
Dipartimento di Informatica
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Abstract

In this report we present an extension to Continuous Time Bayesian Networks (CTBN) called Gener-

alized Continuous Time Bayesian Networks (GCTBN). The formalism allows one to model, in addition to

continuous time delayed variables (with exponentially distributed transition rates), also non delayed or “im-

mediate” variables, which act as standard chance nodes in a Bayesian Network. This allows the modeling of

processes having both a continuous-time temporal component and an immediate (i.e. non-delayed) compo-

nent capturing the logical/probabilistic interactions among the model’s variables. The usefulness of this kind

of model is discussed through an example concerning the reliability of a simple component-based system.

A semantic model of GCTBNs, based on the formalism of Generalized Stochastic Petri Nets (GSPN). is out-

lined, whose purpose is twofold: to provide a well-defined semantics forGCTBNs in terms of the underlying

stochastic process, and to provide an actual mean to perform inference (both prediction and smoothing) on

GCTBNs. The example case study is then used, in order to highlight the exploitation of GSPN analysis for

posterior probability computation on the GCTBN model.

Acronym list:

BN Bayesian belief Network

CIM Conditional Intensity Matrix

CPT Conditional Probability Table

CTBN Continuous Time Bayesian Network

CTMC Continuous Time Markov Chain

DBN Dynamic Bayesian Network

FTA Fault Tree Analysis

GCTBN Generalized Continuous Time Bayesian Network

GSPN Generalized Stochastic Petri Net

MRF Markov Random Field

1 Introduction

Probabilistic graphical models for reasoning about processes that evolve over time have been deeply investi-

gated; they allow for a factorization of the state space of the process, resulting in better modeling and inference

features. Such models are usually based on graph structures, grounded on the theory of Bayesian belief Net-

works (BN) or Markov Random Fields (MRF) [1]. When time is taken into account, the main choice concerns

whether to consider it as a discrete or a continuous dimension. In the former case, models like Dynamic

Bayesian Networks (DBN) have become a natural choice [2, 3, 4]; however, there is not always an obvious

discrete time unit and, when the process is characterized by several components evolving at different rates,

the finer granularity dictates the rules for the discretization [5]. Moreover, if evidence is irregularly spaced in

time, all the intervening time slices still have to be dealt with (even if no evidence is available at a given time

point). For these reasons, models based on Bayesian Networks, but with a continuous time representation of

the temporal evolution have started to be investigated. Continuous Time Bayesian Networks (CTBN) have been

firstly proposed in [6, 7] and then refined in [8]. Extensions have also been proposed both regarding the use of

indirect graph models [9] and the use of Erlang-Coxian distributions on the transition time [10].

The goal of this paper is to propose another kind of extension and, in particular, a generalization of the

standard CTBN framework, by allowing the presence of nodes which have no explicit temporal evolution; the

values of such nodes are, in fact, “immediately” determined, depending on the values of other nodes in the

network. This will allow the modeling of processes having both a continuous-time temporal component and

a static component capturing the logical/probabilistic aspects determined by specific events occurring in the

modeled process.

Actually, such a kind of modeling is possible in the framework of DBN where the notion of temporal arc is

used to distinguish nodes having a temporal evolution, from nodes just contributing to the “logic” of the model

2



[5, 11]. However, as we have already noticed, since a DBN assumes a discrete dimension of time, this may

result problematic for several applications, as well as computationally expensive when absolute time of events

are important [10]. Our work is then, at the best of our knowledge, the first attempt trying to mix in the same

network, continuous-time delayed nodes with standard chance node.

The possibilities offered by this generalization, can be exploited in several applications. For example, in

system reliability analysis, it is very practical to distinguish between system components (having a temporal

evolution) and specific modules or subsystems, whose behavior has to be modeled for the analysis. For instance,

in Fault Tree Analysis (FTA), basic events represent the system components with their failure rates, while non-

basic events are logical gates identifying modules of the system under examination [12]. In Dynamic Fault Trees

[13], logical gates identifying sub-modules, can be combined with dynamic gates, modeling time-dependent

dependencies (usually assuming continuous time) among components or sub-modules. Also in this case, it is

very important to distinguish, at the modeling level, between delayed and immediate entities (see also [5]).

Of course, similar considerations apply in other tasks as well, as in medical diagnosis, financial forecasting,

biological process modeling, etc...

The report is organized as follows: in Sec. 2 the GCTBN formalism is defined; in Sec. 3 a reliability case

study is introduced, together with the corresponding GCTBN modeling; in Sec. 4 a semantic model, based

on the formalism of Generalized Stochastic Petri Nets (GSPN) [16] is defined: first, the rules to translate a

GCTBN into a GSPN are introduced, then, the corresponding model for the case study is discussed; in Sec. 5

we outline how to perform prediction and smoothing inference on a GCTBN, by means of transient analysis on

the corresponding GSPN; the approach is applied on the GSPN model of the case study; finally, conclusions

and future works are reported in Sec. 7.

2 The generalized CTBNmodel

Following the original paper in [6], a CTBN is defined as follows:

Definition 2.1 Let
� �������������
	

be a set of discrete variables, a CTBN over
�
consists of two compo-

nents. The first one is an initial distribution �
�� over � (possibly specified as a standard BN over � ). The
second component is a continuous-time transition model specified as (1) a directed graph � whose nodes are�������������
	

(and with ����� ����� denoting the parents of ��� in � ); (2) a conditional intensity matrix � ���� !#"�$%�&�('
for every

� �*) �
.

We can now introduce the notion of a Generalized CTBN (GCTBN).

Definition 2.2 Given a set of discrete variables
�+�-,��/.&�����0� 	21

partitioned into the sets 3 (delayed vari-
ables) and 4 (immediate variables) (i.e. �5� 376
4 and 398
4 �7: ), a Generalized Continuous Time Bayesian
Network (GCTBN) is a pair ; �=< �>�� � ��? where@ � �� is an initial probability distribution over � ;@ � is a directed graph whose nodes are �A���������
	 (and with ���B� ����� denoting the parents of �C� in � )

such that

1. there is no directed cycle in � composed only by nodes in the set 4 ;
2. for each node

� ) 4 a conditional probability table �CD �FE ���B� �G��H is defined (as in standard BN);
3. for each node I ) 3 a conditional intensity matrix �
J  !#"�$ J ' is defined (as in standard CTBN).

Delayed (or temporal) nodes are, as in case of CTBN, nodes representing variables with a continuous time

evolution ruled by exponential transition rates, and conditioned by the values of parent variables (that may be

either delayed or immediate). Delayed nodes have a Conditional Intensity Matrix (CIM) of rates associated with
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them. Immediate nodes are introduced in order to capture variables whose evolution is not ruled by transition

rates associated with their values, but is conditionally determined, at a given time point, by other variables in

the model. Such variables are then treated as usual chance nodes in a BN and have a standard Conditional

Probability Table (CPT) associated with them.

A few words are worth to be spent for the structure of the graph modeling the GCTBN. While it is in

general possible to have cycles in the graph (as in CTBN) due to the temporal nature of some nodes, such cycles

cannot be composed only by immediate nodes. Indeed, if this was the case, we would introduce static circular

dependencies among model variables.

Finally, it is worth noting that the initial distribution �
�� can in general be specified only on a subset of � .
In particular, let K-L74 be the set of root nodes (i.e. node with no parent in � ) which are immediate, then the
initial distribution can be computed as

� �� � � �M2NPO QJ0RTS $VUTW2MB' �CD IYX E ���B�ZI[X ��H
In fact, while it is necessary to specify an initial distribution over delayed variables, the distribution on the

immediate variables can be determined depending on the values of their parents; of course if an immediate

variable is modeled as a root node, a prior probability is needed1.

3 An illustrative example

We now consider a case study which can be easily modeled in form of GCTBN. This is a typical case in the

field of reliability analysis, and consists of a small system composed by the main component A and its “warm”

spare component B. This means that initially both components are working, but A is active while B is dormant;

in case of failure of A, B is activated in order to replace A in its function. We assume that the activation of

B occurs with probability \ �^][�`_a_
, so in case of failure of A and the contemporary dormant state of B, the

component B may keep its state with probability
.cb \ �9][�d]e.

.

The expression “warm” referred to the spare component B indicates that the probability of failure of B is

not null while B is dormant, and such value is increased while B is active. So, the spare component B may fail

as well, and this can happen before or after the failure of A; if B fails before A, then B can not replace A.

The whole system works if the component A is working, or if A is failed and B is active. The system is

considered as failed if A is failed and B is dormant or failed. We suppose that only while the system is failed,

the components A and B can undergo repair. As soon as the repair of one of the components is completed,

the component re-starts in working state: if A is repaired the system becomes operative again and the repair

of B is suspended; if instead B is repaired, this may determine one of these two situations: 1) B may become

active with probability \ �f][�`_a_
and consequently the system becomes operative again and the repair of A is

suspended. 2) B may become dormant with probability
.gb \ , so the system is still failed and the repair of B

goes on2.

