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1. Introduction

It has long been realized that instantons in string theory are often in close correspondence

with instantons in gauge theories [1 – 6]. Recently it was found that in some situations

stringy instantons can dynamically generate some terms which from a low-energy effective

point of view enter as ordinary external couplings in the superpotential of gauge theories

living on space-filling branes [7 – 14]. By instantons in string theory we generally mean

instantons which are geometrically realized as Euclidean extended objects wrapped on

some non-trivial cycles of the geometry. Thus, in a sense, a stringy instanton has a “life

of its own”, not requiring an underlying gauge theory. This opens up the possibility

of having contributions originating from instantons that do not admit a standard gauge

theory realization. We shall refer to these instantons as exotic.

There has been some debate in the recent literature about the instances where such

exotic instantons can actually contribute to the gauge theory superpotential in a non-trivial

manner. In this work we will contribute to such a debate by considering backgrounds where

a simple CFT description is possible, such as orbifolds or orientifolds thereof.

We present various simple examples of what we believe to be a rather generic situation.

Namely, the presence of extra zero-modes for these instantons, in addition to those required

by the counting of broken symmetries, makes some of their contributions vanish. Such extra
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zero-modes should not come as a surprise, since a D-brane instanton in a CY manifold

breaks a total of four out of eight supercharges, i.e. it has two extra fermionic zero-modes

from the point of view of holomorphic N = 1 gauge theory quantities. We give some

arguments as to why the backreaction of the space-filling branes on the geometry might not

help in lifting these extra zero-modes. We further argue that only more radical changes of

the background, such as the introduction of fluxes, deformations of the CY geometry or the

introduction of orientifold planes, can remove these zero-modes. When this happens, exotic

instantons do contribute to the gauge theory superpotential and may provide qualitative

changes in the low energy effective dynamics, as for instance the stabilization of otherwise

runaway directions.

We will be interested in Euclidean D-branes in type II theories. We will work with

IIB fractional branes at orbifold and orientifold singularities rather than type IIA wrapped

branes. The motivation for this choice of setting is two-fold. First, recent advances in the

gauge/gravity correspondence require the study of exotic instantons, whose effects tend

to stabilize the gauge theory rather than unstabilize it [15 – 17, 9], and the gauge/gravity

correspondence is more naturally defined in the context of IIB theory. Second, similar

effects are used in string phenomenology to try to understand possible mechanisms for

neutrino masses [7, 8, 13]. This latest activity is mainly done in the type IIA scenario, but

we find it easier to address some subtle issues in the IIB orbifold case.

While working in an exact string background, our considerations will nonetheless be

only local, i.e. we will not be concerned with global issues such as tadpole cancellation

that arise in proper compactifications. This is perfectly acceptable in the context of the

gauge/gravity correspondence where the internal manifold is non-compact but, even for

string phenomenology, the results we obtain stand (locally) when properly embedded in a

consistent compactification.

The paper is organized as follows: In section 2 we set up the notation and discuss

some preliminary material. In section 3 we discuss our first case, namely the N = 1

Z2 × Z2 orbifold. After briefly recovering the usual instanton generated corrections to the

superpotential we discuss the possible presence of additional exotic contributions and find

that they are not present because of the additional zero-modes. We conclude by giving a

CFT argument on why such zero-modes are not expected to be lifted even by taking into

account the backreaction of the D-branes, unless one is willing to move out the orbifold

point in the CY moduli space. Sections 4 and 5 present two separate instances where exotic

contributions are present after having removed the extra zero-modes by orientifolding. The

first is an N = 1 orientifold, the second is an N = 2 orientifold, displaying corrections to

the superpotential and the prepotential, respectively. We end with some conclusions and

a discussion of further developments.

2. Preliminaries

In this section we briefly review the generic setup in the well understood N = 4 situation in

order to introduce the notation for the various fields and moduli and their couplings. The

more interesting theories we will consider next will be suitable projections of the N = 4
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theory. In fact, the exotic cases can all be reduced to orbifolds/orientifolds of this master

case once the appropriate projections on the Chan-Paton factors are performed.

Since we are interested in instanton physics (for comprehensive reviews see [18] and the

recent [19]) we will take the ten dimensional metric to be Euclidean. We consider a system

where both D3-branes and D(−1)-branes (D-instantons) are present. To be definite, we

take N D3’s and k D-instantons.1

Quite generically we can distinguish three separate open string sectors:

• The gauge sector, made of those open strings with both ends on a D3-brane. We

assume the brane world-volumes are lying along the first four coordinates xµ and are

orthogonal to the last six xa. The massless fields in this sector form an N = 4 SYM

multiplet [22]. We denote the bosonic components by Aµ and Xa. Written in N = 1

language this multiplet is formed by a gauge superfield whose field strength is denoted

by Wα and three chiral superfields Φ1,2,3. With a slight abuse of notation, the bosonic

components of the chiral superfields will also be denoted by Φ, i.e. Φ1 = X4+iX5 and

so on. In N = 2 language we have instead a gauge superfield A and a hypermultiplet

H, all in the adjoint representation. The low energy action of these fields is a four

dimensional N = 4 gauge theory. All these fields are N × N matrices for a gauge

group SU(N).

• The neutral sector, which comprises the zero-modes of strings with both ends on the

D-instantons. It is usually referred to as the neutral sector because these modes do

not transform under the gauge group. The zero-modes are easily obtained by dimen-

sionally reducing the maximally supersymmetric gauge theory to zero dimensions.

We will use an ADHM [23] inspired notation [5, 6]. We denote the bosonic fields

as aµ and χa, where the distinction between the two is made by the presence of the

D3-branes. The fermionic zero-modes are denoted by MαA and λα̇A, where α and

α̇ denote the (positive and negative) four dimensional chiralities and A is an SU(4)

(fundamental or anti-fundamental) index denoting the chirality in the transverse six

dimensions. The ten dimensional chirality of both fields is taken to be negative. In

Euclidean space M and λ must be treated as independent. When needed, we will also

introduce the triplet of auxiliary fields Dc, directly analogous to the four dimensional

D, that can be used to express the various interactions in an easier form as we will

see momentarily. All these fields are k× k matrices where k is the instanton number.

• The charged sector, comprising the zero-modes of strings stretching between a D3-

brane and a D-instanton. For each pair of such branes we have two conjugate sectors

distinguished by the orientation of the string. In the NS sector, where the world-sheet

fermions have opposite modding as the bosons, we obtain a bosonic spinor ωα̇ in the

first four directions where the GSO projection picks out the negative chirality. In the

conjugate sector, we will get an independent bosonic spinor ω̄α̇ of the same chirality.

1These D3/D(−1) brane systems (and their orbifold projections) are very useful and efficient in studying

instanton effects from a stringy perspective even in the presence of non-trivial closed string backgrounds,

both of NS-NS type [20] and of R-R type [21].
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Similarly, in the R sector, after the GSO projection we obtain a pair of independent

fermions (one for each conjugate sector) both in the fundamental of SU(4) which we

denote by µA and µ̄A. These fields are rectangular matrices N × k and k × N .

The couplings of the fields in the gauge sector give rise to a four dimensional gauge theory.

The instanton corrections to such a theory are obtained by constructing the Lagrangian

describing the interaction of the gauge sector with the charged sector zero-modes while

performing the integral over all zero-modes, both charged and neutral. A crucial point to

notice and which will be important later is that while the neutral modes do not transform

under the gauge group, their presence affects the integral because of their coupling to the

charged sector.

