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1. Introduction

The study of deformed gauge theories has recently attracted a lot of interest, especially

after it has become evident the connection between field theory deformation parameters

and non-trivial geometric backgrounds. This connection is particularly clear in a string

theory context where the gauge theories describe the low-energy dynamics of open strings

attached to D-branes and the deformation parameters are associated to non-trivial fluxes

for some closed string fields to which the D-branes can couple. The most notable example

of this relation is provided by the non-commutative gauge theories which can be efficiently

described in terms of open strings propagating in a background with a constant NS-NS

Bµν field [1]. More recently, other types of backgrounds have been considered by turning

on fluxes for suitable combinations of the anti-symmetric tensor fields of the closed string

spectrum. Among the various possibilities that have been explored, there is the one in

which a graviphoton background of the R-R sector is turned on.
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As explained in refs. [2 – 6], a constant self-dual graviphoton field strength Cµν induces

a deformation of the four dimensional superspace [7, 8] in which the fermionic coordinates

cease to be anticommuting Grassmann variables and become elements of a Clifford algebra,

namely
{
θα, θβ

}
= Cαβ ,

{
θα, θ̄β̇

}
=
{
θ̄α̇, θ̄β̇

}
= 0 (1.1)

where Cαβ = 1
4Cµν(σµν)αβ . The non-vanishing anticommutator in (1.1) breaks the four

dimensional Lorentz group SU(2)L×SU(2)R to SU(2)L and reduces the number of conserved

supercharges by a factor of two. Therefore, a graviphoton background deforms aN = 1 field

theory in four dimensions into a N = 1/2 theory with only two supercharges. Furthermore,

new types of interactions and couplings are induced by the non-anticommutative structure

of superspace.

Supersymmetric field theories based on non-anticommutative superspaces (which we

will call simply non-anticommutative, or NAC, field theories) have been the subject of

vast investigation in the recent past from many different points of view [9 – 24]. In this

paper, extending our previous work [25], we will analyze N = 1/2 gauge theories with

matter in the fundamental or bifundamental representation working explicitly in a stringy

set-up. In particular, we will engineer a N = 1 gauge theory in four dimensions by

considering stacks of fractional D3-branes in the orbifold C3/(Z2 × Z2); the open strings

starting and ending on the same type of fractional D-branes describe the gauge multi-

plets, while the strings stretching between two different types of D-branes describe chiral

and anti-chiral matter multiplets in bifundamental representations. We then demonstrate

that a NAC deformation of this quiver gauge theory, including its superpotential, ap-

pears by turning on a graviphoton background with constant field strength in the R-R

sector. The presence of a non trivial R-R flux modifies the dynamics of the open strings

and introduces new couplings that correspond to mixed open/closed string amplitudes

which we explicitly compute. These new interactions are the same as those which can be

derived from the NAC deformation of superspace. However, we also find an extra cou-

pling which cannot be immediately obtained from the NAC superspace. Our approach

provides in principle a unified way of treating various deformations on gauge theories

by computing mixed open/closed string amplitudes, and shows that, at least when the

flux is constant, the NSR formulation of string theory allows to treat also a R-R back-

ground.

This paper is organized as follows: in section 2, using a superspace approach, we first

discuss the NAC deformation of a U(N) gauge theory with fundamental matter, and then

the NAC structure of a quiver gauge theory with group U(N0)×U(N1)×U(N2)×U(N3) and

matter in bifundamental representations. In section 3 we show how to engineer the above

quiver theory, including its superpotential, with fractional D3 branes of type-IIB string

theory in the orbifold C3/(Z2×Z2), while in section 4 we explicitly derive the deformation

induced by a R-R graviphoton background on the massless open string dynamics by com-

puting mixed open/closed string amplitudes in the NSR formalism. Finally, in appendix A

we list our conventions and collect some technical details that are useful to reproduce our

calculations.
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2. N = 1/2 gauge theories with fundamental matter

In this section we review the NAC deformation of N = 1 gauge theories; we use a super-

space approach first to describe deformed superfields, and then to introduce gauge invariant

actions for NAC theories with chiral matter in fundamental or bifundamental representa-

tions.

2.1 Superfields in NAC superspace

In terms of the commuting chiral coordinates yµ ≡ xµ + i θσµθ̄, a vector superfield V in

the WZ gauge has the following expansion1

V = −2 θσµθ̄ Aµ(y)− 2i θ̄θ̄ θλ(y)− 2i θθ θ̄ λ(y) + θθ θ̄θ̄
(
i ∂ · A(y) +D(y)

)
(2.1)

where Aµ is the gauge vector field, λ and λ are the gauginos and D is an auxiliary field.

Clearly these components transform in the adjoint representation of the gauge group, and

the residual transformations which preserve the WZ gauge are of the form

eV → eV
′

= e−i Ξ eV ei Ξ (2.2)

with Ξ and Ξ given by

Ξ = ε(y) , Ξ = ε(y)− 2i θσµθ̄ ∂µε(y)− θθ θ̄θ̄ ∂2ε(y) (2.3)

in terms of the gauge parameter ε(y). Indeed, by expanding (2.2) in θ and θ̄, one can easily

find the standard infinitesimal gauge transformations for the components

δAµ = ∂µε+ i [Aµ , ε] , δλ = i [λ , ε]

δλ = i
[
λ , ε

]
, δD = i [D , ε] . (2.4)

On the other hand, a chiral superfield Φ has the following θ-expansion

Φ = ϕ(y) +
√

2 θχ(y) + θθ F (y) (2.5)

where ϕ is a complex scalar field, χ is a chiralino and F is an auxiliary field. Correspond-

ingly, an anti-chiral superfield Φ is given by

Φ = ϕ(y)− 2i θσµθ̄ ∂µϕ(y)− θθ θ̄θ̄ ∂2ϕ(y) +
√

2 θ̄χ(y)− 2
√

2i θσµθ̄ θ̄∂µχ(y) + θ̄θ̄ F (y) (2.6)

in terms of the conjugate components. When these fields are in the fundamental and

anti-fundamental representations of the gauge group, their gauge transformations are

Φ → Φ′ = e−i Ξ Φ , Φ→ Φ
′
= Φ ei Ξ , (2.7)

which imply the following infinitesimal transformations for the components

δϕ = −i εϕ , δχ = −i ε χ , δF = −i ε F ,

δϕ = iϕ ε , δχ = iχ ε , δF = iF ε . (2.8)

1Our euclidean conventions are given in appendix A.1.
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In ref. [5] the consequences of the NAC deformation (1.1) of the superspace have

been analyzed and interpreted. First of all, in the presence of Cαβ a new product among

superfields, called ? -product, must be introduced according to

Ψ1 ? Ψ2 = Ψ1 exp

(
−C

αβ

2

←−−
∂

∂θα

−−→
∂

∂θβ

)
Ψ2 (2.9)

= Ψ1 Ψ2 − Cαβ
(
ψ1α +

√
2 θαf1

)(
ψ2β +

√
2 θβf2

)
− detC f1 f2 (2.10)

where Ψ1 and Ψ2 are two arbitrary superfields, ψα and f are, respectively, their θα and

the θθ components (which in general can be functions both of y and of θ̄), and detC =
1
2 C

αβCαβ = 1
4 C

µνCµν . Then, the parameterization (2.1) of the vector superfield V must

be modified by shifting the gaugino λα according to

λα → λα −
1

2
C β
α σ

µ
βα̇

{
λ
α̇
, Aµ

}
(2.11)

in such a way that the standard gauge transformations (2.4) can be derived from the

? -product version of (2.2), i.e.

eV → eV
′

= e−i Ξ ? eV ? ei Ξ . (2.12)

In these expressions the exponentials are defined with the ? -product and the gauge param-

eters are given by

Ξ = ε(y) (2.13)

Ξ = ε(y)− 2i θσµθ̄ ∂µε(y) − θθ θ̄θ̄ ∂2ε(y) + i θ̄θ̄ Cµν {∂µε(y) , Aν} . (2.14)

Note the appearance in Ξ of a C-dependent term that involves also the gauge field. Fur-

thermore, from the deformed vector superfield one can obtain a deformed field strength

superfieldWα by replacing ordinary products with ? -products in the usual definition [5], i.e.

Wα = −1

8
D

2
? e−V ? Dα ? eV (2.15)

where Dα and Dα̇ are the standard covariant derivatives. In this way one finds that Wα

acquires a deformation term proportional to C β
α θβ λλ.