The time to fail of the components is a random variable ruled by the negative exponential distribution whose

parameter is called failure rate and is the inverse of the mean time to failure of the component. In the case of

the main component A, the failure rate is h#i =1.0E-06 j W � . The failure rate of B, h�k , changes according to
its current state: if B is active (A is failed), h#k is also equal to 1.0E-06 j W � . If instead B is dormant (A is not
failed) h2k is equal to 5.0E-07 j W � (i.e. it is discounted by a dormancy factor l �m][�`n

); In other words, the

1Actually, since prior probabilities on immediate root nodes are a special case of CPT, then we could also simply write oqpr9so*ptvu�w�xzy|{ o~} � R�� o&����� R0�(� , to emphasize the fact that, for the specification of the temporal evolution of the model, the only initial
distribution is on delayed nodes (the other parameters are actually a fixed specification on the network).

2Notice that, in principle, different repair policies can be adopted [14]; the one proposed in this example is a kind of subsystem local

policy, with the repair of the minimal set of necessary working components.
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failure rate of B is reduced with respect to the failure of A, while B is dormant; if instead B is active in order to

replace A, the failure rate of B is the same as the failure rate of A.

The time to repair of a component is a random variable, still ruled by the negative exponential distribution

having as parameter the repair rate equal to the inverse of the mean time to repair the component. A and B have

the same repair rate � i = � k =0.01 j W � .
By considering the above system specifications, the Continuous Time Markov Chain (CTMC) [15] model-

ing the system’s evolution over time is provided in Fig. 1. States are represented in the order � ������� I � (i.e.

Figure 1: CTMC model of the case study.

state
.a.a.
means � �=.����=�=.

and
� I ���=.

, and so on, while the value
.
stands for the working state and the

value � stands for the failed state).
3.1 The GCTBN model

The case study described above can be represented by the GCTBN model in Fig. 2 where the variables � , � ,� I � represent the state of the component A, of the component B, and of the whole system respectively. All
the variables are binary because each entity can be in the working state or in the failed state (for the component

B, the working state comprises both the dormancy and the activation). In particular, we represent the working

state with the value
.
, and the failed state with the value � .

The variable � influences the variable � because the failure rate of the component B depends on the state
of A, as described above. Both the variables � and � influence the variable � I � because the state of the whole
system depends on the state of the components A and B, as described above. The arcs connecting the variable� I � to � and � respectively, concern the repair of the components A and B: only while the system is failed,
they can be repaired.

The variables � and � in the GCTBN model in Fig. 2 are delayed variables (Sec. 2) and are drawn as
double-circled nodes: their value (state of the component) can be equal to

.
or � , and varies after a random

period of time according to the values of the other variables. Both variables implicitly incorporate a CTMC

composed by two states:
.
(working) and � (failed). The initial probability distribution reported in Tab. 1 holds

for both variables � and � : the probability to be initially equal to . is set to 1, while the probability to be
initially equal to � is 0. This is due to the assumption that both components are initially supposed to work.
The CTMC incorporated by the variables � and � is shown in Fig. 3: the transition from .

to � occurs
after a random period of time ruled by the negative exponential distribution according to the failure rate h . The
transition from � to . is ruled by the same distribution, but according to the repair rate � .
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In the case of � , the current value of the rates h#i and ��i depends on the current value of the variable � I � ,
the only one influencing � . This is shown by the CIM reported in Tab. 2 where we can notice that the rate ��i
(the repair rate in the case study) is not null only if the state of

� I � is � . The rate h�i (the failure rate in the
case study) instead, is constant (the state of the system influences only the repair of the component A).

In the case of the variable
�
, the current value of the rates h k and � k depends on the current value of

the variables � and � I � , as shown by the CIM appearing in Tab. 3 where h�k (the failure rate of the spare
component B) is increased only when � is equal to � and � I � is equal to . (this implies that B is active). As
in the case of the variable � , the rate �&k is not null only if the value of � I � is � . Notice that the combination� ��.���� I ��� � is impossible, so the corresponding entries are not significant.
The variable

� I � is immediate and is shown as a circle node in Fig. 2. This means that it changes its
value as soon as the variables influencing it, change their value (Sec. 2). The variable

� I � depends on both
the variables � and � because the state of the system is determined by the state of both the components A
and B, as described in the case study. The variable

� I � is characterized by the CPT appearing in Tab. 4 and
expressing the working and failure conditions for the whole system specified in the case study. In particular,� I � is surely equal to . if � is equal to . , and surely equal to � if both � and � are equal to � . In the case of� equal to � and � equal to . , � I � assumes the value . with probability 0.99 (this implies the activation of
the spare component B), or the value � with probability 0.01 (this implies that B is still dormant).

A B

SYS

P(B)P(A)
λA | SYS

µA | SYS
λB | A, SYS

µB | A, SYS

P(SYS | A, B)

Figure 2: GCTBN model of the case study.

1 2

λ

µ

Figure 3: The CTMC incorporated in the variables � and � in the GCTBN model in Fig. 2.
The introduction of the immediate variable

� I � is actually an important modeling facility, since it allows
one to directly capture the static (or immediate) interactions between A and B, resulting in a probabilistic

choice about the whole system status (i.e. a system working normally in case the replacement of A with B

is successful, or a system fault in the opposite case). Without the use of an immediate variable, it is hard to

factorize the model using variables � and � . A possibility could be that of modeling � values for � , namely�5��.
(dormant),

��� � (active), �5� � (failed); this may allow to distinguish a system fault ( � � � and�f��.
) from a successful switch from A to B ( � � � and �f� � ), when B is not in a fault state. In such a case

a standard CTBN could be devised as in figure 4. However, in such a case we cannot model the instantaneous
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Value Prob..
1� 0

Table 1: Initial probability distribution for the values of the variables � and � in the GCTBN model in Fig. 2.
. �. � I � h�i.

1.0E-06 j W �� 1.0E-06 j W �
�

� I � ��i.
0 j W �� 0.01 j W �

Table 2: CIM for the variable � in the GCTBNmodel in Fig. 2.
. �

. � � I � h2k. .
5.0E-07 j W �. � -� .
1.0E-06 j W �� � 5.0E-07 j W �

�
� � I � � k. .

0 j W �. � -� .
0 j W �� � 0.01 j W �

Table 3: CIM for the variable
�
in the GCTBN model in Fig. 2.

� � � I � Prob.. . .
1. . � 0. � .
1. � � 0� . .
0.99� . � 0.01� � .
0� � � 1

Table 4: CPT for the variable
� I � in the GCTBN model in Fig. 2.
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λA|B
µA|B

λB|A
µB|A

Figure 4: A possible CTBN model of the case study.

Figure 5: CTMC model of the case study with 3 states for
�
( �����������#� � �Y���¡ £¢[¤ and ¥��P¦2§¨�¡© ).
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state change of both A and B from � �m.����ª�«. to � � � ���¬� � , since in a continuous time model � and�
cannot change their values simultaneously. This is evidenced if we consider the CTMC that should result

from the modeling of the 3 states of
�
, that we can see in Fig. 5. Again each state is labeled with the pair

of values for � and � respectively; we can notice that, we have to introduce a transition from state .a. (i.e.� ��.����f��. ) to state �a� (i.e. � � � ���­� � ) with a rate \�h , to model the possibility of a fault in A associated
with a contemporary successful switch on B (on the contrary, with probability

.�b \ , B does not change its
state, meaning that the system becomes faulty). Of course, fault states in Fig. 5 are � . and �a� . The CTMC of
figure 5 is isomorphic to that of figure 1, but it cannot be obtained from the CTBN of Fig. 4, because of the

above mentioned transition. This suggest, that the use of immediate nodes makes easier to factorize the model,

as usually done with BN-like formalism.

4 A Petri Net semantics for GCTBN

The combination in a single model of entities explicitly evolving over time with entities whose determination is

“immediate”, is not a novelty; as we have already noticed, in the framework of probabilistic graphical models,

DBNs provide an example, in case of discrete time. In case of continuous time, a model having such a features

can be found in the framework of Petri Nets, namely Generalized Stochastic Petri Nets (GSPN) [16]. The

formal definition of a GSPN can be found in Sec. 4.1. GSPNs are stochastic Petri nets, where there are two

different sets of transitions, namely timed with an exponentially distributed delay, and immediate transitions

(with no delay), having priority over temporal ones. This means that, in case both an immediate and a temporal

transition are enabled, the firing of the former takes precedence over the firing of the latter.

