . . , 𝑘.

Consider the partition generated by 𝐴
1
, . . . , 𝐴

𝑘
, say,

𝐷 = {Ω
1
, . . . , Ω

𝑛
}, and assume that each Ω

𝑖
has nonnull 𝜇-

measure.
If Σ

𝑜
denotes the algebra generated by 𝐷, we have that

𝜇(Σ
𝑜
) = 𝑅(𝜇); in fact by additivity each 𝑃

𝑖
∈ 𝜇(Σ

𝑜
) and

from Lyapunov Theorem 𝜇(Σ
𝑜
) is convex; hence 𝜇(Σ

𝑜
) ⊃

co{𝑃
1
, . . . , 𝑃

𝑛
} = 𝑅(𝜇)where the last equality is deduced from

Straszewicz Theorem.

Let x≪ y be a fixed 𝜇-link direction.Then x = x
1
+⋅ ⋅ ⋅+x

𝑛
,

y = y
1
+ ⋅ ⋅ ⋅ + y

𝑛
, where, for each 𝑖, x

𝑖
, y

𝑖
∈ {𝑡𝜇(Ω

𝑖
), 𝑡 ∈ [0, 1]}.

Moreover, easily x
𝑖
≪ y

𝑖
.

Set now x = v
𝑜
, v
𝑖
= ∑

𝑖

𝑗=1
y
𝑗
+ ∑

𝑛

𝑗=𝑖+1
x
𝑗
, 𝑖 = 1, . . . , 𝑛 −

1, v
𝑛
= y.

Fix 𝜆 ∈ 𝐴(]) and 𝑖 = 1, . . . , 𝑛.
We know that there are 𝑡

󸀠

𝑖
≤ 𝑡

󸀠󸀠

𝑖
∈ [0, 1] such that x

𝑖
=

𝑡

󸀠

𝑖
𝜇(Ω

𝑖
), y

𝑖
= 𝑡

󸀠󸀠

𝑖
𝜇(Ω

𝑖
). Choose then 𝑆

󸀠

𝑖
⊆ 𝑆

󸀠󸀠

𝑖
⊂ Ω

𝑖
such that for

the (𝑛 + 1)-dimensional measure (𝜆, 𝜇) one has (𝜆, 𝜇)(𝑆

󸀠

𝑖
) =

𝑡

󸀠

𝑖
(𝜆, 𝜇)(Ω

𝑖
), (𝜆, 𝜇)(𝑆

󸀠󸀠

𝑖
) = 𝑡

󸀠󸀠

𝑖
(𝜆, 𝜇)(Ω

𝑖
), and let 𝑇

𝑖
⊂ Ω \ Ω

𝑖

with

𝜇 (𝑇
𝑖
) =

𝑖−1

∑

𝑗=1

y
𝑗
+

𝑛

∑

𝑗=𝑖+1

x
𝑗
. (37)

This is possible for x
𝑗
, y
𝑗
∈ 𝑅(𝜇|

Ω𝑗
) and for 𝑖 ̸= 𝑗, Ω

𝑖
∩Ω

𝑗
=

0.
Then 𝑆

󸀠

𝑖
∪ 𝑇

𝑖
, 𝑆󸀠󸀠

𝑖
∪ 𝑇

𝑖
is a link and hence

󵄨
󵄨
󵄨
󵄨
󵄨

] (𝑆

󸀠

𝑖
∪ 𝑇

𝑖
) − ] (𝑆

󸀠󸀠

𝑖
∪ 𝑇

𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜆 (𝑆

󸀠󸀠

𝑖
\ 𝑆

󸀠

𝑖
) = (𝑡

󸀠󸀠

𝑖
− 𝑡

󸀠

𝑖
) 𝜆 (Ω

𝑖
) .