The part of the interaction involving only the instanton moduli is well known from the

ADHM construction and it is essentially the reduction of the interacting gauge Lagrangian

for these modes in a specific limit where the Yukawa terms for λ and the quadratic term

for D are scaled out (see [18, 6] for details). The final form of this part of the interaction

is:

S1 = tr

{

− [aµ, χa]2 + χaω̄α̇ωα̇χa +
i

2
(Σ̄a)ABµ̄AµBχa −

i

4
(Σ̄a)ABMαA[χa,M

B
α ]

+i
(

µ̄Aωα̇ + ω̄α̇µA + σµ
βα̇[MβA, aµ]

)

λα̇
A − iDc

(

ω̄α̇(τ c)β̇α̇ωβ̇ + iη̄c
µν [aµ, aν ]

)

}

(2.1)

where the sum over colors and instanton indices is understood. τ denotes the usual Pauli

matrices, η̄ (and η) the ’t Hooft symbols and Σ̄ (and Σ) are used to construct the six-

dimensional gamma-matrices

Γa =

(

0 Σa

Σ̄a 0

)

. (2.2)

The above interactions can all be understood in terms of string diagrams on a disk with

open string vertex operators inserted at the boundary in the α′ → 0 limit.

The interaction of the charged sector with the scalars of the gauge sector can be worked

out in a similar way and yields

S2 = tr

{

ω̄α̇XaXaω
α̇ +

i

2
(Σ̄a)ABµ̄AXaµ

B

}

. (2.3)

Let us rewrite the above action in a way which will be more illuminating in the following

sections. Since we will be mainly focusing on situations where we have N = 1 super-

symmetry, it is useful to write explicitly all indices in SU(4) notation, and then break

them into SU(3) representations. We thus write the six scalars Xa as the antisymmetric

representation of SU(4) as follows

XAB = −XBA ≡ (Σ̄a)ABXa . (2.4)

The action S2 then reads

S2 = tr
{1

8
ǫABCDω̄α̇XABXCDωα̇ +

i

2
µ̄AXABµB

}

. (2.5)
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Splitting now the indices A into i = 1 . . . 3 and 4, we can identify Φ†
i ≡ Xi4 in the 3̄ of

SU(3) and Φi ≡ 1
2ǫijkXjk in the 3 of SU(3). Thus we can rewrite the action (2.5) as

S2 = tr

{

1

2
ω̄α̇

{

Φi,Φ†
i

}

ωα̇ +
i

2
µ̄iΦ†

iµ
4 −

i

2
µ̄4Φ†

iµ
i −

i

2
ǫijkµ̄

iΦjµk

}

. (2.6)

In the above form, it is clear which zero-modes couple to the holomorphic superfields and

which others couple to the anti-holomorphic ones. This distinction will play an important

role later.

The main object of our investigation is the integral of e−S1−S2 over all moduli

Z = C

∫

d{a, χ,M, λ,D, ω, ω̄, µ, µ̄} e−S1−S2 , (2.7)

where we have lumped all field independent normalization constants (including the instan-

ton classical action and the appropriate powers of α′ required by dimensional analysis)

into an overall coefficient C. There are, of course, other interactions involving the fermions

and the gauge bosons but, as far as the determination of the holomorphic quantities are

concerned, they can be obtained from the previous ones and supersymmetry arguments.

For example, a term in the superpotential is written as the integral over chiral superspace
∫

dx4dθ2 of a holomorphic function of the chiral superfields, but such a function is com-

pletely specified by its value for bosonic arguments at θ = 0. Thus, if we can “factor out”

a term
∫

dx4dθ2 from the moduli integral (2.7), whatever is left will define the complex

function to be used in the superpotential and similarly for the prepotential in the N = 2

case if we succeed in factoring out an integral over N = 2 chiral superspace
∫

dx4dθ4.

The coordinates x and θ must of course come from the (super)translations broken by

the instanton and they will be associated to the center of mass motion of the D-instanton,

namely, xµ = tr aµ and θαA = tr MαA for some values of A.2 One must pay attention

however to the presence of possible additional neutral zero-modes coming either from the

traceless parts of the above moduli or from the fields λ and χ. These modes must also

be integrated over in (2.7) and their effects, as we shall see, can be quite dramatic. In

particular, the presence of λ in some instances is crucial for the implementation of the

usual ADHM fermionic constraints whereas in other circumstances it makes the whole

contribution to the superpotential vanish. These extra λ zero-modes are ubiquitous in

orbifold theories and generically make it difficult to obtain exotic instanton corrections for

these models. As we shall see, they can however be easily projected out by an orientifold

construction making the derivation of such terms possible.

In the full expression for the instanton corrections there will also be a field-independent

normalization factor coming from the one-loop string diagrams and giving for instance the

proper gY M dependence in the case of the usual instanton corrections. In this paper we will

only focus on the integral over the zero-modes, which gives the proper field-dependence,

referring the reader to [10, 11] for a discussion of these other issues.

2Obviously, for the case of an anti-instanton, the roles of M and λ are reversed.
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SU(N  ) SU(N  )

SU(N  )SU(N  )

1 2

34

Figure 1: Quiver diagram for the Z2 × Z2 orbifold theory. Round circles correspond to SU(Nℓ)

gauge factors while the lines connecting quiver nodes represent the bi-fundamental chiral superfields

Φℓm.

3. The N = 1 Z2 × Z2 orbifold

In order to present a concrete example of the above discussion, let us study a simple

C3/Z2 × Z2 orbifold singularity. The resulting N = 1 theory is a non-chiral four-node

quiver gauge theory with matter in the bi-fundamental. Non-chirality implies that the four

gauge group ranks can be chosen independently [24]. This corresponds to being able to find

a basis of three independent fractional branes in the geometry (for a review on fractional

branes on orbifolds see e.g. [25]).

The field content can be conveniently summarized in a quiver diagram, see figure 1,

which, together with the cubic superpotential

W = Φ12Φ23Φ31 − Φ13Φ32Φ21 + Φ13Φ34Φ41 − Φ14Φ43Φ31

+Φ14Φ42Φ21 − Φ12Φ24Φ41 + Φ24Φ43Φ32 − Φ23Φ34Φ42 , (3.1)

uniquely specifies the theory.

A stack of N regular D3-branes amounts to having one and the same rank assignment

on the quiver. The gauge group is then SU(N)4 and the theory is an N = 1 SCFT.

Fractional branes correspond instead to different (but anomlay free) rank assignments.

Quite generically, fractional branes can be divided into three different classes, depending

on the IR dynamics they trigger [26]. The non-chiral nature and the particularly symmetric

structure of the orbifold under consideration allows one to easily construct any such instance

of fractional brane class.

If we turn on a single node, we are left with a pure SU(N) SYM gauge theory, with

no matter fields and no superpotential. This theory is believed to confine. The geomet-

ric dual effect is that the corresponding fractional brane leads to a geometric transition

where the branes disappear leaving behind a deformed geometry. Indeed, there is one such

deformation in the above singularity.

Turning on two nodes leads already to more varied phenomena. There are now two bi-

fundamental superfields, but still no tree level superpotential. Thus, the system is just like

two coupled massless SQCD theories or, by a slightly asymmetric point of view, massless

– 6 –
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SQCD with a gauged diagonal flavor group. The low-energy behavior depends on the

relative ranks of the two nodes.

If the ranks are different, the node with the highest rank is in a situation where it

has less flavors than colors. Then an Affleck-Dine-Seiberg (ADS) superpotential [27, 28]

should be dynamically generated, leading eventually to a runaway behavior. This set

up of fractional branes is sometimes referred to as supersymmetry breaking fractional

branes [29, 26, 30].

If the ranks are the same we are in a situation similar to Nf = Nc SQCD for both

nodes. Hence we expect to have a moduli space of SUSY vacua, which gets deformed, but

not lifted, at the quantum level. This moduli space is roughly identified in the geometry

with the fact that the relevant fractional branes are interpreted as D5-branes wrapped

on the 2-cycle of a singularity which is locally C × (C2/Z2). Such a fractional brane

can move in the C direction. This is what is called an N = 2 fractional brane since, at

least geometrically, it resembles very much the situation of fractional branes at N = 2

singularities.