In a GSPN, two or more immediate transitions may be enabled at the same time; in this case, weights and

priorities can be used to rule the firing of such transitions. A weight and/or a priority can be assigned to an

immediate transition. Using weights, given several immediate transitions enabled to fire, higher is the weight

of a transition, higher is its probability to fire. Using priorities, given several immediate transitions enabled to

fire, the transition with highest priority fires.

In GSPNs we have also two types of arcs: oriented arcs and inhibitor arcs. Oriented arcs are used to

connect places to transitions and vice-versa, with the aim of moving tokens when transitions fire. Inhibitor arcs

connect a place to a transition with the aim of disabling the transition if the place is not empty. A cardinality

(multiplicity) can be associated to an arc; in the case of oriented arcs, the cardinality indicates the number of

tokens to be moved on that arc when the transition fires; in the case of inhibitor arcs, the cardinality indicates

the number of tokens inside the place, necessary to disable the transition.

The stochastic process associated with a GSPN is a homogeneous continuous time semi-Markov process

that can be analyzed either by solving the so called Embedded Markov Chain or by removing from the set of

possible states, the so-called vanishing states ormarkings and by analyzing the resulting CTMC [16]. Vanishing

states are the state (or markings) resulting from the firing of immediate transitions; they can be removed, since

the system does not spend time in such states. This removal operation has also the advantage of reducing (often

in a significant way) the set of possible states to be analyzed.

The measures returned by the GSPN analysis, can be obtained also by means of GSPN simulation. The use

of simulation instead of analysis, is useful when the number of states (and state transitions) in the CTMC, is

very high. In this situation, the analysis becomes computationally expensive, or even unfeasible.

TheGreatSPN tool [23] allows to design, analyze and simulate GSPNmodels. In Sec. 5.3, we resort to such

tool in order to compute the intermediate results in the prediction and smoothing inference procedures applied

to the GSPN derived from the GCTBN model of the case study. Further information on the GSPN formalism,

analysis and simulation, can be found in [16].

A GCTBN model can be expressed in terms of a GSPN, by means of a set of translation rules (Sec. 4.2).

This translation is twofold:@ first, it provides a well-defined semantics for a GCTBN model, in terms of the underlying stochastic
9



process it represents;@ second, it provides an actual mean to perform inference on the GCTBNmodel, by exploiting well-studied
analysis techniques for GSPNs.

In fact, solution techniques for GSPNs have received a lot of attention, especially with respect to the possibility

of representing in a compact way the underlying CTMC and of solving it efficiently [17, 18, 19]. Once aGCTBN

has been compiled into a GSPN, then such techniques can be employed to compute inference measures on the

original GCTBN model (see Sec. 5).

There are two main analyses that can be performed with a GSPN: steady state and transient analysis. In

the first case, the equilibrium distribution of the states is computed, while in the latter, such a distribution is

computed at a given time point. In particular, solving a GSPN (for either steady state or transient analysis)

can provide the probability distribution of the number of tokens in each place. This information can then be

exploited, in order to perform inference on the original GCTBN model as it will be shown in Sec. 5.

4.1 GSPN formal definition

The GSPN formalism is given by the tuple� � ��; � �Z� �¯®c� � ��°�� � �z±²��³&� �T�P��� �
where@ � is the set of the places.@ ®9�´®�� 6 ®Bµ is the set of the transitions; it is the union of two sets:

–
®��
is the set of the immediate transitions;

–
®�µ
is the set of timed transitions.@ � is the set of arcs; it is the union of two sets:

– �·¶�¸¹�Z�fº ®»� 6G� ® º�� � is the set of the oriented arcs;
– �·¼
¸½�fº ® is the set of the inhibitor arcs.@ °-¾ �À¿ÂÁ Ã is the function returning the marking of a place.@ � ¾�®Bµ ¿ÄÁ Å·Æ is the function returning the firing rate of a timed transition.@ ±¹¾�®B� ¿ÇÁ ÅcÆ is the function returning the weight of an immediate transition.@ ³È¾a® � ¿ÄÁ Ã bÉ,Ê] 1 is the function returning the priority of an immediate transition.@ �T���a� ¾ �9¿ÄÁ Ã bÉ,Ê] 1 is the function returning the cardinality of an arc.@ Given � ) ®
– @ ¶�� �À, �%\ � � � ) �·¶ 1 is the set of the oriented arcs coming from places and directed to � .
– � @ ¶ �À, �¨� � \ � ) �·¶ 1 is the set of oriented arcs coming from � and directed to places.
– @ ¼�� �À, �%\ � � � ) �·¼ 1 is the set of inhibitor arcs coming from places and directed to � .@ Given � ) ® , � is enabled to fire if all the following conditions hold:
– Ë&�%\ � � � ) @ ¶�� ��° �%\ �ÍÌ �T���a�2�z�¨� � \ �z�
– Ë&�%\ � � � ) @ ¼�� ��° �%\ �~Î �|�P�a�2�z�¨� � \ �z�
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If �ÐÏ is the marking of \ ) � before the firing of � , and �ÑÏ Ï is the marking of \ after the firing of � , then
the effect of the firing of � is the following:
– Ë&�%\ � � � ) @ ¶�� � ��Ò � � Ï b �T�P���B�z�%\ � � �z�
– Ë&�¨� � \ � ) � @ ¶ � ��Ò � �ÐÏ�ÓÉ�T�P���B�z�%\ � � �z�

4.2 Translation rules from GCTBN to GSPN

This section provides some formal rules to derive the GSPN equivalent to a GCTBNmodel. First, we introduce

first the way to convert the delayed variables, then, the way to convert immediate variables.

4.2.1 Conversion of delayed variables into GSPN

A delayed variable
�
of the GCTBN model is converted into several elements of the equivalent GSPN:@ the place � Ï whose marking represents the value of � ; we introduce here the function \B§ ¾ �²Ô ®g� ; � �Z4�63 � ¿Õ� � ��; � � returning the GSPN place corresponding to a variable of the GCTBN. In the case of � ,\2§z� �È�q�Ö� Ï .@ the place � Ï _  £�# £� with ° � � Ï _  £�# £� �*��.

, used to set the initial marking of
� Ï ;@ the set ® �V	��×µ��Ø of immediate “init” transitions to set the initial marking of � Ï ;@ the set ® O��Ø of timed transitions to change the marking of � Ï ;@ the set ® �VÙÚÙ��Ø of immediate transitions to change the marking of � Ï .

The set
® �×	Û�×µ��Ø is created in the following way: given the initial probability distribution �C�� over � (Sec. 2),

for each Ü ) �Ý¾ � � �¨Ü �vÞ�9]
the transition � ) ® �×	Û�×µ� Ø is created such that all the following conditions hold:± �¨� �Ú� ���a�¨Ü �³ �¨� �ß��.@ ¶�� �À, � � Ï _  £�# £� � � � 1�T�P�a�2�z� � Ï _  ��# £� � � �z�ß��.@ ¼�� �7:

� @ ¶ �À, �¨� �z� Ï � 1�T�P�a�2�z�¨� �z� Ï �z�ß� Ü
The set

® �×	Û�×µ��Ø will contain an immediate transition for each initial value Ü of � whose probability is not null.
Such transitions are all enabled to fire by the presence of one token inside

� Ï _  ��# £� : the weight of each transition
corresponds to the probability of the corresponding initial value Ü of � . The effect of the firing of a transition �
in
® �×	��×µ� Ø consists of removing the token inside � Ï _  £�# £� (this disables the firing of the other transitions in ® �V	��×µ� Ø )

and setting the marking of
� Ï to the initial value Ü of � corresponding to � . Such setting is done by means of

the cardinality of the arc �¨� �z� Ï � equal to Ü . Once the initial marking of � Ï is set, the transitions in ® �×	Û�×µ��Ø can
not fire any more because

� Ï _  £�# £� has become empty.
The set

® O��Ø is created in the following way: for each ordered couple �¨Ü ��� Ü2à � such that Ü ��� ÜBà ) � andÜ �²Þ� Ü2à , the transition � ) ® O� Ø is created such that all the following conditions hold:@ ¶�� �À, � � Ï � � � 1�T�P�a�2�z� � Ï � � � ) @ ¶�� �*� Ü �@ ¼�� �À, � � Ï � � � 1�T�P�a�2�z� � Ï � � � ) @ ¼�� �ß� Ü � Ó .
� @ ¶ �À, �¨� �z� Ï � 1�T�P�a�2�z�¨� �z� Ï �z�ß� ÜBà
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This means that for each possible value transition from Ü � to Ü2à by the variable � , a timed transition � is
created to model such change of value. Such transition is enabled to fire when the place

� Ï contains exactly Ü �
tokens; this is because of the cardinality of the oriented arc � � Ï � � � ) @ ¶�� and of the inhibitor arc � � Ï � � � ) @ ¼�� .
The effect of the firing of � consists of setting the marking of � Ï to ÜBà , by means of the oriented arc �¨� �z� Ï � . The
dependency of the transition rates of

�
on the values of the parent variables, is modeled in the GSPN by the

marking dependent firing rate of � . This rate changes according to the marking of the places representing the
parent variables of

�
. For each combination of the marking values of such places, the firing rate of � assumes

a different value.