(38)

But 𝜇(𝑆󸀠
𝑖
∪ 𝑇

𝑖
) = 𝜇(𝑆

󸀠

𝑖
) + 𝜇(𝑇

𝑖
) = v

𝑖−1
, 𝜇(𝑆󸀠󸀠

𝑖
∪ 𝑇

𝑖
) = v

𝑖
. Thus

(38) becomes
󵄨
󵄨
󵄨
󵄨

𝑓 (k
𝑖
) − 𝑓 (k

𝑖−1
)

󵄨
󵄨
󵄨
󵄨

≤ (𝑡

󸀠󸀠

𝑖
− 𝑡

󸀠

𝑖
) 𝜆 (Ω

𝑖
) . (39)

Now
󵄩
󵄩
󵄩
󵄩

k
𝑖
− k

𝑖−1

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩

y
𝑖
− x

𝑖

󵄩
󵄩
󵄩
󵄩

= (𝑡

󸀠󸀠

𝑖
− 𝑡

󸀠

𝑖
)

󵄩
󵄩
󵄩
󵄩

𝜇 (Ω
𝑖
)

󵄩
󵄩
󵄩
󵄩

= (𝑡

󸀠󸀠

𝑖
− 𝑡

󸀠

𝑖
)

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

(Ω
𝑖
) .

(40)

Thus

󵄨
󵄨
󵄨
󵄨

𝑓 (k
𝑖
) − 𝑓 (k

𝑖−1
)

󵄨
󵄨
󵄨
󵄨

≤

𝜆 (Ω
𝑖
)

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

(Ω
𝑖
)

󵄩
󵄩
󵄩
󵄩

k
𝑖
− k

𝑖−1

󵄩
󵄩
󵄩
󵄩

. (41)

Since v
𝑖
− v

𝑖−1
= y

𝑖
− x

𝑖
, we have that ‖v

𝑖
− v

𝑖−1
‖ ≤ ‖y − x‖.

In conclusion we have that
󵄨
󵄨
󵄨
󵄨

𝑓 (x) − 𝑓 (y)󵄨󵄨󵄨
󵄨

≤ 𝐿

󵄩
󵄩
󵄩
󵄩

y − x󵄩󵄩󵄩
󵄩

(42)

with 𝐿 = 𝑛 ⋅ ∑

𝑛

𝑖=1
(𝜆(Ω

𝑖
)/|𝜇|(Ω

𝑖
)).

Observe that the above result includes two interesting
cases: the case of 𝜇

𝑖
⊥ 𝜇

𝑗
for each pair of components

𝜇
𝑖
, 𝜇

𝑗
of 𝜇 and the case of vector measures 𝜇 which can

be represented as integral measures (𝜇
1
, 𝜇

1
(𝜑)) where 𝜑 is a

(𝑛 − 1)-dimensional simple function.
Also, fromTheorem 8 one derives the following corollary

that generalizes Proposition 12 in [5] to the case of signed
scalar measure games, namely, games of the form ] = 𝑓 ∘ 𝜇

with 𝜇 signed measure.

Corollary 9. Let 𝜇 : Σ → R be a nonatomic signed measure,
and let 𝑓 : [−𝜇

−

(Ω), 𝜇

+

(Ω)] → R. Then 𝑓 ∘ 𝜇 ∈ 𝐴𝐶
∞

if and
only if 𝑓 is Lipschitz on 𝑅(𝜇).
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Proof. Consider the nonatomic two-dimensional measure
𝑚 = (𝜇

+

, 𝜇

−

) and the function 𝑔 : R2

→ R defined by
𝑔(𝑥, 𝑦) = 𝑓(𝑥 − 𝑦). Thus ] = 𝑓 ∘ 𝜇 = 𝑔 ∘ 𝑚. Since 𝑅(𝑚) is a
rectangle, if ] ∈ 𝐴𝐶

∞
, fromTheorem 8 𝑔 ∈ L(𝑚), namely, a

constant 𝐿 > 0 exists, such that for each𝑚-link direction x, y

󵄨
󵄨
󵄨
󵄨

𝑔 (x) − 𝑔 (y)󵄨󵄨󵄨
󵄨

≤ 𝐿

󵄩
󵄩
󵄩
󵄩

y − x󵄩󵄩󵄩
󵄩

. (43)

Then 𝑓 is also Lipschitz with constant 𝐿.

