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Abstract

We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an
homogeneously dispersed population of identical objects. We report a Bayesian derivation of the posterior probability
distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling
with or without replacement. Our derivation yields a computationally feasible formula that can prove useful in a variety of
statistical problems involving absolute quantification under uncertainty. We implemented our algorithm in the R package
dupiR and compared it with a previously proposed Bayesian method based on a Gamma prior. As a showcase, we
demonstrate that our inference framework can be used to estimate bacterial survival curves from measurements
characterized by extremely low or zero counts and rather high sampling fractions. All in all, we provide a versatile, general
purpose algorithm to infer population sizes from count data, which can find application in a broad spectrum of biological
and physical problems.
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Introduction

Absolute quantification of objects, namely the determination of

their total number from measurements subject to sampling

uncertainty, is a classical problem in statistical inference. In this

work, we consider a finite population of identical objects

homogeneously dispersed in a finite volume. We assume that

measurable fractions of the volume can be sampled and that the

number of objects therein can be counted. Given the resulting set

of measurements, we address the problem of estimating the

population size and its uncertainty using a Bayesian approach with

least informative prior distribution.

In a Bayesian treatment of this problem, counts are usually

considered to be either Poisson, binomial or negative binomial

distributed, depending on the nature of the problem at hand. For

example in genomics, over-dispersed sequence count data as those

obtained by RNA-Seq are more effectively modeled by a negative

binomial than by a Poisson distribution, as the former provides a

more flexible mean-variance relationship [1–3]. When counts are

modeled as a binomial distribution, the binomial likelihood is

generally coupled to a conjugate prior to yield a closed form

posterior distribution, which corresponds to a simple update of the

prior parameters. However, handy computations do not imply

that the prior distribution correctly encodes our prior belief, which

instead requires specification of both the class of prior distributions

and parameters. This choice is paramount when dealing with

limited sample sizes [4–6], which typically affect biologically

relevant inference processes. In addition, in many applications we

often have no ground to expect certain simple events to be more

likely to occur than others. Therefore, as there is no reason to

prefer one distribution over another, a uniform prior distribution

can be used to encode this prior belief. This is a formulation of

the so called principle of indifference [7], also known as Laplace’s

principle of insufficient reason [8]. Here, we resort to this

principle in order to propose a Bayesian approach in which we

introduce the least prior information over a discrete sample

space. As the principle of indifference considers each possible

outcome as equiprobable, it naturally leads to discrete uniform

priors, a class of maximum entropy priors on a discrete sample

space [9–11]. However, in order to make use of this class of prior

distributions for Bayesian inference, we had to address two

specific issues: i) a discrete uniform prior with infinite support is

an improper prior and ii) it is not a conjugate prior for neither of

the above mentioned likelihoods for counts data. Although

improper priors are argument of long-standing debate in the

field, Jaynes [10] provided a rigorous advice on how to use

improper prior for Bayesian inference. Therefore, we addressed

the first issue by following Jaynes’s approach [10], namely we

considered a well defined limit of discrete uniform priors and

verified that, even in the limit, the resulting posterior is a proper

probability distribution.

Next, despite non-conjugacy we were able to obtain a

computationally tractable formula for the posterior distribution

of the population size using a binomial likelihood. Particularly,

we analyzed two different sampling schemes where objects are
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either drawn with or without replacement and report a formula

for the posterior distribution for each of these cases.

We implemented our algorithms in the R package dupiR and

as a showcase, we applied our framework to microbial count

data obtained through viable plate counts. A number of studies

in clinical and environmental microbiology, and food safety, deal

with the quantitative determination of bacteria. Interestingly,

low bacterial loads in a sample can challenge bacteria

enumeration methods because irrespective of the sampling

fraction, they result in low viable counts that are generally

considered to be statistically unreliable and hence discarded. By

analyzing bacteria survival data exhibiting extremely low counts

and rather high sampling fractions, we show that our approach is

able to cope well with these data, providing reliable credible

intervals for the total number of bacteria even in such extreme

cases.

