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Abstract

The paper considers a particular family of fuzzy monotone set–valued stochas-
tic processes. The proposed setting allows us to investigate suitable α-level
sets of such processes, modeling birth–and–growth processes. A decomposition
theorem is established to characterize the nucleation and the growth. As a
consequence, different consistent set–valued estimators are studied for growth
process. Moreover, the nucleation process is studied via the hitting function,
and a consistent estimator of the nucleation hitting function is derived.
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Introduction

A birth–and–growth crystal process may be studied by means of a positive time–
and space–dependent stochastic function representing a concentration process
as in [3]. In particular, concentration in the crystal phase takes a constant
value, namely cs (obtained from physical evidences), and outside the crystal it
is represented by a sufficiently regular function cex such that cex < cs; i.e., the
crystal phase is more dense than the mother phase, and a jump in the concen-
tration always occurs on the crystal boundary (see Figure 1a). Figure 1b can
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be interpreted as a sequence of membership functions, and so, crystal growth
can be seen as a fuzzy monotone set–valued stochastic process; where “mono-
tone” means that every α–level set at each time is included in the α–level set
at successive times.

(a) (b)

Figure 1: (Credits to [3]). (a) is a 1D sketch of the concentration for an analytical growth
model. (b) is a 2D simulation of a crystallization process on a square grid where the color
scale represents the concentration. The figures may be interpreted also from a fuzzy point of
view.

In order to study some statistical aspects of the fuzzy monotone set–valued
stochastic process, we notice that the α–level process is a closed set–valued
stochastic process, that can be modeled as a birth–and–growth process. In
this paper, we underline some geometrical properties and statistical aspects of
birth–and–growth processes.
The importance of nucleation and growth processes is well known, since they
arise in several natural and technological applications (cf. [7, 6] and the refer-
ences therein) such as, for example, solidification and phase–transition of ma-
terials, semiconductor crystal growth, biomineralization, and DNA replication
(cf., e.g., [18]). During the years, several authors studied stochastic spatial
processes (cf. [11, 32, 24] and references therein) nevertheless they essentially
consider static approaches modeling real phenomenons. For what concerns the
dynamical point of view, a parametric birth–and–growth process was studied in
[26, 27]. A birth–and–growth process is a random closed sets (RaCS) family
given by Θt =

⋃
n:Tn≤t Θ

t
Tn

(Xn), for t ∈ R+, where Θt
Tn

(Xn) is the RaCS ob-
tained as the evolution up to time t > Tn of the germ born at (random) time
Tn in (random) location Xn, according to some growth model. An analytical
approach is often used to model birth–and–growth process, in particular it is
assumed that the growth of a spherical nucleus of infinitesimal radius is driven
according to a non–negative normal velocity, i.e. for every instant t, a border
point of the crystal x ∈ ∂Θt “grows” along the outwards normal unit (e.g.
[17, 5, 4, 9, 3]). In view of the chosen framework, different parametric and non–
parametric estimations are proposed over the years (cf. [28, 25, 13, 6, 8, 2, 10]
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and references therein). Note that the existence of the outwards normal vector
imposes a regularity condition on ∂Θt (and also on the nucleation process: it
cannot be a point process).
On the other hand, it is well known that sets are particular cases of fuzzy sets.
Now, in the class of all convex fuzzy sets stochastic process having compact
support, Doob–type decomposition for sub- and super–martingales was studied
(e.g. [14, 16, 15, 33]). Nevertheless, a more general case (than the convex one)
has not yet been considered; surely, in order to do this, the first easiest step is to
consider decomposition for random set–valued processes. The work in progress
aims to generalize results of this paper to birth–and–growth fuzzy set–valued
stochastic processes.
This paper is an attempt to offer an original approach based on a purely geomet-
ric stochastic point of view in order to avoid regularity assumptions describing
birth–and–growth processes. The pioneer work [22] studies a growth model
for a single convex crystal based on Minkowski sum, whilst in [1], the authors
derive a computationally tractable mathematical model of such processes that
emphasizes the geometric growth of objects without regularity assumptions on
the boundary of crystals. Here, in view of this approach, we introduce different
set–valued parametric estimators of the rate of growth of the process. They
arise naturally from a decomposition via Minkowski sum and they are consis-
tent as the observation window expands to the whole space. On the other hand,
keeping in mind that distributions of random closed sets are determined by Cho-
quet capacity functionals and that the nucleation process cannot be observed
directly, the paper provides an estimation procedures of the hitting function of
the nucleation process.
The article is organized as follows. Section 1 contains preliminary properties.
Section 2 introduces a birth–and–growth model for random closed sets as the
combination of two set–valued processes (nucleation and growth respectively).
Further, a decomposition theorem is established to characterize the nucleation
and the growth. Section 3 studies different estimators of the growth process and
correspondent consistent properties are proved. In Section 4, the nucleation
process is studied via the hitting function, and a consistent estimator of the
nucleation hitting function is derived. Section 5 concludes the paper with some
brief discussions.