This reasoning can be extended also to chiral and anti-chiral superfields (see for ex-

ample ref. [11]). If one requires that the standard gauge transformations of the matter

fields (2.8) follow from the ? -product version of (2.7), i.e. from

Φ→ Φ′ = e−i Ξ ? Φ , Φ→ Φ
′
= Φ ? ei Ξ , (2.16)

then the usual expansion (2.5) of the chiral superfield can be kept, but the parameterization

of Φ must be changed by replacing in (2.6) the auxiliary field according to

F → F + 2iCµν ∂µ
(
ϕAν

)
− Cµν ϕAµAν + i aCµν ϕFµν + b detC ϕλλ (2.17)

where a and b are free parameters. In ref. [11] the minimal choice a = b = 0 was made

but other choices are equally acceptable. In any case, it is interesting to note that the C-

deformation of superspace induces in the anti-chiral superfield Φ the appearance of terms

that depend on the gauge vector Aµ and possibly also on the gaugino λ.

– 4 –
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2.2 U(N) gauge theories with matter in NAC superspace

After these preliminaries, it is quite easy to write gauge invariant actions for NAC theories

with chiral matter in the fundamental representation.

Let us first consider the simplest example of a theory with gauge group U(N). In this

case the pure Yang-Mills part of the lagrangian is given by

Lgauge =
i

8π

[ ∫
d2θτ Tr

(
W ? W

)
−
∫
d2θ̄τ̄ Tr

(
W ? W

)]
(2.18)

where τ = θYM
2π + i 4π

g2 is the complexified Yang-Mills coupling, and W is the deformed field

strength superfield (2.15). Expanding (2.18) in components, we find

Lgauge =
1

g2
Tr

{
1

2
F 2
µν − 2i λ̄ σ̄µDµλ−D2 + 2iCµν Fµν λ λ

− 4 detC
(
λλ
)2
}
− i θYM

32π2
εµνρσ TrFµν Fρσ (2.19)

Note that the NAC deformation does not affect the θYM-term which remains purely topo-

logical. The action (2.19), which was first written in ref. [5], can also be obtained by com-

puting scattering amplitudes of open strings in a R-R graviphoton background as shown

in ref. [25].

The matter part of the lagrangian is given by the usual expression in which ordinary

products are replaced by ? -products, namely

Lmatt =

∫
d2θ d2θ̄

(
Φ ? eV ? Φ

)
. (2.20)

The gauge invariance of Lmatt is manifest from the transformation properties (2.12)

and (2.16), and its explicit component form can be obtained with a straightforward calcu-

lation that leads, modulo total derivative terms, to

Lmatt = DµϕDµϕ− iχ σ̄µDµχ+ F F + ϕDϕ+
√

2 i
(
χλϕ+ ϕλχ

)
+

+
√

2Cµν Dµϕλ σ̄ν χ+ ia′ Cµν ϕFµν F + b′ detC ϕλλF (2.21)

where a′ = a + 1 and b′ = b − 1 in terms of the parameters appearing in (2.17). This la-

grangian was first introduced and analyzed in ref. [11] where, however, different conventions

were used and the choice a′ = −b′ = 1 was made.

It can be shown in full generality that the complete system (Lgauge + Lmatt) is in-

variant, up to total derivatives, only under a half of the original N = 1 supersymmetry

transformations, namely under

δAµ = i ξ σµ λ , δD = ξ σµDµλ , δλ = 0 ,

δλ = i ξ D − 1

2
ξ σµν

(
Fµν + iCµν λλ+ i

g2

2
Cµν F ϕ

)
,

δϕ =
√

2 ξ χ , δϕ = 0 , δχ =
√

2 ξ F ,

– 5 –
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δχ = −
√

2iDµϕ ξ σ
µ , δF = 0 ,

δF =
√

2i ξ σµDµχ− 2iϕ ξ λ+

+Cµν
(

2Dµϕ ξ σν λ+ (2a′ − 1)ϕ ξ σν Dµλ−
√

2

4
g2 ϕ ξ σµνχϕ

)
(2.22)

where ξ is the chiral anti-commuting parameter. Notice the presence of C-dependent terms

proportional to the coupling constant g2 in the transformation laws of the gaugino λ and the

auxiliary field F , which were not previously considered. The remaining supersymmetries,

associated to the anti-chiral parameter ξ, are explicitly broken by the NAC deformation.

The theory described by (2.21) can be regarded as the gauged version of the N = 1/2

Wess-Zumino model whose renormalization properties have been recently studied in the

literature (see for example refs. [12]). Due to the charge carried by the chiral superfield,

there is no room in (2.21) for a superpotential term, and so if we want to investigate

superpotentials we have to consider a suitable extension of this theory, which we will do in

the next subsection. However, it is interesting to observe that in the present context it is

possible to introduce a supersymmetric and gauge invariant interaction term of the form

Lint = c′ g2 detC (ϕF )2 (2.23)

where c′ is a free parameter.2 Such a term is compatible with the ?-product structure of

the model since it can be generated by adding in (2.17) a further shift for the auxiliary

field F that respects all requirements, i.e.

F → F + c′ g2 detC ϕF ϕ . (2.24)

The interaction (2.23), which survives also in the ungauged theory, is not usually included

in the lagrangian of the N = 1/2 Wess-Zumino model, since in this case, using the equation

of motion for the auxiliary field, it becomes proportional to detC F 3, i.e. to a term of the

deformed Wess-Zumino superpotential. However, in ref. [12] it has been shown that a

term precisely like (2.23) appears in the 1-loop divergences of the N = 1/2 Wess-Zumino

model. In section 4 we will show that an interaction of the form (2.23) naturally appears

in the string realization of the NAC theories provided by D3 branes in a R-R graviphoton

background.

2.3 Quiver gauge theories in NAC superspace

We now generalize the above NAC construction to the N = 1 quiver theory with gauge

group U(N0)×U(N1)×U(N2)×U(N3) which has a natural realization as the world-volume

theory on a superposition of fractional D-branes in the orbifold C3/(Z2 × Z2). The field

content of this model is summarized in the quiver diagram of figure 1 and consists of four

vector multiplets V I (I = 0, 1, 2, 3), one for each factor of the gauge group, and twelve

chiral multiplets ΦIJ (with I 6= J) that transform in the bifundamental representation

(NI , NJ) of the U(NI) × U(NJ) sub-group, together with the corresponding anti-chiral

multiplets Φ
JI

that transform in the (N I , NJ) representation.

2Terms like, for example, (detC)4 (ϕF )4 or (detC)4 (ϕλλF )2 will not be considered since they explicitly

break the U(1) R-symmetry of the theory.

– 6 –
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Figure 1: A quiver diagram encodes the field content and the charges of a system of matter-

coupled gauge theories. Each dot (labeled by I = 0, 1, 2, 3 in this case) corresponds to a U(NI)

gauge group, for which a gauge multiplet is considered. An oriented link from the I-th to the J-th

dot corresponds to a chiral multiplet ΦIJ transforming in the (NI , NJ ) representation. As we will

discuss in section 3, from a string theory point of view this particular quiver diagram describes a

system of fractional D-branes of type-IIB in the orbifold C3/(Z2 × Z2). In this context the dots

represent the fractional branes and the lines the strings stretching between them. For each type

of string we indicate the representation of the orbifold group in which the vertex operators should

transform in order to survive the orbifold projection.

A NAC deformation of the superspace induces several changes in this quiver theory,

which we now analyze. First of all, since the chiral and anti-chiral superfields are in

bifundamental representations, the transformation rules (2.16) must be replaced by

ΦIJ → Φ′IJ = e−i ΞI ? ΦIJ ? ei ΞJ

Φ
JI → Φ′

JI
= ee−i ΞJ ? Φ

JI
? ei ΞI (2.25)

where ΞI and ΞJ are defined as in (2.3). Then, if we require that these formulas account for

the appropriate gauge transformations of the components, it is necessary to parameterize

the superfields as follows

ΦIJ = ϕIJ(y) +
√

2 θχIJ(y) + θθ F IJ(y) (2.26)

Φ
JI

= ϕJI(y)− 2i θσµθ̄ ∂µϕ
JI(y)− θθ θ̄θ̄ ∂2ϕJI(y) + (2.27)

+
√

2 θ̄χJI(y)− 2
√

2i θσµθ̄ ∂µχ
JI(y) + θ̄θ̄ F̃ JI(y) (2.28)

where F̃ JI is given by the obvious generalization of (2.17), i.e.