In what follows we use the two-node example as a simple setting in which we can

analyze the subtleties involved in the integration over the neutral modes. For the gauge

theory instanton case it is known that there are extra neutral fermionic zero-modes in

addition to those required to generate the superpotential. Their integration allows to

recover the fermionic ADHM constraints on the moduli space of the usual field theory

instantons. For such instantons, we will be able to obtain the ADS superpotential and

corresponding runaway behavior in the familiar context with Nc and Nf fractional branes

at the respective nodes, for Nf = Nc−1. On the other hand, we will argue that the presence

of such extra zero-modes rules out the possibility of having exotic instanton effects, such

as terms involving baryonic operators in the Nf = Nc case. It was the desire to study such

possible contributions that constituted the original motivation for this investigation. We

will first show that such effects are absent for this theory as it stands, and we will later

discuss when and how this problem can be cured.3

Our orbifold theory can be easily obtained as an orbifold projection of N = 4 SYM. The

orbifolding procedure and the derivation of the superpotential (3.1) are by now standard.

We briefly recall the main points in order to fix the notation and because some of the

details will be useful later in describing the instantons in such a set up.

The group Z2 × Z2 has four elements: the identity e, the generators of the two Z2

that we denote with g1 and g2 and their product, denoted by g3 = g1g2. If we introduce

complex coordinates (z1, z2, z3) ∈ C3

z1 = x4 + ix5 , z2 = x6 + ix7 , z3 = x8 + ix9 (3.2)

the action of the orbifold group can be defined as in table 1.

3In a situation where the CFT description is less under control than in the setting discussed in the

present paper, it has been argued in [17] that such baryonic couplings do arise in the context of fractional

branes on orbifolds of the conifold, possibly at the expense of introducing O-planes. Also in a IIA set

up similar to the ones of [7, 8, 10, 11, 13] it seems reasonable that one can wrap an ED2-brane along an

O6-plane and produce such couplings on other intersecting D6-branes.
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z1 z2 z3

e z1 z2 z3

g1 z1 −z2 −z3

g2 −z1 z2 −z3

g3 −z1 −z2 z3

Table 1: The action of the orbifold generators.

Let γ(g) be the regular representation of the orbifold group on the Chan-Paton factors.

If the orbifold is abelian, as always in the cases we shall be interested in, we can always

diagonalize all matrices γ(g). We will assume that the two generators have the following

matrix representation

γ(g1) = σ3 ⊗ 1 =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











, γ(g2) = 1 ⊗ σ3 =











1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1











(3.3)

where the 1’s denote Nℓ × Nℓ unit matrices (ℓ = 1, . . . , 4). Then, the orbifold projection

amounts to enforcing the conditions

Aµ = γ(g)Aµγ(g)−1 , Φi = ±γ(g)Φiγ(g)−1 (3.4)

where the sign ± must be chosen according to the action of the orbifold generators g that

can be read off from table 1. With the choice (3.3), the vector superfields are block diagonal

matrices of different size (N1, N2, N3, N4), one for each node of the quiver, while the three

chiral superfields Φi have the following form [24]

Φ1 =











0 × 0 0

× 0 0 0

0 0 0 ×

0 0 × 0











, Φ2 =











0 0 × 0

0 0 0 ×

× 0 0 0

0 × 0 0











, Φ3 =











0 0 0 ×

0 0 × 0

0 × 0 0

× 0 0 0











, (3.5)

where the crosses represent the non-zero entries Φℓm appearing in the superpotential (3.1).

3.1 Instanton sector

Now consider D-instantons in the above set up. Such instantons preserve half of the 4

supercharges preserved by the system of D3-branes plus orbifold. In this respect recall

that the fractional branes preserve exactly the same supercharges as the regular branes.4

4There is another Euclidean brane which preserves two supercharges, namely the Euclidean (anti) D3-

branes orthogonal to the 4 dimensions of space-time. We will be considering here only the D-instantons,

leaving the complete analysis of the other effects to future work. In this context, note that the extended

brane instantons would have an infinite action (and thus a vanishing contribution) in the strict non-compact

set up we are using here.
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Using the N = 4 construction of the previous section and the structure of the orbifold

presented in eq. (3.5), we now proceed in describing the zero-modes for such instantons.

The neutral sector is very similar to the gauge sector. Indeed, in the (−1) superghost

picture, the vertex operators for such strings will be exactly the same, except for the

eip·X factor which is absent for the instanton. The Chan-Paton structure will also be the

same, so that the same pattern of fractional D-instantons will arise as for the fractional

D3-branes. In particular, the only regular D-instanton (which could be thought of as

deriving from the one of N = 4 SYM) is the one with rank (instanton number) one at

every node. All other situations can be thought of as fractional D-instantons, which can

be interpreted as Euclidean D1-branes wrapped on the two-cycles at the singularity, ED1

for short. Generically, we can then characterize an instanton configuration in our orbifold

by (k1, k2, k3, k4).

Following the notation introduced in section 2, the bosonic modes will comprise a 4×4

block diagonal matrix aµ, and six more matrix fields χ1, . . . χ6, that can be paired into

three complex matrix fields χ1 + iχ2, χ3 + iχ4, χ5 + iχ6, having the same structure as (3.5)

but now where each block entry is a kℓ × km matrix. On the fermionic zero-modes MαA

and λα̇A (also matrices) the orbifold projection enforces the conditions

MαA = R(g)AB γ(g)MαBγ(g)−1 , λα̇A = γ(g)λα̇Bγ(g)−1R(g)BA (3.6)

where R(g) is the orbifold action of table 1 in the spinor representation which can be chosen

as

R(g1) = −Γ6789 , R(g2) = −Γ4589 . (3.7)

It is easy to find an explicit representation of the Dirac matrices such that MαA and λα̇A

for A = 1, 2, 3 also have the structure of (3.5) while for A = 4 they are block diagonal.

Equivalently, one could write the spinor indices in the internal space in terms of the three

SO(2) charges associated to the embedding SO(2) × SO(2) × SO(2) ⊂ SO(6) ≃ SU(4)

Mα−++ = Mα1 , Mα+−+ = Mα2 , Mα++− = Mα3 , Mα−−− = Mα4 ,

λα̇+−− = λα̇1 , λα̇−+− = λα̇2 , λα̇−−+ = λα̇3 , λα̇+++ = λα̇4 . (3.8)

The most notable difference between the neutral sector and the gauge theory on the D3-

branes is that, whereas in the four-dimensional theory the U(1) gauge factors are rendered

massive by a generalization of the Green-Schwarz mechanism and do not appear in the

low energy action, for the instanton they are in fact present and enter crucially into the

dynamics.

Let us finally turn to the charged sector, describing strings going from the instantons

to the D3-branes. The analysis of the spectrum and the action of the orbifold group on the

Chan-Paton factors shows, in particular, that the bosonic zero-modes are diagonal in the

gauge factors. There are four block diagonal matrices of bosonic zero-modes ωα̇, ω̄α̇ with

entries Nℓ × kℓ and kℓ × Nℓ respectively and eight fermionic matrices µA, µ̄A with entries

Nℓ × km and km ×Nℓ, that again display the same structure as above — same as (3.5) for

A = 1, 2, 3 and diagonal for A = 4.
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3.2 Recovery of the ADS superpotential

The measure on the moduli space of the instantons and the ADHM constraints are simply

obtained by inserting the above expressions into the moduli integral (2.7). If one chooses

some of the Nℓ or kℓ to vanish one can deduce immediately from the structure of the

projection which modes will survive and which will not.

As a consistency check, one can try to reproduce the ADS correction to the superpo-

tential [27, 28] for the theory with two nodes. Take fractional branes corresponding to a

rank assignment (Nc, Nf , 0, 0), and consider the effect of a ED1 corresponding to instanton

numbers (1, 0, 0, 0).

