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Abstract This paper presents new methods for synthesizing
results from subgroup andmoderation analyses across different
randomized trials. We demonstrate that such a synthesis
generally results in additional power to detect significant
moderation findings above what one would find in a single
trial. Three general methods for conducting synthesis analyses
are discussed, with two methods, integrative data analysis and
parallel analyses, sharing a large advantage over traditional
methods available in meta-analysis. We present a broad class

of analytic models to examine moderation effects across trials
that can be used to assess their overall effect and explain
sources of heterogeneity, and present ways to disentangle
differences across trials due to individual differences, contex-
tual level differences, intervention, and trial design.
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Introduction

Through the use of meta-analysis (Durlak and Wells 1997;
Faggiano et al. 2005, 2008; Tobler 1986) and scientific
reviews (Elliott and Mihalic 2004; O’Connell et al. 2009)
that are applied to findings from randomized trials testing
specific interventions, we now have identified a large number
of programs or interventions that have been shown to be
efficacious or effective in the prevention of mental disorders,
drug abuse, and delinquency. A set of generally accepted
procedures has emerged to guide the searching for trials,
coding of trial results, steps in conducting meta-analysis, and
summarization of evidence (Higgins and Green 2008).
Generally, the three major dimensions used to make these
decisions about evidence are based on 1) the statistical
magnitude of overall impact on a targeted behavioral
outcome, 2) determining whether the trial was designed
and conducted with sufficient quality to support causal
conclusions, and 3) evaluating the replicability of findings
across multiple trials of the same or similar intervention.
Such information has served as the basis for selecting
evidence-based programs for wide-scale dissemination and
implementation (Brown et al. 2007), although different
review groups vary in the criteria they require interventions
to meet across these three dimensions (Flay et al. 2005).

One limitation of this current system for determining which
programs meet standards of evidence is that it does not
account for how programs may benefit, or potentially harm,
subgroups within a defined population. A related limitation is
that these evaluations do not describe whether or to what
extent intervention effects vary across contexts. There are
numerous examples of interventions that affect subjects
differently based on their own baseline risk (Brown and Liao
1999; Brown et al. 2008a, b; Tein et al. 2004; Wolchik et al.
2007), that produce iatrogenic effects with adolescents who
learn deviant behavior (Dishion et al. 1996, 1999, 2001), or
that show differential effects across community settings (Van
Horn et al. 2009). Such knowledge would be valuable in
identifying interventions that address differing risk and
protective factors, mediational pathways, cultural factors, or
community preferences and resources. Traditional summa-
rizations of evidence need extending to allow delivery of
interventions that match community and individual needs,
preferences, and likelihood of receiving benefit.

In this paper, we provide a methodologic perspective on
how to use multiple randomized trials to understand how an
intervention’s effect varies or remains constant across indi-
viduals and contexts. We show that single trials are generally
underpowered to examine variation in impact, and combining
data across multiple randomized trials can increase statistical
power for modeling variation in impact. Combining such
moderation data, however, requires new analytic models for
synthesizing findings, different ways of decomposing sources

of variation across trials, and alternative ways of combining
data based on the degree that data can be shared.

We use the broad term of “variation in impact” to refer to
individual or contextual factors at baseline that affect the
relationship between intervention and outcome. These
sources can be measured quantities or attributes, such as
age or gender, or unmeasured characteristics, whose
presence can only be inferred indirectly by identifying a
significant source of variation in impact through mixture
models or multilevel modeling. The term “moderation” will
refer only to variation in impact through measured baseline
variables. These moderators can be at the individual level,
such as age or ethnicity, or across measured cultural or
contextual factors, such as neighborhood rates of underage
drinking. Moderation is generally tested with interaction
terms involving a covariate and intervention status. The
term “heterogeneity” will refer to sources of variation that
are present but not clearly identified. For example, when an
intervention’s impact varies significantly across a set of
trials or the interaction of gender and intervention status on
outcome varies significantly across trials, we refer to either
of these as displaying heterogeneity of effects. In this paper,
we use the specialized term “subgroup analyses” to refer to
a restricted set of analyses where intervention effect is
examined only within a subset of the sample (e.g., males)
and no attempt is made to assess the comparative effect of
the intervention across different subsets.

This paper addresses several important methodologic
challenges in identifying and quantifying moderation
effects of interventions. The foremost challenge is that
moderation effects are difficult to assess because these
baseline by intervention interaction analyses are very often
underpowered in a single randomized trial. We first
determine conditions under which there are gains in power
when using data from multiple trials compared to a single
trial. Our development is based on short statistical argu-
ments for the general reader; footnotes buttress these short
presentations with more details on these statistical argu-
ments. We then present a new, general multilevel approach
for decomposing moderator effects both within and be-
tween trials. These analytic models for synthesis of
moderator effects are only useful when two problems can
be solved. First, we need to be able to distinguish
functionally different reasons for variation within and
across trials. Do the outcomes from two trials differ from
underlying differences in growth patterns, or merely from
different measurement times for outcomes in the two
studies? Our approach involves growth modeling, and, in
particular, multilevel growth mixture modeling to calibrate
change across trials with different follow-up times. The
second challenge in using these models is that they require
access to data of sufficient depth within each trial and
sufficient breadth of data across trials to carry out these types
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of moderator analyses. We present three alternative
approaches to combining data across trials based on the level
of data sharing available, and we compare their strengths and
weaknesses. In our conclusion, we give guidance on when to
use these methods and their limitations.