F̃ JI = F
JI

+ 2iCµν ∂µ
(
ϕJI AIν +AJν ϕ

JI
)
− iCµν

(
ϕJI AIµA

I
ν +AJµA

J
ν ϕ

JI
)

+

+i aCµν
(
ϕJI F Iµν + F Jµν ϕ

JI
)

+ b detC
(
ϕJI λ

I
λ
I

+ λ
J
λ
J
ϕJI

)
−

−2Cµν AJµ ϕ
JI AIν (2.29)

with F
JI

being the auxiliary field conjugate to F IJ .

The gauge invariant kinetic lagrangian for a quiver theory in the C-deformed super-

space is simply given by

LK =
i

8π

∑

I

[∫
d2θ τ Tr

(
WI ?WI

)
−
∫
d2θ̄ τ̄ Tr

(
WI

?WI
)]

+

– 7 –
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+
∑

I 6=J

∫
d2θ d2θ̄Tr

(
Φ
JI
? eV

I
? ΦIJ ? e−V

J
)

(2.30)

where WI is the field-strength superfield for the I-th node of the quiver diagram. Working

out the ?-products and expanding in θ, after a lengthy but straightforward calculation, one

can find the component form of LK , which turns out to be a natural generalization of what

we presented in the previous sub-section for the U(N) theory. It is important to realize

that in the quiver case we can add to the lagrangian also a gauge invariant superpotential

term given by

LW +LW =
g

3

∑

I 6=J 6=K

[∫
d2θTr

(
ΦIJ ?ΦJK ?ΦKI

)
+

∫
d2θ̄Tr

(
Φ
IJ
?Φ

JK
?Φ

KI
)]

(2.31)

where the sum over the triples I 6= J 6= K describes in fact a sum over all possible triangles

of the diagram in figure 1 and the factor of 1/3 eliminates the overcounting of cyclically

symmetric terms. The ?-products are easily evaluated in the holomorphic part LW , whose

component form is

LW = g
∑

I 6=J 6=K
Tr

(
F IJϕJKϕKI − ϕIJχJKχKI

)
+

+g
∑

I 6=J 6=K
Tr

(
1

4
Cµν F IJχJKσµνχKI − 1

3
detC F IJF JKFKI

)
. (2.32)

The anti-holomorphic piece LW is instead much more involved due to the non-trivial pa-

rameterization of the anti-chiral superfields Φ
IJ

given in (2.28) and (2.29). Finding its

complete component expression is just a matter of lengthy algebra; however it is not diffi-

cult to see that, among the many C-dependent terms, LW contains the following one

2g
∑

I 6=J 6=K
Tr
(
Cµν ϕIJDµϕ

JKDνϕ
KI
)

(2.33)

whose origin can be simply traced in the Cαβ-term of the ?-product definition (see

eq. (2.10)).

In the following we will show that all structures of the NAC quiver gauge theory we

have presented here are reproduced in a natural and efficient way by the dynamics of

fractional D-branes in a graviphoton R-R background.

3. N = 1 gauge theories from open strings in C3/(Z2 × Z2)

It is well-known that quiver gauge theories [26] such as the one considered in section 2 may

be derived from a consistent string theory construction; in fact they describe the dynamics

of massless modes of the open strings attached to systems of fractional branes in a space

whose “internal” directions are orbifolded by some discrete group. The type of orbifold

one takes determines the amount of residual supersymmetry and the shape of the quiver.

Indeed, in the stringy interpretation, the nodes of the quiver correspond to the various

– 8 –
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types of fractional branes, which in turn correspond to the irreducible representations of

the orbifold group [27]. To engineer a gauge theory in four dimensions we will consider

stacks of parallel D3 branes, and mod out the six-dimensional transverse space by the

action of a discrete SU(3) subgroup in order to remain with four real supercharges, i.e.

with N = 1 supersymmetry; in particular we will consider the C3/(Z2×Z2) orbifold which

yields exactly the quiver of figure 1.

3.1 The C3/(Z2 × Z2) orbifold and itsconformal fields

Let us consider type-IIB string theory in R4 × C3/(Z2 × Z2). To define the orbifold, we

first complexify the “internal” coordinates xa ≡ x5, . . . , x10 and the corresponding string

fields Xa and ψa by setting

Z1 =
(X5 + iX6)√

2
, Ψ1 =

(ψ5 + iψ6)√
2

,

Z2 =
(X7 + iX8)√

2
, Ψ2 =

(ψ7 + iψ8)√
2

,

Z3 =
(X9 + iX10)√

2
, Ψ3 =

(ψ9 + iψ10)√
2

. (3.1)

Then, we mod out the action of a Z2 × Z2 ⊂ SO(6) group generated by

g1 = eiπ(J2−J3) , g2 = eiπ(J1−J3) (3.2)

where J1,2,3 are the generators of rotations in the 5-6, 7-8 and 9-10 planes respectively.

Explicitly, we have

g1 : (Z1, Z2, Z3) → (Z1,−Z2,−Z3) ,

g2 : (Z1, Z2, Z3) → (−Z1, Z2,−Z3) , (3.3)

and similarly for Ψ1,2,3.

We may summarize the transformation properties (3.3) for the conformal fields ∂Z i

and Ψi (i = 1, 2, 3) in the Neveu-Schwarz sector by means of the following table:

conf. field irrep

∂Zi, Ψi Ri
(3.4)

where {RI} = {R0, Ri} are the irreducible representations of Z2×Z2, identified by writing

the character table of the group

e g1 g2 g1g2

R0 1 1 1 1

R1 1 1 −1 −1

R2 1 −1 1 −1

R3 1 −1 −1 1

(3.5)
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The Clebsh-Gordan series for these representations is simply given by

R0 ⊗RI = RI , Ri ⊗Rj = δijR0 + |εijk|Rk , (3.6)

and will be crucial in determining the open string spectrum.

To analyze the Ramond sector, we must consider the action of the orbifold group on

spin fields and spinor states. The spin fields are best described within the bosonized version

of the so(6) current algebra generated by the world-sheet fermions. So we set

Ψi = ci e±iϕi , Ψ
i

= ci e−iϕi (3.7)

where ci are cocycle factors needed to maintain the fermionic statistic, and ϕi are free

bosons with propagators 〈ϕi(z)ϕj(z)〉 = −δij log(z − w). The currents corresponding to

the Cartan generators are

Ji = −i : ψ3+2iψ4+2i :=: ΨiΨ
i

:= i ∂ϕi , (3.8)

while the spin fields SA ∼ ei~λA·~ϕ are associated to the so(6) spinor weights

~λA =
1

2
(±,±,±) , (A = 1, . . . , 8) . (3.9)

Using this information, we easily deduce from (3.2) the transformation properties of the

various spin fields under the orbifold generators which are summarized in the following

table

anti-chiral chiral g1 g2 irrep

S−−− ≡ e−
i
2

(ϕ1+ϕ2+ϕ3) S+++ ≡ e
i
2

(ϕ1+ϕ2+ϕ3) 1 1 R0

S−++ ≡ e
i
2

(−ϕ1+ϕ2+ϕ3) S+−− ≡ e
i
2

(ϕ1−ϕ2−ϕ3) 1 −1 R1

S+−+ ≡ e
i
2

(ϕ1−ϕ2+ϕ3) S−+− ≡ e
i
2

(−ϕ1+ϕ2−ϕ3) −1 1 R2

S++− ≡ e
i
2

(ϕ1+ϕ2−ϕ3) S−−+ ≡ e
i
2

(−ϕ1−ϕ2+ϕ3) −1 −1 R3

(3.10)

In the sequel, we will need also the transformation properties of the conformal operators

corresponding to the roots of so(6), which will play the role of auxiliary fields for various

N = 1 multiplets in the field theory. Recalling that the twelve root vectors of so(6) are

(0,±,±), (±, 0,±), (±,±, 0), from (3.2) we find

current g1 g2 irrep

ei(±ϕ2±ϕ3) 1 −1 R1

ei(±ϕ1±ϕ3) −1 1 R2

ei(±ϕ1±ϕ2) −1 −1 R3

(3.11)

Notice that these twelve currents correspond to operators of the form ΨiΨj, ΨiΨ
j

and their

complex conjugate with i 6= j.
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The transformation properties under the orbifold group of the various conformal fields

determine which states of the string spectrum survive the projection. For open strings,

however, one has to take into account also the behaviour of the boundary conditions un-

der the orbifold group. The irreducible consistent boundary conditions for open strings

are known as fractional branes and are classified by the irreducible representations of the

orbifold group. This means that the endpoint of an open string attached to a fractional

brane of type I transforms in the representation RI . Therefore, to determine which states

in the spectrum of an open string stretching between branes of type I and J are invariant,

it is necessary to look for trivial factors in the decomposition of RI ⊗ RJ ⊗ Q, where Q

is the representation acting on the string fields, as indicated in the tables (3.4), (3.10)

and (3.11). Hence, given the Chan-Paton representations RI and RJ for the endpoint,

the conformal fields creating an invariant state must transform only in certain represen-

tations, and all this information is efficiently encoded in a quiver diagram, like the one in

figure 1.