1. Preliminary results

Let N, Z, R, R+ be the sets of all non–negative integer, integer, real and non–
negative real numbers respectively, and let X = R

d. Let F be the family of all
closed subsets of X and F

′ = F \ {∅}. The subscripts b, k and c denote bound-
edness, compactness and convexity properties respectively (e.g. Fkc denotes the
family of all compact convex subsets of X).
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For all A,B ⊆ X and α ∈ R+, let us define

A+B = {a+ b : a ∈ A, b ∈ B} =
⋃

b∈B b+A, (Minkowski Sum),
α · A = αA = {αa : a ∈ A} , (Dilation by Scalars),

A⊖B =
(
AC +B

)C
=

⋂
b∈B b+A, (Minkowski Subtraction),

Ǎ = {−a : a ∈ A} , (Symmetric Set),

where AC = {x ∈ X : x 6∈ A} is the complement to A, x+A means {x}+A (i.e.
A translate by vector x), and, by definition, ∅ + A = ∅ = α∅. It is well known
that + is a commutative and associative operation with a neutral element but,
in general, A ⊆ X does not admit inverse (cf. [30, 19]) and ⊖ is not the inverse
operation of +. The following relations are useful in the sequel (see [31]): for
every A,B,C ⊆ X

(A ∪B) + C = (A+ C) ∪ (B + C),
if B ⊆ C, A+B ⊆ A+ C,

(A⊖B) + B̌ ⊆ A and (A+B)⊖ B̌ ⊇ A,
(A ∪B)⊖ C ⊇ (A⊖ C) ∪ (B ⊖ C).

In the following, we shall work with closed sets. In general, if A,B ∈ F then
A + B does not belong to F (e.g., in X = R let A = {n+ 1/n : n > 1} and
B = Z, then {1/n = (n+ 1/n) + (−n)} ⊂ A+ B and 1/n ↓ 0, but 0 6∈ A+ B).
In view of this fact, we define A⊕ B = A+B where (·) denotes the closure in
X. It can be proved that, if A ∈ F and B ∈ Fk then A+B ∈ F (see [31]).
For any A,B ∈ F

′ the Hausdorff distance (or metric) is defined by

δH(A,B) = max

{
sup
a∈A

inf
b∈B

‖a− b‖
X
, sup
b∈B

inf
a∈A

‖a− b‖
X

}
.

A random closed set (RaCS) is a map X defined on a probability space (Ω,F,P)
with values in F such that {ω ∈ Ω : X(ω) ∩K 6= ∅} is measurable for each com-
pact set K in X. It can be proved (see [20]) that, if X,X1, X2 are RaCS and if
ξ is a random variable, then X1 ⊕X2, X1 ⊖X2, ξX and (Int X)C are RaCS.
Moreover, if {Xn}n∈N

is a sequence of RaCS then X =
⋃

n∈N
Xn is so.

Let X be a RaCS, then TX(K) = P(X ∩ K 6= ∅), for all K ∈ Fk, is its
hitting function (or Choquet capacity functional). The well known Choquet–
Kendall–Matheron Theorem states that, the probability law PX of any RaCS X
is uniquely determined by its hitting function (see [21]) and hence by QX(K) =
1− TX(K).

Remark 1.1. (See [23].) If both X and Y are RaCS, then, for every K ∈ Fk,

TX⊕Y (K) = E
[
E
[
TX

(
K ⊕ Y̌

)∣∣Y
]]
.

Moreover, if X,Y are independent, then, for every K ∈ Fk,

TX∪Y (K) = TX (K) + TY (K)− TX (K)TY (K) .
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A RaCS X is stationary if the probability laws of X and X + v coincide for
every v ∈ X. Thus, the hitting function of a stationary RaCS clearly is invariant
up to translation TX(K) = TX(K + v) for each K ∈ Fk and any v ∈ X.
A stationary RaCS X is ergodic, if, for all K1,K2 ∈ F,

1

|Wn|

∫

Wn

QX((K1 + v) ∪K2)dv → QX(K1)QX(K2), as n → ∞,

where {Wn}n∈N
is a convex averaging sequence of sets in X (see [12]), i.e. each

{Wn} is convex and compact, Wn ⊂ Wn+1 for all n ∈ N and

sup {r ≥ 0 : B(x, r) ⊂ Wn for some x ∈ Wn} ↑ ∞, as n → ∞.