What Do We Want to Achieve from Moderator
Analyses?

Often embedded in many etiologic theories are specific
hypotheses about moderation. Our theory of change that
underlies how we believe an intervention should work
often leads to a priori moderation hypotheses. For
prevention science, the fundamental paradigm involves
identifying antecedent risk and protective factors leading
towards a target outcome, then applying an intervention
to interrupt the risk process or strengthen protective
factors (Coie et al. 1993; Howe et al. 2002; Kellam and
Langevin 2003). This general framework suggests exam-
ining the degree to which risk or protective factors
moderate an intervention’s effect. For universal interven-
tions that target early risk behaviors within a develop-
mental epidemiologic perspective, in which normative
systems such as classrooms and schools are used to
reinforce prosocial behavior, we would predict that the
most benefit will occur among those with an expressed
risk factor at baseline (Brown et al. 2008a; Dolan et al.
1993; Ialongo et al. 1999, 2001; Kellam et al. 1999, 2008).

We are often interested in examining the preventive
effects on low- and high-risk youth separately. Thus a
middle school-based drug prevention program may have
different effects on those who already use substances at
baseline versus those who do not. An intervention
designed primarily to address only one of these sub-
groups, say to prevent initiation, may have negative
effects on the other subgroup of users. In fact, one of the
criticisms of the original DARE program was that the
delivery of the program by police officers might alienate
those youth who were already engaged in deviant
behavior (Ennett et al. 1994). In a recent trial that used
DARE officers with an updated curriculum, such early
deviant youth were more engaged, but this program may
have inadvertently heightened later drug experimentation
among those who did not use substances at baseline
(Sloboda et al. 2009).

Power to Study Moderation of Intervention Effects

Most trials are powered to detect main effects, so we briefly
discuss how the power for moderation analysis relates to
that for main effects. Comparison of power hinges on the

comparison of standard errors for main effect and moder-
ation estimators.1 Consider testing for a main effect of
intervention with traditional error rates (α=0.05, β=0.2)
and two-sided testing. For a continuous outcome with equal
numbers of individuals assigned to intervention or control,
one needs 126 total subjects when the standardized mean
difference or effect size is large (ES=0.5) and 350 subjects
when the effect size is more modest (ES=0.3). The test
statistic compares the difference in sample means for
treatment (t) and control (c), Xt � Xc to the main effect
(ME) standard error,

seMEðIndividual Randomized TrialÞ ¼ 2bs= ffiffiffiffi
N

p
ð1Þ

where N is the total sample size and bs is the standard
deviation estimate.

For moderator or interaction effects involving a binary
baseline measure, say gender, we would compare the mean
differences in intervention effect for males, X tm � X cm, to
that for females, X tf � X cm, where the second subscript
refers to gender. The standard error of this interaction (Int)
ES, depends on the proportion of males, p;

seIntðIndividual Randomized TrialÞ ¼ 2bs= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞN

p
:

ð2Þ
A comparison of (1) and (2) shows that the standard

error for the interaction term is larger by a factor of
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp

. For all possible values of the proportion of
males, this factor is always larger than 2, and since power
depends inversely on the square of the standard error, one
would need at least four times the sample size to achieve
the same statistical power for testing an interaction that has
the same ES as that for a main effect. That means, for an
interactive ES of 0.5, the sample size would need to be at
least 504 rather than 126, and for an interactive ES of 0.3,
the sample size would need to exceed 1400 rather than 350.
If the proportion who are in the subgroup is far from 1/2,
this would require much more than four times the sample
size as that for the main effect analysis.

Statistical Power for Testing Moderator Effects in Group
Based Trials In group-based randomized trials, moderator
analyses lose less power compared to main effect
analyses. Consider conducting a group randomized trial,
say when intervention is assigned at the school, class-
room, or community level, and we are examining an
individual level baseline variable, such as gender, for its
moderating effect. In this case, the standard error
depends in a more complex way on the number of

1 Our argument below provides a partial justification due to space; the
complete proof involves formulas for power based on noncentrality
parameters, which in turn depend on sample size.
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groups or units that are randomized (M), the number of
subjects within each unit (N), all of whom receive the
same intervention condition, and the two sources of
variance, between (b) and within (w) groups.

seMEðGroupRandomized TrialÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
bs2
B

M
þ 2

bs2
W

N

r

seIntðGroup Randomized TrialÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
bs2
B

M
þ 2

bs2
W

pð1� pÞN

s
:

