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1. Introduction

The relationship between string theory and perturbative field theories has been thoroughly

investigated for many years. The study of the non-perturbative effects in string theory and

their comparison with field theory is instead much more recent. In particular, only after

the introduction of D branes it has been possible to significantly improve our knowledge

of the non-perturbative aspects of string theory. From the open string point of view, the

D branes are hyper-surfaces spanned by the string end points on which a supersymmetric

gauge theory is defined. For instance, a stack of N D3 branes in flat space supports a

four-dimensional N = 4 supersymmetric Yang-Mills gauge theory. Adding a set of k D(–1)

branes (also called D-instantons) allows to describe instanton configurations of winding

number k [1 – 5]. In fact, the excitations of the open strings stretching between two D-

instantons or between a D3 brane and a D-instanton, are in one-to-one correspondence
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with the ADHM moduli of the super Yang-Mills instantons, and their interactions correctly

account for the measure on the moduli space [6] 1.

In a recent paper [8], to substantiate the above remarks, its has been shown how

the computation of tree-level string scattering amplitudes on disks with mixed boundary

conditions for a D3/D(–1) system leads, in the infinite tension limit α′ → 0, to the effective

action on the instanton moduli space of the N = 4 supersymmetric Yang-Mills theory.

Furthermore, it has been proved that the very same disk diagrams also yield the classical

field profile of the instanton solution, and that these mixed disks effectively act as sources

for the various components of the N = 4 gauge multiplet. In this framework [9, 6] it is also

possible to describe theories with a smaller number of supersymmetries and their instantons

by suitably orbifolding the D3/D(–1) system. In particular, considering a configuration

with fractional D3 branes and fractional D-instantons in the orbifold R
4 × C × C

2/Z2

one can describe a N = 2 super Yang-Mills theory in four dimensions together with its

instantons [3]. This is the system we study in this paper.

Our aim is to generalize the construction mentioned above to encompass the so-called

multi-instanton equivariant calculus [10 – 16] and try to clarify some surprising properties

that have been noticed in the literature. In the multi-instanton equivariant calculus, the

instanton moduli action is deformed by means of certain U(1) × U(1) transformations

which act only on a subset of the moduli and leave the ADHM constraints invariants 2.

This deformation turns out to be the crucial ingredient that allows the evaluation of the

instanton partition function Z(k) for arbitrary winding numbers k. In fact, in the deformed

theory the supersymmetry transformations on the moduli space have only a finite number

of isolated fixed points so that it becomes possible to use the localization theorems and

compute exactly the integrals over the instanton moduli space. The partition function

obtained in this way turns out to be an even function of the deformation parameter ε and

of the vacuum expectation value (v.e.v.) a of the chiral gauge superfield of the N = 2

theory. Furthermore, by writing

Z(a; ε) =
∞∑

k=1

Z(k)(a; ε) = exp

(Fn.p.(a; ε)

ε2

)
, (1.1)

one finds that

lim
ε→0

Fn.p.(a; ε) = F(a) (1.2)

where F(a) is the non-perturbative Seiberg-Witten prepotential [17]. At this point an

obvious question arises: what about the terms in Fn.p.(a; ε) of higher order in ε and their

physical interpretation? In ref. [10] (see also refs. [13, 16]) N. Nekrasov conjectured that the

terms of order ε2h describe gravitational corrections to the gauge prepotential coming from

closed string amplitudes on Riemann surfaces of genus h and that they should correspond

1For an alternative string approach to gauge instantons based on tachyon condensation, see for example

ref. [7]
2In this paper we consider the case in which the U(1) × U(1) transformations are represented by e+i ε

and e−iε, where ε is the deformation parameter.
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to F-term couplings in the N = 2 effective action of the form

∫
d4x (R+)2(F+)2h−2 (1.3)

where R+ is the self-dual part of the Riemann curvature tensor and F+ is the self-dual

part of the graviphoton field strength of N = 2 supergravity. It is a well-known result of

string theory that the F-terms (1.3) are non-vanishing only on Riemann surfaces of genus

h and that they can be also computed with the topological string [18, 19]. Using this

information Nekrasov’s conjecture was tested to be true in ref. [20] in the case of N = 2

super Yang-Mills with SU(2) gauge group.