The only chiral fields present are the two components of Φ1 connecting the first and

second node

Φ1 =











0 Q 0 0

Q̃ 0 0 0

0 0 0 0

0 0 0 0











. (3.9)

Since the instanton is sitting only at one node, all off diagonal neutral modes are absent,

as they connect instantons at two distinct nodes. Thus, the only massless modes present

in the neutral sector are four bosons xµ, denoting the upper-left component of aµ, two

fermions θα denoting the upper-left component of Mα4 and two more fermions λα̇ denoting

the upper-left component of λα̇4. We have identified the non zero entries of aµ and Mα4

with the super-coordinates xµ and θα since they precisely correspond to the Goldstone

modes of the super-translation symmetries broken by the instanton and do not appear in

S1 + S2 (cfr. (2.1) and (2.3)). Their integration produces the integral over space-time and

half of Grassmann space which precedes the superpotential term to which the instanton

contributes. On the contrary, λα̇ appears in S1 and when it is integrated it yields the

fermionic ADHM constraint.

In the charged sector, we have bosonic zero-modes ωu
α̇ and ω̄α̇u, with u an index in the

fundamental or anti-fundamental of SU(Nc). In addition, there are fermionic zero-modes

µu and µ̄u with indices in SU(Nc), together with additional fermionic zero-modes µ′f and

µ̄′
f where the index f is now in the fundamental or anti-fundamental of SU(Nf ).5 Note that

the µ zero-modes carry an SU(4) index 4 (being on the diagonal) while the µ′ zero-modes

carry an SU(4) index 1, since they are of the same form as Φ1.

All this can be conveniently summarized in a generalized quiver diagram as represented

in figure 2, which accounts for both the brane configuration and the instanton zero-modes.

For a single instanton, the action (2.1) greatly simplifies since many fields are vanishing

as well as all commutators and one gets

S1 = i (µ̄uωu
α̇ + ω̄α̇uµu)λα̇ − iDcω̄α̇

u (τ c)β̇α̇ωu
β̇

. (3.10)

5Recall that the bosonic zero-modes are diagonal in the gauge factors; therefore there are no ω
f
α̇ and

ω̄α̇f zero-modes.
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Figure 2: Quiver diagram describing an ordinary instanton in a SU(Nc)× SU(Nf ) theory. Gauge

theory nodes are represented by round circles, instanton nodes by squares. The ED1 is wrapped on

the same cycle as the color branes. All zero-modes are included except the θ’s and the xµ’s, which

only contribute to the measure for the integral over chiral superspace.

Similarly, the coupling of the charged modes to the chiral superfield can be expressed by

writing eq. (2.3) as

S2 =
1

2
ω̄α̇u

(

Qu
fQ†f

v + Q̃†u
f Q̃f

v

)

ωα̇v −
i

2
µ̄uQ̃†u

fµ′f +
i

2
µ̄′

fQ†f
uµu . (3.11)

Note that it is the anti-holomorphic superfields that enter in the couplings with the

fermionic zero-modes, as is clear by comparing with (2.6). The above action is exactly

the same which appears in the ADHM construction as reviewed in [18].

We are now ready to perform the integral (2.7) over all the existing zero-modes. Writing

Z =

∫

dx4dθ2 W , (3.12)

we see that the instanton induced superpotential is

W = C

∫

d{λ,D, ω, ω̄, µ, µ̄} e−S1−S2 . (3.13)

The integrals over D and λ enforce the bosonic and fermionic ADHM constraints, respec-

tively. Thus

W = C

∫

d{ω, ω̄, µ, µ̄} δ(µ̄uωu
α̇ + ω̄α̇uµu) δ(ω̄α̇

u (τ c)β̇α̇ωu
β̇
) e−S2 . (3.14)

We essentially arrive at the point of having to evaluate an integral over a set of zero-modes

which is exactly the same as the one discussed in detail in the literature, e.g. [18]. We thus

quickly go to the result referring the reader to the above review for further details. First

of all, it is easy to see that, due to the presence of extra µ modes in the integrand from the
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Figure 3: Quiver diagram describing an exotic instanton in a SU(Nc) × SU(Nf ) theory. Gauge

theory nodes are represented by round circles, instanton nodes by squares. The ED1 is wrapped

on a different cycle with respect to both sets of quiver branes.

fermionic delta function, only when Nf = Nc − 1 we obtain a non-vanishing result. After

having integrated over the µ and µ′, we are left with a (constrained) gaussian integration

that can be performed e.g. by going to a region of the moduli space where the chiral fields

are diagonal, up to a row/column of zeroes. Furthermore, the D-terms in the gauge sector

constrain the quark superfields to obey QQ† = Q̃†Q̃, so that the bosonic integration brings

the square of a simple determinant in the denominator. The last fermionic integration

conspires to cancel the anti-holomorphic contributions and gives

WADS =
Λ2Nc+1

det(Q̃Q)
, (3.15)

which is just the expected ADS superpotential for Nf = Nc − 1, the only case where such

non-perturbative contribution is generated by a genuine one-instanton effect and not by

gaugino condensation. In (3.15) Λ is the SQCD strong coupling scale that is reconstructed

by the combination of e−8π2/g2

coming from the instanton action with various dimensional

factors coming from the normalization of the instanton measure [18].

3.3 Absence of exotic contributions

Until now, we have reproduced from stringy considerations the effect that is supposed to

be generated also by instantons in the gauge theory. Considering a slightly different set

up, we would like to study the possibility of generating other terms.

Let us consider a system with rank assignment (Nc, Nf , 0, 0), as before, but fractional

instanton numbers (0, 0, 1, 0). In other words, we study the effect of a single fractional

instanton sitting on an unoccupied node of the gauge theory. The quiver diagram, with

the relevant zero-modes structure, is given in figure 3.

The neutral zero-modes of the instanton sector are the same as before. This is because

the quantization of this sector does not know the whereabouts of the D3-branes and thus all
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nodes are equivalent, in this respect. In the mixed sector, we have no bosonic zero-modes

now, since the ω and ω̄ are diagonal. Note that, although we always have four mixed

(ND) boundary conditions, due to the quiver structure induced by the orbifold, here we

effectively realize the same situation one has when there are eight ND directions, namely

that the bosonic sector of the charged moduli is empty.

On the other hand, there are fermionic zero-modes µu, µ̄u, µ′f and µ̄′
f , as in the

previous case. Note that despite having the same name, these zero-modes correspond

actually to different Chan-Paton matrix elements with respect to the previous ones, the

difference being in the instanton index that is not written explicitly. In particular we can

think of µ and µ′ as carrying an SU(4) index 2 and 3 respectively.

Because of the absence of bosonic charged modes, the action (2.1) is identically zero

and the action (2.3) contains only the last term:

S1 = 0

S2 =
i

2
µ̄uQu

fµ′f −
i

2
µ̄′

f Q̃f
uµu. (3.16)

Note that in this case it is the holomorphic superfields which appear above, as is clear

from (2.6) and from noticing that the diagonal fermionic zero-mode µ4 is not present. We

are thus led to consider

W = C

∫

d{λ,D, µ, µ̄} e−S2 . (3.17)

One notices right away that the integral over the charged modes is non vanishing (only)

for the case Nf = Nc and gives a tantalizing contribution proportional to BB̃, where

B = detQ and B̃ = det Q̃ are the baryon fields of the theory. However, we must carefully

analyze the integration over the remaining zero-modes of the neutral sector. Now neither D

nor λ appear in the integrand. The integral over D does not raise any concern: it is, after

all, an auxiliary field and its disappearance from the integrand is due to the peculiarities

of the ADHM limit. Before taking this limit, D appeared quadratically in the action and

could be integrated out, leaving an overall normalization constant. The integral over λ is

another issue. In this case, λ is absent from the integrand even before taking the ADHM

limit and its integration multiplies the above result by zero, making the overall contribution

of such instantons to the superpotential vanishing. Of course, the presence of such extra

zero-modes should not come as a surprise since they correspond to the two extra broken

supersymmetries of an instanton on a CY.