So far, we have not been able to answer the question
whether the condition in Theorem 8 actually characterizes
vector measure games in 𝐴𝐶

∞
.

We now turn our attention to a smaller subspace of𝐴𝐶
∞
.

In [5, 6] we have introduced and studied the space 𝐵𝐶 of
Burkill-Cesari (𝐵𝐶) integrable games. In particular in [5] we
considered the space 𝑄 = 𝐵𝐶 ∩ 𝐴𝐶

∞
of Lipschitz games that

are indeed 𝐵𝐶 integrable.
Here we will consider the subspaceV of vector measure

games in 𝑄.
First of all, observe that 𝐴𝐶

∞
\ 𝐵𝐶 and 𝐵𝐶 \ 𝐴𝐶

∞
are

nonempty. Indeed a scalar measure game 𝑓 ∘ 𝜇 ∈ 𝐴𝐶
∞

if
and only if 𝑓 is Lipschitz on [0, 𝜇(Ω)], while, according to
Proposition 14 in [5], 𝑓 ∘ 𝜇 ∈ 𝐵𝐶 if and only if 𝑓 admits right
hand side derivative at 0.

Therefore, for instance, if𝑓(𝑥) = 1−√1 − 𝑥 and𝑃 ∈ 𝑁𝐴

1,
(𝑓 ∘ 𝑃) ∈ 𝐵𝐶 \ 𝐴𝐶

∞
.

On the other side, let 𝜇 be a signed measure with 𝜇(Ω) =

0, and let ] = |𝜇|; then easily ] ∈ 𝐴𝐶
∞
.

In fact, if 𝑆, 𝑇 is a link, then

|] (𝑇) − ] (𝑆)| −

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨

𝜇 (𝑇) |−| 𝜇 (𝑆)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨

𝜇 (𝑇) − 𝜇 (𝑆)

󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨

𝜇

󵄨
󵄨
󵄨
󵄨

(𝑇 \ 𝑆)

(44)

and so |𝜇| ∈ 𝐴(]). On the other side, ] ∉ 𝐵𝐶; indeed, the
following extension of Proposition 14 in [5] can be derived
from Corollary 9.

Proposition 10. Take 𝜇 ∈ 𝑁𝐴 and let𝑓 : [−𝜇

−

(Ω), 𝜇

+

(Ω)] →

R.Then𝑓∘𝜇 ∈ V if and only if𝑓 is Lipschitz on𝑅(𝜇) and𝑓

󸀠

(0)

exists.

Proof. The proof of the sufficiency goes along the same lines
of the proof of Theorem 6.1 in [6].

Conversely, since ] ∈ 𝐴𝐶
∞

we know from Corollary 9
that 𝑓 is Lipschitz; hence the ratios 𝑓(𝑥)/𝑥, 𝑥 ̸= 0 are
bounded. Assume that ] ∈ 𝐵𝐶 but 𝑓󸀠(0) does not exist. We
have then the following cases:

(i) at least one between 𝑓

󸀠

+
(0) and 𝑓

󸀠

−
(0) does not exist;

(ii) 𝑓

󸀠

−
(0) ̸= 𝑓

󸀠

+
(0).

The first case can be treated analogously to proof of
Proposition 14 in [5], simply working with a set 𝐹 ⊂ 𝑃,
𝐹 ⊂ 𝑁, respectively, where (𝑃,𝑁) is a Hahn decomposition
of Ω.

Assume then that 𝑓󸀠
−
(0) = ℓ

1
̸= ℓ
2
= 𝑓

󸀠

+
(0).

Let then 𝑥
𝑛
↓ 0 and let us fix 𝐹 ∈ Σ with 𝜇

+

(𝐹) = 𝜇

−

(𝐹) >

0, so that 𝜇(𝐹) = 0. Choose 𝜀 ∈ ]0, 𝜇

+

(𝐹)]. Then there exists
𝑛 ∈ N such that for each 𝑛 > 𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥
𝑛
)

𝑥
𝑛

− ℓ
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

<

𝜀

3𝜇

+
(𝐹)

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (−𝑥
𝑛
)

−𝑥
𝑛

− ℓ
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

<

𝜀

3𝜇

−
(𝐹)

.