In this paper we try to confirm and make more evident the above interpretation by

computing directly the couplings induced by a (self-dual) graviphoton background on the

instanton moduli space, and by showing that they precisely match those that are induced

by the ε deformation that fully localizes the instanton integrals. To do so we exploit

the explicit string realization of the N = 2 gauge theory and its instantons provided by

a D3/D(–1) system of fractional branes, and use the description of the graviphoton of

N = 2 supergravity as a massless field the Ramond-Ramond closed string sector. Then we

determine how the graviphoton modifies the instanton effective action by computing mixed

open/closed string disk amplitudes. We do this using the RNS formalism and the methods

already introduced in ref. [21] to study the non anti-commutative gauge theories [22]. Even

if it is a common belief that the RNS formalism is not suited to deal with a R-R background,

we show that this is not completely true, and that a lot of information can actually be

extracted from this formalism in several cases, including the one studied in this paper.

In fact, by computing the instanton partition function in a graviphoton background with

a constant self-dual field strength proportional to ε, we can obtain through eq. (1.1) a

non-perturbative prepotential Fn.p.(a; ε) which coincides with the one obtained with the

multi-instanton equivariant calculus [10 – 15] but in which, by construction, the parameter

ε represents the v.e.v. of the graviphoton field strength. Using standard superstring

methods [5, 8], we promote ε to a fully dynamical graviphoton field strength F+ or even to

the complete Weyl superfield [23] of which F+ is the lowest component. Then, expanding

the instanton-induced prepotential in powers of this Weyl superfield, we obtain, among

others, precisely the gravitational F-terms of eq. (1.3). It is worth noticing that in our

approach these terms arise from disk diagrams, and specifically from 2h disks wich, even

if apparently disconnected, must be effectively considered as connected because of the

integration over the instanton moduli (see, for example, the discussion in section 6 of

ref. [8]). Notice also that the Euler character of this topology is the same as that of the

world-sheet with h handles that is used in the topological string derivation of eq. (1.3).

In refs. [13, 16] it has been argued that the ε-deformation on the instanton moduli space

is due to a non-trivial metric, called Ω-background, on the gauge theory. At the linear order

in the deformation this Ω-background is equivalent to a R-R background. In the present

paper, we point out that, realizing the gauge theory and its instantons via a fractional

D3/D(–1) brane system, the parameter ε is directly related to the graviphoton. In view of
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the above considerations about the gravitational F-terms (1.3) and of the connection with

the results of the topological string, we find this interpretation very natural.

This paper is organized as follows: in section 2 we review how to derive the N = 2 ac-

tion (both in the gauge and in the instanton sectors) from tree-level open string scattering

amplitudes in a D3/D(–1) system, and discuss also how to incorporate in the instanton

effective action the v.e.v.’s of the scalar gauge fields. In section 3 we analyze the instanton

moduli space in presence of a (constant) self-dual graviphoton background by comput-

ing mixed open/closed string disk amplitudes, and show that this R-R background induces

precisely the same deformation of the ADHM moduli space which fully localizes the instan-

ton integrals. In section 4 we compare our results with those obtained with the deformed

ADHM construction, and show how to lift the graviphoton deformation to the gauge theory

action in four dimensions. We also prove that the terms of this action that are linear in the

graviphoton field strength coincide with those produced by the Ω-background considered

in refs. [13, 16]. section 5 is devoted to show how the N = 2 effective action and the

prepotential may be extracted from the deformed instanton partition function, and how

this compares with the topological string approach. Finally, in section 6 we present our

conclusions, and in appendix A we list our notations and collect some formulas that are

useful for the explicit calculations.

2. N = 2 gauge instantons from D3/D(–1) systems

Instantons of charge k in N = 2 theories with gauge group SU(N) can be described within

type IIB string theory by considering systems of N fractional D3 branes and k fractional

D(–1) branes at the fixed point of the orbifold R
4 × C × C

2/Z2. In this section we recall

this description, adapting to the N = 2 case the procedure discussed in refs. [8] and [21]

for N = 4 and N = 1 models. Our notations and conventions, as well as the details of the

Z2 orbifold projection, are explained in appendix A.