Results

General concepts and notation
We consider a finite volume V containing n identical and

uniformly distributed objects. A single count of k objects from a

sampling fraction r, with 0ƒrƒ1, is initially considered

(Figure 1A). Our goal is to estimate n using a class of discrete

uniform priors. Here, counts follow a binomial distribution

B½n,r�

P(kDn,r)~B½n,r�(k)~
n

k

� �
rk(1{r)n{k

and by Bayes’ rule

P(nDk,r)~P(kDn,r)
P(nDr)

P(kDr)
:

We assume that our prior belief on n does not depend on r,

namely P(nDr)~P(n), and that P(n) is the discrete uniform

distribution with support fn1,n1z1, . . . ,n2g given by

P(n)~U½n1,n2�(n)~
1

n2{n1z1
, n1ƒnƒn2: ð1Þ

In the following, we consider the general case in which we are

given m measurements k1, . . . ,km from sampling fractions

r1, . . . ,rm (Figure 1B) and derive a formula for the posterior

distribution P(nDk1, . . . ,km,r1, . . . ,rm) distinguishing between two

sampling schemes: i) sampling with replacement; ii) sampling

without replacement.

Derivation of the posterior distribution under sampling
with replacement

Here, we derive P(nDk1, . . . ,km,r1, . . . ,rm) given sample counts

drawn with replacement. Assuming n to be conditionally

independent of r1, . . . ,rm, from Bayes’ rule we have

P(njk1, . . . ,km,r1, . . . ,rm)~

P(k1, . . . ,kmjn,r1, . . . ,rm)
P(n)

P(k1, . . . ,kmjr1, . . . ,rm)
:

ð2Þ

Assuming that the measurements are independent of each other

and that counts are conditionally independent of the sample

fractions the likelihood factorizes to

P(k1, . . . ,kmDn,r1, . . . ,rm)~Pm
i~1 P(ki Dn,ri) and therefore equa-

tion 2 can be written as:

P(nDk1, . . . ,km,r1, . . . ,rm)~
Pm

i~1 P(ki Dn,ri)P(n)P
n P

m
i~1 P(ki Dn,ri)P(n)

:

Let P(n)~U½n1,n2�(n) as introduced in equation 1. Then

P(nDk1, . . . ,km,r1, . . . ,rm)~
Pm

i~1 P(ki Dn,ri)U ½n1,n2�(n)Pn2
n~n1

Pm
i~1 P(ki Dn,ri)U ½n1,n2�(n)

:ð3Þ

As the interval ½n1,n2� can be arbitrarily large, the denominator of

equation 3:

P(k1, . . . ,kmDr1, . . . ,rm)~
1

n2{n1z1

Xn2

n~n1

P
m

i~1

n

ki

� �
r

ki
i (1{ri)

n{ki

features a potentially intractable summation over the prior

support. To address this issue we introduce the following lemma.

Lemma 1. Let k~(k1, . . . ,km), and x~Pm
i~1 (1{ri). For

n2§max(k)

Xn2

n~n1

Pm
i~1

n

ki

 !
r

ki
i (1{ri)

n{ki ~

Pm
i~1

ri

1{ri

� �ki

F (k,n1,x){F (k,n2z1,x)ð Þ

ð4Þ

where

F (k,n,x)~
Xk1

t1~0

. . .
Xkm

tm~0

P
m

i~1

nzTi{1

ki{ti

� �
i

T

ti

� �
xnzT

(1{x)1zT
ð5Þ

and Ti~
Pi

j~1 tj , T~Tm, and T0~0. The proof is provided in

the Appendix (see Text S1). Based on the fact that the sample

counts are generally orders of magnitude smaller than the

population size, this lemma allows to replace the sum over n by

nested sums over ki, with i[f1,2, . . . ,mg. Although the compu-

tational complexity of equation 4 is O(max(k)m), the number of

measurements is typically limited in a number of practical

applications, thus enabling direct computation of the expression.

Using Lemma 1 we can express the posterior distribution

P(nDk1, . . . ,km,r1, . . . ,rm) as follows.

Theorem 1. If P(n)~U ½n1,n2�(n) then,

P(nDk1, . . . ,km,r1, . . . ,rm)~

xn Pm
i~1

n

ki

� �
F (k,n1,x){F (k,n2z1,x)

ð6Þ

where k,x are defined as in Lemma 1.