Proposition 1.2. Let X,Y be RaCS with Y ∈ F
′
k a.s. and X stationary, then

X + Y is a stationary RaCS. Moreover, if X is ergodic, then X + Y is so.

Proof. Let Z = X + Y , it is a RaCS. Note that

TZ(K) = E
[
E
[
TX

(
K + Y̌

)∣∣Y
]]

= E
[
E
[
TX

(
K + Y̌ + v

)∣∣Y
]]

= TZ(K + v),

for every K ∈ Fk and v ∈ X, then Z = X + Y is stationary. Further, let us
suppose that X is ergodic, then, by Fubini–Tonelli’s Theorem and by dominated
convergence theorem, we obtain

∫

Wn

QZ((K1 + v) ∪K2)

|Wn|
dv = E

[
E

[
1

|Wn|

∫

Wn

QX(((K1 + v) ∪K2) + Y̌ )dv

∣∣∣∣Y
]]

→ E
[
E
[
QX(K1 + Y̌ )QX(K2 + Y̌ )

∣∣Y
]]

= QZ(K1)QZ(K2),

for every K1,K2 ∈ Fk. Hence X + Y is ergodic. �

2. A Birth–and–Growth process

Here, F denotes the family of all fuzzy sets ν : X → [0, 1]. We recall that a fuzzy
random set is defined as a measurable map X : Ω → F , where Ω and F are
endowed with the relevant σ–algebra’s (see [20]). A fuzzy set–valued stochastic
process is a measurable map X : Ω × N → F . For β ∈ (0, 1], we call β–fuzzy
monotone set–valued stochastic process a fuzzy set–valued stochastic process X
such that, for every ω ∈ Ω and t1, t2 ∈ N with t1 ≤ t2,

Xα(ω, t1) ⊆ Xα(ω, t2), for each α ∈ (0, 1] with β ≤ α

where Xα(ω, t) = {x ∈ X : X(ω, t)(x) ≥ α} is the α–level set of the fuzzy set
X(ω, t). In other words, a β–fuzzy monotone set–valued stochastic process is
a time dependent fuzzy random set for which every α–level processes are not–
decreasing RaCS processes, for any β ≤ α. Clearly, the associated α–level set
stochastic processes Xα are useful in order to study a fuzzy monotone set–
valued stochastic process X . In the following, we deal with 1–fuzzy monotone
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set–valued stochastic process. A set–valued stochastic process is modeled to
describe Θ = X1 process and analyzed from a statistical point of view.
Let (Ω,F, {Fn}n∈N

,P) be a filtered probability space with the usual properties.
Let {Bn : n ≥ 0} and {Gn : n ≥ 1} be two families of RaCS such that Bn is Fn–
measurable and Gn is Fn−1–measurable. These processes represent the birth
(or nucleation) process and the growth process respectively. Thus, let us define
recursively a birth–and–growth process Θ = {Θn : n ≥ 0} by

Θn =

{
(Θn−1 ⊕Gn) ∪Bn, n ≥ 1,
B0, n = 0.

(1)

Roughly speaking, Equation (1) means that Θn is the enlargement of Θn−1

due to a Minkowski growth Gn while nucleation Bn occurs. Without loss of
generality let us consider the following assumption.
(A-1) For every n ≥ 1, 0 ∈ Gn.
Note that, Assumption (A-1) is equivalent to Θn−1 ⊆ Θn.
In [1], the authors derive (1) from a continuous time birth–and–growth process;
here, in order to make inference, the discrete time case is sufficient. Indeed,
a sample of a birth–and–growth process is usually a time sequence of pictures
that represent process Θ at different temporal step; namely Θn−1, Θn. Thus,
in view of (1), it is interesting to investigate {Gn} and {Bn}; in particular,
we shall estimate the maximal growth Gn and the capacity functional of Bn.
For the sake of simplicity, Y , X , G and B will denote RaCS Θn, Θn−1, Gn

and Bn respectively (then X ⊆ Y ). Thus, let us consider the following general
definition.

Definition 2.1. Let Y , X be RaCS with X ⊆ Y . A X–decomposition of Y is
a couple of RaCS (G,B) for which

Y = (X ⊕G) ∪B. (2)

Note that, since we can consider (G,B) = ({0} , Y ), there always exists a
X–decomposition of Y . It can happen that G and B in (2) are not unique.
As example, let Y = [0, 1] and X = {0}, then both (G1, B1) = (Y, Y ) and
(G2, B2) = (X,Y ) satisfy (2). As a consequence, since we can not distinguish
between two different decompositions, we shall choose a maximal one according
to the following proposition.

Proposition 2.2. (See [31]) Let Y , X be RaCS with X ⊆ Y . Then

G = Y ⊖ X̌ = {g ∈ X : g +X ⊆ Y } . (3)

is the greatest RaCS, with respect to set inclusion, such that (X ⊕G) ⊆ Y .