Therefore we see that the neutral zero-modes contribution, in the exotic instanton case,

plays a dramatic role and conspires to make everything vanishing (as opposite to the ADS

case analyzed before). A natural question is to see whether these zero-modes get lifted by

some effect we have not taken into account, yet. For one thing, supersymmetry arguments

would make one think that taking into account the back-reaction of the D3-branes might

change things. However, in the following subsection we show that this seems not to be the

case.
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3.4 Study of the back-reaction

Let us stick to the case Nf = Nc, which is the only one where the integral (3.17) might

give a non-vanishing contribution. In this case the fractional brane system is nothing but

a stack of (Nc) N = 2 fractional branes. These branes couple to only one of the 3 closed

string twisted sectors [24]. More specifically, they source the metric hµν , the R-R four-

form potential Cµνρσ and two twisted scalars b and c from the NS-NS and R-R sector

respectively. This means that the disk one-point function of their vertex operators [31, 32]

is non vanishing when the disk boundary is attached to such D3-branes. (Indeed in this

way or, equivalently, by using the boundary-state formalism [33, 34], one can derive the

profile for these fields.)

If the back-reaction of these fields on the instanton lifted the extra zero-modes λ’s,

this should be visible when computing the one point function of the corresponding closed

string vertex operators on a disk with insertions on this boundary of the vertex operators

for such moduli. To see whether such coupling is there, we first need to write down the

vertex operators for the λ’s in the (±1/2) superghost pictures. The vertex in the (−1/2)

picture is found e.g. in [6] and reads

V
−1/2
λ (z) = λα̇ASα̇(z)SA(z)e−φ(z)/2 , (3.18)

where Sα̇(z) and SA(z) are the spin-fields in the first four and last six directions respectively.

For our argument we need to focus on the SA(z) dependence. Since the modulus that

survives the orbifold projection is, with our conventions, λα̇4 = λα̇+++, we write the

corresponding spin-field as

S+++(z) = eiH1(z)/2eiH2(z)/2eiH3(z)/2, (3.19)

where Hi(z) is the free boson used to bosonize the fermionic sector in the i-th complex

direction: ψi(z) = eiHi(z). The vertex operator in the +1/2 picture can be obtained by

applying the picture-changing operator to (3.18)

V
1/2
λ (z) = [QBRST, ξV

−1/2
λ (z)] . (3.20)

The crucial part in QBRST is [31]

QBRST =

∮

dz

2πi
η eφ

(

ψµ∂Xµ + ψ̄i∂Zi + ψi∂Z̄i
)

+ . . . (3.21)

Because of the nature of the supercurrent, we see that (3.21) flips at most one sign in (3.19),

hence the product V
−1/2
λ V

1/2
λ will always carry an unbalanced charge in some of the three

internal SO(2) groups. On the other hand, the vertex operators for the fields sourced

by the fractional D3’s cannot compensate such an unbalance. Hence, their correlation

function on the D-instanton with the insertion of V
−1/2
λ V

1/2
λ carries a charge unbalance

and therefore vanishes. Therefore, at least within the above perturbative approach, the

neutral zero-modes seem not to get lifted by the back-reaction of the D3-branes.

One might consider some additional ingredients which could provide the lifting. A

natural guess would be moving in the CY moduli space or adding suitable background
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fluxes [35, 36]. There are indeed non-vanishing background fields at the orbifold point,

i.e. the b fields of the twisted sectors which the N = 2 fractional branes do not couple

to. These fields, however, being not associated to geometric deformations of the internal

space should be described by a CFT vertex operator uncharged under the SO(2)’s, simply

because of Lorentz invariance in the internal space. Therefore, the only way to get an

effective mass term for the zero-modes λ would be to move out of the orbifold point in the

CY moduli space. Indeed, the other moduli of the NS-NS twisted sector, being associated

to geometric blow-ups of the singularity, are charged under (some of) the internal SO(2)’s

and can have a non vanishing coupling with the λ’s. More generically, complicated closed

string background fluxes might be suitable. This is an interesting option which however

we do not pursue here, since we want to stick to situations where a CFT description is

available.

A more radical thing to do is to remove the zero-modes from the very start, for instance

by means of an orientifold projection [37, 38]. This is the option we are going to consider

in the remainder of this work.

4. The N = 1 Z2 × Z2 orientifold

In this section we supplement our orbifold background by an O3 orientifold and show

that in this case exotic instanton contributions do arise and provide new terms in the

superpotential. We refer to e.g. [39 – 41] for a comprehensive discussion of N = 1 and

N = 2 orientifolds.

The first ingredient we need is the action of the O3-plane on the various fields. Denote

by Ω the generator of the orientifold. The action of Ω on the vertex operators for the

various fields (ignoring for the time being the Chan-Paton factors) is well known. The

vertex operators for the bosonic fields on the D3-brane contain, in the 0 picture, the

following terms: Aµ ∼ ∂τx
µ and Φi ∼ ∂σ z̄i. They both change sign under Ω, the first

because of the derivative ∂τ and the second because the orientifold action for the O3-plane

is always accompanied by a simultaneous reflection of all the transverse coordinates zi.

The action of the orientifold on the Chan-Paton factors is realized by means of a matrix

γ(Ω) which in presence of an orbifold must satisfy the following consistency condition [39]

γ(g)γ(Ω)γ(g)T = + γ(Ω) (4.1)

for all orbifold generators g. This amounts to require that the orientifold projection com-

mutes with the orbifold projection. The matrix γ(Ω) can be either symmetric or anti-

symmetric. We choose to perform an anti-symmetric orientifold projection on the D3

branes and denote the corresponding matrix by γ−(Ω). This requires having an even num-

ber Nℓ of D3 branes on each node of the quiver so that we can write

γ−(Ω) =











ǫ1 0 0 0

0 ǫ2 0 0

0 0 ǫ3 0

0 0 0 ǫ4











(4.2)
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where the ǫℓ’s are Nℓ ×Nℓ antisymmetric matrices obeying ǫ2
ℓ = −1. Using (3.3) and (4.2)

it is straightforward to verify that the consistency condition (4.1) is verified.

The field content of the stacks of fractional D3-branes in this orientifold model is

obtained by supplementing the orbifold conditions (3.4) with the orientifold ones

Aµ = −γ−(Ω)AT
µγ−(Ω)−1 , Φl = −γ−(Ω)ΦlT γ−(Ω)−1. (4.3)

This implies that Aµ = diag (A1
µ, A2

µ, A3
µ, A4

µ) with Aℓ
µ = ǫℓA

iT
µ ǫℓ. Thus, the resulting gauge

theory is a USp(N1)×USp(N2)×USp(N3)×USp(N4) theory. The chiral superfields, which

after the orbifold have the structure (3.5), are such that the Φℓm component joining the

nodes ℓ and m of the quiver, must obey the orientifold condition Φℓm = ǫℓΦ
T
mℓǫm. In the

following, we will take N3 = N4 = 0 so that we are left with only two gauge groups and no

tree level superpotential.

4.1 Instanton sector

Let us now consider the instanton sector, starting by analyzing the zero-mode content in

the neutral sector. There are two basic changes to the previous story. The first is that the

vertex operator for aµ is now proportional to ∂σxµ, not to ∂τx
µ and it remains invariant

under Ω (the vertex operator for χa still changes sign). The second is that the crucial

consistency condition discussed in [38] requires that we now represent the action of Ω on

the Chan-Paton factors of the neutral modes by a symmetric matrix which can be taken

to be

γ+(Ω) =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











, (4.4)

where the 1’s are kℓ × kℓ unit matrices. The matrix aµ will be 4 × 4 block diagonal, e.g.

aµ = diag (a1
µ, a2

µ, a3
µ, a4

µ), but now aℓ
µ = aℓT

µ . The most generic situation is to have a

configuration with instanton numbers (k1, k2, k3, k4). By considering a configuration with

k3 = 1 and k1 = k2 = k4 = 0, we can project out all bosonic zero-modes except for the

four components a3
µ that we denote by xµ. The scalars χ4 . . . χ9 are off-diagonal and we

shall not consider them further.