Proof. The proof follows by rewriting the posterior distribution

of n (equation 3) as

Bayesian Inference Using Discrete Uniform Priors
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P(njk1, . . . ,km,r1, . . . ,rm)

~

‘m
i~1

n

ki

 !
r

ki
i (1{ri)

n{ki

Pm
i~1(ri=(1{ri))

ki F (k,n1,x){F (k,n2z1,x)ð Þ

~

xnPm
i~1

n

ki

 !

F (k,n1,x){F (k,n2z1,x)

Corollary 1. Suppose n1~0. Then P(n)~U½0,n2�(n)~ 1
n2z1

,

for 0ƒnƒn2, and we have

P(njk1, . . . ,km,r1, . . . ,,rm)~

xnPm
i~1

n

ki

 !

F (k,max(k),x){F (k,n2z1,x)

0ƒnƒn2:

Corollary 2. If P(n)~U½0,n2�(n) for 0ƒnƒn2 then in the

limit n2??

P(nDk1, . . . ,km,r1, . . . ,rm)~

xn Pm
i~1

n

ki

� �
F (k,max(k),x)

:

Notice that if a single measurement is given (m = 1), the posterior

probability of n reduces to

P(nDk,r)~

n

k

� �
rkz1(1{r)n{k

1{
Pk

t~0

n2z1

t

� �
rt(1{r)n2z1{t

: ð7Þ

(see Appendix in Text S1). Let n = j+k. In the limit n2?? we

obtain

P(nDk,r)~
n

k

 !
rkz1(1{r)n{k~

jzk

j

 !
rkz1(1{r)j

~NB½kz1,r�(j)~NB½kz1,r�(n{k)

ð8Þ

Figure 1. Schematic representation of the problem and of our inference framework. (A) A total of n identical objects (in gray, n = 50 in this
example) is homogeneously dispersed in a finite volume V. A fraction r of V, having volume rV, is sampled (dashed red rectangle) and the number of
object therein, denoted with k (k = 4 in this example) is determined. Given the measurement, the posterior distribution of n is a negative binomial
probability distribution P(nDk,r) (bottom) computed from a binomial likelihood P(kDn,r) (right) and a discrete uniform prior P(n) (left). (B)
Generalization of (A) to m measurements. Fractions of volume riV are sampled the number of objects therein (ki) determined as before. However,
when m.1 two cases can be distinguished: i) the fractions are replaced (sampling with replacement); ii) the fractions are removed from V (sampling
without replacement). In both cases, we derived a formula for the posterior distribution which is reported in the text as equation 6 for case i and
equation 10 for case ii.
doi:10.1371/journal.pone.0074388.g001
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namely, the posterior P(nDk,r) is a negative binomial distribution

shifted by k units and parametrized by k+1 and r.

Derivation of the posterior distribution under sampling
without replacement

Suppose that m fractions of the volume V are sampled uniformly

at random without replacement. Let k1, . . . ,km be ordered sample

counts, drawn from sampling fractions r1, . . . ,rm computed with

respect to V. Clearly, if m = 1 the posterior P(nDk1,r1) is given by

equation 7 and by working in the limit n2?? (equation 8) we

have

P(nDk1,r1)~NB½k1z1,r1�(n{k1):

Consider now a second measurement sampled from a fraction r2

of V and therefore equal to a fraction �rr2~
r2

1{r1
of the residual

volume �VV . In this case, the likelihood is given by B½n{k1,�rr2� and

the prior is NB½k1z1,1{r1�(n{k1). Therefore, the posterior

distribution of n is given by

P(njk1,k2,r1,r2)~NB½k2zk1z1,1{(1{r1)(1{�rr2)�

(n{k1{k2)~NB½k2zk1z1,r1zr2)�(n{k1{k2):
ð9Þ

Let K~
Pm

i~1 ki and R~
Pm

i~1 ri. By induction, equation 9 can

be generalized to m measurements, obtaining

P(njk1, . . . ,km,r1, . . . ,rm)~

NB½Kz1,1{Pm
i~1(1{�rri)�(n{K)

~NB½Kz1,R�(n{K):

ð10Þ

This result has two important properties. First, the computation of

the posterior distribution depends only on the sum of the counts

and on the sum of the sampling fractions, becoming therefore

independent on the number of measurements. As a consequence,

any permutation of counts and fractions leads to the same

posterior distribution. Second, there exists an equivalence between

experiments yielding the same values of K and R through a

different number of measurements, i.e. counting ki in fractions ri

for mw1 yields the same posterior distribution as countingPm
i~1 ki counts in a fraction

Pm
i~1 ri in single measurement.