Note that only the second term in these expressions is
changed when we turn to tests of interaction. In school-based
randomized trials where the number of units M is relatively
small, the number of subjects per unit is moderate or large, and
the intraclass correlation (ICC) is fairly large, changes in this
second term have less effect on the standard error. As an
example, with M=12 schools, N=200 subjects per school,
and an ICC of 0.05, the standard error for the interaction is
40% larger than that for the main effect, compared to 100%
larger for an individual based trial. As we increase the
number of subjects per school, the power for testing
interactions in group randomized designs approaches that
for testing a main effect. A similar situation occurs when
there is randomization within blocks, such as a school, where
subjects within the same school are assigned to either
intervention or control conditions (Brown and Liao 1999).
This situation is analogous to combining multiple randomized
trials, where each trial forms a block and there are both
intervention and control subjects in each block; consequently
this case is covered below under our discussion of integrative
data analysis.

Because sample sizes for trials are almost universally
based on detecting significant main effects, few of these
trials have any real hope of finding significant moderator
effects when they are small to moderate.2 This basic result
has pushed us to consider more powerful moderating
analyses involving multiple randomized trials.

When Can the Use of Multiple Randomized Trials
Increase Statistical Power for Moderator Analyses?

We next examine conditions under which combining data
from multiple trials increases power to detect moderation.
Our approach to this problem is to model the interactions
in each of the j trials in a hierarchical fashion. At the first
level, let the individual level response Yij of subject i
within trial j, depend on the same covariate Xij and
treatment condition Tij, and their interaction term, XijTij
representing a moderating effect, with separate coefficients
for each trial,

Yij ¼ aj þ a0j Xij þ a1j Tij þ bjXijTij þ "ij: ð3Þ

Here the last term expresses individual level error with
mean 0 and within trial variance s2

W . At the second level
we assume that the moderator effect for the jth trial, bj has a
normal distribution with mean b and variance s2

b. For a
single trial based on N subjects equally allocated to
intervention or control, the standardized (Var(X)=1) esti-
mate bbj of the interaction has variance

4s2
W

NVarðX Þ The estimator
for the common interaction effect b, obtained from a two-
level analysis involving M trials, has variance

s2
b

M þ 4s2
W

NMVarðX Þ
Thus the precision of the two-level estimator that synthe-
sizes the findings from multiple trials will be higher than
that for a single trial whenever

s2
b=s

2
W <

4ðM � 1Þ
N

: ð4Þ

In words, the left-hand side of this inequality compares
the between-trial variance to within-trial variance while the
right-hand side depends only on the number of trials and
subjects per trial. A synthesis will have increased precision
over that of a single trial when the between variance is
small, or the number of trials relative to number of subjects
is large. A quick way to compare this is based on the size of
the ICC, s2

b=ðs2
b þ s2

W Þ, applied to Eq. 4. As long as the

ICC is less than 4ðM�1Þ
N , we are guaranteed to increase

precision for moderation by combining results across
trials.3 It is rare for ICC’s to exceed 5%, so combining
results from just two trials is nearly certain to increase
power if there are 80 or fewer subjects in a trial. For four
trials a synthesis will increase power for moderation as long
as there are less than 240 subjects per trial. Thus, most
often the combination of even a small number of trials is
likely to provide gains in precision over that in a single
trial.

2 The development in this part of the text is limited to interactions
involving a binary covariate. The power for detecting a linear
interaction with a continuous baseline measure can be compared to
that of the main effect once a common calibration of “effect size” is
established. Our choice is to scale the treatment variable to have the
same variance as that of the continuous variable. The regression
coefficient of the interaction term measures the difference in response
under intervention and control for two covariate values separated by 1
standard deviation, i.e. ESInter ¼ EðY jT ¼ 1;X ¼ 1Þ � EðY jT ¼
0;X ¼ 1Þ � EðY jT ¼ 1;X ¼ 0Þ � EðY jT ¼ 0Þ � EðY jT ¼f
0;X ¼ 0Þg.To achieve the same power for detecting an effect size,
ESME for the main effect in a trial with equal allocations to
intervention and control, we require ESInter ¼ 2ESME . This is the
identical result for the case of a dichotomous moderator variable
presented in the text.

3 In this argument we have ignored the differences in smaller degrees
of freedom needed to test for this interaction effect across trials;
nevertheless, the relationship ICC < 4(M-1)/N is still a very
conservative bound.
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Modeling of Variation in Impact Within and Across
Randomized Trials

Any synthesis of intervention findings across trials needs
to identify the sources of variation that can be explained
by covariates as well as those remaining unexplained. We
recommend a synthesis approach that not only obtains a
combined overall estimate of a moderator effect but also
examines alternative sources of heterogeneity in these
moderating effects both within and across trials. In this
section, we present general modeling approaches using
the notation of latent classes and covariates in two-level
modeling. To make these ideas concrete, we consider
combining data from multiple trials of a school-based
intervention for preventing drug abuse. Each trial
randomly assigns schools to receive the intervention or
serve as a control. One can consider the moderator as
individual-level smoking at baseline and the outcome as
the frequency of marijuana use at follow-up. Table 1
presents a set of general models that can distinguish shared
versus unique moderating effects (of baseline smoking)
that may be explained by measured or unmeasured
covariates at the trial level. For simplicity, we ignore
levels of clustering, such as the classroom or school, as
well as multiple outcomes in this table; these factors can
be added to our models, but they do not introduce any new
concepts. All these models in Table 1 assume that the
moderating effect is the same for everyone within each
trial. Table 2 extends these models by allowing the
moderating effects (of baseline smoking) within trials to
vary by measured or unmeasured variables as well. We use
bold font for emphasis.