(45)

By means of the continuity of 𝑓 at 0, choose next 𝑛 > 𝑛 such
that |𝑓(𝑥)| < 𝜀/3 whenever 𝑥 ≤ 𝑥

𝑛
; also 𝑛 can be chosen so

that |ℓ
𝑖
||𝑥

𝑛
| < 𝜀/3 and such that 𝑥

𝑛
(𝜆(𝐹)/𝜇

+

(𝐹)) < 𝛿(𝜀/3)

where 𝛿 is the parameter of 𝛿
𝜆
𝐵𝐶 integrability.

Choose now the following 𝐷 ∈ Π(𝐹 ∩ 𝑃); by means
of Lyapunov Theorem, divide 𝐹 into finitely many sets, say
𝐼
1
, . . . , 𝐼

𝑘
, each with (𝜇, 𝜆)(𝐼

𝑗
) = (𝑥

𝑛
, (𝜆(𝐹)/𝜇

+

(𝐹))𝑥
𝑛
), until

𝜇((𝐹 ∩ 𝑃) \ ⋃

𝑘

𝑗=1
𝐼
𝑗
) ≤ 𝑥

𝑛
and then choose 𝐼

𝑘+1
= (𝐹 ∩ 𝑃) \

⋃

𝑘

𝑗=1
𝐼
𝑗
; thus easily 𝜆(𝐼

𝑘+1
) = (𝜆(𝐹)/𝜇

+

(𝐹))𝜇(𝐼
𝑘+1

) for

𝜆 (𝐼
𝑘+1

) = 𝜆 (𝐹) −

𝑘

∑

𝑗=1

𝜆 (𝐼
𝑗
) = 𝜆 (𝐹) − 𝑘

𝜆 (𝐹)

𝜇

+
(𝐹)

𝑥
𝑛

=

𝜆 (𝐹)

𝜇

+
(𝐹)

[𝜇

+

(𝐹) − 𝑘𝑥
𝑛
] =

𝜆 (𝐹)

𝜇

+
(𝐹)

𝜇 (𝐼
𝑘+1

) .

(46)

Then for 𝐷 = {𝐼
1
, . . . , 𝐼

𝑘
, 𝐼
𝑘+1

} one has 𝛿
𝜆
(𝐷) < 𝛿(𝜀/3).

We have then

∑

𝐼∈𝐷

󵄨
󵄨
󵄨
󵄨

𝑓 [𝜇 (𝐼)] − ℓ
1
𝜇 (𝐼)

󵄨
󵄨
󵄨
󵄨

=

𝑘

∑

𝑛=1

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥
𝑛
) − ℓ

1
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨

𝑓 [𝜇 (𝐼
𝑘+1

)] − ℓ
1
𝜇 (𝐼

𝑘+1
)

󵄨
󵄨
󵄨
󵄨

≤

𝑘

∑

𝑛=1

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥
𝑛
) − ℓ

1
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨

𝑓 [𝜇 (𝐼
𝑘+1

)]

󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨

ℓ
1

󵄨
󵄨
󵄨
󵄨

𝑥̃
𝑘

=

𝑘

∑

𝑛=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥
𝑛
) − ℓ

1
𝑥
𝑛

𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
𝑛
+

𝜀

3

+

𝜀

3

.

(47)

As for the first sum we have the following estimate:

𝑘

∑

𝑛=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥
𝑛
) − ℓ

1
𝑥
𝑛

𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
𝑛
<

𝜀

3𝜇

+
(𝐹)

𝑘

∑

𝑛=1

𝑥
𝑛

=

𝜀

3

⋅

𝜇 ((𝐹 ∩ 𝑃) \ 𝐼
𝑘+1

)

𝜇

+
(𝐹)

<

𝜀

3

.