Corollary 2.3. The couple (G = Y ⊖ X̌, B = Y ∩ (X ⊕G)C) is the max-min
X–decomposition of Y . As a consequence, (G,B) is a X–decomposition of Y
and for any otherX–decomposition of Y , say (G′, B′), then G′ ⊆ G and B′ ⊇ B.
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In other words, if X,G′, B′ are RaCS and Y = (X⊕G′)∪B′, then G = Y ⊖X̌ ⊇
G′ and Y = (X ⊕G) ∪B′.
Let Θ be as in (1). From now on, Gn denotes Θn⊖ Θ̌n−1 that, as a consequence
of Assumption (A-1), contains the origin. Moreover, we shall suppose
(A-2) There exists K ∈ F

′
b such that Gn = Θn ⊖ Θ̌n−1 ⊆ K for every n ∈ N.

(A-3) For every n ≥ 1,
(
Bn ⊖ Θ̌n−1

)
= ∅ almost surely.

Roughly speaking, Assumption (A-2) means that process Θ does not grow too
“fast”, whilst Assumption (A-3) means that it cannot born something that, up
to a translation, is larger (or equal) than what there already exists.
Let us remark that Assumption (A-2) implies {Gn} ⊂ F

′
k and X⊕Gn = X+Gn,

for any RaCS X .

3. Estimators of G

On the one hand Proposition 2.2 gives a theoretical formula for G, but, on the
other hand, in practical cases, data are bounded by some observation window
and edge effects may cause problems. Hence, as the standard statistical scheme
for spatial processes (e.g. [24]) suggests, we wonder if there exists a consistent
estimator of G as the observation window expands to the whole space X.

Proposition 3.1. If {Wi}i∈N
⊂ F

′
ck is a convex averaging sequence of sets,

then, for any K ∈ F
′
k, X =

⋃
i∈N

Wi ⊖ Ǩ. In this case, we say that {Wi}i∈N

expands to X and we shall write Wi ↑ X.

Proof. At first note that X =
⋃

i∈N
Int Wi and for any i ∈ N, Wi ⊆ Wi+1.

Let x ∈ X and K ∈ F
′
k. Note that, x +K ∈ F

′
k is a compact set. Then there

exists a finite family of indices I ⊂ N such that, if N = max I, then

x+K ⊆
⋃

j∈I

Int Wj = Int WN .

Hence, we have that x ∈ Int WN ⊖ Ǩ ⊆ WN ⊖ Ǩ, i.e., for any x ∈ X, there
exists n0 ∈ N such that x ∈ Wn0

⊖ Ǩ. �

Let W ∈ {Wi}i∈N
be an observation window and let us denote by YW and

XW , the (random) observation of Y and X through W , i.e. Y ∩W and X ∩W
respectively. Let us consider the estimator of G given by the maximal XW –
decomposition of YW :

ĜW =
(
YW ⊖ X̌W

)
(4)

so that XW ⊕ ĜW ⊆ YW ⊆ W . Notice that, whenever Y and X are bounded,

then there exists Wj ∈ {Wi}i∈N
such that Y ⊆ Wj and X̌ ⊆ Wj , hence ĜWj

=

Y ⊖ X̌ = G. In other words, on the set {ω ∈ Ω : X(ω), Y (ω) bounded}, the
estimator (4) is consistent

ĜWi
(Y,X |Y,X bounded) → G, as Wi ↑ X;

otherwise, as we already said, if Y and X are unbounded, edge effects may cause
problems and the estimator (4) is, in general, not consistent as we discussed in
the following example.

7



Example 3.2. Let X = R
2, let us consider X = ({x = 0} ∪ {y = 0}) and

Y = X + B(0, 1) where B(0, 1) is the closed unit ball centered in the origin.
Surely X ⊂ Y , and they are unbounded. Note that Y = (X + G) for any G
such that ({0} × [−1, 1] ∪ [−1, 1]× {0}) ⊆ G ⊆ B(0, 1). On the other hand, by
Proposition 2.2, there exists a unique G that is the greatest set, with respect to
set inclusion; in this case G = [−1, 1]× [−1, 1].
Let us suppose 0 ∈ W0 and let W ∈ {Wi}i∈N

, then, by Equation (4), the

estimator of G is ĜW = {0} 6= G. This is an edge effect due to the fact that,
for every G′ with {0} ⊂ G′ ⊆ G, it holds (XW +G′) ∩ WC 6= ∅ and then
XW +G′ 6⊆ YW that does not agree with Proposition 2.2.