The first column in Table 1 is built on the same two-
level model as in Eq. 1, with trial level random effects for
intercept aj, covariate (baseline smoking status) aj

0,
treatment main effects aj

1 and treatment by (baseline
smoking) covariate moderating effects bj. All four of these
random effects may not be needed in every synthesis
analysis, but tests of heterogeneity across trials can be
used to determine which of these need to be modeled as
random effects rather than fixed effects. The primary test
for heterogeneity of moderation is shown at the bottom of
Column 1. Here we would test for non-zero variance of the

trial-level moderating effect, Ha: Var(bj) > 0. This will
determine whether there is any unexplained trial level
heterogeneity in comparing the intervention’s effect on
baseline smokers vs. nonsmokers. No heterogeneity would
indicate a consistent variation in effects for smokers versus
nonsmokers.

If there is heterogeneity, we have several ways to
decompose this effect further. A portion of this heteroge-
neity may be attributed to measured characteristics of the
trial or Zj, as indicated in the second column of Table 1. To
make this model concrete, Z could measure a community’s
norms against youth smoking. The coefficient β1 measures
the strength of this trial-level covariate in explaining
variation in the effect of an individual-level moderator Xij

(baseline smoking status) across trials. We can also test to
see whether trial-level variation in moderation by Xij is
sufficiently explained by trial-level covariate Zj. In
particular, support for this covariate (community norms
regarding smoking) explaining trial-level moderation is
found if we detect little remaining variance across trials,
Var(bj| Zj) > 0, once we condition on this trial-level
covariate.

We can delve further in our assessment of trial-level
variation in the effects of this moderator. Variation in
impact (as a function of smoking status) may also be related
to unmeasured characteristics of trials, rather than the
measured trial-level covariate Zj in Column 2. A latent
class variable at the trial level is introduced in Column 2, to
cluster trials where the moderator effects are similar.
Specifically, a set of trial-level latent classes indexed by c
are posited, with the proportion of each class given by πc.

One possibility is that trials are conducted is some areas
where marijuana use in high school is tolerated and others
where it is not, but we have no data on this unmeasured
covariate. Then the moderator effect of Xij (baseline
smoking) within trial j is given by bj, which shares a
common mean θ(c) across trials in the same latent class
(e.g., in regions where there is low tolerance of marijuana
use). It is possible to add additional trial-level covariates to
this model involving latent classes (Column 4). Here we
use a trial-level covariate Uj (say community arrest rate for
marijuana use) to predict that trial’s class membership,
which in turn predicts the trial’s moderator effect θ(c).

Table 1 Analytic models examining variation in moderation effects across trials

Total Heterogeneity across Trials Measured Trial-Level
Covariates

Related to Trial-Level Latent
Classes

Predictors of Trial-Level
Classes

Yij ¼ aj þ a0j Xij þ a1j Tij þ bjXijTij þ "ij bj = β0 + β1 Zj + εj Pr(Cj = c ) = πc logit Pr(Cj = c ) = λ0
(c) + λ1

(c)Uj

bj = θ + θ(c) + εi bj = θ + θ(c) + εi
Ha: Var(bj) > 0 Ha: β1 ≠ 0 Ha: θ

(c) ≠ 0 Ha: λ1
(c) ≠ 0

Ha: Var(bj| Zj) > 0
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These models can be fit using two-level models that
allow for covariates and discrete mixtures (Asparouhov
and Muthén 2008; Brown et al. 2008b; Muthén and
Asparouhov 2003a, 2008, 2009; Muthén and Muthén
2000).