We introduce now the function ��� ¾ ��Ô ®g� ; � �Z4
6È3 � ¿ ��Ô ®g� ; � �Z4á6Ñ3 � which returns the parent
variables of a particular variable of the GCTBN. So, ����� �È� returns the variables influencing � ; in particular,
assuming that such variables are ordered, ��� � � �È� returns the   -th parent variable of � .
The firing rate of � has to be marking dependent:

ËB� ) º � �Z��� � � �È�z��� �â�¨� ��E �T����� �­ã­ä�å�æ¯ç åÊè E � ) � �v !#"�$V�~' if ä�å�æ¯ç åÊè E � Þ�¹é]
if ä�å�æ¯ç åÊè E � �¹é

where �T�Û��� �¹ê X � ° �%\B§¯�Z�²� X � �È�z�z�q� � X �
In other words, if � is a particular combination of the values of the parent variables of � , the firing rate of � ,�â�¨� ��E �T�Û��� , is set to ä�å æ ç å è E � if such value is finite. äÛå æ ç å è E � is the entry in the conditional intensity matrix of � at
the row Ü � and the column Ü�à , for the combination � of the values of the parent variables of � . The condition�T����� for the firing rate �â�¨� ��E �T����� is the translation of the combination � in terms of markings of the places
corresponding to the parent variables of

�
: �T�Û��� is the conjunction of several sub-conditions, each requiring

that the marking of the place corresponding to the   -th parent of � has to be equal to � � , where � � is the value
of the   -th parent of � in � .
If instead ä�å�æ¡ç åÊè E � has an infinite value, this means that the variable � changes its value from Ü � to ÜBà

instantaneously. In this particular case, a timed transition is not suitable to represent the instantaneous change

of value; for this reason, �â�¨� ��E �T����� , the firing rate of the timed transition � in this case, is set to 0. In other words,� can not fire if �T����� holds. Since the change of value from Ü � to Ü2à is instantaneous, this has to be modeled by
an immediate transition belonging to the set

® �×ÙqÙ��Ø : each time ä å�æ¯ç åÊè E � �ëé
, we create the immediate transition�¡Ï ) ® �×ÙqÙ�ÚØ such that all the following conditions hold:@ ¶�� Ï �À, � � Ï � � Ï ����ì
í �Z��� í � � Ï ��� � Ï � 1�T�P�a�2�z� � Ï � �¡Ï � ) @ ¶�� �*� Ü ��T�P�a�2�z�Z��� í � � Ï ��� � Ï � ) @ ¶T� Ï �*� � í@ ¼�� Ï �À, � � Ï � � Ï � 1�T�P�a�2�z� � Ï � �¡Ï � ) @ ¼�� �ß� Ü � Ó .

� Ï @ ¶ �À, �¨� Ï �z� Ï ��� ì
í �¨� Ï � ��� í � � Ï �z� 1�T�P�a�2�z�¨�¡Ï �z� Ï �z�ß� ÜBà�T�P�a�2�z�¨� Ï � ��� í � � Ï �z� ) � Ï @ ¶ �*� � í³ �¨�¡Ï �ß��.± �¨� Ï �ß�=.
Let us consider the GCTBN model in Fig. 2 described in Sec. 3.1. Fig. 6 shows the GSPN expressing the

delayed variable � in the GCTBN. In this GSPN the marking of the place �>Ï represents the value of � , and the
place � Ï _  £�# £� is used to set the initial marking of � Ï , together with the set of immediate transitions ® �×	��Vµi Ø �, � _  £�# �� _ .�� � _  £�# £� _ � 1 , with ± �Z� _  £�# �� _ .Ê���î.

and
± �Z� _  £�# £� _ � ���ï]

, according to the initial probability

distribution of � (Tab. 1). The set of timed transitions modifying the marking of � Ï is ® Oi Ø �À, � _ . _ � � � _ � _ . 1 .
The firing rates of these transitions are marking dependent: the conditions and the values of the rates are

reported in Tab. 5.

Fig. 7 shows the GSPN expressing the delayed variable
�
in theGCTBN in Fig. 2. SuchGSPN has the same

graph structure of the GSPN in Fig. 6 because both � and � can be equal to . or � . In Fig. 7, the marking of the
place

� Ï represents the value of � , and the place � Ï _  £�# £� is used to set the initial marking of � Ï , together with
12
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Figure 6: The GSPN corresponding to the variable � in the CTBN in Fig. 2.
Transition condition ( �|����� ) firing rate ( � )� _ . _ � ° � � I � Ï �*��.

1.0E-06 j W �� _ . _ � ° � � I � Ï �*� � 1.0E-06 j W �� _ � _ . ° � � I � Ï �*��.
0 j W �� _ � _ . ° � � I � Ï �*� � 0.01 j W �

Table 5: Firing rates of the timed transitions in Fig. 6.

® �V	��×µk Ø �-,Ê�
_  £�# �� _ .���� _  £�# £� _ � 1 , with ± � � _  £�# £� _ .Ê�·�«.

and
± � � _  £�# £� _ � �c�f]

. The set of timed transitions

modifying the marking of
� Ï is ® Ok Ø �Â,Ê�

_
.
_ � ��� _ � _ . 1 . The firing rates of these transitions are marking

dependent (Tab. 6).

B’
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B_init_1 B_init_2
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λB µB

3

Figure 7: The GSPN corresponding to the variable
�
in the CTBN in Fig. 2.

4.2.2 Conversion of immediate variables into GSPN

An immediate variable I of the GCTBN model is converted into several elements of the equivalent GSPN:@ the place I Ï whose marking corresponds to the values of I (\2§z�ZI �q� I Ï );@ the set ® UJ Ø of the immediate transitions used to initialize the value of the marking of I Ï and to re-set it
whenever the marking of one of the places corresponding to the parent variables of I Ï changes;@ the place ¤��
\��¡© _ I Ï used when the marking of the place I Ï has to be re-set;@ the set ®gð¯ñ¯òóñ µJ Ø of immediate transitions used to remove the tokens inside ICÏ when the marking of this has
to be re-set.
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Transition condition ( �|����� ) firing rate ( � )�
_
.
_ � ° �Z� Ï �ß��.qô�° � � I � Ï �*��.

5.0E-07 j W ��
_
.
_ � ° �Z�gÏ �ß��.qô�° � � I � Ï �*� � 5.0E-07 j W ��
_
.
_ � ° �Z� Ï �ß� � ô�° � � I � Ï �*��.

1.0E-06 j W ��
_
.
_ � ° �Z�gÏ �ß� � ô�° � � I � Ï �*� � 5.0E-07 j W ��
_ � _ . ° �Z� Ï �ß��.qô�° � � I � Ï �*��.

0 j W ��
_ � _ . ° �Z�gÏ �ß��.qô�° � � I � Ï �*� � 0 j W ��
_ � _ . ° �Z� Ï �ß� � ô�° � � I � Ï �*��.

0 j W ��
_ � _ . ° �Z�gÏ �ß� � ô�° � � I � Ï �*� � 0.01 j W �
Table 6: Firing rates of the timed transitions in Fig. 7.

The set
® UJ Ø is created in the following way: each ¤ ) º � �²� � �ZI � ºAI corresponds to an entry of the CPT

of I , while ���õ¤ � is the probability of such entry. Each ¤ is a combination of � �mö � E �²� � �ZI ��E Ó E I E values,
where the first � bÖ.

values are referred to the parent variables of I , while the � -th one is referred to I . For
each ¤ such that �C�õ¤ �vÞ�7]

, an immediate transition � ) ® UJ Ø is created such that the following conditions hold:± �¨� �Ú� �C�õ¤ �³ �¨� �ß��.@ ¶�� � ì � �%\2§z�Z��� � �ZI �z��� � �Ë*�%\2§z�Z��� � �ZI �z��� � � ) @ ¶�� , �T�P�a�2�%\2§z�Z��� � �ZI ��� � �z�ß� ¤ �� @ � ì � �¨� � \2§z�Z��� � �ZI �z�z� 6G�¨� � IáÏ �Ë*�¨� � \2§z�Z��� � �ZI �z�z� ) � @ ¶ , �T�P�a�2�¨� � \2§z�Z��� � �ZI �z�z�ß� ¤ ��T�P�a�2�¨� � I Ï �*� ¤ 	@ ¼�� � ì � �%\2§z�Z��� � �ZI �z��� � � 6G�ZI>Ï � � �Ë*�%\2§z�Z��� � �ZI ��� � � ) @ ¼�� , �T�P���B�%\2§z�Z��� � �ZI ��� � �z�ß� ¤ � Ó .
�T�P�a�2�ZIáÏ � � �ß��.
In other words, for each entry ¤ of the CPT of I , the immediate transition � is created. Its effect is is setting the
value of the marking of I
Ï to the to value of I in ¤ . The transition � is enabled to fire when ICÏ is empty and the
markings of the places corresponding to the parent variables of I assume exactly the values of such variables
in ¤ . The weight of � is set to the probability of ¤ in the CPT. In this way, we model in the GSPN the role of
each entry ¤ in the CPT of I .
In the GCTBN, I directly depends on �����ZI � . However, if the set �����ZI � contains immediate variables,

then the change of such variables is ruled by the change of their parents, eventually being delayed variables.