The R package dupiR
We implemented our algorithms as a package for the statistical

environment R [12]. The package, which we called dupiR

(discrete uniform prior-based inference with R) is available from

the Comprehensive R Achive Network (CRAN) along with the

relevant package manual. dupiR is based on the custom S4 class

Counts, which is used to store sample information, statistical

attributes and inference results. By default, the package assumes

that samples have been drawn without replacement. Given a set of

sample counts fk1, . . . ,kmg and fractions fr1, . . . ,rmg, dupiR

defines the default support interval for the discrete uniform prior

distribution as ½0:5:n̂n,2:n̂n�, where n̂n is the maximum likelihood

estimate of n computed as K=R, where K~
Pm

i~1 ki and

R~
Pm

i~1 ri. For the special case K = 0, the prior support is

defined as 0,1=min r1, . . . ,rmf gð Þ½ �. This setup proved to be

effective across a variety of simulated measurements. However, the

user can override default values by explicitly using the variables n1

and n2 to define a custom prior support.

Posterior distributions can be computed using the function

computePosterior, where the logical parameter replacement

specifies whether counts were sampled with or without replace-

ment. Posterior parameters can be obtained using getPosterior-

Param, which returns a point estimate of n equal to its maximum a

posteriori (MAP) and the corresponding credible interval at a

specified confidence level (default to 95%), among other param-

eters. Finally, dupiR can be used to produce publication-level

quality figures representing posterior distributions and parameters

simply via the plot function. Further information are provided in

the package documentation.

Applications to bacterial enumeration
Absolute quantification of bacteria in biological samples is

performed routinely for a broad spectrum of applications ranging

from diagnostics to food analysis. A standard method for bacterial

enumeration is the plate count method, which despite well-

recognized limitations provides an indirect measure of cell density

solely based on viable bacteria [13]. Viable plate counts - the

discrete outcome of this method - are then generally used to

compute point estimates of the bacterial concentration in the

original sample. Although Bayesian estimates of the uncertainty

associated to bacteria quantification have been previously

proposed, these methods assume Poisson distributed microbial

counts [14,15]. Particularly, Clough et al. [14] adopted a Poisson

likelihood Pois½l�(k)~
e{llk

k!
with rate l = rn and a Gamma prior

distribution g½k,r�(n)~
1

C(k)
rknk{1e{rn, where k and r are the

shape and the rate parameters, respectively. It then follows that the

posterior distribution P(nDk1, . . . ,km,r1, . . . ,rm) is itself a Gamma

distribution given by

P(nDk1, . . . ,km,r1, . . . ,rm)~g½kzK,rzR�(n) ð11Þ

where K~
Pm

i~1 ki and R~
Pm

i~1 ri. Hereinafter, we will refer to

this setup as the GP (Gamma-Poisson) method. In applying the GP

method to bacteria enumeration, the authors chose k = 1 and

r~10{6. Notice that the gamma distribution is appropriate to

model continuous variables and therefore a continuous approx-

imation to n is assumed in this model.

By analyzing equation 11 we can observe that when R%1 and

n

k

� �
*

nk

k!
, the expression converges to our posterior distribution

under sampling without replacement (equation 10) as

P(nDK,R)~NB½Kz1,R�(n{K)~
n

K

� �
RKz1(1{R)n{K :

Indeed notice that for small values of R the expression above

depends on n as nK e{Rn*g½Kz1,R�(n) and that by setting r = 0,

g½Kz1,R�(n) is equal to equation 11.