Edge effects can be reduced by considering the following estimators of G

Ĝ1
W =

(
YW ⊖ X̌W⊖Ǩ

)
∩K, (5)

Ĝ2
W =

([
YW ∪

(
∂+K
W XW

)]
⊖ X̌W

)
∩K; (6)

where K is given in Assumption (A-2) and where
(
∂+K
W XW

)
= (XW +K) \W .

The role of K will be clarified in Proposition 3.3 where it guarantees the
monotonicity of Ĝ1

W . Note that, estimators (5) (6) are bounded (i.e. com-

pact) RaCS, moreover, if Y and X are bounded, then Ĝ1
Wj

, Ĝ2
Wj

eventually

coincide with the estimator (4); i.e. there exists n0 such that for all j ≥ n0,

ĜWj
= Ĝ1

Wj
= Ĝ2

Wj
= G.

Let us explain how Ĝ1
W and Ĝ2

W work. Estimator Ĝ1
W is obtained by reducing

the information given by X to the smaller window W ⊖ Ǩ, whilst Y is observed
in W . Then Ĝ1

W is the greatest subset of K, with respect to set inclusion,

such that XW⊖Ǩ + Ĝ1
W ⊆ YW (see Proposition 2.2). Estimator Ĝ2

W is obtained

by observing X in W (and not W ⊖ Ǩ), whilst Y is increased (at least) by(
∂+K
W XW

)
, that is the greatest possible set of growth for X outside of the

observed window W . Then Ĝ2
W is the greatest subset of K, with respect to set

inclusion, such that (XW +Ĝ2
W )∩W ⊆ YW , or, alternatively, XW +Ĝ2

W ⊆ YW ′ ,
where YW ′ = YW ∪

(
∂+K
W XW

)
(see Proposition 2.2).

Note that by definition of Minkowski Subtraction

Ĝ1
W =

⋂
x∈XW⊖Ǩ

x+ ((−x+K) ∩ YW ) ,

Ĝ2
W =

⋂
x∈XW

x+ ((−x+K) ∩ YW ′) ;

i.e. every x ∈ XW⊖Ǩ (resp. x ∈ XW ) “grows” at most as (−x+K)∩YW (resp.
(−x+K) ∩ YW ′ ).

Now, we are ready to show the consistency property of Ĝ1
Wi

and Ĝ2
W . In partic-

ular, Proposition 3.3 proves that Ĝ1
Wi

decreases, with respect to set inclusion,
to the theoretical G, whenever Wi expands to the whole space (Wi ↑ X). Propo-

sition 3.4 proves that, for every W ∈ F
′, Ĝ2

W is a better estimator than Ĝ1
W and

hence it is a consistent estimator of G.
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Proposition 3.3. Let Y , X be RaCS, let 0 ∈ G = Y ⊖ X̌ ⊆ K. The following
statements hold for Ĝ1

W :

(1) G ⊆ Ĝ1
W for every W ;

(2) Ĝ1
W2

⊆ Ĝ1
W1

if W2 ⊇ W1;

(3) If Wi ↑ X, then
⋂

i∈N
Ĝ1

Wi
= G. Moreover,

lim
i→∞

δH(Ĝ1
Wi

, G) = 0. (7)

Proof.
(1) Since 0 ∈ K,

⋂
k∈K −k +W = W ⊖ Ǩ ⊆ W and then XW⊖Ǩ ⊆ W . Let

g ∈ G, then g + X ⊆ Y . Since g ∈ K, last inclusion still holds when X and
Y are substituted by XW⊖Ǩ and YW respectively: g + XW⊖Ǩ ⊆ YW . Thus

g ∈ Ĝ1
W follows by Equation (5) and Proposition 2.2.

(2) In order to obtain Ĝ1
W2

⊆ Ĝ1
W1

, it is sufficient to prove that

XW1⊖Ǩ + Ĝ1
W2

⊆ YW1
(8)

since Ĝ1
W1

is the greatest set, with respect to set inclusion, for which the inclusion

(8) holds. In fact, W1 ⊖ Ǩ ⊆
(
W1 ⊖ Ǩ

)
+K ⊆ W1 ⊆ W2, then XW1⊖Ǩ ⊆ XW2

.

Let x ∈ XW1⊖Ǩ = X ∩
(
W1 ⊖ Ǩ

)
, then x ∈ XW2

. By definition of Ĝ1
W2

, we
have

x+ Ĝ1
W2

⊆ YW2
⊆ Y.

On the other hand, since x ∈ W1 ⊖ Ǩ and Ĝ1
W2

⊆ K, we have

x+ Ĝ1
W2

⊆
(
W1 ⊖ Ǩ

)
+K ⊆ W1;

i.e. x+ Ĝ1
W2

is included both in Y and in W1.