3.2 The gauge multiplets

Let us consider a string attached with both ends to branes of the same type, say I. This

means that its endpoints do not transform under the orbifold group, since RI ⊗ RI = R0

as one can see from (3.6). Therefore also the oscillator part of any surviving state must be

invariant under the orbifold. For example, in the NS sector the states ψµ− 1
2

|0〉 survive, but

none of the states Ψi
− 1

2

|0〉 does.

More generally, given a stack of NI branes of type I, the massless open string excita-

tions organize in a N = 1 vector multiplet for the group U(NI) produced by the following

vertex operators

VA(p) = Aµ(p)
ψµ√

2
e−φ eip·X (3.12)

in the NS sector, and3

Vλ(p) = iλα(p)Sα S
−−− e−

1
2
φ eip·X ,

Vλ(p) = λα̇(p)Sα̇ S+++ e−
1
2
φ eip·X (3.13)

in the R sector, with Sα and Sα̇ being the chiral and anti-chiral spin fields along the

world-volume directions. The polarizations Aµ, λα and λα̇ carry Chan-Paton indices in

the adjoint representation of U(NI). In the following, we will adopt the same notation of

section 2, and use AIµ, λIα and λ
I
α̇ to denote the gauge multiplet living on fractional branes

of type I. In writing the vertex operators (3.12) and (3.13) we have set 2πα′ = 1, and we

will consistently do so henceforth. Appropriate powers of 2πα′ can be easily reinstated in

our formulas so as to give Aµ dimensions of (length)−1, and to the gauginos λα and λα̇
dimensions of (length)−3/2.

3Comparing with ref. [25], we have included a factor of i in the vertex of the gluino λ in order to be

consistent with the notation of section 2.
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As a matter of fact, also the auxiliary field D of the N = 1 vector multiplet admits

a stringy realization. In fact, it can be associated to the following (non-BRST invariant)

vertex in the 0-superghost picture of the NS sector [28]

VD(p) =
1

3
D(p) δij : Ψi Ψ

j
: eip·X =

2i

3
D(p)

(∑

i

∂ϕi

)
eip·X . (3.14)

The vertices we introduced above are connected with each other through the action of

the supersymmetry charges

Qα =

∮
dz

2πi
jα(z) and Qα̇ =

∮
dz

2πi
jα̇(z) (3.15)

where the currents (in the (− 1
2)-picture) are given by

jα(z) = Sα(z)S−−−(z) e−
1
2
φ(z) , jα̇(z) = Sα̇(z)S+++(z) e−

1
2
φ(z) . (3.16)

For instance, it is easy to see that

[ξQ , VD(w; p)] = ξα
∮

w

dz

2πi
jα(z)VD(w; p)

= − ξαD(p)Sα(w)S−−−(w) e−
1
2
φ(w) eip·X(w) . (3.17)

Upon comparison with (3.13), we recognize in the the last line the vertex operator of a

gaugino, and thus we can rewrite (3.17) as

[ξQ , VD(w; p)] = Vδλ(w; p) (3.18)

with δλ = i ξD, in agreement with the standard definitions in supersymmetric field theory

(see eq. (2.22)). With similar calculations one can reconstruct also the other terms in the

supersymmetry transformations of the N = 1 gauge multiplet.

3.3 The chiral multiplets

The massless spectrum of open strings stretching between a fractional brane of type I

and one of type J is produced by vertex operators which transform in some non-trivial

representation of the orbifold group, as indicated by the quiver diagram in figure 1. Let us

consider, for example, the oriented open strings stretching between branes of type 0 and

type 1. Then, from (3.6) we see that the vertices surviving the orbifold projection must

transform in the representation R1. At the massless level we find

Vϕ01(p) =
g

2
ϕ01(p) Ψ

1
e−φ eip·X ,

VF 01(p) = g F 01(p) Ψ2Ψ3 eip·X (3.19)

in the NS sector, and

Vχ01(p) =
g√
2
χ01α(p)Sα S

−++ e−
1
2
φ eip·X (3.20)
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in the R sector. These are precisely the vertices for the fields (including the auxiliary one)

of a chiral supermultiplet which, following the notation of section 2, we organize in the

superfield Φ01. The polarizations in (3.19) and (3.20) carry a superscript 01 which specifies

the boundary conditions of the open strings under consideration, and the normalizations

of the vertex operators are fixed in order to obtain the canonical action in the field theory

limit, as we shall see later.

Target-space supersymmetry connects the above vertices among each other in the

standard way. Indeed, in analogy with (3.17), one can show, for example, that

[ξQ , VF 01(p)] = Vδχ01(p) , (3.21)

where δχ01 =
√

2 ξF 01 which exactly agrees with (2.22).

By construction, the chiral superfield Φ01 transforms in the bifundamental represen-

tation (N0, N 1) with respect to the U(N0)×U(N1) gauge groups defined on the fractional

branes of type 0 and 1 respectively.4 Its complex conjugate is denoted as Φ
10

and corre-

sponds to open strings oriented from branes of type 1 to branes of type 0 and transforming

in the (N 0, N1) representation. Notice that there exists also another independent chiral

multiplet arising from the strings oriented from branes of type 1 to branes of type 0,

and transforming in the (N 0, N1) representation. This other multiplet is denoted as Φ10

and the vertex operators for its component fields have the same form as those in (3.19)

and (3.20), since they must obey again the requirement of belonging to the representation

R1 of the orbifold group. Altogether, from a generic system of fractional branes in the

orbifold C3/(Z2 × Z2), we find twelve chiral multiplets ΦIJ (with I 6= J = 0, . . . , 3) and

their complex conjugates, that are associated to the various oriented links of the quiver

diagram in figure 1.

3.4 Effective lagrangians

The effective lagrangians for the massless multiplets of the quiver theory can be derived

by taking the field theory limit α′ → 0 of string scattering amplitudes involving the vertex

operators introduced before. For example, for the gauge multiplet of type I, we must

consider diagrams with the vertex operators (3.12), (3.13) and (3.14) emitted from disks

whose boundaries are entirely attached to branes of type I. In the field theory limit these

amplitudes lead to5

Lgauge =
1

g2
Tr

{
1

2
(F Iµν)2 − 2i λ̄I σ̄µDµλ

I − (DI)2

}
. (3.22)

By introducing a self-dual antisymmetric auxiliary field H I
µν , it is possible to reduce the

quartic interactions in Tr(F I
µν)2 to cubic ones. Indeed, the lagrangian

L′gauge =
1

g2
Tr

{(
∂µA

I
ν − ∂νAIµ

)
∂µA

I
ν + 2i ∂µA

I
ν

[
AIµ, A

I
ν

]
− (DI)2 −

4Explicitly, Φ01 is a N0 × N1 complex matrix
(
Φ01

)i0
i1

where i0 = 1, . . . , N0 and i1 = 1, . . . , N1. In

the sequel we will adopt a matrix notation without explicit use of indices, so we’ll have to care about the

ordering. For example the covariant derivatives are Dµϕ
01 = ∂µϕ

01 + iA0
µϕ

01 − iϕ01A1
µ.

5Various details on these calculations can be found, e.g., in ref. [25].
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− 2i λ̄I σ̄µDµλ
I +

1

4
(HI

µν)2 +HI
µν

[
AIµ, A

I
ν

]}
(3.23)

is easily seen to be equivalent to (3.22) after integrating out H I
µν through its algebraic

equations of motion. The auxiliary field H I
µν admits a stringy representation in terms of

the following (non-BRST invariant) vertex operator in the 0-superghost picture [25]

VHµν (p) =
1

2
HI
µν(p) : ψνψµ : eip·X . (3.24)

Notice that the structure of this vertex is the same as that of the p · ψψµ part of the

(properly normalized) vertex for the gauge field in the 0-picture, namely

VA(p) = 2iAIµ(p) (∂Xµ + i p · ψ ψµ) eip·X . (3.25)

Thus, whenever in a disk amplitude we get a non-vanishing amplitude by inserting a vertex

in the 0-picture for AIµ, we get also a non-vanishing amplitude by inserting the vertex (3.24)

for HI
µν .