Table 2 provides a similar set of models involving
individual-level variation (and by extension other levels
such as school) that are modeled to hold across all the
trials. Note that the variation of moderator effects in
Column 1 of Table 2, bij (difference in effect of
intervention by smoking status) is now treated as random
across all individuals and trials; in Table 1 they were
treated as constant within trials. Models such as these are
best fit when we have repeated outcome measures (e.g., of
marijuana use) so that growth modeling can be used to
assess changes over time using random slopes and growth
mixture modeling (Muthén and Asparouhov 2003a, b).
Another way in which significant heterogeneity can be
detected is to investigate how the variance depends on the
covariate (Klein and Muthén 2006), as indicated by the
alternative hypothesis at the bottom of Column 1 in
Table 2. Concretely, a finding that there is more variation
in growth trajectories of marijuana use among smokers
compared to non-smokers who are exposed to interven-
tion (v > 0) suggests an unexplained source of variation in
impact. The remaining parts of this table follow similarly
to that of Table 1. In particular, for the second column of
Table 2, we can use a measured individual-level covariate
(say affiliation with peer smokers) to explain how a
particular moderator (baseline smoking) influences this
outcome. This corresponds to a three-way interaction
between treatment, X, and Z. In the third column, we can
model variation in the moderator effect into distinct but
unobserved classes. Finally, in the last column these
classes are predicted by other measured covariates U. All
of these models can be examined using discrete mixtures
of random slopes within a latent class framework
(Muthén 2001; Muthén and Asparouhov 2003b; Muthén
and Muthén 2007; Muthén and Shedden 1999).

Using Growth Models to Address Different Times of
Measurement Across Trials A set of trials will rarely use
the exact same times of measurement for outcomes, so
one methodologic problem is to calibrate outcomes so

they are developmentally comparable. If all the trials use
the same instrument to measure response at multiple
periods of outcome but the observation times differ
across trials, then growth models can be used to
standardize the change in response through time. This
standardized coding allows intercepts and slopes to have
the same meaning across all trials. Let Yijt represent the
response of subject i in trial j at the tth time point. A linear
growth model specifies that these observations are the sum
of an individual linear component with random intercept
aij and slope bij, and a unique independent error εijt bout
this line,

Yijt ¼ aij þ bijt ijt þ "ijt

Here τijt is the tth time point of observation for this
subject. Even though time points may vary across the
trials, and across subjects within trials, the modeling of
how intercepts and slopes are affected by intervention
and other covariates provides a standardized way of
assessing change. In particular, a moderation model for
the slope that involves covariate X and intervention
condition T becomes,

bij ¼ g0 þ g1aij þ g2Xij þ g3Tij þ g4XijTij þ "ij:

In this last expression, the coefficient γ4 gives the
magnitude of this moderating effect. This model allows the
slope to be related to the subject’s own intercept, since
change is often correlated with one’s initial level. A
different type of model for moderation is one where the
initial level, or intercept, interacts with intervention condi-
tion. Here one’s change in outcome over time depends on
one’s latent intercept and intervention.

bij ¼ d0 þ d1aij þ d2Tij þ d3aijTij þ "ij:

The coefficient δ3 measures the differential effect of
intervention on the slope as a function of baseline level.
Analytic methods exist for fitting such models. In fact, to
obtain good quality fits to the data, we may need to include
more terms that allow the random slope to be affected
nonlinearly by one’s random intercept. The following

Table 2 Analytic models examining variation in moderation effects involving individual level factors consistent across trials

Total Heterogeneity of Moderation across
Individuals and Trials

Measured Individual-Level
Covariates

Related to Individual-Level
Latent Classes

Predictors of Individual-
Level Classes

Yij ¼ aþ a0ijXij þ a1ijTij þ bijXijTij þ "ij bij = β0 + β1 Zij + εj Pr(Cij = c ) = πc logit Pr(Cij = c ) = λ0
(c) + λ1

(c)Uij

bij = θ + θ(c) + εij
Ha: VarðbijjXijÞ ¼ uþ vX 2

ij ; v > 0 Ha: β1 ≠ 0 Ha: θ
(c) ≠ 0 Ha: λ1

(c) ≠ 0
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model provides a quadratic relationship between one’s
random intercept and slope.

bij ¼ d0 þ d1aij þ d2Tij þ d3aijTij þ d4a
2
ij þ d5a

2
ijTij þ "ij

By coding treatment status Tij as 1 for intervention and 0
for control, the coefficient δ4 expresses the quadratic
relationship of the intercept on the slope in the control
group, and δ5 as the difference in this quadratic relation-
ship between intervention and control. Thus δ3 and δ5
measure the moderating influence of the baseline level on
the slope. Computationally these models can be fit using
software in Mplus (Klein and Moosbrugger 2000; Muthén
and Asparouhov 2003b; Muthén and Muthén 1999).

Three Data-Sharing Strategies for Combining
Information Across Trials

In the previous section, we presented a range of analytic
models and methods that could be used in synthesizing
moderation findings across trials. The specific modeling
that can be done depends on the type of data that are
available from the different trials. This availability ranges
from published summaries of moderator analyses at one
extreme to fully available individual level data from all
trials at the other. The quality and precision of the
modeling will depend on the level of data and the
completeness of data that can be assembled, and this
availability depends on the level of data sharing. In this
next section we describe three strategies for combining
information across trials, based on the degree to which
data sharing occurs. We will find that two of these
strategies are quite useful in synthesizing findings about
moderation.