The nice surprise comes when considering the orientifold action on the fermionic neutral

zero-modes MαA and λα̇A. The orbifold part of the group acts on the spinor indices as

in (3.7), while the orientifold projection acts as the reflection in the transverse space,

namely

R(Ω) = −iΓ456789 (4.5)

Putting together the orbifold projections (3.6) with the orientifold ones

MαA = RA
B(Ω)γ+(Ω)(MαB)T γ+(Ω)−1 , λα̇A = γ+(Ω)(λα̇B)T γ+(Ω)−1RB

A(Ω) (4.6)

we can find the spectrum of surviving fermionic zero-modes. Using (4.4) and (4.5), it is

easy to see that (4.6) implies

MαA = (MαA)T , λα̇A = −(λα̇A)T . (4.7)
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Thus, for the simple case where k3 = 1 and k1 = k2 = k4 = 0, all λ’s are projected out

and only two chiral M zero-modes remain: Mα−−−, to be identified with the N = 1 chiral

superspace coordinates θα.

Also the charged zero-modes are easy to discuss in this simple scenario. There are no

bosonic modes since the D-instanton and the D3-branes sit at different nodes while the

bosonic modes are necessarily diagonal. Most of the fermionic zero-modes µA and µ̄A are

also projected out by the orbifold condition

µA = R(g)ABγ(g)µBγ(g)−1 , µ̄A = R(g)ABγ(g)µ̄Bγ(g)−1 . (4.8)

Finally, the orientifold condition relates this time the fields in the conjugate sectors, allow-

ing one to express µ̄ as a linear combination of the µ

µ̄A = R(Ω)ABγ+(Ω)(µB)T γ−(Ω)−1 . (4.9)

The only charged modes surviving these projections can be expressed, in block 4 × 4

notation, as

µ2 =











0 0 µ13 0

0 0 0 0

0 0 0 0

0 0 0 0











, µ̄2 =











0 0 0 0

0 0 0 0

µ̄31 0 0 0

0 0 0 0











,

µ3 =











0 0 0 0

0 0 µ23 0

0 0 0 0

0 0 0 0











, µ̄3 =











0 0 0 0

0 0 0 0

0 µ̄32 0 0

0 0 0 0











, (4.10)

where the entries, to be thought of as column/row vectors in the fundamental/anti-fundamental

of SU(Nℓ) depending on their position, are such that µ̄31 = −µT
13ǫ1 and µ̄32 = −µT

23ǫ2.

Thus, in the case where we have fractional D3 branes (N1, N2, 0, 0) and an exotic in-

stanton (0, 0, 1, 0), the only surviving chiral field is Φ12 ≡ ǫ1Φ
T
21ǫ2, the orientifold projection

eliminates the offending λ’s and we are left with just the neutral zero-modes xµ and θα and

the charged ones µ13 and µ23. This is summarized in the generalized quiver of figure 4.

In this case the instanton partition function is

Z =

∫

dx4dθ2 W (4.11)

where the superpotential W is

W = C

∫

dµ e−S1−S2 = C

∫

dµ13dµ23 eiµT
13

ǫ1Φ12µ23 . (4.12)

This integral clearly vanishes unless N1 = N2, in which case we have

W ∝ det(Φ12) (4.13)
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Figure 4: The generalized Z2 × Z2 orientifold quiver and the exotic instanton contribution.

We thus see that exotic instanton corrections are possible in this simple model.6

It is interesting to note that the above correction is present in the same case (N1 =

N2 ≡ N) where the usual ADS superpotential for USp(N) is generated [42]

WADS =
Λ2N+3

det(Φ12)
(4.14)

and its presence stabilizes the runaway behavior and gives a theory with a non-trivial

moduli space of supersymmetric vacua given by det(Φ12) = const. Of course, the ADS

superpotential for this case can also be constructed along the same lines as section 3.2, see

e.g. [18]. In fact, this derivation is somewhat simpler than the one for the SU(N) gauge

group since there are no ADHM constraints at all in the one instanton case.

We think the above situation is not specific to the background we have been consid-

ering, but is in fact quite generic. As soon as the λ zero-modes are consistently lifted, we

expect the exotic instantons to contribute new superpotential terms. As a further example,

in the next section we will consider a N = 2 model, where exotic instantons will turn out

to contribute to the prepotential.

5. An N = 2 example: the Z3 orientifold

Let us now consider the quiver gauge theory obtained by placing an orientifold O3-plane at

a C× C2/Z3 orbifold singularity. In what follows we will use N = 1 superspace notation.

We first briefly repeat the steps that led to the constructions of such a quiver theory in the

seminal paper [39]. Define ξ = e2πi/3 and let the generator of the orbifold group act on the

first two complex coordinates as

g :

(

z1

z2

)

→

(

ξ 0

0 ξ−1

)(

z1

z2

)

, (5.1)

6The gauge invariant quantity above can be rewritten as the Pfaffian of a suitably defined mesonic

matrix.
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Figure 5: The Z3 (un-orientifolded) theory. The lines with both ends on a single node represent

adjoint chiral multiplets which, together with the vector multiplets at each node constitute the

N = 2 vector multiplets. Similarly, lines between nodes represent chiral multiplets which pair up

into hyper-multiplets, in N = 2 language.

while leaving the third one invariant. This preserves N = 2 SUSY. The action of the

generator g on the Chan-Paton factors is given by the matrix

γ(g) =







1 0 0

0 ξ 0

0 0 ξ2






. (5.2)

The N = 2 theory obtained this way, summarized in figure 5, is a three node quiver

gauge theory with gauge groups SU(N1) × SU(N2) × SU(N3), supplemented by a cubic

superpotential which is nothing but the orbifold projection of the N = 4 superpotential

(its precise form is not relevant for the present purposes).

As for the action of Ω on the Chan-Paton factors, we choose again to perform the

symplectic projection on the D3-branes. To do so, we must take N1 to be even and

N2 = N3, so that we can write

γ−(Ω) =







ǫ 0 0

0 0 1

0 −1 0






, (5.3)

where ǫ is a N1 × N1 antisymmetric matrix obeying ǫ2 = −1 and the 1’s denote N2 × N2

identity matrices. The matrices γ(g) and γ−(Ω) satisfy the usual consistency condition [38,

39] as in (4.1).

The field content on the fractional D3-branes at the singularity will be given by im-

plementing the conditions

Aµ = γ(g)Aµγ(g)−1 , Φi = ξ−iγ(g)Φiγ(g)−1 ,
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USp(N1) SU(N2)

Φ12 ¤ ¤

Φ21 ¤ ¤

Φ13 ¤ ¤

Φ31 ¤ ¤

Φ23 · ¤¤

Φ32 · ¤¤

Table 2: Chiral fields making up the quiver gauge theory.

Aµ = −γ−(Ω)AT
µγ−(Ω)−1 , Φi = −γ−(Ω)ΦiT γ−(Ω)−1 . (5.4)

The orbifold part of these conditions forces Aµ and Φ3 to be 3× 3 block diagonal matrices,

e.g. Aµ = diag (A1
µ, A2

µ, A3
µ), while the orientifold imposes that A1

µ = ǫA1T
µ ǫ and A2

µ =

−A3T
µ . The resulting gauge theory is thus a USp(N1) × SU(N2) theory. It is convenient,

however, to still denote A2
µ and A3

µ diagramatically as belonging to different nodes with

the understanding that these should be identified in the above sense.