It is worth pointing out that this auxiliary field is useful not only to reduce the quartic

interactions in the gauge lagrangian to cubic ones, but also to linearize the supersymmetry

transformations of the vector multiplet. For example, by using the vertices (3.25) and (3.24)

and computing

[ξQ , VA(p)] and
[
ξQ , VHµν (p)

]
(3.26)

one easily obtains the following supersymmetry transformation for the gaugino

δλ = −ξ σµν
(
∂µAν −

i

4
Hµν

)
(3.27)

which, upon eliminating Hµν through its field equation, becomes δλ = − 1
2 ξ σ

µνFµν , with

the non-linear terms of the field strength included (see eq. (2.22)).

A similar analysis can be done also in the matter sector. By computing all disk

diagrams with insertions of the vertex operators (3.19) and (3.20), and then taking the

field theory limit, one may reconstruct the effective action for the chiral multiplet Φ01 (and

its complex conjugate Φ
10

) which is given by

Lmatt = Tr
{
Dµϕ

10Dµϕ
01 − iχ10σ̄µDµχ

01 + F
10
F 01 +

+ ϕ10D0ϕ01 − ϕ01D1ϕ10 +
√

2 i
(
χ10λ

0
ϕ01 − ϕ01λ

1
χ10
)

+

+
√

2 i
(
ϕ10λ0χ01 − χ01λ1ϕ10

)}
. (3.28)

Notice that the disk diagrams which lead to this effective lagrangian have their boundaries

lying partly on branes of type 0 and partly on branes of type 1, and consequently the gauge

fields can be of either type.

As for the gauge sector, also in the matter part it is possible to introduce suitable

auxiliary fields to decouple the quartic interactions coming from the covariant derivatives

of the scalars. Indeed, the very first term of eq. (3.28) can be rewritten as

Tr
{
∂µϕ

10∂µϕ
01 +H

10
µ H

01
µ + i

(
∂µϕ

10 − iH
10
µ

)(
A0
µϕ

01 − ϕ01A1
µ

)
+
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+
PSfrag replacementsA0

µ A1
µ

ϕ10ϕ10

H01
µ H01

µ

Figure 2: The diagrams accounting for the interactions of the auxiliary field H01
µ .

+ i
(
A1
µϕ

10 − ϕ10A0
µ

)(
∂µϕ

01 − iH01
µ

)}
, (3.29)

i.e. with only cubic interactions. The new H-dependent terms arise from disk diagrams

with insertions of the following auxiliary vertex operator

VH01
µ

(p) = g H01
µ (p)ψµ Ψ

1
eip·X (3.30)

and of the corresponding complex conjugate, as shown in figure 2.

Notice that this vertex is identical to the fermionic part of the (properly normalized)

scalar vertex in the 0-superghost picture, namely

Vϕ01(p) =
√

2i g ϕ01(p)
(
∂Z

1
+ ip · ψΨ

1
)

eip·X . (3.31)

Thus everywhere we have to consider a diagram with a vertex for ϕ01 in the 0-picture

(which produces terms containing ∂µϕ
01 in the lagrangian), we have also to consider a

diagram with the auxiliary vertex (3.30). The net outcome of this is that all occurrences

of ∂µϕ
01 in the effective action are promoted to

(
∂µϕ

01− iH01
µ

)
, which in turn becomes the

complete covariant derivative Dµϕ
01 after integrating out H01

µ through its field equation.

Let us now turn to the superpotential. Whenever the string configuration contains at

least three different types of branes, then the Chan-Paton structure of the vertex operators

for chiral multiplets allows for a cubic holomorphic superpotential. Let us suppose, for

example, to have branes of type 0, 3 and 1. Then, if consider a disk diagram with three

vertices corresponding to some of the fields in the multiplets Φ03, Φ31 and Φ10, taken in this

order, we have the possibility of getting a non-vanishing result. Indeed, the disk boundary

jumps first from type 0 to type 3, then from 3 to 1 and finally returns back to type 0 to

close in a consistent way. Of course, we could get a non-zero amplitude also by inserting

the vertices corresponding to Φ01, Φ13 and Φ30, i.e. by following the triangle on the quiver

diagram in the opposite direction, or by utilizing the anti-chiral counterparts of the above

possibilities which lead to a cubic anti-holomorphic superpotential.6

6Notice that the Chan-Paton structure allows in principle configurations that involve both holomorphic

and anti-holomorphic fields, like for example Φ03, Φ
31

and Φ10. However, the corresponding amplitudes

vanish since the vertex operators in these configurations do not saturate the charges with respect to the

internal world-sheet bosons ϕi. Thus, only holomorphic or anti-holomorphic superpotentials are possible.

– 15 –



J
H
E
P
0
5
(
2
0
0
5
)
0
4
7

Specifically, if we compute the amplitude among VF 03 , Vϕ31 and Vϕ10 and take the field

theory limit, we obtain the following term in the effective lagrangian

g Tr
(
F 03ϕ31ϕ10

)
, (3.32)

which is related by supersymmetry to the Yukawa term

−gTr
(
ϕ03χ31χ10

)
(3.33)

arising from the amplitude among Vϕ03 , Vχ31 and Vχ10 (see also the first line of eq. (2.32)).

These interactions as well all others corresponding to different combinations of fields can

be summarized in a holomorphic superpotential of the form

W =
g

3

∑

I 6=J 6=K
Tr
(

ΦIJΦJKΦKI) (3.34)

or in its anti-holomorphic counterpart.

4. NAC deformation from R-R flux

We now analyze the deformations of the N = 1 quiver theory discussed in the previous sec-

tion that are induced by a non-trivial R-R flux corresponding to a graviphoton background

with constant field strength. This background is described by a constant antisymmetric

tensor Cµν which we take to be self-dual and which is responsible of the NAC deformation

of the N = 1 superspace. From the string point of view, Cµν is a R-R field strength,

and more precisely it is the R-R 5-form of type-IIB string theory,7 wrapped around the

internal orbifold space and described by the following closed string vertex operator (in the

(−1/2,−1/2) superghost picture)

VC(z, z) =
1

4π2
Cαβ Sα(z)S−−−(z) e−

1
2
φ(z) S̃β(z) S̃−−−(z) e−

1
2
φ̃(z) . (4.1)

Here, using the arguments explained in ref. [25], we have already identified the symmetric

bispinor polarization of VC with the non-anti-commutativity parameter Cαβ used in sec-

tion 2. It is worth recalling that such parameter has dimensions of (length), and thus a

factor of (2πα′)−1/2 should be included in right hand side of (4.1) to make VC adimensional.

Even if we are using conventions in which 2πα′ = 1, these dimensional considerations will

be crucial in the following. In (4.1) the tilde denotes the right movers of the closed string,

and z a point in the upper-half complex plane, which is conformally equivalent to the in-

terior of a disk. Notice that the vertex operator VC does not contain the usual plane wave

term eip·X , since we are considering a constant background with p = 0.

We are now going to systematically study string amplitudes for fractional D3 branes of

the orbifold C3/(Z2 × Z2) in the presence of the non-trivial R-R background (4.1), i.e. we

shall compute mixed open/closed string amplitudes on disks with different types boundary

7The effect of a constant RR 5-form field-strength background in the N = 4 case has been recently

considered in [29].
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conditions corresponding to the various types of branes. In any mixed open/closed string

amplitudes on a disk, the presence of the boundary forces an identification between left-

and right-moving oscillators of the closed strings. In our specific case, this identification is

the same on all types of fractional D3 branes, and amounts, in practice, to the following

replacements (see e.g. ref. [25] for details)

S̃α(z)→ Sα(z) , S̃−−−(z)→ S̃−−−(z) , φ̃(z)→ φ(z) . (4.2)

As a consequence, we see that any insertion of the R-R vertex (4.1) carries an effective

charge (−1,−1,−1) with respect to the three world-sheet scalars ϕ1, ϕ2 and ϕ3 which

bosonize the fermions in the internal orbifold directions, and an effective superghost charge

(−1). Therefore, in order to have a non vanishing amplitude with a single R-R insertion, we

have to choose the open string vertex operators in such a way that they carry an effective

total charge (+1,+1,+1) with respect to the internal world-sheet bosons, and an effective

total superghost charge (−1). These new requirements add to the one of having a consistent

Chan-Paton structure, which we already encountered. Furthermore, we are interested only

in amplitudes which survive in the field theory limit α′ → 0 with g fixed. Since the factors

of (2πα′)h (which we have not written explicitly) in the definitions of the vertex operators

give space-time dimensions of (length)−2h to the corresponding polarizations, this implies

that we have to look only for structures with total dimension of (length)−4, including the

contribution of the R-R field which carries dimension of (length).