(48)

In conclusion

∑

𝐼∈𝐷

󵄨
󵄨
󵄨
󵄨

𝑓 [𝜇 (𝐼)] − ℓ
1
𝜇 (𝐼)

󵄨
󵄨
󵄨
󵄨

< 𝜀. (49)

Clearly we can repeat this construction with −𝑥
𝑛
to find a

partition 𝐷

∗

∈ Π(𝐹 ∩ 𝑁) with 𝛿
𝜆
(𝐷

∗

) < 𝛿(𝜀/3) as above;
again

∑

𝐼∈𝐷
∗

󵄨
󵄨
󵄨
󵄨

𝑓 [𝜇 (𝐼)] − ℓ
2
𝜇 (𝐼)

󵄨
󵄨
󵄨
󵄨

< 𝜀. (50)
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Hence 𝐷 ∪ 𝐷

∗

∈ Π(𝐹) and
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝐼∈𝐷∪𝐷
∗

] (𝐼) − [ℓ
1
𝜇 (𝐹 ∩ 𝑃) + ℓ

2
𝜇 (𝐹 ∩ 𝑁)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝐼∈𝐷∪𝐷
∗

] (𝐼) − 𝜇

+

(𝐹) (ℓ
1
+ ℓ

2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2𝜀.

(51)

On the other side, we can choose a decomposition 𝐷 ∈

Π(𝐹 ∩ 𝑃) with 𝛿
𝜆
(𝐷) < 𝜀/2 and then for each 𝐼 ∈ 𝐷 choose

symmetrically 𝐽(𝐼) ⊂ 𝐹 ∩ 𝑁 with 𝜇[𝐽(𝐼)] = −𝜇(𝐼) so that
𝐷

∗

= {𝐽(𝐼)} ∈ Π(𝐹 ∩ 𝑁).
Then we can define 𝐷

𝑜
= {𝐼 ∪ 𝐽(𝐼), 𝐼 ∈ 𝐷} to produce a

decomposition of the whole𝐹with 𝛿
𝜆
(𝐷

𝑜
) < 𝜀 but∑

𝐷𝑜
](𝐼) =

0. Since ℓ
1

̸= ℓ
2
, the game ] is not 𝛿

𝜆
-𝐵𝐶 integrable.

Up to this point we have been able to characterize scalar
measure games and signed measure games in V by means
of the existence of 𝑓󸀠(0). What can be said for more general
vector measure games?

We will see that differentiability at zero is not necessary,
because we are considering admissible functions defined on
the whole positive orthant of R𝑛, while with 𝐵𝐶 integrability
we are taking into account the 𝜇-admissible directions.

For example, consider on R2

+
the classical example of

nondifferentiable map

𝑓 (𝑥, 𝑦) =

{
{
{
{

{
{
{
{

{

𝑥

2

𝑦

𝑥

4
+ 𝑦

2
whenever (𝑥, 𝑦) ̸= O,

0 if (𝑥, 𝑦) = O

(52)

which is not differentiable on the whole orthant, being not
continuous at O. However, if 𝜇 ∈ 𝑁𝐴

+ and 𝜂 = (𝜇, 𝜇), then
𝑅(𝜂) reduces to a line segment and 𝑓 ∘ 𝜂 = 𝜂/(1 + 𝜂

2

) ∈ 𝑄

since it can be represented as 𝑔∘𝜇with 𝑔(𝑡) = 𝑡/(1+𝑡

2

)which
is differentiable.

Indeed the following necessary condition derives from
the 𝐵𝐶 integrability.

Proposition 11. Let 𝜇 = (𝜇
1
, . . . , 𝜇

𝑛
) be in (𝑁𝐴

+

)

𝑛, and let 𝑓 :

R𝑛

+
→ R be inL(𝜇). If 𝑓 ∘ 𝜇 ∈ V, then 𝑓 admits directional

derivative 𝑑𝑓u(O) along every admissible direction u (i.e., such
that 𝜇(𝐹) = 𝑡u for some 𝐹 ∈ Σ, 𝜇(𝐹) ̸= 0 and some 𝑡 > 0);
moreover, the convergence

lim
ℎ→0

𝑓 (ℎu)
ℎ

= 𝑑u𝑓 (O) (53)

is uniform with respect to u.