(3) Since G ⊆
⋂

i∈N
Ĝ1

Wi
, it remains to prove that

⋂

i∈N

Ĝ1
Wi

⊆ G;

i.e. if g ∈ Ĝ1
Wi

for each i ∈ N, then g ∈ G. Take g ∈
⋂

i∈N
Ĝ1

Wi
. By definition of

Ĝ1
W1

, we have
g + x ∈ Y for all x ∈ XWi⊖Ǩ and ∀i ∈ N. (9)

By contradiction, assume g 6∈ G. Then g +X 6⊆ Y , i.e. there exists x ∈ X such
that (g + x) 6∈ Y . On the one hand, Proposition 3.1 implies that there exists
j ∈ N such that x ∈ Wj⊖Ǩ. On the other hand, Equation (9) implies g+x ∈ Y
which is a contradiction. Thus Theorem 1.1.18 in [20] implies (7). �

Proposition 3.4. For every W ∈ F
′, G ⊆ Ĝ2

W ⊆ Ĝ1
W .
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Proof. Let us divide the proof in two parts; in the first one we prove that
Ĝ2

W ⊆ Ĝ1
W , in the second one that G ⊆ Ĝ2

W . Let g ∈ Ĝ2
W and x ∈ XW⊖Ǩ .

Since Ĝ2
W ⊆ K, we have

x+ g ∈
(
W ⊖ Ǩ

)
+ Ĝ2

W ⊆
(
W ⊖ Ǩ

)
+K ⊆ W ; (10)

where we use properties of monotonicity of the Minkwoski Subtraction and Sum.
Moreover, by definition of Ĝ2

W ,

x+ g ∈ YW , or x+ g ∈
(
∂+K
W XW

)
⊆ WC .

By (10), x + g ∈ YW . The arbitrary choice of x ∈ XW⊖Ǩ completes the first
part of the proof. For the second part, let g ∈ G and x ∈ XW . By definition of
G, x+ g ∈ Y . We have two cases:
- x+ g ∈ W , and therefore x+ g ∈ YW ,
- x+ g 6∈ W . Since x ∈ XW , x+ g ∈ (XW +G) \W ⊆

(
∂+K
W XW

)
. �

Corollary 3.5. Ĝ2
W is consistent (i.e. Ĝ2

W ↓ G whenever W ↑ X).

In Figure 2, we consider two pictures of a simulated birth–and–growth process,
at two different time instants, that in our notations are X and Y . In the same
figure, emphasizing the differences, we report here the magnified pictures of the
true growth used for the simulation, the computed Ĝ2

W , Ĝ1
W and Ĝ1

W⊖Ǩ
. Note

that they agree with Proposition 3.3 and Proposition 3.4 since Ĝ1

W⊖Ǩ
⊇ Ĝ1

W ⊇

Ĝ2
W .

A General Definition of Ĝ2
W . The following proposition shows that the

estimator in (6) can be defined in an equivalent way by

Ĝ2
W (Z) =

{[
YW ∪

(
∂+K
W Z

)]
⊖ X̌W

}
K
;

where
(
∂+K
W X

)
in (6) is substituted by

(
∂+K
W Z

)
with

X
W\(W⊖Ǩ) ⊆ Z ⊆ W. (11)

In other words, we are saying that, under condition (11), Ĝ2
W (Z) does not

depend on Z. From a computational point of view, this means that Z can be
chosen in a way that reduces the computational costs. On the one hand, the
best choice of Z seems to be the smallest possible set, i.e. Z = X

W\(W⊖Ǩ). On

the other hand, in order to get X
W\(W⊖Ǩ), we have to compute

(
W ⊖ Ǩ

)
that

may be costly if at least one between W and K has a “bad shape” (for instance
it is not a rectangular one).

Proposition 3.6. If Z1, Z2 ∈ P′ both satisfy condition (11), then Ĝ2
W (Z1) =

Ĝ2
W (Z2).
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Figure 2: Two pictures of a simulated birth–and–growth process at two different time instants
(X and Y ). The magnified pictures of the true growth used for the simulation, the computed

Ĝ2

W
, Ĝ1

W
and Ĝ1

W⊖Ǩ
.

Proof. It is sufficient to prove:
(1) Z1 ⊆ Z2 implies Ĝ2

W (Z1) ⊆ Ĝ2
W (Z2);

(2) Ĝ2
W (W ) ⊆ Ĝ2

W

(
X

W\(W⊖Ǩ)

)
.