So, what really determines a change in I is the set of the “Closest” Delayed Ancestors (CDA) of I . LetÔ�3��
�ZI �ß�À,��Ç¾a� ) 3 ô�÷
a path from

�
to I with no intermediate immediate node 1 .

Therefore, each time that the marking of a place in \2§z�£Ô»3��á�ZI �z� changes, first, the place I�Ï has to become
empty, then its marking has to be set according to the current marking of the places in \2§z�Z�����ZI �z� . To set
place I>Ï empty, we introduce the place I
Ï _ ¤��
\��¡© and the transition set ®·ðzñ¡òóñ µJ Ø ; the second step is done by the
transition set

® UJ Ø as explained above.
Every time that the marking of a place in \B§¯�£Ô�3��
�ZI �z� varies, one token has to appear in the placeI Ï _ ¤��
\��¡© in order to indicate that the place I Ï must become empty. Again, let the function Ô»3�� � �ZI � re-

turns the   -th closest delayed ancestor of I ; for each Ô»3�� � �ZI � and for each � ) ® Oø�ù $×ú#O i �Z$ J 'û' , an oriented arc�¨� � I Ï _ ¤��
\��¡© � is added to � @ . In other words, for each transition modifying the marking of a place correspond-
ing to a CDA variable of I , we create an arc from such transition to the place I�Ï _ ¤��
\��ó© . Therefore each time
that such transition fires, one token appears in I Ï _ ¤��
\��ó© enabling the firing of one of the immediate transitions
in the set

® ðzñ¡òóñ µJ Ø . ® ðzñ¡òóñ µJ Ø is created in the following way: for each © ) I , the immediate transition � ) ® ð¯ñ¯òóñ µJ Ø is

created such that all the following conditions hold:
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± �¨� �Ú��.³ �¨� �ß� �@ ¶�� �À, �õ¤��
\��¡© _ I>Ï � � ��� �ZI
Ï � � � 1�T�P�a�2�õ¤��
\2�ó© _ I Ï � � �ß��.
�T�P�a�2�ZI Ï � � � ) @ ¶�� � Ü@ ¼�� � �ZI Ï � � ��T�P�a�2�ZI Ï � � � ) @ ¼�� � Ü
Ó .
For each possible marking of I
Ï , one transition in the set ®·ðzñ¯ò�ñ µJ Ø is enabled to fire with the effect of removing

any token inside I Ï and removing the only token inside I Ï _ ¤��
\2�ó© . When this occurs, some of the transitions
in the set

® UJ Ø are enabled to fire in order to set the new marking of ICÏ according to the current value of place
set \B§¯�Z�²�B�ZI �z� . The higher priority ( ³ ) of the transitions in ® ðzñ¯ò�ñ µJ Ø determines the correct order of firing of all

immediate transitions.

Let us consider the GCTBN model in Fig. 2 described in Sec. 3.1. Fig. 8 shows the equivalent GSPN con-

taining the subnets representing the variables � and � (described in Sec. 4.2.1) and the subnet representing the
variable

� I � . In particular, in the third subnet, the marking of the place � I � Ï represents the value of the vari-
able

� I � whose set of CDA variables is Ô»3��
� � I �q�*�À, � ��� 1 . In this example, Ô»3��á� � I �ß�ß� �²�B� � I �ß� .
The set of places corresponding to Ô�3��
� � I �ß� is \B§¯�£Ô�3��
� � I �ß�z�c�«, � Ï ��� Ï 1 . The set of immediate tran-
sitions setting the marking of the place

� I � Ï according to the marking of the places in \2§z�Z���B� � I �ß�z� is® Uü J ü Ø �ý,Ûþ ¤�� _ � I � _ . , þ ¤�� _ � I � _ � , þ ¤�� _ � I � _ � , þ ¤�� _ � I � _ ÿ , þ ¤�� _ � I � _ n 1 . The weight of each of these
transitions is reported in Fig. 2, close to the transition. The place ¤��
\2�ó© _ � I � Ï is used to remove any token in-
side

� I � Ï , together with the immediate transitions in the set ® ðzñ¯ò�ñ µü J ü Ø �f, �a¤ þ ¤�� _ � I � _ .�� ��¤ þ ¤�� _ � I � _ � 1 , with³ �¨��¤ þ ¤�� _ � I � _ .Ê����³ �¨��¤ þ ¤�� _ � I � _ � ��� � . Since \2§z�£Ô»3��á� � I �ß�z���Ä, �·Ï ��� Ï 1 , the place ¤��
\��ó© _ � I � Ï
is reached by an oriented arc coming from each of the transitions in the set

® Oi Ø 6 ® Ok Ø = , � _ . _ � , � _ � _ . 1 6,Ê�
_
.
_ � , � _ � _ . 1 = , � _ . _ � � � _ � _ .���� _ . _ � ��� _ � _ . 1 .
The description of the GSPN in Fig. 8 is completed in Sec. 4.3.

4.3 The GSPN model for the case study

According to the conversion rules described in Sec. 4.2, the GCTBN of the case study in Fig. 2 can be con-

verted into the GSPN model shown in Fig. 8 where the places �²Ï , � Ï and � I � Ï correspond to the variables
in the GCTBN model. The value of a GCTBN variable is mapped into the marking (number of tokens) of the

corresponding place in the GSPN. Let us consider the place
� Ï in the GSPN: the marking of the place � Ï can

be equal to
.
or � , the same values that the variable � in the GCTBN can assume. � is a delayed variable and

its initialization is modeled in the GSPN by the immediate transitions
�
_  £�# £� _ . and � _  £�# £� _ � called “init”

transitions. Such transitions are both initially enabled to fire with the effect of setting the initial marking of the

place
� Ï to . or � respectively. The probability of these transitions to fire corresponds to the initial probability

distribution of the variable
�
(Tab. 1)3.

The variation of the marking of the place
� Ï is determined by the timed transitions � _ . _ � and � _ � _ . .

The transition
�
_
.
_ � is enabled to fire when the place � Ï contains one token; the effect of its firing is setting

the marking of
� Ï to � . The transition � _ � _ . instead, can fire when the marking of the place � Ï is equal to� , and turns it to . . The dependency of the transition rate of a variable on the values of the other variables in

the GCTBN model, becomes in the GSPN model, the dependency of the firing rate of a timed transition on the

markings of the other places. For instance, in the GCTBNmodel the variable
�
depends on � and � I � ; let us

consider h k which is the transition rate of � from .
to � depending on the values of the variables � and � I �

(Tab. 3). In the GSPN model, h#k becomes the firing rate of the timed transition � _ . _ � whose value depends
on the marking of the places � Ï and � I � Ï , and assumes the same values reported in Tab. 3. The firing rate of

3In case of transitions having weights (or rates) equal to � , they can be omitted from the model; in Fig. 8 they are shown, for the
sake of generality.