Convergence implies that for a broad range of measurements

our inference framework and the GP method provide comparable

results. However, when the difference between sampling methods

is not negligible, i.e. when sampling fractions are large, the results

provided by the two methods become significantly different. To

investigate this difference in greater details and to assess the

performances of our inference framework, we simulated measure-

ments from total sampling fractions spanning two orders of

magnitude and we compared the posterior distributions inferred

with our method to those obtained via the GP method using the

Bayesian Inference Using Discrete Uniform Priors

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e74388



Jensen-Shannon divergence (JS-divergence), a symmetric version

of the Kullback-Leibler divergence (see Methods). Our simulation

results show that when R is so small that the effect of replacement

is negligible, posterior distributions computed using our method or

with the GP method correspond to the same probability

distribution for any practical purpose (Figure S1). More precisely,

the effect of replacement can be neglected when Rƒ1=32, a value

at which the JS-divergence between posterior distributions

computed from sampling with and without replacement drops

below 1024 (Figure S2). However, when R.1/32, the two

approaches differ substantially. For these values of total sampling

fractions, posterior distributions computed using our algorithm

exhibit a lower variance than those computed with the GP method

(Figure 2), thus providing narrower credible intervals. It is

noteworthy to observe that this result is not a mere consequence

of an inappropriate parametrization of the Gamma prior. Indeed,

simulations performed by varying r over several orders of

magnitude (from r~10{5 to r = 0.1) showed that differences

between posterior distributions remain significant irrespective of r
(Figure S3, A–E). Rather, as expected, extreme rate parameters

can lead to posterior distributions that are dominated by prior

belief (see Figure S3, F for an example), emphasizing the

importance of an appropriate prior parametrization.

Taken together, these results underscore the generality of our

inference method, which is able to cope with measurements

derived from any range of K and R, including extreme total

sampling fractions and counts. This latter property is desirable for

bacterial enumeration. In fact, only measurements with

30ƒKƒ300 are routinely used to infer the population size [16]

and those localizing outside this range are currently discarded.

Clearly, if K,30 and R%1 it is often easy to obtain a

measurement with K falling within the recommended range

simply by considering those samples in the dilution series which

are less diluted (i.e. obtained from a higher sampling fraction).

However, when n is small, measurements obtained from high

sampling fractions can still yield low counts. Studies investigating

bacterial survival upon physical or chemical treatments or in

different environmental conditions are often confronted with this

limitation. Bacterial survival studies are generally based on time-

course bacterial enumeration using different experimental tech-

niques and aim to estimate bacterial survival curves that in turn

are used to compare cell viability across conditions. In a recent

environmental microbiology study, Fracchia et al. investigated the

suitability of biosolids as inoculum vehicle for the plant-growth

promoting rhizobacteria Pseudomonas fluorescens [17]. Here, we deal

with a single time series which was generated as described in [17]

(six time points where for each sample at least five technical

Figure 2. Comparison between posterior distributions computed with dupiR and with the GP method. Middle: JS-divergence (expressed
in log10) between posterior distributions computed with our algorithm using sampling without replacement or with the GP method (Clough et al.
[14]) as a function of total counts (K[f0,1, . . . ,30g, see Methods) and total sampling fractions (R) obtained from two measurements (m = 2). Right and
Left: examples of posterior distributions corresponding to values of (K,R) indicated by grey lines are illustrated. p-values have been computed using a
two-sided Kolmogorov-Smirnov test.
doi:10.1371/journal.pone.0074388.g002
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replicates were subjected to bacterial enumeration, see Methods)

where only the first two time points yielded 30ƒKƒ300 and

where more than 50% of the measurements in later time points

showed K = 0 (see Figure 3). Instead of discarding these

measurements, we applied dupiR to compute posterior distribu-

tions and estimated the maximum a posteriori (MAP) of n from all

time points. These values were then used to fit a power-law model

(see Methods) that shows good agreement with the experimental

data (residual standard error of 0.1269 on 3 degrees of freedom),

thus enabling us to estimate a survival curve of P. fluorescens in a

time series characterized by extremely low viable counts (Figure 4).

Clearly, dupiR estimates can be integrated into more complex

models of cell growth or survival for which several mathematical

approaches have been proposed [18–21].