The proof of the existence of each directional derivative
is substantially the same as that of Proposition 10, while the
uniformity of the limit is deduced from the assumption of𝐵𝐶

integrability, where the defining limit

∫

𝐸

] = lim
𝛿𝜆(𝐷)→0

𝐷∈Π(𝐸)

∑

𝐼∈𝐷

] (𝐼) (54)

is uniform with respect to 𝐸 ∈ Σ.

Observe that the requirement 𝑓 ∈ L(𝜇) in the previous
statement could beweakened by requiring that for each radial
direction u that crosses 𝜕𝑅(𝜇) at a point 𝑃 ̸= O, the ratios
𝑓(𝑡u)/𝑡 are bounded in ]0, 1].

Unfortunately, even with this weakening, the condition
expressed in the above Proposition does not characterize
vector measure games in 𝐵𝐶. To get convinced, we present
the following example.

Example 12. Consider 𝑓(𝑥, 𝑦) as above which is not differ-
entiable at O, since it is not continuous, despite the fact that
it admits directional derivative at every direction u on the
positive orthant, given by

𝑑u𝑓 (O) =

{
{
{

{
{
{

{

cos2𝜗
sin 𝜗

if sin 𝜗 ̸= 0,

0 if sin 𝜗 = 0,

(55)

where u = (cos 𝜗, sin 𝜗).
A simple computation in fact provides, for sin 𝜗 ̸= 0,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 cos 𝜗, 𝑡 sin 𝜗)

𝑡

− 𝑑u𝑓 (O)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑡

4cos6𝜗
|sin 𝜗| (𝑡

4cos4𝜗 + sin2𝜗)
.

(56)

For the sake of simplicity set 𝛼 = sin 𝜗, 𝛽 = cos2𝜗. Then
we want to show that the ratios 𝛽

3

𝑡

4

/|𝛼|(𝑡

4

𝛽

2

+ 𝛼

2

) can be
made arbitrarily small, somehow independently on the values
of 𝛼, 𝛽.

Easily

𝛽

3

𝑡

4

|𝛼| (𝑡

4
𝛽

2
+ 𝛼

2
)

≤

𝛽

3

𝑡

4

|𝛼|

3
(57)

which in turn is smaller than 𝜀 for 𝑡

4

< 𝜀 ⋅ (|𝛼|

3

/𝛽

3

) =

𝜀(| sin 𝜗|

3

/cos6𝜗); one immediately checks that the map 𝜗 →

| sin 𝜗|

3

/cos6𝜗 is increasing for 0 < 𝜗 < 𝜋/2.
Consider now 𝛾 : [0, 1] → R defined as

𝛾 (𝑥) = {

𝑥

2 for 0 ≤ 𝑥 ≤ 𝑥
𝑜
,

2𝑥
𝑜
𝑥 − 𝑥

2

𝑜
for 𝑥 > 𝑥

𝑜

(58)

with 0 < 𝑥
𝑜
< 1.

Then consider the “reverse” function 𝐺 : [0, 1] → R

defined as 𝐺(𝑥) = 1 − 𝛾(1 − 𝑥); then the subset of R2

+
given

by {(𝑥, 𝑦), 𝑥 ∈ [0, 1], 𝛾(𝑥) ≤ 𝑦 ≤ 𝐺(𝑥)} is a zonoid, that
is, the range of a nonatomic measure 𝜇 (see [9]), and the
admissible directions for such 𝜇 have slopes not exceeding
2𝑥

𝑜
; this is enough to achieve the required uniformity for the

vector measure game 𝑓 ∘ 𝜇.
We will now prove that the weakened assumption is

satisfied.
Fix an admissible direction u = (𝑢

1
, 𝑢

2
), that is, such that

span u intersects 𝜕𝑅(𝜇) at a point 𝑃 ̸= O.
Observe then that all the ratios along the u direction are

bounded.
However the game is not 𝐵𝐶 integrable; in fact, let 𝐹 be

a set for which 𝜇(𝐹) = (𝑥
𝑜
, 𝑥

2

𝑜
); whichever 𝛿 > 0, 𝛿 <
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𝑥
𝑜
/3 we choose, we can always find a subset 𝐼 of 𝐹 such

that 𝜇(𝐼) = (𝛿, 𝛿

2

) (thanks to the Hereditarily overlapping
boundary property [10]).