15



the timed transition
�
_ � _ . instead, will correspond to the rate �ßk reported in Tab. 3, still depending on the

marking of the places � Ï and � I � Ï .
The initialization of the marking of the place ��Ï is modeled by the immediate init transitions � _  £�# �� _ .

and
�
_  ��# £� _ � , while the variation of its marking is modeled in a similar way by the timed transitions � _ . _ �

and � _ � _ . , but in this case their firing rate will depend only on the marking of the place � I � Ï , because
in the GCTBN model the variable � depends only on the variable � I � . Such variable is immediate in the
GCTBN and depends on � and � . Therefore in the GSPN, each time the marking of the place � Ï or of the
place

� Ï is modified, the marking of � I � Ï has to be immediately updated: each time the transition � _ . _ � ,� _ � _ . , � _ . _ � or � _ � _ . fires, one token appears in the place ¤��
\��¡© _ � I � Ï ; this determines the firing of the
immediate transition ��¤ þ ¤�� _ � I � _ . or �a¤ þ ¤�� _ � I � _ � , with the effect of removing any token inside the place� I � Ï . At this point, the marking of such place has to be set according to the current marking of the places � Ï
and

� Ï . This is done by one of the immediate transitions þ ¤�� _ � I � _ . , þ ¤�� _ � I � _ � , þ ¤�� _ � I � _ � , þ ¤�� _ � I � _ ÿ ,þ ¤�� _ � I � _ n . Each of them corresponds to one entry having not null probability in the CPT of the variable� I � in the GCTBNmodel (Tab. 4). Each of such immediate transitions has the same probability (weight) and
the same effect on the marking of the place

� I � Ï , of the corresponding entry in the CPT.
5 Inference

Standard inference tasks in a temporal probabilistic model are prediction and smoothing [4]. Let
� µ
be a set of

variables at time � and © "�� � any stream of observations from time point � to time point � (i.e. a set of instantiated
variables). Prediction is the task of computing �C� � µ Æ ¼ E © � � µ�� for some horizon j�� ] , i.e. predicting a future
state taking into consideration the observation up to now (a special case occurs when j �Ç]

and is called

Filtering orMonitoring). Smoothing is the task of computing ��� � µ W ù E © � � µ � for some § Î � , i.e. estimating what
happened § time points in the past, given all the evidence (observations) up to now.
Such tasks can be accomplished, depending on the model adopted, by inference procedures usually based on

specific adaptation of standard algorithms for BNs. For instance, in DBN models, both exact algorithms based

on junction tree [4] as well as approximate algorithms exploiting the net structure [20] or based on stochastic

simulation can be employed. In case of CTBN , exact inference may often be impractical, so approximations

through message-passing algorithms on cluster graphs [7, 8], or through sampling [21, 9] have been proposed.

In the present work, we take advantage of the correspondence between GCTBN and GSPN, in order to

propose inference algorithms (both for prediction and smoothing), based on GSPN solution algorithms.

Computing the probability of a given variable assignment
�5� Ü � at time � , will correspond to compute the

probability of having   tokens in the place modeling � at time � .
5.1 Prediction Inference

The task of prediction consists in computing the posterior probability at time � of a set of queried variables�­¸ 3=6Ð4 , given a stream of observations (evidence) ¤ µ æ ������� ¤ µ�� from time � � to time � í with � � Î¹����� � í Î � .
Every evidence ¤ µ R consists of a (possibly different) set of instantiated variables.
Prediction can then be implemented by repeatedly solving for transient the corresponding GSPN at the

different times corresponding to the observations and the query. Of course, any observation will condition

the evolution of the model, so the suitable conditioning operations must be performed before a new GSPN

resolution.

Let �»� ,
	 1 be the probability of the event 	 , computed from the resulting distribution of a GSPN transient
(for instance given a variable

�
, �C� �î� Ü �·� �»� ,�°á� Ï � Ü 1 where °á� Ï is the number of tokens in place� Ï corresponding to � ). The pseudo-code for the prediction procedure is shown in Fig. 9.

Notice that, in the special case of filtering, the last evidence would be available at the query time (i.e. � � � í
in Fig. 9); in such a case, the update of the transition weights (last statement in the for cycle) is not necessary,
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Procedure PREDICTION

INPUT: a set of queried variables � , a query time � , a set of temporally
labeled evidences ¤ µ æ ������� ¤ µ�� with� �cÎ7����� � í Î �
OUTPUT: �C�£� µ�E ¤ µ æ ������� ¤ µ � �
- let � � �7] ;
for   ��.

to � {
- solve the GSPN transient at time �¨� �#b � � W ��� ;
- compute from transient, \ � �
� �Ú� �»� ,�� X E ¤ µ � 1
for

� X ) 3=6�K ;
- update the weights of the immediate init

transitions of
� X according to \ � �
� � ;

}

- solve the GSPN transient at time �¨� b � í � ;
- compute from transient, � � �»� , � 1 ;
- output � ;

Figure 9: The prediction inference procedure.

as well as the final transient solution. The procedure would then simply output �»� , � E ¤ µ 1 computed from the
last transient analysis.

In case there is evidence available at time � � �9] , then if the evidence is on variables � ) 3¹6CK , then it is
incorporated into their “init” distribution; if the evidence is on variables

� ) 4 b K , then the “init” of the other
variables are updated by solving the transient at time � � �9] .
5.2 Smoothing Inference

The smoothing task needs a little more attention than prediction; it consists in computing the probability at

time � of a set of queried variables �f¸½3À6�4 , given a stream of observations (evidence) ¤ µ æ ������� ¤ µ�� from time� � to time � í with � Î � �
Î­����� � í . As for prediction, the idea is to perform smoothing by repeatedly solving
the corresponding GSPN at the different times corresponding to the observations and the query; however, the

problem is how to condition on variables observed at a time instant that follows the current one. The idea is then

to try to reformulate the problem in such a way that it can be reduced to a prediction-like task. The approach is

then based on the application of Bayes rule as follows:�C�£� µ0E ¤ µ æ ������� ¤ µ � �ß� l��C�£� µ¯� �C�õ¤ µ æ ������� ¤ µ � E � µó�� l��C�£� µó� �C�õ¤ µ æ E � µó�2����� �C�õ¤ µ��[E ¤ µ æ ������� ¤ µ���� æ � � µó�
In this way, every factor in the above formula is conditioned on the past and can be implemented as in

prediction. However, the computation of the normalization factor l , requires that a separate computation must
be performed for every possible assignment of the query � . The interesting point is that such computations
are independent, so they can be possibly performed in parallel4. Once the computation has been performed for

every query assignment, than results can be normalized to get the actual required probability values.

Again, let �»� ,
	 1 be the probability of event 	 resulting from the current transient analysis; the pseudo-
code for the smoothing procedure is shown in Fig. 10. The normalize operator just divides any entry of the

vector � by the sum of all the entries, in order to provide the final probability vector of the query.
4An alternative can be to directly compute the denominator of the Bayes formula (i.e. the probability of the evidence stream);

however, this requires a larger number of transient solutions if the length of observation stream is greater than the number � of
assignments of � (i.e.if ����� ), as is usually the case.
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Procedure SMOOTHING

INPUT: a set of queried variables � , a query time � , a set of temporally
labeled evidences ¤ µ æ ������� ¤ µ��
with � Î � �cÎë����� � í
OUTPUT: �C�£� µ�E ¤ µ æ ������� ¤ µ � � ;
{

- Let ; be the cardinality of possible assignments ä � � .��   � ; � of � ;
- A: array[N];

for   ��.
to ; {

//possibly in parallel

A[i]=SMOOTH( ä � ); }
- output normalize(A);

}

Procedure SMOOTH(q)

{

- � � � � ;
- solve the GSPN transient at time � ;
- compute from transient, � � �»� , � � ä 1 ;
- ¤�¢ � ä ;
for   ��.

to � {
- compute from transient, \ � W � �
� �Ú� �»� ,�� X E ¤�¢ 1
for

� X ) 3=6�K ;
- update the weights of the immediate init

transitions of
� X according to \ � W � �
� � ;

- solve the GSPN transient at time �¨� ��b � � W ��� ;
- compute from transient, \ � �õ¤ �ß� �»� , ¤ µ � 1
- � � �|\ � �õ¤ � ;
- ¤�¢ � ¤ µ � ; }

- output � ;
}

Figure 10: The smoothing inference procedure.
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5.3 Reliability Inference in the case study

Consider again the case study of Fig. 2. We can ask for different reliability measures, by exploiting the con-

version of the GCTBN into a GSPN; for example, we can easily compute the reliability of the whole system,

by asking for the probability �C� � I � � � � over time. This reduces to compute the probability of having� tokens into place � I � Ï , on the corresponding GSPN (i.e. ��� ,�°C� I � Ï � � 1 ). This is done, by solving
the transient at the required time instants. Results for our example are reported in Tab. 7 (column Unreliabil-

ity). Since the modeled system is repairable, it makes sense to ask for the steady state distribution, in order

Time (h) Unreliability.�]a]a]a]a] �Y�d]�	�bG]��
� ]a]a]a]a] .�� ÿ 	�bG]�n� ]a]a]a]a] .��`_�	�bG]�n
ÿ ]a]a]a]a] � � � 	�bG]�nn�]a]a]a]a] � ����	�bG]�n

Table 7: Unreliability results from the case study.

to understand whether the system is reliable in the long run. By solving the GSPN for steady state, we can

indeed compute that the probabilities of components A and B being faulty in the long run are about
n�]! 