In fact, (1) and (2) imply that Ĝ2
W (W ) = Ĝ2

W

(
X

W\(W⊖Ǩ)

)
. At the same time

they imply Ĝ2
W (Z) = Ĝ2

W

(
X

W\(W⊖Ǩ)

)
holds for every Z that satisfies (11);

that is the thesis.
STEP (1) is a consequence of the following implications

Z1 ⊆ Z2 ⇒ Z1 +K ⊆ Z2 +K,

⇒ YW ∪ [(Z1 +K) \W ] ⊆ YW ∪ [(Z2 +K) \W ] ,

⇒ Ĝ2
W (Z1) ⊆ Ĝ2

W (Z2);

where the last one holds since X1 ⊖ Y ⊆ X2 ⊖ Y if X1 ⊆ X2 (see [31]).

Before proving the second step, we show that Ĝ2
W (Z) = Ĝ2

W

(
Z
W\(W⊖Ǩ)

)
for

all Z that satisfies (11). This statement is true if
(
Z
W\(W⊖Ǩ) +K

)
\W and

(Z +K)\W are the same set. Since Minkowski sum is distributive with respect
to union, we get

(Z +K) \W =
[(

Z
W\(W⊖Ǩ) ∪ ZW⊖Ǩ

)
+K

]
\W

=
[(

Z
W\(W⊖Ǩ) +K

)
\W

]
∪
[(
ZW⊖Ǩ +K

)
\W

]
.

11



Then we have to prove that
[(
ZW⊖Ǩ +K

)
\W

]
= ∅ :

(
ZW⊖Ǩ +K

)
\W =

{[
Z ∩

(
W ⊖ Ǩ

)]
+K

}
\W

⊆
{
(Z +K) ∩

[(
W ⊖ Ǩ

)
+K

]}
\W

⊆ [(Z +K) ∩W ] \W = ∅.

STEP (2). Since Ĝ2
W (XW ) = Ĝ2

W

(
X

W\(W⊖Ǩ)

)
, thesis becomes Ĝ2

W (W ) ⊆

Ĝ2
W (XW ). Let g ∈ Ĝ2

W (W ). We must prove g ∈ Ĝ2
W (XW ), i.e. for every

x ∈ XW

g + x ∈ YW , or g + x ∈ (XW +K) \W.

Since g ∈ Ĝ2
W (W ), for any x ∈ XW we can have two possibilities

(a) g + x ∈ YW ,
(b) g + x ∈ (W +K) \W .
It remains to prove that (b) implies g + x ∈ (XW +K) \W . In particular, (b)
implies g+x ∈ WC . At the same time g+x ∈ XW+K, i.e. g+x ∈ (XW +K)\W .
�

4. Hitting Function Associated to B

In many practical cases, an observer, through a window W and at two differ-
ent instants, observes the nucleation and growth processes namely X and Y .
According to Section 3 we can estimate G via the consistent estimator Ĝ2

W

or Ĝ1
W (in the following we shall write ĜW meaning one of them). From the

birth–and–growth process point of view, it is also interesting to test whenever
the nucleation process B = {Bn}n∈N

is a specific RaCS (for example a Boolean
model or a point process). In general, we cannot directly observe the n–th nu-
cleation Bn since it can be overlapped by other nuclei or by their evolutions.
Nevertheless, we shall infer on the hitting function associated to the nucleation
process TBn

(·). Let us consider the decomposition given by (2) Y = (X+G)∪B
then the following proposition is a consequence of Remark 1.1.

Proposition 4.1. If (G,B) is a X–decomposition of Y such that B is inde-
pendent on X and on G, then, for each K ∈ Fk,

TY (K) = TX+G (K) + TB (K)− TX+G (K)TB (K) ,

that, in terms of Q·(K) = (1− T· (K)), is equivalent to

QY (K) = QB(K)QX+G(K).

In other words, the probability for the exploring set K to miss Y is the proba-
bility for K to miss B multiplied by the probability for K to miss X +G.

Remark 4.2. Working with data we shall consider two estimators of the hit-
ting function (we refer to [24, p. 57–63] and references therein). In particular,

12



if X is a stationary ergodic RaCS, then TX(·) can be estimated by a single
realization of X and two empirical estimators are given by

T̂X,W (K) =
µλ

((
X + Ǩ

)
∩ (W ⊖K0)

)

µλ (W ⊖K0)
, K ∈ Fk;

where µλ is the Lebesgue measure on X = R
d and K0 is a compact set such

that K ⊂ K0 for all K ∈ Fk of interest.

A regular closed set in X is a closed set G ∈ F
′ for which G = Int G; i.e. G is

the closure (in X) of its interior.

Proposition 4.3. Let G ∈ F
′
k be a regular closed subset in X. Then, for every

X ∈ F
′, X +G is a regular closed set.