Let us now analyze the effects produced by the insertion of the R-R vertex (4.1) in the

various sectors.

4.1 The gauge and chiral matter sectors

The study of the R-R deformation in the pure gauge sector has been the subject of ref. [25],

where it was shown that the only string amplitudes on disks with a single type of boundary

that do not vanish in the field theory limit, are

〈〈 V
λ
I V

λ
I VAIµ VC 〉〉 and 〈〈 V

λ
I V

λ
I VHI

µν
VC 〉〉 , (4.3)

and correspond to the following contribution to the effective lagrangian for the U(NI) gauge

fields8

4i

g2
Cµν Tr

{(
∂µA

I
ν −

i

4
HI
µν

)
λ
I
λ
I
}
. (4.4)

When this term is added to the undeformed lagrangian (3.23) and the auxiliary field H I
µν

is integrated out, one recovers precisely the N = 1/2 gauge lagrangian (2.19) that follows

from the NAC deformation of the superspace.

In the case of disks with more than one type of boundary, we have more possibilities.

For example a consistent Chan-Paton structure and a correct balance of internal charges

can be obtained by inserting VC together with a vertex for ϕ10 (with charges (1, 0, 0)),

8In ref. [25] we used a Cµν that is twice the one used in the present paper and in the majority of the

literature. We have taken this difference into account in writing eq. (4.4).
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(a) (b) (c)PSfrag replacements F 01F 01 χ01

A0
µ

ϕ10ϕ10ϕ10

λ
0

H0
µν

Cαβ CαβCαβ

Figure 3: Examples of diagrams with a R-R insertion on a disks with two distinct types of

boundaries.

and a vertex for F 01 (with charges (0, 1, 1)). As far as the superghost background charge

is concerned, the vertex for VF 01 is defined in the 0-picture, and so we have to insert the

vertex Vϕ10 in the (−1)-picture to soak up the superghost number anomaly. However, an

amplitude with just Cαβ, ϕ10 and F 01 cannot survive in the field theory limit, since these

fields combined have dimensions of (length)−2 and no momentum factor is produced given

the above picture assignments. The way out, in this example, is clearly to insert a further

vertex in the 0-picture, that carries zero internal charge and supplies the needed mass

dimensions. Such vertices may only come from the gauge multiplets of U(N0) or U(N1),

and in principle can be either vertices for the gauge field Aµ, for the D field or for the

“auxiliary” fields Hµν , which we can insert either on the boundary of type 0 or on the

boundary of type 1.

If we insert a vertex for a D field, i.e. if we compute 〈〈 Vϕ10VD0VF 01VC 〉〉 or

〈〈 Vϕ10VF 01VD1VC 〉〉, we find that the resulting world-sheet correlator in the SO(4) current

algebra sector is

〈Sα(z)Sβ(z)〉 ∝ εαβ (4.5)

which vanishes when it is contracted with the symmetric polarization Cαβ. Thus, we have

to consider the other two possibilities, which are represented in figure 3a and 3b.

When we insert the gauge field vertex (3.25), the part containing ∂Xµ does not con-

tribute, as it leads again to the correlator (4.5), while the fermionic part containing p ·ψ ψµ
produces a non-vanishing result. We have

〈〈 Vϕ10VA0VF 01VC 〉〉 ≡ Cdisk

∫ ∏
i dyi dzdz

dVCKG
〈Vϕ10(p1; y1)VA0(p2; y2)VF 01(p3; y3)VC(z, z)〉

(4.6)

where Cdisk = 4/g2 is the normalization of any disk amplitude in our present conventions

(see e.g. ref. [30] for further details) and dVCKG is the Sl(2,R) invariant volume element.

The insertion points yi of the open string vertices are integrated on the real axis with

y1 ≥ y2 ≥ y3, while the closed string insertion z is integrated in the upper half complex

plane. More explicitly, the amplitude (4.6) is

i

π2
Tr
[
Cαβϕ10(p1)

(
i pµ2 A

0
ν(p2)

)
F 01(p3)

] ∫ ∏
i dyi dzdz

dVCKG
×
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×
{
〈e−φ(y1) e−

1
2
φ(z) e−

1
2
φ(z)〉〈Ψ1(y1) Ψ2Ψ3(y3)S−−−(z)S−−−(z)〉

〈: ψµψν : (y2)Sα(z)Sβ(z)〉 〈eip1·X(y1) eip2·X(y2) eip3·X(y3)〉
}
. (4.7)

Using the correlation functions given in appendix A.2, and exploiting the SL(2,R) invari-

ance to fix y1 → ∞, z → i and z → −i, we are left with an integral over the remaining

positions y2 and y3, which reads

∫ +∞

−∞
dy2

∫ y2

−∞
dy3

1(
y2

2 + 1
) (
y2

3 + 1
) =

π2

2
. (4.8)

Putting everything together, we finally obtain the following contribution to the effective

lagrangian

2i Tr
(
Cµν ∂µA

0
ν F

01ϕ10
)
. (4.9)

Instead of the vertex VA0 , we could have placed a vertex for A1
µ on the boundary portion

of type 1, obtaining, a part from the different ordering of the Chan Paton factors and a

different sign, the same result as in eq. (4.9). Moreover, as we already observed, we may

obtain a non vanishing amplitude also by replacing the 0-picture vertex for the gauge field

with the one for the auxiliary field Hµν . This computation of course generalizes to any

disk with two types of boundary, and so altogether we get the following contribution to

the effective lagrangian

2i
∑

J 6=I
Tr

{
Cµν

(
∂µA

I
ν −

i

4
HI
µν

)(
F IJϕJI − ϕIJF JI

)}
. (4.10)

Notice that this term has the same structure as the C-dependent term (4.4) that was

already present in the pure gauge sector. Since there are no other diagrams involving

the R-R background and the auxiliary field H I
µν , when we add the two contributions (4.4)

and (4.10) to the undeformed action (3.23), we find that the auxiliary field can be eliminated

through the following equation

HI
µν = −2

[
AIµ , A

I
µ

](+) − 2Cµν


λIλI +

g2

2

∑

J 6=I

(
F IJϕJI − ϕIJF JI

)

 (4.11)

where the superscript (+) stands for the self-dual part. Plugging this identification back in

the lagrangian, and summing over all types of branes, we find that the deformation terms

that must be added the Yang-Mills lagrangian of the quiver theory are

1

g2

∑

I

Tr

{
2iCµν F

I
µν

(
λ
I
λ
I

+
g2

2

∑

J 6=I

(
F IJϕJI − ϕIJF JI

)
)
−

− 4 detC

(
λ
I
λ
I

+
g2

2

∑

J 6=I

(
F IJϕJI − ϕIJF JI

)
)2}

. (4.12)
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So far we have considered disk diagrams with open string vertices in the NS sector.

However, there are non-vanishing diagrams involving also fermionic vertices from the R

sector. An example of such diagrams is represented in figure 3c which corresponds to the

amplitude 〈〈 Vϕ10V
λ

0Vχ01VC 〉〉. To soak up the superghost charge, we put the vertices for λ
0

and χ01 in the (−1/2)-picture and the vertex for ϕ10 in the 0-picture as given in (3.31).

Using the explicit expressions for these vertices and performing the appropriate OPE’s,

one can easily compute this string amplitude along the same lines discussed above and in

the end one finds the following contribution to the effective lagrangian
√

2Cµν Tr
(
λ

0
σ̄νχ

01 ∂µϕ
10
)
. (4.13)

Similarly to the case discussed in section 3.3, besides the previous diagram we have also to

consider the one where the 0-picture vertex Vϕ10 is replaced by the vertex for the auxiliary

field H
10
µ given in (3.30), with the result that ∂µϕ

10 in (4.13) is shifted to
(
∂µϕ

10 − iH
10
µ

)
.