The projection on the chiral fields can be done similarly and we obtain, denoting by

Φℓm the non-zero entries of the fields Φ1 and Φ2 (only one can be non-zero for each pair

ℓm)

Φ12 = −ǫΦT
31, Φ13 = +ǫΦT

21, Φ23 = ΦT
23, Φ32 = ΦT

32 . (5.5)

The field content is summarized in table 2.

The theory we want to focus on in the following has rank assignment (N1, N2) = (0, N).

This yields an N = 2 SU(N) gauge theory with an hyper-multiplet in the symmet-

ric/(conjugate)symmetric representation. We denote the N = 2 vector multiplet by A

whose field content in the block 3 × 3 notation is thus

Â =







0 0 0

0 A 0

0 0 −AT






. (5.6)

In what follows we will be interested in studying corrections to the prepotential F coming

from exotic instantons associated to the first node (the one that is not populated by D3-

branes). Let us then analyze the structure of the stringy instanton sector of the present

model, first.

5.1 Instanton sector

The most generic situation is to have a configuration with instanton numbers (k1, k2) (later

we will be mainly concerned with a configuration with instanton numbers (1, 0)).

Let us start analyzing the zero-modes content in neutral sector. The story is pretty

similar to the one discussed in the previous section. The vertex operator for aµ is propor-

tional to ∂σxµ and so it remains invariant under Ω. The action on the Chan-Paton factors
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of these D-instantons must now be represented by a symmetric matrix which we take to be

γ+(Ω) =







1′ 0 0

0 0 1

0 1 0






(5.7)

where 1′ is a k1 × k1 unit matrix and the 1’s are k2 × k2 unit matrices.

Because of the different orientifold projection, the matrices of bosonic zero-modes

behave slightly differently. The matrices aµ, χ8 and χ9 will still be 3 × 3 block diagonal,

e.g. aµ = diag (a1
µ, a2

µ, a3
µ), but now a1

µ = a1T
µ and a2

µ = a3T
µ whereas the same relations for

χ8 and χ9 will have an additional minus sign. The remaining fields χ4...7 are off diagonal

and we shall not consider them further since we will consider only the case of one type of

instanton. By considering a configuration with k1 = 1 and k2 = 0, we can project out all

bosonic zero-modes except for the four components a1
µ that we denote by xµ.

Let us now consider the orientifold action on the fermionic neutral zero-modes MαA

and λα̇A. The orbifold part of the group acts on the internal spinor indices as a rotation

R(g) = e
π
3
Γ45

e−
π
3
Γ67

, (5.8)

while the orientifold acts through the matrix R(Ω) given in (4.5). The orbifold and orien-

tifold projections thus require

MαA = R(g)ABγ(g)MαBγ(g)−1 , λα̇A = γ(g)λα̇Bγ(g)−1R(g)BA , (5.9)

MαA = R(Ω)ABγ+(Ω)(MαB)T γ+(Ω)−1 , λα̇A = γ+(Ω)(λα̇B)T γ+(Ω)−1R(Ω)BA .

Using the explicit expressions for the various matrices, we see that, for the simple case where

k1 = 1 and k2 = 0, all λ’s are projected out and only four chiral M zero-modes remain:

Mα−−− and Mα++− to be identified with the N = 2 chiral superspace coordinates θ1
α and

θ2
α. Hence, also in this case the orientifold projection has cured the problem encountered

in section 3 (albeit in a N = 2 context now) and we can rest assured that the integration

over the charged modes will yield a contribution to the prepotential.

Let us now move to the charged zero-modes sector. Just as in the previous model,

there are no bosonic modes since the D-instanton and the D3-branes sit at different nodes

while the bosonic modes are necessarily diagonal. Most of the fermionic zero-modes µA

and µ̄A are projected out by the orbifold condition which is formally the same as in (4.8),

while the orientifold condition relates the fields in the conjugate sectors, giving µ̄ as a linear

combination of the µ’s according to

µ̄A = R(Ω)ABγ+(Ω)(µB)T γ−(Ω)−1 . (5.10)

To summarize, the only charged modes surviving the projection can be expressed, in block

3 × 3 notation as

µ1 =







0 0 0

0 0 0

µ 0 0






, µ̄1 =







0 µT 0

0 0 0

0 0 0






,
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E 1

µ

Φ Φ3223

_

µ

U(N) U(N)
−1,T

1

2
1µ

2µ
_

Figure 6: The extended Z3 orientifold theory with (0, N) fractional D3-branes and (1, 0) instanton

number. The upper node (which would represent the USp(N1) gauge group and disappears when

we set N1 = 0 as in the case under consideration) is where the instanton sits. The lower nodes

denote only one gauge group. The charged fermionic zero-modes follow eq. (5.11). For simplicity

we have not drawn the lines denoting the adjoint.

µ2 =







0 0 0

µ′ 0 0

0 0 0






, µ̄2 =







0 0 −µ′T

0 0 0

0 0 0






(5.11)

where the entries are to be thought of as column/row vectors in the fundamental/antifun-

damental of SU(N) depending on their position.

As anticipated, the configuration we want to consider is a (0, N) fractional D3-branes

system together with an exotic (1, 0) instanton. The quiver structure, including the relevant

moduli, is depicted in figure 6. It is now easy to see that inserting the expressions (5.6)

and (5.11) into eqs. (2.1), (2.3) and (2.7) we finally obtain

Z =

∫

dx4dθ4 F with F = C

∫

dµdµ′ eiµT Aµ′

∝ detA . (5.12)

It would be interesting to study the potential implications of this result in the gauge theory.

There are many other simple models that could be analyzed along these lines.

6. Conclusions

In this paper we have presented some simple examples of what seem to be rather generic

phenomena in the context of string instanton physics. We paid particular attention to

the study of the fermionic zero-modes and their effects on the holomorphic quantities of

the theory. We have seen both examples where the instanton contributions vanish due to

the presence of extra zero-modes and where they do not. In the second case, as explicitly

shown in a N = 1 example, exotic instantons can have a stabilizing effect on the theory.

Although we have only considered some simple examples, we would like to stress that

these results are quite generic and can be carried over to all orbifold gauge theories. A
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future direction would be to try to be more systematic and analyze the various possibil-

ities encountered in more complex N = 2 and N = 1 models. In a similar spirit, one

should analyze the multi-instanton contributions as well, since the total correction to the

holomorphic quantities will be the sum of all such terms. The study of the zero-modes is

expected to be even more relevant in this case as it will probably make many contributions

vanish. With an eye to string phenomenology, one should also incorporate these models

into globally consistent compactifications and study the effects of these terms there.

Lastly, it would be interesting to study the dynamical implications of some of the

terms generated. We briefly touched upon this at the end of section 4 when we mentioned

the stabilizing effect of the exotic instanton on the USp(N) theory. Although from the

strict field theory point of view these terms are thought of as ordinary polynomial terms in

the holomorphic quantities,7 they are “special” when seen from the point of view of string

theory and they might therefore induce a particular type of dynamics.
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[13] M. Cvetič, R. Richter and T. Weigand, Computation of D-brane instanton induced

superpotential couplings - Majorana masses from string theory, hep-th/0703028.

[14] M. Bianchi, F. Fucito, J.F. Morales, D-brane Instantons on the T 6/Z3 orientifold

arXiv:0704.0784.

[15] K. Intriligator and N. Seiberg, The runaway quiver, JHEP 02 (2006) 031 [hep-th/0512347].

[16] R. Argurio, M. Bertolini, C. Closset and S. Cremonesi, On stable non-supersymmetric vacua

at the bottom of cascading theories, JHEP 09 (2006) 030 [hep-th/0606175].

[17] R. Argurio, M. Bertolini, S. Franco and S. Kachru, Metastable vacua and D-branes at the

conifold, hep-th/0703236.