Proof. Since X +G is a closed set, Int (X +G) ⊆ X +G. It remains to prove
that X +G ⊆ Int (X +G). Let y ∈ X +G, then there exists x ∈ X and g ∈ G
such that y = x + g. If g ∈ Int G, then there exists an open neighborhood of g
for which U(g) ⊆ Int G and x+U(g) is an open neighborhood of x+ g included
in X +G; i.e. x+ g ∈ Int (X +G). On the other hand, let g ∈ ∂G = G \ Int G,
then there exists {gn}n∈N

⊂ G such that gn → g and gn ∈ Int G, for all
n ∈ N. Thus, for every n ∈ N, x + gn is an interior point of X + G and
x+ gn → x+ g ∈ Int (X +G). �

Proposition 4.4. (See [24, Theorem 4.5 p. 61] and references therein) Let
X be an ergodic stationary random closed set. If the random set X is almost
surely regular closed

sup
K ∈ Fk
K ⊆ K0

∣∣∣T̂X,W (K)− TX(K)
∣∣∣ → 0, a.s. (12)

as W ↑ X and for every K0 ∈ F
′.

Remark 4.5. Proposition 4.3, together to Equation (1) means that, if {Gn}n∈N

is a sequence of almost surely regular closed sets, then {Θn}n∈N
is so.

The following Theorem shows that the hitting functional QB of the hidden
nucleation process can be exstimated by the observable quantity Q̃B,W , where
for every K ∈ Fk,

Q̃B,W (K) :=
Q̂Y,W (K)

Q̂
X+Ĝ

W
,W

(K)
, (13)

and ĜW is given by (5) or (6).

Theorem 4.6. Let X,Y be two RaCS a.s. regular closed. Let (G,B) be a X–
decomposition of Y with B a stationary ergodic RaCS independent on G and X .
Assume that G is an a.s. regular closed set and Q̃B,W defined in Equation (13).
Then, for any K ∈ Fk,

∣∣∣Q̃B,W (K)−QB(K)
∣∣∣ −→
W↑X

0, a.s.
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Proof. Let K ∈ Fk be fixed. For the sake of simplicity, Q·, Q̃· and Q̂· denote
Q·(K), Q̃·,W (K) and Q̂·,W (K) respectively. Thus,

∣∣∣Q̃B −QB

∣∣∣ =

∣∣∣∣∣∣
Q̂Y

Q̂
X+Ĝ

W

−
QY

QX+G

∣∣∣∣∣∣
=

∣∣∣∣∣∣

Q̂Y QX+G −QY Q̂X+Ĝ
W

Q̂
X+Ĝ

W

QX+G

∣∣∣∣∣∣
.

Since Y ⊇ X + ĜW , Q̂
X+Ĝ

W

> Q̂Y . Accordingly to (12), Q̂Y converges to QY

that is a positive quantity. Thus, thesis is equivalent to prove that
∣∣∣Q̂Y QX+G −QY Q̂X+Ĝ

W

∣∣∣ → 0, a.s.

as W ↑ X. The following inequalities hold
∣∣∣Q̂Y QX+G −QY Q̂X+Ĝ

W

∣∣∣ ≤ QX+G

∣∣∣Q̂Y −QY

∣∣∣+QY

∣∣∣QX+G − Q̂
X+Ĝ

W

∣∣∣

≤ QX+G

∣∣∣Q̂Y −QY

∣∣∣+QY

∣∣∣QX+G −Q
X+Ĝ

W

∣∣∣

+QY

∣∣∣QX+Ĝ
W

− Q̂
X+Ĝ

W

∣∣∣ .

Proposition 1.2 and Proposition 4.3 guarantee that X+G is a stationary ergodic
RaCS and a.s. regular closed, then we can apply (12) to the first and the third
addends. It remains to prove that

∣∣∣QX+G −Q
X+Ĝ

W

∣∣∣ → 0 as W ↑ X. (14)

Since Minkowski sum is a continuous map from F× Fk to F (see [31]), ĜW ↓ G

a.s. implies X+ĜW ↓ X+G a.s. As a consequence, we get that X+ĜW ↓ X+G
in distribution [29, p. 182], which is Equation (14). �

5. Conclusions

Fuzzy monotone set–valued stochastic processes can be used to describe crystal
growth processes. In this framework, α–level sets, modeled as birth–and–growth
process, are considered to analyze statistical aspects of crystal process.
In this paper, statistical aspects of α–level sets have been considered; in partic-
ular, consistent estimators have been provided for a general birth–and–growth
stochastic process. A pure geometrical approach reduces the estimation of a
growth process to simple operations among sets. At the same time, consistent
estimators for the hitting function of nucleation process have been also provided.
Finally, we want to suggest some possible future developments. It may be
interesting to define a continuous time set–valued stochastic process modeling
birth–and–growth process, as a natural extension of the discrete time process in
Section 2. Moreover, it may be interesting to define new mathematical models
for fuzzy monotone set–valued stochastic process, in order to study distributions
of estimators and to construct confidence intervals for the model parameters.
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