Standard Meta-Analysis of Moderator Effects with No
Sharing of Data Meta-analysis has been used as a tool for
synthesizing study results for more than 30 years (Glass
1976, 1977; Glass et al. 1981; Glass and McAtee 2006;
Glass and Smith 1978; Smith and Glass 1977) and is the
primary technology used in evidence-based medicine,
particularly by the Cochrane Collaboration (Higgins and
Green 2008). In its basic form, meta-analysis combines
published findings across similar studies by placing
summary statistics from each of these findings in a common
metric, such as an effect size (ES), a standardized mean
difference between intervention and control, or relative risk
(RR) type measure for dichotomous outcomes. These
provide a single measure of impact representing overall
effect across trials. Methods for assessing heterogeneity are
available (Cook 1992; Hedges and Olkin 1985; Wilson and

Lipsey 2003), including those involving random and
discrete mixtures (Brown et al. 2008b).

There has been extensive improvement in the meta-
analytic method over the years as it has been extended to
examine a range of topics, including the effects of
prevention programs on depression (Horowitz and Garber
2006; Jané-Llopis et al. 2003) and on mental health for
youth (Durlak and Wells 1997), as well as the effect of
antidepressants on symptom reduction (Bridge et al. 2007).
The method can greatly increase power to detect important
effects and reduce the risk to detect effects due to chance.
When Bridge and colleagues (2007) began their meta-
analysis of antidepressant effects, very few of the 27
existing randomized trials demonstrated significant find-
ings. By combining trials through meta-analysis, Bridge
and colleagues demonstrated a highly significant cross-
study effect (61% reduction on medication versus 50% on
placebo) that was not apparent in single trials.

Systematic review begins with a specification of inclu-
sion and exclusion criteria for trials, followed by an
extended search for such trials in the published and fugitive
literature, in order to avoid publication bias. Based on
information provided in these reports—and occasional
clarification with the research team—findings from each
trial are combined together by mean of the meta-analysis to
assess overall effects (Cooper 1999, 2010; Cooper et al.
2009; DerSimonian and Laird 1986; Hedges and Olkin
1985; Mosteller and Colditz 1996). An important strength
of this standard meta-analytic review is that great care is
taken to identify the complete universe of studies in order
to avoid publication bias in estimating an overall effect.
Unlike the other two methods described below, there is no
requirement for sharing of data for meta-analysis, so main
effect analyses for all trials contribute to the assessment of
overall intervention effects. If the meta-analysis uses a more
limited search, it will preferentially exclude trials with null
findings because these are less likely to be published or
known.

To conduct a meta-analysis of moderator effects, we
would make use of all findings of moderator analyses that
are taken from available reports. All those involving the
same variable or subgroup would then be combined with
standard meta-analytic techniques. Others have raised
concerns about the use of meta-analysis to examine
moderation (Kraemer et al. 2002; Lipsey 2003; Shadish
and Sweeney 1991), and we find there are two major
limitations with this approach, ones that are so problematic
that we do not recommend using this meta-analytic
summary strategy for moderation analyses. The first
problem is that while all trials can be expected to publish
main effect analyses, whether or not they are significant,
the same is not true with models involving interactions. It is
far more likely for significant interactions to be published
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and non-significant interactions to be absent from papers,
so publication bias in moderator analyses can be large. In
a recent meta-analysis on antidepressants, for example,
only 9 of 15 trials reported any analyses involving
duration of disorder and outcome, so fully 40% of these
trials were excluded from this moderation analysis
(Bridge et al. 2007).

The second problem with conducting meta-analyses on
moderation analysis is that such analyses can often be
conducted quite differently across studies, and therefore
these differences in the analytic model make it much more
difficult to combine findings. Figure 1a shows that the
synthesis step in meta-analysis relies exclusively on input
from published summaries that are out of the direct control

of the synthesis researchers. This can be especially
problematic when examining moderation with continuous
covariates, such as baseline risk score. Risk scores can be
dichotomized at different cut-off points; even if they are
treated as continuous variables, the need to look for
nonlinear effects (Brown 1993; Brown et al. 2008a; Hastie
and Tibshirani 1990) or transformations of the data lead to
different analyses being presented. Furthermore, missing
data may be handled differently across studies, and all of
these factors contribute to a method variance that would be
difficult to account for.

Integrative Data Analysis for Moderator Effects In contrast
to traditional meta-analysis, the integrative data analysis
(IDA) strategy assembles all the individual level data into
one dataset, treating trial as the highest level in a multilevel
modeling framework (see Fig. 1b). IDA, which has
sometimes been called patient-level or individual-level
meta-analysis, is a type of pooled analysis that has been
shown to have great promise in longitudinal research
(Bauer and Hussong 2009; Curran and Hussong 2009;
Curran et al. 2008; Hofer and Piccinin 2009; Hussong et al.
2008; Shrout 2009). It has seen limited use so far in
randomized trials (Berlin et al. 2002; Cooper and Patall
2009; Higgins et al. 2001) and even less in the examination
of moderator effects.