(in

particular,
][� ÿ _������[. and ][�`n�]a]a] � � respectively), while the probability of the whole system being faulty (i.e.��� ,�°C� I � Ï � � 1 � �C� � I �9� � � ) is ][�d]a]a]a]�n[. , meaning the a good reliability is assured by the use of the

spare and by the repair strategy.

Concerning prediction, let us consider to observe the system working at time � �~�=.�]a]a]a]a] j ( � I ���­. at� �c�f.�]�" j ) and the system failed at time �0à � � ]a]a]a]a] j (i.e. � I �/� � at � � �$# .�]�" j ). By considering the
procedure outlined in Fig. 9 we can compute the probability of component A being working at time � �7n # .�] " j
(conditioned by the observation stream) as follows: (1) we solve the transient at � ��.�] " j and we compute
the probabilities of � and � , conditioned by the observation � I ��� .

; (2) we use the above computed

probabilities as the new init probabilities for the places � Ï and � Ï of the GSPN; (3) we solve the transient for
another time interval � �-.�]!" j and we compute the probabilities of � and � , conditioned by the observation� I �Ö� � ; (4) we use the above computed probabilities as the new init probabilities for the places � Ï and � Ï
of the GSPN; (5) we solve the transient for a time interval � � �%# .�]&" j and we finally compute the probability
of the query of � .
Tab. 8 shows the computed value during the above process. The last row shows the required results.

Time (h) �C�Z� ��.�E ¤�¢ � ���Z� � � E ¤�¢ � �C� �f��.�E ¤�¢ � �C� �f� � E ¤�¢ �.�]a]a]a]a] ][�`_�]�_ �a� � ][�d]�_�]!��� � ][�`_an ��ÿaÿ n ][�d] ÿ ��nanan� ]a]a]a]a] ] . ][�d]!�Y. ÿ�� _ ][�`_ � �an��Y.n�]a]a]a]a]
0.521855 0.478145 - -

Table 8: Probabilities for prediction inference in the case study ( ¤�¢ is the current accumulated evidence).
Concerning smoothing inference, let us suppose to have observed the system working at time � ��� � ]a]a]a]a] j

and failed at time �zà �mn�]a]a]a]a] j . We ask for the probability of component A at time � � � ]a]a]a]a] j , condi-
tioned by the above evidence. By considering the procedure outlined in Fig. 10 we can compute the required

probabilities as follows: (1) we first consider the case � ��. ; (2) we solve the transient at � � �'# .�](" j and we
compute � .c� �C�Z� ��.Ê� ; (3) we condition � and � on � ��. and we determine the new init probabilities for� and � ; (4) we solve the transient for � ��.�])" j (to reach time �*# .�]�" j ) and we compute ��� � �C� � I ����.Ê� ;
we also condition � and � on � I ����. and we use such values as new init probabilities for places � Ï and � Ï ;
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(5) we solve the transient for � � �+# .�]!" j (to reach time n # .�]!" j ) and we compute ��� � ��� � I �F� � � ; (6)
we compute the un-normalized probability of � �=.

as \ .·� � .-, ��� , ��� ; By performing the above steps also
for the case � � � we can similarly compute the un-normalized probability of � � � , namely \�� . A simple
normalization over \ . and \B� will then produce the required results. Tab. 9 shows the computed value during
the above process (partial results � .�� ��� � ��� are shown in bold).

�C�Z� ��.Ê�
at � � �%# .�] " = 0.833086

Time (h) �C�Z� ��.�E ¤�¢ � ��� �­��.�E ¤�¢ � �C� � I ����.�E ¤�¢ � ��� � I ��� � E ¤�¢ �� ]a]a]a]a] . ][�.�a_[. �a� � - -� ]a]a]a]a] ][�`_[. � _��[. ][�.�an ÿ ] � � 0.999988 -n�]a]a]a]a]
- - - 0.000022

p1=0.0000183277

�C�Z� � � � at � � �%# .�] " = 0.166914
Time (h) �C�Z� ��.�E ¤�¢ � ��� �­��.�E ¤�¢ � �C� � I ����.�E ¤�¢ � ��� � I ��� � E ¤�¢ �� ]a]a]a]a] ] ][�`_a_a_a_ �a� - -� ]a]a]a]a] ][�d]�n���� ÿ � ][�`_an ��ÿ�� _ 0.999950 -n�]a]a]a]a]

- - - 0.000049

p1=0.0000081784

���Z� �=.�E ¤�¢ � ø �ø � Æ ø à =0.691452���Z� � � E ¤�¢ � ø àø � Æ ø à =0.308548
Table 9: Probabilities for smoothing inference in the case study ( ¤�¢ is the current accumulated evidence).
5.4 Verifying inference results on the DBN model

In Sec. 5, we proposed a couple of procedures to compute prediction and smoothing measures respectively, on

the GSPN corresponding to the GCTBN model of the system. In Sec. 5.3, such algorithms were applied on the

GSPN model in Fig. 8 derived from the GCTBN in Fig. 2, with the aim of computing the following measures:@ Prediction: the state probability of the component A at time 500000 j , given the observation that the
system is working at time � � =100000 j and is failed at time ��à =200000 j .@ Smoothing: the state probability of the component A at time 200000 j given the observation that the
system is working at time � � =300000 j and is failed at time ��à =500000 j .

The results are reported in Tab. 8 and in Tab. 9 respectively. In order to verify their correctness, in this section,

we compare them with the results obtained on the Dynamic Bayesian Network (DBN) [2, 3, 4] in Fig. 11

modeling the same system described in Sec. 3.

Given a set of time-dependent state variables
� �������0�
	

and given a BN ; defined on such variables, a
DBN is essentially a replication of ; over two time slices � b0/ and � (being / the so called discretization
step), with the addition of a set of arcs representing the transition model. Arcs can connect nodes at different

slices or nodes at the same slice. If
� µ W21�

is the copy of variable
�C�
at time slice � b0/ , the CPT of � µ W21�

specifies the distribution �CD � µ W21� E I µ W21 H where I µ W21 is any set of variables at slice � b3/ different than ���
(possibly the empty set). If

� µ�
is the copy of variable

� �
at time slice � , the CPT of � µ� specifies the distribution��D � µ� E � µ W21� � I µ W21 � I µ H where I µ W21 is any set of variables at slice � b3/ different than � µ W21� (possibly the

empty set), and I µ is any set of variables at slice � different than � µ� (possibly the empty set).
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Value Prob.]
1.
0

Table 10: Initial probability distribution for the values of the variables � and � in the DBN model in Fig. 11.
� � �

Prob.] ] ]
1] ] .
0] . ]
1] . .
0. ] ]
0.99. ] .
0.01. . ]
0. . .
1

Table 11: CPT for the variable
�
in the DBN model in Fig. 11.

In theDBN depicted in Fig. 11, the variables � , � , � represent the state of the component A, the component
B and the whole system respectively, at the time slice � b�/ . The variables � ° , ��° , �q° have the same role,
but at the time slice � . In the DBN of the case study, all the variables are binary: the value ] is used to model
the working state, while the value

.
is used to model the failed state5.

Figure 11: The DBN model of the case study.

At the time slice � b3/ , the variables � and � have no parent variables, so their CPT contains the initial
probability distribution of their values: since all the components are assumed to be working at the initial time,

for both � and � the initial probability to be equal to ] is null, and the initial probability to be equal to . is 1
(Tab. 10). The variable

�
at the time slice � b4/ depends on � and � : the CPT of � expresses the working and

5This differs from the GCTBNmodel (Sec 3.1) where the value 5 stands for the working state, while the value 6 stands for the failed
state.
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failure conditions about the system, and is reported in Tab. 116.

At the time slice � , the variable � ° represents the temporal evolution of the component A due to its failure
or repair: the state transition from working to failed (failure) is modeled by the dependency of � ° on its copy� at the time slice � b�/ ; the state transition from failed to working (repair) is represented by the dependency
of � ° on both � and � because the repair of the component A is allowed only while the system ( � ) is failed.
Since the time to failure or repair is random and is ruled by the negative exponential distribution, in the CPT of

the variable � ° reported in Tab. 12, several entry probabilities correspond to the failure or repair probability at
time

/
according to such distribution and the failure or repair rate ( h�i or ��i ).

The variable
��°
at the time slice � represents the temporal evolution of the component B. The failure rate

of such component changes according to the state of the component A and the eventual activation of B, while

the repair of B is allowed only while the system is failed. Therefore
�
°
depends on � , � and � at the time

slice � b7/ . The CPT of ��° is reported in Tab. 13 where the value of several entry probabilities are equal to
the failure and repair probability at time

/
according to h�k and ��k respectively.