Now one can always decompose 𝐹\ 𝐼 into 𝑛 sets 𝐽
1
, . . . , 𝐽

𝑛

in such a way that 𝜇(𝐽
𝑘
) = 𝑚(𝐹 \ 𝐼)/𝑛 < 𝛿, 𝑘 = 1, . . . , 𝑛.

Thus, as 𝜇(𝐽
𝑘
) = (1/𝑛)(𝑥

𝑜
− 𝛿, 𝑥

2

𝑜
− 𝛿

2

), one finds

(𝑓 ∘ 𝜇) (𝐽
𝑘
) = 𝑓(

𝑥
𝑜
− 𝛿, 𝑥

2

𝑜
− 𝛿

2

𝑛

)

=

(𝑥
𝑜
− 𝛿)

3

(𝑥
𝑜
+ 𝛿)

𝑛

3

× (

(𝑥
𝑜
− 𝛿)

4

𝑛

4
+

(𝑥
𝑜
− 𝛿)

2

(𝑥
𝑜
+ 𝛿)

2

𝑛

2
)

−1

.

(59)

Consider then 𝐷 = {𝐼, 𝐽
1
, . . . , 𝐽

𝑛
} ∈ Π(𝐹); we have

∑

𝐹𝑖∈𝐷

(𝑓 ∘ 𝜇) (𝐹
𝑖
) = (𝑓 ∘ 𝜇) (𝐼) + 𝑛 (𝑓 ∘ 𝜇) (𝐽

1
)

=

1

2

+

(𝑥
𝑜
− 𝛿)

3

(𝑥
𝑜
+ 𝛿)

𝑛

2

× (

(𝑥
𝑜
− 𝛿)

4

𝑛

4
+

(𝑥
𝑜
− 𝛿)

2

(𝑥
𝑜
+ 𝛿)

2

𝑛

2
)

−1

=

1

2

+

𝑥

2

𝑜
− 𝛿

2

(𝑥
𝑜
+ 𝛿)

2

+ ((𝑥
𝑜
− 𝛿)

2

/𝑛

2
)

.

(60)

Hence, letting 𝑛 → ∞ we have that ∑
𝐹𝑖∈𝐷

(𝑓 ∘ 𝜇)(𝐹
𝑖
) can be

made strictly greater than 1.
On the other side, we can decompose 𝐹 into finitely many

sets𝐹
1
, . . . , 𝐹

𝑛
each having𝜇(𝐹

𝑗
) = 𝜇(𝐹)/𝑛 and 𝑛 large enough

to have 𝜇(𝐹
𝑗
) < 𝛿. On the decompositions of this type then

∑

𝐷

(𝑓 ∘ 𝜇) (𝐹
𝑗
) = 𝑛 (𝑓 ∘ 𝜇) (𝐹

1
)

= 𝑛𝑓(

𝑥
𝑜

𝑛

,

𝑥

2

𝑜

𝑛

) = 𝑛

𝑥

4

𝑜
/𝑛

3

𝑥

4

𝑜
/𝑛

4
+ 𝑥

4

𝑜
/𝑛

2

=

1

1 + 1/𝑛

2
󳨀→ 1

−

.

(61)

Therefore, the 𝐵𝐶 integral does not exist.
One may be interested also in the naturally arising space

V
∞

of games obtained as ‖ ⋅ ‖
∞
-limit of sequences of games

inV.
Several questions arise in this space; the first open one is

Are games inV
∞

still vector measure games?
And even in the negative, can one at least characterize

those vector measure games in terms of properties of the
function 𝑓 that defines them?