Discussion

Parametrization of the prior probability distribution is a key step

in Bayesian statistics. This step requires particular care for small

sample sizes, as posterior distributions can be easily dominated by

prior belief unless the parameters reflect an appropriate equivalent

sample size of the prior distribution [4,5]. In addition, the choice

Figure 3. Examples of dupiR graphical output. Examples of posterior distributions of the population size n estimated and plotted with dupiR
for time points (A) t = 7, (B) t = 14 (C) t = 21 and (D) t = 28 days. By default, the graph of the posterior distribution (solid black line) is plotted along with
a statistical summary containing the maximum a posteriori (MAP, indicated by the blue vertical line) of n, the corresponding credible intervals (CI,
green and dashed grey lines) at a significance level (SL) of 0.05 and the tails probability of the distribution function.
doi:10.1371/journal.pone.0074388.g003

Bayesian Inference Using Discrete Uniform Priors
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of the prior is sometimes driven by convenience rather than prior

belief. In this study, we set out to overcome these intrinsic

limitations by implementing Keynes’ principle of indifference [7]

in a Bayesian framework to infer population sizes (n) from sample

measurements. Notably, we did not limit ourselves to a theoretical

treatment of the subject but we provide an optimized, general

purpose implementation of our algorithm in the R package dupiR.

By attributing equal probabilities to each possible outcome,

Keynes’ principle of indifference is naturally encoded in discrete

uniform priors. Notice that the application of this principle in our

univariate, discrete problem is free from possible unexpected

behavior that are known to arise in multivariate, continuous

applications (e.g. see [22]). Although discrete uniform priors are

not conjugate for likelihoods commonly adopted in dealing with

count data, we were able to derive the posterior probability

distribution of n using a binomial likelihood. If data are obtained

through sampling with replacement, we report a computationally

tractable formula of the posterior distribution of n which could be

obtained by converting a summation over the prior support to

multiple summations over the range of sample counts only.

Indeed, while the former can be theoretically unbound, sample

counts are typically orders of magnitude smaller than n. The

special case in which only a single measurement is available leads

to a negative binomial posterior distribution, which was then used

as a building block to extend our framework to an arbitrary

number of measurements obtained from sampling without

replacement. The properties of the posterior distributions we

obtained depend on the sampling method. Particularly, while

under sampling with replacement measurements contribute

individually to the inference process, if no replacement is

performed then the posterior distribution depends only on the

total of sample counts and fractions. This property allows

computations to be independent of the number of measurements.

The sampling method has no influence on the result if the total

sampling fraction is modest compared to the total volume (R%1).

This holds true for typical experimental settings and under this

condition the performances of our algorithm are comparable to

those of other Bayesian methods reported in literature, such as the

GP method [14] (Figures S1 and S2). However, the results of the

two methods diverge when the effect of replacement can no longer

be neglected. In this cases, our method provides posterior

distributions that are characterized by a significantly smaller

variance compared to those obtained using a Gamma prior

(Figure 2). This property can be seen analytically. Since

s2
NB~

(Kz1)(1{R)

R2
and s2

g~
Kz1

(rzR)2
, when r%R we have

sNB=sg*(1{R) and hence sgwsNB.

We showed an application of our method in the context of

bacterial enumeration, where we investigated the survival of an

engineered strain of P. fluorescens using a time series with very low

or zero viable counts and rather high sampling fractions. Although

in this work we dealt with viable plate counts only, data generated

by other laboratory techniques, such as the direct count [23] and

the drop plate method [24] can be analyzed with dupiR. In

addition, combining our algorithm with automatic plate counting

[25] could result in a reliable and robust pipeline for bacteria

enumeration via plate counting methods.

All in all, we provided a general purpose algorithm to infer

population sizes from count data. We believe that the method can

be applied to a broad spectrum of applications in both biological

and physical sciences.