Finally, the variable
�ß°
at the time slice � represents the evolution of the whole system according to the

evolution of the components A and B. So,
�ß°
depends on

�
, � , � , � ° and ��° . The CPT of �ß° appears

in Tab. 14 and represents the working and failure conditions of the system according to the state of A and B,

including the possibility that the component B is not activated in case of failure of A. This CPT is composed

by 48 entries, but we avoid to report those entries expressing impossible combinations of the values of
�
, � ,�

, � ° and ��° .
The inference of the DBN model of the case study has been performed by means of the RADYBAN tool

[5]. The system unreliability has been computed by performing the prediction task assuming no observations

and querying the variable
�ß°
at several mission times; the results are reported in Tab. 15 where the probability

that
�ß°
is equal to 1 provides the system unreliability. These values are very similar to the unreliability values

computed on the GSPNmodel in Fig. 8 and reported in Tab. 77. This validates the correctness of the conversion

of the GCTBNmodel of the system into GSPN.

Then, we have computed the inference measures mentioned at the begin of this section. First, the prediction

task assuming to observe
�À�¬]

at time � � =100000 j and �¹�Ý. at time �zà =200000 j , has been performed
on the DBN model in Fig. 11, querying the node � ° . The results appear in Tab. 16: we can observe that
the probabilities computed at time 500000 j are very close to the values obtained for the same measure on
the GSPN model in Fig. 8, reported in Tab. 8 and computed according to the prediction inference procedure

specified in Fig. 9. In this way, we verify the correctness of such procedure.

Finally, we have performed the smoothing task on the DBN model assuming the observation that
�/�¹]

at

time � � =300000 j and ����. at time �zà =500000 j . We have queried again the node � ° at several mission times
obtaining the results appearing in Tab.17. We can notice that the probabilities at time 200000 j are very similar
to those obtained on the GSPNmodel by means of the smoothing inference procedure specified in Fig. 10. This

confirms the correctness of such procedure.

6 Software tool architecture

We plan to develop a software tool for the design and the analysis of GCTBN models, based on the approach

described in this paper. The architecture of the tool is depicted in Fig. 12 where the model is built and evaluated

following these steps:

1. the user designs the theGCTBNmodel and specifies a query to be evaluated on the model. This is done by

means of the graphical tool Draw-Net [22] (Fig. 13). The GCTBNmodel is passed to the translator from

6This CPT corresponds to the CPT reported in Tab. 4 and concerning the variable 8[�-8 in the GCTBNmodel in Fig. 2, but with the
difference that the working state is represented as 5 , and the failed state as 6 .

7Because of the time discretization in DBN models, the results obtained on such models suffer from some approximation. The

approximation degree is proportional to the time step 9 used to discretize the mission time
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� � � ° Prob.] ] ]
0.999999] ] .
0.000001] . ]
-] . .
-. ] ]
0. ] .
1. . ]
0.01. . .
0.99

Table 12: CPT for the variable � ° in the DBN model in Fig. 11 (the probabilities of the impossible entries are
omitted because they are not significant).

� � � �
°
Prob.] ] ] ]

0.9999995] ] ] .
0.0000005] ] . ]
-] ] . .
-] . ] ]
0] . ] .
1] . . ]
-] . . .
-. ] ] ]

0.999999. ] ] .
0.000001. ] . ]
0.9999995. ] . ]
0.0000005. . ] ]
-. . ] ]
-. . . ]
0.01. . . ]
0.99

Table 13: CPT for the variable
�
°
in the DBN model in Fig. 11 (the probabilities of the impossible entries are

omitted because they are not significant).
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� � � � ° ��° �ß°
Prob.] ] ] ] ] ]
1] ] ] ] ] .
0] ] ] ] . ]
1] ] ] ] . .
0] ] ] . ] ]
0.99] ] ] . ] .
0.01] ] ] . . ]
0] ] ] . . .
1] . ] ] . ]
1] . ] ] . .
0] . ] . . ]
0] . ] . . .
1. ] ] . ] ]
1. ] ] . ] .
0. ] ] . . ]
0. ] ] . . .
1. ] . ] ] ]
1. ] . ] ] .
0. ] . ] . ]
1. ] . ] . .
0. ] . . ] ]
0. ] . . ] .
1. ] . . . ]
0. ] . . . .
1. . . ] ] ]
1. . . ] ] .
0. . . ] . ]
1. . . ] . .
0. . . . ] ]
0.99. . . . ] .
0.01. . . . . ]
0. . . . . .
1

Table 14: CPT for the variable
�ß°
in the DBN model in Fig. 11 (the impossible entries are omitted).
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Time ( j ) �C�Z� �9]�� �C�Z� ��.Ê�
100000 0.999988 0.000008

200000 0.999983 0.000014

300000 0.999974 0.000019

400000 0.999967 0.000023

500000 0.999967 0.000027

Table 15: Prediction inference results for the system unreliability computed on the DBN model in Fig. 11.

Time ( j ) �C�Z� �9]�E ¤�¢ � �C�Z� ��.�E ¤�¢ �
100000 0.909251 0.090749

200000 0.000000 1.000000

300000 0.532266 0.467726

400000 0.527495 0.472497

500000 0.524189 0.475810

Table 16: Prediction inference results for the variable � ° in the DBN model in Fig. 11 assuming that ¤�¢ �.�]a]a]a]a]�¾�][� � ]a]a]a]a]�¾ � .
Time ( j ) �C�Z� �9]�E ¤�¢ � �C�Z� ��.�E ¤�¢ �
100000 0.831101 0.168900

200000 0.689048 0.310946

300000 0.569523 0.430477

400000 0.468789 0.531207

500000 0.000000 1.000000

Table 17: Smoothing inference results for the variable � ° in the DBN model in Fig. 11 assuming that ¤�¢ �� ]a]a]a]a]�¾�][�0n�]a]a]a]a]�¾ � .
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GCTBN to GSPN (GCTBN2GSPN), while the query is passed to the Inference Solver module managing

the inference process.

2. TheGCTBNmodel is converted into the equivalent GSPNmodel by means of the ad-hoc translator called

GCTBN2GSPN. The translation is performed according to the translation rules described in Sec. 4.2. The

resulting GSPN is passed to the GreatSPN filter.

3. The GreatSPN filter stores the GSPN model in a couple of files (.net, .def) conforming to the GreatSPN

[23] format. This tool allows the analysis of GSPN models.

4. According to the sort of query specified by the user (filtering or smoothing) and according to the inference

procedure described in Sec. 5, the Inference Solver generates a sequence of measures to be computed on

the GSPN model. Each of these measures is passed to the GreatSPN solver in order to be computed

(“result request” in Fig. 12).

5. The GreatSPN solver performs the analysis of the GSPN model computing the measure requested by

the Inference Solver. The value of the result is returned to the Inference Solver (“partial results” in

Fig. 12). If other measures have to be computed on the GSPN model in order to complete the inference

process, then the steps 4 and 5 are repeated. According to the results returned byGreatSPN, the Inference

Solver generates the result of the query requested by the user. Such result is passed to Draw-Net for the

visualization to the user.

7 Conclusions and Future Works

In this report we have presented a generalized CTBN formalism, allowing one to mix in the same model con-

tinuous time delayed variables with standard “immediate” chance variables. The usefulness of this kind of

model has been discussed through an example concerning the reliability of a simple component-based system.

The semantics of the proposed GCTBN formalism has been provided in terms of Generalized Stochastic Petri

Nets (GSPN), a well-known formalism isomorph to semi-Markov processes, through which it is also possible

to exploit well established analysis techniques, in order to perform standard prediction or smoothing inference.

In particular, adopting GSPN solution algorithms as the basis for GCTBN inference, allows one to take advan-

tage of specialized methodologies for solving the underlying stochastic process, that are currently able to deal

with extremely large models; in particular, such techniques (based on data structures like matrices or decision

diagrams) allows for one order of magnitude of increase in the size of the models, to be solved exactly, with

respect to standard methods, meaning that models with an order of
.�] � � tangible states can actually be solved

[19, 24].

However analyzing a GCTBN by means of the underlying GSPN is only one possibility that does not take

explicit advantage of the structure of the graph as in CTBN algorithms [7, 8]. Our future works will try to

investigate the possibility of adopting cluster-based or stochastic simulation approximations, even on GCTBN

models, and in comparing their performance and quality with respect to GSPN-based solution techniques. In

particular, since Petri Nets are a natural framework for event-based simulation, it would be interesting to inves-

tigate how simulation-based approximations can be actually guided by the underlying GSPN model. Finally,

since symbolic representations (based on matrices or decision diagrams) have been proved very useful for

the analysis of GSPN models, it would also be of significant interest to study the relationships between such

representations and the inference procedures on probabilistic graphical models in general, since this could in

principle open the possibility of new classes of algorithms for BN-based formalisms.
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Figure 12: Scheme of the software tool architecture.

Figure 13: Screenshot of Draw-Net.
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