Notice that instead there are no amplitudes involving the R-R background and the auxiliary

field H01
µ , due to unbalanced internal charges. Therefore, when we add these terms to the

undeformed lagrangian (3.29), we find that the auxiliary field H
10
µ can still be eliminated

through its undeformed equation of motion, namely

H
10
µ = ϕ10A0

µ −A1
µϕ

10 . (4.14)

Again, the net effect is that the ordinary derivative in (4.13) is promoted to the full covariant

derivative Dµϕ
10 and gauge invariance is restored. Repeating this analysis for all possible

multiplets on various types of boundaries, we find that the C-dependent lagrangian arising

from fermionic vertices of the R sector is
√

2Cµν
∑

J 6=I
Tr
{(
λ
I
σ̄νχ

IJ − χIJσνλJ
)
Dµϕ

JI
}
. (4.15)

Eqs. (4.12) and (4.15) describe the deformation terms induced by the R-R graviphoton

background (4.1) on the effective action of the quiver gauge theory, and are strictly related

to those that can be obtained using the NAC ?-product deformation described in section 2

(see eq. (2.30)). To make a simple comparison, let us concentrate on a single gauge group,

say U(N0) which corresponds to the branes of type 0, and on single charged chiral multiplet,

say Φ01 and its conjugate Φ
10

. Dropping for ease of notation the indices on such fields, we

can easily see that (4.12) and (4.15) in this case reduce to

1

g2
Tr

{
2iCµνFµν

(
λλ+

g2

2
F ϕ

)
−4 detC

(
λλ+

g2

2
F ϕ

)2

+
√

2 g2 CµνDµϕλ σ̄νχ
}
. (4.16)

These are precisely the interaction terms that appear in the lagrangians (2.19) and (2.21)

(with a′ = 1 and b′ = −4) based on the NAC ?-product deformation, with, in addition, an

extra term

−g2 detC Tr
(
F ϕ

)2
. (4.17)

This is, however, exactly of the form (2.23) (with c′ = −1). As we remarked in section 2.2,

such a term can be induced by a NAC ?-product, provided the auxiliary field F is shifted

according to (2.24), and is produced at the 1-loop level.
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(a) (b) (c)

PSfrag replacements

ϕ10

ϕ03

ϕ31

F 10F 10

F 03

F 31

χ03

χ31

CαβCαβCαβ

Cγδ

Figure 4: Examples of diagrams with R-R insertions on disks with three distinct types of bound-

aries that contribute to the C-deformed superpotential.

Finally, it is worth pointing out that if we insert the deformed field equation (4.11)

into the linearized supersymmetry transformation (3.27) for the gaugino λI , we can recover

exactly all non-linear terms of δλI appearing in (2.22), including the C-dependent ones.

4.2 The superpotential sector

Let us now analyze the effects produced by the insertion of the R-R graviphoton vertex (4.1)

in diagrams with three types of boundary conditions that contribute to the effective su-

perpotential of the quiver theory. One specific example is represented in figure 4a which

describes the following amplitude 〈〈 Vϕ01Vϕ13Vϕ30VC 〉〉.
In order to saturate the superghost charge, one of the three vertices for the scalars can

be put in the (−1)-picture and the other two in the 0-picture. Computing the corresponding

string amplitude, in the field theory limit we obtain the following contribution to the

lagrangian

2gTr
(
Cµν ϕ01∂µϕ

13∂νϕ
30
)
. (4.18)

As in previous cases, also here we should consider the diagram in which the 0-picture

vertices for ϕ are replaced by the vertices for the auxiliary fields Hµ, so that in the end

the ordinary derivatives in (4.18) are promoted to the full covariant derivatives. Repeating

this calculation for all triples of boundary conditions that can be consistently found in the

quiver diagram, we finally obtain

2g
∑

I 6=J 6=K
Tr
(
Cµν ϕIJDµϕ

JKDνϕ
KI
)

(4.19)

i.e. precisely one of the C-dependent terms of the anti-holomorphic deformed superpotential

(see eq. (2.33)).

Let us now consider the diagram represented in figure 4b, which corresponds to the

amplitude 〈〈 VF 01Vχ13Vχ30VC 〉〉 involving fermionic vertices from the R sector. The evaluation

of this amplitude is strictly analogous to what we have already described in the previous

subsection and, after generalizing to all triples of consistent boundary conditions, we find

g

4

∑

I 6=J 6=K
Tr
(
Cµν F IJχJKσµνχKI

)
(4.20)

which is exactly one of the terms expected from the NAC ?-product deformation (see

eq. (2.32)).
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Finally, let us analyze the diagram of figure 4c, which, differently from all other

diagrams considered so far, has two R-R insertions. It corresponds to the amplitude

〈〈 VF 01VF 13VF 30VC VC 〉〉 which is easily seen to respect all requirements in order to be non-

vanishing and survive in the field theory limit. From the open string point of view, this is

a 3-point amplitude which cannot be further reduced by means of suitable auxiliary fields,

and thus it has to be evaluated explicitly. Since there are three open and two closed string

insertions, the calculation is more involved than the ones encountered before, but it is still

doable. More precisely, we have

〈〈 VF 01VF 13VF 30VC VC 〉〉 ≡
1

2
Cdisk

∫ ∏
i dyi dzdz dwdw

dVCKG
× (4.21)

×〈VF 01(p1; y1)VF 13(p2; y2)VF 30(p3; y3)VC(z, z)VC(w,w)〉

where the symmetry factor of 1/2 accounts for the presence of two alike R-R vertices.
Inserting the explicit expressions for the various ingredients and computing the world-sheet
correlators, the above amplitude becomes

g

8π4
Tr
(
CαβCγδF 01(p1)F 13(p2)F 30(p3)

)
×

×
∫ ∏

i dyi dzdz dwdw

dVCKG
×

×
{
〈e− 1

2φ(z) e−
1
2φ(z) e−

1
2φ(w) e−

1
2φ(w)〉 ×

×〈Sα(z)Sβ(z)Sγ(w)Sδ(w)〉 ×
×〈Ψ2Ψ3(y1) Ψ3Ψ1(y2) Ψ1Ψ2(y3)×

S−−−(z)S−−−(z)S−−−(w)S−−−(w)〉
〈eip1·X(y1) eip2·X(y2) eip3·X(y3)〉

}
=

g

4π4
Tr
(

detC F 01(p1)F 13(p2)F 30(p3)
)
×

∫ ∏
i dyi dzdz dwdw

dVCKG
×

× (y1 − y2)(y1 − y3)(y2 − y3)(z − z)(w − w)∏
i(yi − z)(yi − z)(yi − w)(yi − w)

(4.22)

where in the last step we have understood, as usual, the δ-function of momentum conser-

vation. We now exploit the Sl(2,R) invariance to fix y1 → ∞, z → i and z → −i, so that

the integrals in (4.22) become

4

∫ +∞

−∞
dy2

∫ y2

−∞
dy3

(y2 − y3)

(y2
2 + 1)(y2

3 + 1)

∫

Imw≥0
dwdw

w − w
(y2 − w)(y2 − w)(y3 − w)(y3 − w)

.

(4.23)

Using the result (A.25) of appendix A.3, eq. (4.23) reduces to the integrals (4.8) and

yields, as final result, just a factor of 4π4. Thus, the amplitude (4.22) gives rise to the term

−gTr
(

detC F 01F 13F 30
)

in the effective lagrangian, which easily generalizes to

−g
3

∑

I 6=J 6=K
Tr
(

detC F IJF JKFKI
)

(4.24)

i.e. the last term of (2.32).
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PSfrag replacements

F 10

F 10

F 03

F 03

F 31

F 31

Cαβ

Cαβ

Cγδ

Cγδ

−→

Figure 5: Factorization of the amplitude 〈〈 VF 01VF 13VF 30VC VC 〉〉 in the closed channel.

We conclude our analysis with a few general comments. All amplitudes we have com-

puted in the presence of the R-R background involve the evaluation of some integrals over

the world-sheet variables even after fixing the SL(2,R) invariance, since they contain cor-

relation functions among more than three vertex operators. Therefore, before ascribing the

final result of these amplitudes to the effective field theory action, one should study their

factorization properties in order to distinguish among possible exchange contributions and

select the irreducible ones. In the case of amplitudes with just a single insertion of the

R-R graviphoton vertex (4.1), it is quite easy to realize that these amplitudes could be

factorized only in an open string channel. However, the intermediate states which would

be exchanged in such a channel are massive, since no coupling among massless states could

give rise to these exchange diagrams. Amplitudes which can be factorized only on massive

modes do not correspond to exchange diagrams in the effective field theory, but rather

to contact interactions. This is precisely the case of the various amplitudes with a single

closed string insertion that we discussed in sections 4.1 and 4.2. Things could be different,

however, for the last amplitude (4.21) which has two R-R insertions, and hence can be

factorized also in a closed string channel as indicated in figure 5.