2.1 The gauge sector

Let us consider type IIB string theory in R
4×C×C

2/Z2 and place at the orbifold fixed point

a stack of N fractional D3 branes that fill the four-dimensional (Euclidean) space R
4. The

massless excitations of open strings attached with both end points to these branes describe

the N = 2 gauge vector multiplet in four dimensions, that comprises a gauge boson Aµ,

two gauginos ΛαA (with α,A = 1, 2) and one complex scalar φ. This field content can be

assembled in a N = 2 chiral superfield

Φ(x, θ) = φ(x) + θΛ(x) +
1

2
θσµνθ F+

µν(x) + · · · (2.1)

where

θΛ(x) ≡ θαAΛ B
α (x)εAB , θσµνθ ≡ θαA

(
σµν

)
αβ

θβBεAB , (2.2)

F+
µν is the self-dual part of the gauge field strength and the dots in (2.1) stand for terms

containing auxiliary fields and derivatives. The various components of the chiral superfield
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are represented by the following open string vertex operators

VA(z) =
Aµ(p)√

2
ψµ(z) eip·X(z) e−ϕ(z) , (2.3a)

VΛ(z) = ΛαA(p)Sα(z)SA(z) eip·X(z) e−
1
2
ϕ(z) , (2.3b)

Vφ(z) =
φ(p)√

2
Ψ(z) eip·X(z) e−ϕ(z) , (2.3c)

where z is a world-sheet point, p is the momentum along the D3 brane world-volume

(p2 = 0), and ϕ is the boson of the superghost fermionization formulas (for details, see

appendix A). For completeness, we also write the vertex operators for the conjugate fields

Λ̄α̇A and φ̄, namely

VΛ̄(z) = Λ̄α̇A(p)Sα̇(z)SA(z) eip·X(z) e−
1
2
ϕ(z) , (2.4a)

Vφ̄(z) =
φ̄(p)√

2
Ψ(z) eip·X(z) e−ϕ(z) . (2.4b)

In all these vertices, the polarizations have canonical dimensions 3 and are [N ] × [N ]

matrices transforming in the adjoint representation of SU(N) (here we neglect an overall

factor of U(1), associated to the center of mass of the N D3 branes, which decouples and

does not play any rôle in our context).

By computing the field theory limit α′ → 0 of all tree-level scattering amplitudes

among the vertex operators (2.3a)-(2.4b), one obtains various couplings that lead to the

N = 2 SU(N) super Yang-Mills action 4

SSYM =

∫
d4x Tr

{1

2
F 2

µν + 2Dµφ̄Dµφ − 2 Λ̄α̇AD̄/ α̇βΛA
β

+ i
√

2 g Λ̄α̇AεAB
[
φ, Λ̄α̇

B

]
+ i

√
2 g ΛαAεAB

[
φ̄,ΛB

α

]
+ g2

[
φ, φ̄

]2
}

.

(2.5)

In the following we will study the non-perturbative structure of the N = 2 gauge effective

action when the chiral superfield acquires a v.e.v.

〈Φuv〉 ≡ 〈φuv〉 = auv = au δuv (2.6)

where u, v = 1, . . . , N and
∑

u au = 0, so that the gauge group SU(N) is broken to U(1)N−1.

In particular we will investigate non-perturbative instanton effects, also in presence of a

non-trivial supergravity background.

2.2 The instanton sector

In this stringy set-up instanton effects can be introduced by adding k D(–1) branes (or

D-instantons) which give rise to new types of excitations associated to open strings with

3Unless explicitly mentioned we will always understand the appropriate factors of (2πα′), needed to have

dimensionless string vertices.
4Compared to ref. [8], here we have rescaled all gauge fields with a factor of the Yang-Mills coupling

constant g for later convenience.
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at least one end point on the D-instantons. Due to the Dirichlet boundary conditions that

prevent momentum in all directions, these new excitations describe moduli rather than

dynamical fields and are in one-to-one correspondence with the ADHM moduli of gauge

instantons (for a more detailed discussion see, for instance, ref. [6] and references therein).