It is indeed rather difficult to characterize the ‖ ⋅ ‖
∞
-

closure ofV, because we could not reach so far any satisfac-
tory result relative to ‖ ⋅ ‖

∞
-convergence; to be more precise

given an admissible function 𝑓 on R𝑛

+
and a sequence of

vector measures (𝜇
𝑘
)
𝑘
⊂ (𝑁𝐴

+

)

𝑛, which convergence of (𝜇
𝑘
)
𝑘

ensures that the sequence 𝑓 ∘ 𝜇
𝑘

‖⋅‖∞

󳨀󳨀󳨀→ 𝑓 ∘ 𝜇?
And, dually, one can also ask: given a sequence of

admissible functions 𝑓
𝑘
: R𝑛

+
→ R and a vector measure 𝜇,

what kind of convergence of the sequence (𝑓
𝑘
)
𝑘
ensures that

the sequence of games 𝑓
𝑘
∘ 𝜇

‖⋅‖∞

󳨀󳨀󳨀→ 𝑓 ∘ 𝜇?
We can give so far only a sufficient condition; to this

extent we first set the following structure on the already
defined spaceA; set

𝑑lip (𝑓, 𝑔)

= inf {𝐿 > 0, such that 𝐿 is a Lipschitz constant for

𝑓 − 𝑔 in the increasing directions} .

(62)

Then 𝑑lip defines a metric on A. The analogous 𝑑lip is a
semimetric on eachL(𝜇).

Then we have the following.

Proposition 13. Let 𝜇 ∈ (𝑁𝐴

+

)

𝑛 and let 𝑓 be admissible. If 𝑓
is a 𝑑 lip cluster point forL(𝜇), then 𝑓 ∘ 𝜇 ∈ V

∞
.

Proof. Fix 𝜀 > 0, and choose 𝜎 = 𝜀/4; set 𝛿 = 𝜎/(𝜇
1
(Ω)+ ⋅ ⋅ ⋅ +

𝜇
𝑛
(Ω)). Next, let𝑔 ∈ L󸀠

(𝜇) (the set of differentiable functions
inL(𝜇)) with 𝑑 lip (𝑓, 𝑔) < 𝛿.

This means that 𝑓−𝑔 is Lipschitz in the 𝜇-link directions
with constant 𝐿 < 𝛿.

Fix now 𝐹 ∈ Σ, 𝐷 ∈ Π(𝐹), 𝑇
𝐷

∈ T
𝐷
; for the game (𝑓 ∘

𝜇) − (𝑔 ∘ 𝜇) one computes
󵄨
󵄨
󵄨
󵄨

𝑆 [(𝑓 ∘ 𝜇) − (𝑔 ∘ 𝜇) , 𝐷, 𝑇
𝐷
]

󵄨
󵄨
󵄨
󵄨

≤ ∑

𝑖

󵄨
󵄨
󵄨
󵄨

[(𝑓 − 𝑔) ∘ 𝜇] (𝐷
𝑖
∪ 𝑇

𝑖
) − [(𝑓 − 𝑔) ∘ 𝜇] (𝑇

𝑖
)

󵄨
󵄨
󵄨
󵄨

< 𝛿∑

𝑖

󵄩
󵄩
󵄩
󵄩

𝜇 (𝐷
𝑖
∪ 𝑇

𝑖
) − 𝜇 (𝑇

𝑖
)

󵄩
󵄩
󵄩
󵄩

= 𝛿∑

𝑖

󵄩
󵄩
󵄩
󵄩

𝜇 (𝐷
𝑖
)

󵄩
󵄩
󵄩
󵄩

= 𝛿 [𝜇
1
(𝐹) + ⋅ ⋅ ⋅ + 𝜇

𝑛
(𝐹)] ≤ 𝜎

(63)

from which we deduce ‖(𝑓 ∘ 𝜇) − (𝑔 ∘ 𝜇)‖

∞
≤ 4𝜎 = 𝜀. Since

𝑔 ∈ L󸀠

(𝜇) the game 𝑔∘𝜇 ∈ V thanks to Proposition 3 in [5],
and the proof is complete.
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