Despite great potential, there are three major chal-
lenges in this type of integrative data analysis for
moderator effects. One challenge involves how to
conduct a combined analysis of different datasets all
within one analytic model whose outcomes are measured
at different times; our discussion of growth models above
handles this situation. Another challenging problem
occurs when trials use different assessment instruments
and covariates. There are procedures that provide some
flexible ways of dealing with different measures across
trials. These include collapsing of a scale until common
categories can be obtained (i.e., similar income catego-
ries), using “anchoring items” that are common across
different instruments and item response theory to provide
comparable scaling (Bauer and Hussong 2009; Curran
and Hussong 2009; Curran et al. 2008; Hofer and Piccinin
2009), and use of missing data procedures.

The third challenge with IDA is procedural; all the
relevant datasets must be shared with a research team
whose responsibility then involves conducting a full
analysis. If some of the datasets are not shared, then an
IDA synthesis project can easily introduce selection bias in
its findings. Thus, IDA typically requires a complete or
nearly complete set of trials to contribute their individual-
level data. In a recent paper that examined different effects
of antidepressants as a function of baseline level of
depressive symptoms, one synthesis group was only able
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Fig. 1 a The process of synthesis using traditional meta-analysis, b
Schematic of synthesis in integrative data analysis c Parallel analysis
strategy for synthesizing moderation analyses
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to obtain individual-level data for 6 of 23 trials contacted
(Fournier et al. 2010). This suggests high selection bias.

Obtaining individual-level data from trial research
groups is often hard to accomplish, as there are a number
of valid reasons why research groups are often reticent to
share their data. These include prior agreements with
communities, scientific and ethical committees or partic-
ipants not to share these data; concerns about confidential-
ity and misuse of these data; storage of older data in ways
that are difficult to access and utilize; incorrect interpreta-
tion of the data in the hands of statisticians not involved in
the study; prior commitments made by the trialists to permit
others to analyze their data; and competition between the
data synthesizing group and their own research group over
publication of findings. In the past, such concerns have
limited access to data and greatly impeded synthesis.
Recently, the NIH policy on sharing data (http://grants.
nih.gov/grants/policy/data_sharing/) has brought about a
cultural shift in collaboration, but there are still enormous
challenges.

Parallel Analysis Strategy for Conducting Moderation
Analyses This third strategy for synthesizing data from
multiple trials balances the need to conduct equivalent
analyses in each of the trials and the very real challenges in
full sharing of data. The parallel analysis strategy has each
of the respective trial research groups conduct analysis on
their own data, following standardized analysis protocols.
Results of these analyses done in parallel are then combined
into a synthesis, as shown in Fig. 1c.

The parallel analysis approach has several advantages
and potential challenges. First, because this approach
obviates the need for sharing of individual-level data and
maintains control of the analysis in the hands of the original
research group, it is more likely that research groups will be
willing to join in the synthesis project. Our experience
conducting parallel analyses as part of the United States-
European Union (US-EU) Drug Abuse Prevention Project
suggests that this approach can improve the likelihood of
participation in synthesis projects. This collaborative
project, funded by the National Institute on Drug Abuse
and the European Monitoring Centre for Drugs and Drug
Addiction, combined two large drug prevention trials: the
US’s Adolescent Substance Abuse Prevention Study and
the EU’s Drug Abuse Prevention Study. It has permitted the
examination of moderation effects beyond what could have
been accomplished by either of these trials alone.

Just as important, there is an advantage to having the
original research team analyze its own data. Because of the
trialists’ intimate knowledge, they are less likely than those
conducting an IDA to misinterpret their own data or
conduct flawed analyses. Such occurrences can be com-
monplace with analysts who are unfamiliar with all the

intricacies of the data, and the tacit knowledge available to
the original research team is often very difficult to make
explicit to outsiders. Some of the challenges in using this
method are that the original research team may not have the
resources, time, or motivation to conduct these parallel
analyses on their own data. Also, some loss of information
can come from the combining of the separate analyses in a
two-stage analytic procedure, compared to one that com-
bines all the data into one analysis. Also, parallel data
analysis makes model checking much more difficult to
conduct.

Conclusions

We have noted the very real power limitations in conduct-
ing moderation analysis in a single trial, but considerable
opportunity to strengthen findings about moderation
through combining data from multiple trials. Our conclu-
sion is that unless the heterogeneity across trials is large,
the power to detect moderation is almost always increased
by combining data across trials compared to that available
in a single trial.

In this paper, we have laid out a new set of models in
Tables 1 and 2 that can be used not only to assess an overall
strength of moderation but allow us to examine sources of
heterogeneity both within and between trials. These sources
may be decomposed into measured as well as unmeasured
or unassessed factors that can occur both within and
between trials. One important challenge in conducting
moderator analyses across multiple trials is calibrating
different times of measurement. Growth modeling techni-
ques allow us to summarize growth patterns as random
intercepts and slopes whose meaning transcends specific
measurement times.

We discussed advantages and disadvantages in using
three different ways of combining data across different
trials. The traditional meta-analytic method does not use
individual-level data, and because moderator analyses are
often not reported for some trials, or are conducted using
different analyses, this method is often not appropriate for
synthesis of moderator effects. The other two methods
described, integrative data analysis and parallel analysis, do
provide viable choices for synthesis.