Let us consider first the open strings with both end-points on the fractional D-instan-

tons in the Z2 orbifold. In this case, the NS sector contains six physical bosonic excitations

that can be conveniently organized in a vector a′µ and a complex scalar χ, and also three

auxiliary excitations Dc (c = 1, 2, 3). The corresponding vertex operators are

Va′(z) = g0 a′µ ψµ(z) e−ϕ(z) , (2.7a)

Vχ(z) =
χ√
2

Ψ(z) e−ϕ(z) , (2.7b)

VD(z) =
Dc

2
η̄c

µν ψν(z)ψµ(z) , (2.7c)

where η̄c
µν are the three anti-self-dual ’t Hooft symbols , and g0 is the D-instanton coupling

constant

g0 =
g

4π2α′
. (2.8)

The R sector of the D(–1)/D(–1) strings contains instead eight fermionic moduli, MαA and

λα̇A, described by the following vertices

VM (z) =
g0√
2

MαA Sα(z)SA(z) e−
1
2
ϕ(z) , (2.9a)

Vλ(z) = λα̇A Sα̇(z)SA(z) e−
1
2
ϕ(z) . (2.9b)

All polarizations in the vertex operators (2.7) and (2.9) are [k]× [k] matrices and transform

in the adjoint representation of U(k). In the following we will always understand the U(k)

indices for simplicity, unless they are needed to avoid ambiguities. It is worth noticing

that if the Yang-Mills coupling constant g is kept fixed when α′ → 0 (as is appropriate to

retrieve the gauge theory on the D3 branes), then the dimensionful coupling g0 in (2.8)

blows up. Thus, some of the vertex operators must be suitably rescaled with factors of g0

(like in (2.7a) and (2.9a)) in order to yield non-trivial interactions when α′ → 0 [8]. As a

consequence some of the moduli acquire unconventional scaling dimensions which, however,

are the right ones for their interpretation as parameters of an instanton solution [6, 8]. For

instance, the a′µ’s in (2.7a) have dimensions of (length) and are related to the positions of

the (multi)-centers of the instanton, while MαA in (2.9a) have dimensions of (length)
1
2 and

are the fermionic partners of the instanton centers. Furthermore, if we write the [k] × [k]

matrices a′µ and MαA as

a′
µ

= xµ
0 11[k]×[k] + yµ

c T c ,

MαA = θαA 11[k]×[k] + ζαA
c T c ,

(2.10)

where T c are the generators of SU(k), then the center of the instanton, xµ
0 , and its fermionic

partner, θαA, can be identified respectively with the bosonic and fermionic coordinates of

the N = 2 superspace.
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In the D3/D(–1) system there are also twisted string excitations corresponding to open

strings with mixed boundary conditions that stretch between a D3 brane and a D-instanton,

or vice versa. The twisted NS sectors contains the bosonic moduli wα̇ and w̄α̇ which are

associated to the following vertex operators

Vw(z) =
g0√
2

wα̇ ∆(z)Sα̇(z) e−ϕ(z) and Vw̄(z) =
g0√
2

w̄α̇ ∆(z)Sα̇(z) e−ϕ(z) . (2.11)

Here ∆ and ∆ are the twist and anti-twist operators with conformal weight 1/4 which

change the boundary conditions of the longitudinal coordinates Xµ from Neumann to

Dirichlet and vice-versa by introducing a cut in the open-string world-sheet [24]. The

moduli wα̇ and w̄α̇ have dimension of (length) and are related to the instanton size. The

twisted R sector contains instead the fermionic moduli µA and µ̄A, with dimension of

(length)1/2, described by the following vertex operators

Vµ(z) =
g0√
2

µA ∆(z)SA(z) e−
1
2
ϕ(z) and Vµ̄(z) =

g0√
2

µ̄A ∆(z)SA(z) e−
1
2
ϕ(z) . (2.12)

In both (2.11) and (2.12) the polarizations transform in the bi-fundamental representations

of the U(N) × U(k) group. Again, in most cases we will understand the corresponding

indices for simplicity.