Materials and Methods

Simulation
Given a set of total counts K and a set of total sampling fractions

R we considered the pairs K6R and computed posterior

distributions using either our posterior formula under sampling

without replacement or the GP method. For each r[R, all

posterior distributions were computed using the same discrete

uniform prior by setting its support to the interval ½0,2:n̂nmax�,

where n̂nmax~
max(K)

r
. Posterior distributions computed via the

two methods were compared by computing the Jensen-Shannon

divergence (JS-divergence), a symmetrised Kullback-Leibler di-

vergence (KL-divergence) [26]. Given two discrete probability

distributions p and q, the KL-divergence (in bits) is defined as

KL(p,q)~
X

i

pi log2

pi

qi

� �
:

Since the KL-divergence is not symmetric, different symmetriza-

tion procedures have been proposed in literature. Here we used a

symmetric form of the KL-divergence known as Jensen-Shannon

divergence (JS-divergence) [27]. By letting a~
pzq

2
be the

average distribution of p and q, the JS-divergence is defined as

JS(p,q)~
1

2
(KL(p,a)zKL(q,a))~JS(q,p)

and represents the average KL-divergence of the distributions p,q

to the average distribution a. When JS(p,q) is computed in bits we

have 0ƒJS(p,q)ƒ1. Therefore, in this work we always considered

the quantity log10 (JS(p,q)).

Experimental procedure
Viable plate counts of Pseudomonas fluorescens were obtained

essentially as described in [17] in a single time series (six time

points). Briefly, bacteria of the rifampicin and tetracyclin resistant

strain P. fluorescens 92RTcgfp carrying the gfp gene were precultured

to a density of 108–109 cells/ml. The bacterial suspension was then

inoculated into a microcosm consisting of soil supplemented with

Figure 4. Application of discrete uniform priors to bacterial
survival curves estimation. Estimated bacterial survival curve (light
blue line, see Methods) of P. fluorescens inoculated in soil supplemented
with biosolid. Time points from t = 7 to t = 28, characterized by zero or
extremely low viable counts, are indicated in tones of red and the
corresponding posterior distributions are shown in Figure 3.
doi:10.1371/journal.pone.0074388.g004
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biosolid and incubated at 25 Cu in the dark over a period of 28

days. Inoculation corresponds to the time point t = 0. Samples

were collected at time points t = 3,7,14,21 and t = 28 days,

subjected to log10 serial dilution and plated on LB agar added

with rifampicin, tetracycline and cycloheximide. For each time

point, viable plate counts were determined from five or more

technical replicates.

Estimation of survival curves
For each time point, posterior distributions were computed

using dupiR and sampling without replacement. Survival curves

were fit using a power-law model

log10 (n(t)z1)~
a

(t{t0)b

where n(t) is the maximum a posteriori of the population size at

time point t. The model was fit using the R function nls [12] and

starting estimates a~ log10 (n0z1), b = 0.2 and t0~{0:1.

Supporting Information

Text S1 Appendix. This supplementary file is an Appendix

containing the proof of Lemma 1 and additional information

pertaining the derivation of the posterior distributions discussed in

the main text.

(PDF)

Figure S1 Simulation results. JS-divergence (expressed in

log10) between posterior distributions computed with our method

without replacement or with the GP method as a function of the

total sampling fractions (R). Total counts K[f0,1, . . . ,30g have

been considered.

(TIF)

Figure S2 Maximum JS-divergence as a function of the
total sampling fraction. Maximum JS-divergence as a

function of R. The red line indicates a linear regression fit. The

orange vertical dashed line indicates the value R = 1/32. For

R,1/32, posterior distributions computed with or without

replacement can be considered to be the same for any practical

application.

(TIF)

Figure S3 Comparison between dupiR and the GP
method for different Gamma prior parameters. JS-

divergence (expressed in log10) between posterior distributions

computed with dupiR and sampling without replacement or with

the GP method (Clough et al. [14]) as a function of total counts (K)

and total sampling fractions (R) obtained from two measurements

(m = 2, see Methods). The rate parameter (r) of the Gamma prior

was varied over four orders of magnitude and different panels

correspond to simulations run with (A) r = 1025, (B) r = 1024, (C)

r = 1023, (D) r = 1022, (E) r = 0.1. (F) Example of the effect of the

Gamma prior parametrization on the posterior distribution

inferred from K = 5,R = 0.25 and r = 1026 (orange), r = 1022

(red) and r = 0.1 (brown). The latter case encodes a prior of K = 1

from R = 0.1. The posterior distribution estimated with dupiR is

shown in blue, with the maximum a posteriori of n indicated by

the dashed gray line.

(TIF)
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