[18] N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons,

Phys. Rept. 371 (2002) 231 [hep-th/0206063].

[19] M. Bianchi, S. Kovacs and G. Rossi, Instantons and supersymmetry, hep-th/0703142.

[20] M. Billo, M. Frau, S. Sciuto, G. Vallone and A. Lerda, Non-commutative (d)-instantons,

JHEP 05 (2006) 069 [hep-th/0511036].

[21] M. Billo, M. Frau, I. Pesando and A. Lerda, N = 1/2 gauge theory and its instanton moduli

space from open strings in RR background, JHEP 05 (2004) 023 [hep-th/0402160]; N = 1/2

quiver gauge theories from open strings with RR fluxes, JHEP 05 (2005) 047

[hep-th/0502084];

M. Billo, M. Frau, F. Fucito and A. Lerda, Instanton calculus in RR background and the

topological string, JHEP 11 (2006) 012 [hep-th/0606013].

– 24 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB499%2C55
http://arxiv.org/abs/hep-th/9612077
http://jhep.sissa.it/stdsearch?paper=02%282000%29014
http://jhep.sissa.it/stdsearch?paper=02%282000%29014
http://arxiv.org/abs/hep-th/0002011
http://jhep.sissa.it/stdsearch?paper=02%282003%29045
http://arxiv.org/abs/hep-th/0211250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB771%2C113
http://arxiv.org/abs/hep-th/0609191
http://jhep.sissa.it/stdsearch?paper=03%282007%29052
http://arxiv.org/abs/hep-th/0609213
http://arxiv.org/abs/hep-th/0610003
http://arxiv.org/abs/hep-th/0612110
http://jhep.sissa.it/stdsearch?paper=04%282007%29076
http://arxiv.org/abs/hep-th/0612132
http://arxiv.org/abs/hep-th/0702015
http://arxiv.org/abs/hep-th/0703028
http://arxiv.org/abs/0704.0784
http://jhep.sissa.it/stdsearch?paper=02%282006%29031
http://arxiv.org/abs/hep-th/0512347
http://jhep.sissa.it/stdsearch?paper=09%282006%29030
http://arxiv.org/abs/hep-th/0606175
http://arxiv.org/abs/hep-th/0703236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C371%2C231
http://arxiv.org/abs/hep-th/0206063
http://arxiv.org/abs/hep-th/0703142
http://jhep.sissa.it/stdsearch?paper=05%282006%29069
http://arxiv.org/abs/hep-th/0511036
http://jhep.sissa.it/stdsearch?paper=05%282004%29023
http://arxiv.org/abs/hep-th/0402160
http://jhep.sissa.it/stdsearch?paper=05%282005%29047
http://arxiv.org/abs/hep-th/0502084
http://jhep.sissa.it/stdsearch?paper=11%282006%29012
http://arxiv.org/abs/hep-th/0606013


J
H
E
P
0
6
(
2
0
0
7
)
0
6
7

[22] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335

[hep-th/9510135].

[23] M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of instantons, Phys.

Lett. A 65 (1978) 185.

[24] M. Bertolini, P. Di Vecchia, G. Ferretti and R. Marotta, Fractional branes and N = 1 gauge

theories, Nucl. Phys. B 630 (2002) 222 [hep-th/0112187].

[25] M. Bertolini, Four lectures on the gauge-gravity correspondence, Int. J. Mod. Phys. A 18

(2003) 5647 [hep-th/0303160].

[26] S. Franco, A. Hanany, F. Saad and A.M. Uranga, Fractional branes and dynamical

supersymmetry breaking, JHEP 01 (2006) 011 [hep-th/0505040].

[27] T.R. Taylor, G. Veneziano and S. Yankielowicz, Supersymmetric QCD and its massless limit:

an effective lagrangian analysis, Nucl. Phys. B 218 (1983) 493.

[28] I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric

QCD, Nucl. Phys. B 241 (1984) 493.

[29] D. Berenstein, C.P. Herzog, P. Ouyang and S. Pinansky, Supersymmetry breaking from a

Calabi-Yau singularity, JHEP 09 (2005) 084 [hep-th/0505029].

[30] M. Bertolini, F. Bigazzi and A.L. Cotrone, Supersymmetry breaking at the end of a cascade of

Seiberg dualities, Phys. Rev. D 72 (2005) 061902 [hep-th/0505055].

[31] D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and

string theory, Nucl. Phys. B 271 (1986) 93.

[32] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of

orbifolds, Nucl. Phys. B 282 (1987) 13.

[33] P. Di Vecchia et al., Classical p-branes from boundary state, Nucl. Phys. B 507 (1997) 259

[hep-th/9707068];

M. Bertolini et al., Fractional D-branes and their gauge duals, JHEP 02 (2001) 014

[hep-th/0011077];

M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, N = 2 gauge theories on

systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057].

[34] P. Di Vecchia and A. Liccardo, D-branes in string theory. 1, NATO Adv. Study Inst. Ser. C.

Math. Phys. Sci. 556 (2000) 1 [hep-th/9912161].

[35] L. Martucci, J. Rosseel, D. Van den Bleeken and A. Van Proeyen, Dirac actions for D-branes

on backgrounds with fluxes, Class. and Quant. Grav. 22 (2005) 2745 [hep-th/0504041].

[36] E. Bergshoeff, R. Kallosh, A.-K. Kashani-Poor, D. Sorokin and A. Tomasiello, An index for

the Dirac operator on D3 branes with background fluxes, JHEP 10 (2005) 102

[hep-th/0507069].

[37] G. Pradisi and A. Sagnotti, Open string orbifolds, Phys. Lett. B 216 (1989) 59.

[38] e.g. Gimon and J. Polchinski, Consistency conditions for orientifolds and D-manifolds, Phys.

Rev. D 54 (1996) 1667 [hep-th/9601038].

[39] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167.

[40] M. Berkooz and R.G. Leigh, A D = 4 N = 1 orbifold of type-I strings, Nucl. Phys. B 483

(1997) 187 [hep-th/9605049].

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C335
http://arxiv.org/abs/hep-th/9510135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA65%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA65%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB630%2C222
http://arxiv.org/abs/hep-th/0112187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA18%2C5647
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA18%2C5647
http://arxiv.org/abs/hep-th/0303160
http://jhep.sissa.it/stdsearch?paper=01%282006%29011
http://arxiv.org/abs/hep-th/0505040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB218%2C493
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB241%2C493
http://jhep.sissa.it/stdsearch?paper=09%282005%29084
http://arxiv.org/abs/hep-th/0505029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C061902
http://arxiv.org/abs/hep-th/0505055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB271%2C93
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB282%2C13
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB507%2C259
http://arxiv.org/abs/hep-th/9707068
http://jhep.sissa.it/stdsearch?paper=02%282001%29014
http://arxiv.org/abs/hep-th/0011077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB621%2C157
http://arxiv.org/abs/hep-th/0107057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NASCD%2C556%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NASCD%2C556%2C1
http://arxiv.org/abs/hep-th/9912161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2745
http://arxiv.org/abs/hep-th/0504041
http://jhep.sissa.it/stdsearch?paper=10%282005%29102
http://arxiv.org/abs/hep-th/0507069
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB216%2C59
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C1667
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C1667
http://arxiv.org/abs/hep-th/9601038
http://arxiv.org/abs/hep-th/9603167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB483%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB483%2C187
http://arxiv.org/abs/hep-th/9605049


J
H
E
P
0
6
(
2
0
0
7
)
0
6
7

[41] G. Zwart, Four-dimensional N = 1 Zn × Zm orientifolds, Nucl. Phys. B 526 (1998) 378

[hep-th/9708040].

[42] K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in

supersymmetric SP (Nc) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006].

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB526%2C378
http://arxiv.org/abs/hep-th/9708040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB353%2C471
http://arxiv.org/abs/hep-th/9505006