This paper has concentrated on analytic modeling, but
interpretations of findings have to take account of
alternative ways that trials can differ from one another;
otherwise there may be little meaning in combining
effects. These differences occur in four general catego-
ries: individual factors, contextual factors, intervention
condition factors, and trial design factors. The most
direct to deal with are trial differences in measured
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individual-level factors (i.e., distributions of baseline risk
and protective factors). We can account for these through
multilevel models in Tables 1 and 2.

Contextual factors, including neighborhood and other
socio-cultural factors can have major impact on behavioral
outcomes. One interesting example is to assess whether a
parent-based training program works equally well when
delivered in Spanish to mono-lingual parents, compared to
delivery in English (Dillman Carpentier et al. 2007). This
question has clear policy implications about whether
different intervention components would be needed to deal
with the known variations in risk factors for first generation
versus later generation immigrants. Analytically, we may
test for differences in effectiveness through a test of an
interaction; alternatively, we could examine whether there
is evidence to support similar effects through equivalence
testing (Barker et al. 2002). Other contextual differences
may be more subtle but relevant. For example, behavioral
interventions that targeted HIV risk early in the AIDS
epidemic had to overcome more stigma than recent ones, as
HIV is now treatable.

Besides these individual- and contextual-level factors,
differences in response across trials can be due to differ-
ences in the intervention conditions themselves. Across
trials, the intervention conditions can differ in dosage,
intensity, fidelity, modality, or person who delivers the
intervention. Likewise, different trials can vary in their
control condition; one school could have no active
prevention program while a second may be exposing some
of the students to another prevention program.

Finally, differences in the trial designs themselves can
lead to variation. We have discussed how to account for
different times of measurement and different outcome
measures, but sample recruitment and follow-up proce-
dures can also affect findings as well. One important
issue for implementation of behavioral interventions is
whether a trial is conducted in an efficacy mode, where
high fidelity is consistent across the study, or in an
effectiveness mode, where larger variations in fidelity
can occur.

There are two general ways of handling such differences
in intervention conditions across trials. If there is a clear
measure that distinguishes interventions, such as duration
or dosage, this can be treated as a covariate or moderating
factor as shown in Column 2 of Table 1. However, we often
do not have sufficient quantitative information to account
for these differences, and even if we do, we may still have
residual unexplained heterogeneity in moderation. It is
always important to allow for and test for trial-level
variation through multilevel modeling, in both main effect
and moderation analyses. The models in Table 1 provide for
testing of unexplained heterogeneity in the absence of
covariates (Column 1) and in their presence (Column 2).

The remaining two columns allow for discrete mixtures,
and it may be that both discrete classes and continuous
random effects may be needed (Brown et al. 2008b).

There are a number of limitations to the methods
described in this paper. This paper has concerned itself
exclusively with the examination of a single moderator
variable thought a priori to affect impact. At the other
extreme are moderator analysis involving more global
subgroup differences in response. One example is in the
search for genetic factors that may interact with an
intervention. Here we may have upwards of 1,000
candidate markers, coded 0, 1, or 2 depending on the
number present in one’s DNA, which can be screened for
significant effects. One would need to adjust for multiple
testing using methods such as false discovery rates
(Benjamini and Hochberg 1995).

If there are a limited number of trials available for
understanding moderation, then power to detect hetero-
geneity in models for Table 1 may be very low. In the US-
EU Drug Abuse Prevention Project, we have had success
combining data from two randomized trials, provided the
trials themselves are large and there are levels of
clustering, such as schools within trials, that provide
enough degrees of freedom to examine heterogeneity at
that level.

The ultimate success or failure of any synthesis
project that uses parallel analyses or integrative data
analyses hinges on the collaborative partnership that is
formed. While there are clear advantages for the science
and the public in synthesizing findings across trials, full
use of all the data at any given time is often not possible
to achieve. Those who have designed these complex
studies have commitments to publish results on their
studies in a timely fashion, and those related to synthesis
projects can either compete for this time or not take into
account the unique features necessary to conduct com-
plex modeling that incorporates all the strengths of that
particular trial. Handing over data to a centralized
analysis unit may lead to incorrect use of these data unless
there is an ongoing relationship between the synthesis group
and the individual trial groups. On the other hand, synthesis
projects can help facilitate the work conducted on the separate
trials as well. Such projects can provide additional expertise in
methods, and they may uncover unique aspects of one trial
relative to others that can then be pursued more effectively
through more detailed analyses conducted by that particular
research group. This can encourage individual groups to
collaborate with the synthesis project, resulting in new
research questions and publication opportunities for these
research groups. It is also possible to combine statistically the
data and findings from all three types of data sharing in one
analysis, which may be necessary to accommodate different
sharing agreements. All these challenges and opportunities
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need to be addressed in a synthesis project, so that the
partnership fulfills the collective and individual needs.
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