However, taking into account the explicit form of the R-R vertices (4.1), it is quite

easy to realize that also in this case the exchanged closed string state is massive. In fact it

corresponds to the following NS-NS vertex operator

V (z, z) ∼ ei(ϕ1+ϕ2+ϕ3)(z) e−φ(z) ei(ϕ̃1+ϕ̃2+ϕ̃3)(z) e−φ̃(z) eip·X(z,z) , (4.25)

which is physical when p2 = −8. Notice that in our diagram, the momentum flowing in the

intermediate channel is zero, since the two external R-R vertices have both p = 0, and thus

in the propagator of the virtual intermediate state only the mass term contributes. Again,

this is not an exchange diagram of the effective theory, but rather a contact interaction,

and thus the complete string amplitude (4.21) in the limit α′ → 0 must be assigned to the

effective lagrangian, as we did. Notice that this is also consistent with the fact that in our

calculation we did not encounter any divergence, which, in presence of external states at

zero momentum, would be typically associated to the exchange of some virtual massless

particles.
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In conclusion we may say that our results prove that the NAC deformation of gauge

theories is completely explained by the presence of a R-R graviphoton background with

constant (self-dual) field strength; this closed string background modifies the open string

dynamics by introducing new types of interactions that can be easily obtained by computing

mixed open/closed string amplitudes on disks with mixed boundary conditions. In this

paper we have explicitly considered the specific example of the quiver theory corresponding

to the orbifold C3/(Z2×Z2), but since our method is completely general, it could be applied

to other orbifolds as well, or to other configurations of D-branes, like for example D-branes

at angles. Furthermore, this approach can be used to analyze the effects produced by other

types of closed string fluxes on the effective dynamics of open strings.
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A. Useful formulae

In this appendix we collect our conventions and several technical details that are useful for

the calculations reported in the main text.

A.1 Conventions

The matrices (σµ)αβ̇ and (σ̄µ)α̇β are defined by

σµ = (i~τ,1) , σ̄µ = σ†µ = (−i~τ ,1) , (A.1)

where ~τ are the ordinary Pauli matrices. They satisfy the Clifford algebra

σµσ̄ν + σν σ̄µ = 2δµν 1 , (A.2)

and correspond to a Weyl representation of the γ-matrices acting on chiral or anti-chiral

spinors ψα or ψα̇. Out of these matrices, the SO(4) generators are defined by

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) . (A.3)

The matrices σµν are self-dual and thus generate the SU(2)L factor of SO(4); the anti self-

dual matrices σ̄µν generate instead the SU(2)R factor. We raise and lower spinor indices

as follows

ψα = εαβ ψβ , ψα̇ = εα̇β̇ ψ
β̇ (A.4)

where ε12 = ε12 = −ε1̇2̇ = −ε1̇2̇ = +1. From these rules it follows that

ψα ψβ = −1

2
εαβ ψ ψ , ψ̄α̇ ψ̄β̇ = −1

2
εα̇β̇ ψ̄ ψ̄ (A.5)

and

ψ σµψ̄ ψ σνψ̄ =
1

2
ψψ ψ̄ψ̄ δµν . (A.6)
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A.2 World-sheet correlation functions

We report here some correlation functions among conformal fields that are needed for the

calculation of the string amplitudes of sections 3 and 4.

Space-time correlators:

〈: ψµψν : (y)Sα(z)Sβ(z)〉 =
1

2
(σµν)αβ(z − z) 1

2 (y − z)−1 (y − z)−1 . (A.7)

〈ψµ(y1)ψν(y2)Sα(z)Sβ(z)〉 = A(y1, y2, z, z) δµν εαβ +B(y1, y2, z, z)(σµν)αβ (A.8)

where

A(y1, y2, z, z) =
1

2

(y1 − z)(y2 − z) + (y2 − z)(y1 − z)
(y1 − y2)

[
(y1 − z)(y1 − z)(y2 − z)(y2 − z)(z − z)

] 1
2

(A.9)

and

B(y1, y2, z, z) = −1

2

[
(z − z)

(y1 − z)(y1 − z)(y2 − z)(y2 − z)

] 1
2

. (A.10)

〈Sγ(y2)Sδ(y3)Sα(z)Sβ(z)〉 =
[
εγδ εαβ (y2 − z)(y3 − z)− εγβ εδα (y2 − y3)(z − z)

]
× (A.11)

×
[
(y2 − y3)(y2 − z)(y2 − z)(y3 − z)(y3 − z)(z − z)

]− 1
2 .

Internal space correlators:

〈Ψ1(y1) Ψ2Ψ3(y2)S−−−(z)S−−−(z)〉 = |y1 − z|−1 |y2 − z|−2 (z − z) 3
4 . (A.12)

〈Ψ2Ψ3(y1) Ψ3Ψ1(y2) Ψ1Ψ2(y3)×

×S−−−(z1)S−−−(z1)S−−−(z2)S−−−(z2)〉 =
3∏

i=1

2∏

a=1

|yi − za|−2
∏

i<j

(yi − yj)×

×
∏

a<b

|za − zb|
3
2

∏

a,b

|za − zb|
3
2 . (A.13)

Superghost correlators:

〈e−φ(y1) e−
1
2
φ(y2) e−

1
2
φ(y3)〉 = (y1 − y2)−

1
2 (y1 − y3)−

1
2 (y2 − y3)−

1
4 , (A.14)

〈e− 1
2
φ(y1) e−

1
2
φ(y2) e−

1
2
φ(y3) e−

1
2
φ(y4)〉 =

[
(y1 − y2) (y1 − y3) (y1 − y4) (y2 − y3)×

× (y2 − y4) (y3 − y4)
]− 1

4
. (A.15)

A.3 A useful integral

In the calculation of the string amplitude 〈〈 VF 01VF 13VF 30VC VC 〉〉, one of the ingredients is

the following integral in the upper half complex plane H+

I(a, b) =

∫

H+

dw dw
(w − w)

(w − a)(w − a)(w − b)(w − b) (A.16)
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with (a, b ∈ R, a > b) (see eq. (4.23)). As it stands, the integral I(a, b) is formally di-

vergent. We may regularize it by excluding the real axis from the integration region, i.e.

we take Imw ≥ ε, where ε will be sent to zero at the end of the calculation. Notice that

this regularization prescription is precisely what is required in mixed open/closed string

amplitudes. With this in mind, after applying Stoke’s theorem, we have

I(a, b; ε) =

∮

∂H+ε

dw
ln [(w − a)(w − b)]
2(w − a)(w − b) +

∮

∂H+ε

dw
ln [(w − a)(w − b)]
2(w − a)(w − b) . (A.17)

On the integration path, we have

w = x+ iε , w = x− iε , dw = dw = dx (A.18)

with −∞ < x < +∞. Thus, the first integral in (A.17) becomes

I1(a, b; ε) =

∫ +∞

−∞
dx

ln [(x− a+ iε)(x− b+ iε)]

2(x− a− iε)(x− b− iε)
(A.19)

which can be easily evaluated using Jordan’s lemma and residues theorem. In fact, we get

I1(a, b; ε) = 2πi

{
ln
[
(2iε)(a − b+ 2iε)

]

2(a− b) +
ln
[
(b− a+ 2iε)(2iε)

]

2(b− a)

}
(A.20)

=
πi

a− b
[

ln(a− b+ 2iε)− ln(b− a+ 2iε)
]
. (A.21)

Now we can safely take the limit ε→ 0+, and using the fact that

lim
ε→0+

[
ln(a− b+ 2iε)− ln(b− a+ 2iε)

]
= πi , (A.22)

we finally get

I1(a, b) =
π2

a− b . (A.23)

The calculation of the second integral in (A.17) proceeds along the same lines and yields

the same result,

I2(a, b) =
π2

a− b ; (A.24)

thus in the end we have

I(a, b) = I1(a, b) + I2(a, b) =
2π2

a− b . (A.25)
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