Following the procedure explained in ref. [8], by computing all tree-level interactions

among the above vertex operators in the limit α′ → 0 with g fixed (and hence with g0 → ∞)

one can recover the ADHM action on the instanton moduli space for the N = 2 theory,

namely

Smoduli = S bos
k + S fer

k + S c
k (2.13)

with

S bos
k = trk

{
− 2 [χ†, a′µ][χ, a′

µ
] + χ†w̄α̇wα̇χ + χw̄α̇wα̇χ†

}
(2.14a)

S fer
k = trk

{
i

√
2

2
µ̄AεABµBχ† − i

√
2

4
MαAεAB[χ†,MB

α ]
}

(2.14b)

S c
k = trk

{
− iDc

(
W c + iη̄c

µν

[
a′

µ
, a′

ν])

− iλα̇
A

(
µ̄Awα̇ + w̄α̇µA +

[
a′αα̇,M ′αA])}

(2.14c)

where

(W c)ij = wuiα̇ (τ c)α̇
β̇

w̄β̇
ju (2.15)

with u = 1, ..., N and i, j = 1, ..., k. Since Dc and λα̇
A act as Lagrange multipliers, the

term (2.14c) yields the so-called bosonic and fermionic ADHM constraints

W c + iη̄c
µν

[
a′

µ
, a′

ν]
= 0 ,

µ̄Awα̇ + w̄α̇µA +
[
a′αα̇,M ′αA]

= 0 ,
(2.16)

while by varying S bos
k and S fer

k with respect to χ† and χ we obtain the following equations

1

2

{
w̄α̇wα̇, χ

}
+

[
a′µ,

[
a′µ, χ

]]
+ i

√
2

4
εAB

(
µ̄AµB + MαAM B

α

)
= 0 , (2.17a)

1

2

{
w̄α̇wα̇, χ†

}
+

[
a′µ,

[
a′µ, χ†

]]
= 0 . (2.17b)
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It is interesting to observe the moduli action (2.13) does not depend on the superspace

coordinates xµ
0 and θαA defined in (2.10) and that the quartic interaction terms of the

bosonic part (2.14a) can be completely disentangled by means of dimensionless auxiliary

fields Yµ, Xα̇ and X̄α̇ (plus their conjugate ones) which are associated to the following

vertex operators [8]

VY (z) =
√

2g0 Yµ Ψ(z)ψµ(z) , VY †(z) =
√

2g0 Y †
µ Ψ(z)ψµ(z) , (2.18a)

VX(z) = g0 Xα̇ ∆(z)Sα̇(z)Ψ(z) , VX†(z) = g0 X†
α̇ ∆(z)Sα̇(z)Ψ(z) , (2.18b)

VX̄(z) = g0 X̄α̇ ∆(z)Sα̇(z)Ψ(z) , VX̄†(z) = g0 X̄†
α̇(z)∆(z)Sα̇(z)Ψ(z) . (2.18c)

The operators (2.18a) describe excitations of the D(–1)/D(–1) strings, while the ver-

tices (2.18b) and (2.18c) account for states of the D3/D(–1) and D(–1)/D3 sectors re-

spectively. Like any vertex associated to an auxiliary field, also the vertices (2.18) can only

be written in the 0 superghost picture and are not BRST invariant. Nevertheless, they can

be safely used to compute scattering amplitudes in the field theory limit. For example, let

us consider the 3-point amplitude corresponding to the disk diagram of figure 1a, namely

〈〈
VX̄†VwVχ

〉〉
≡ C0

∫ ∏
i dzi

dVCKG
× 〈VX̄†(z1)Vw(z2)Vχ(z3)〉 (2.19)

where dVCGKG is the Conformal Killing Group volume element, and C0 is the normalization

of any D(–1) disk amplitude [8]

C0 =
2

(2πα′)2
1

g2
0

=
8π2

g2
(2.20)

which is also the classical action of an instanton with charge k = 1. Computing the

correlation function among the vertex operators using the OPE’s reported in appendix A

and reinstating in the polarizations the appropriate factors of (2πα′) (which cancel against

those of C0), one easily finds that

〈〈
VX̄†VwVχ

〉〉
= −trk

{
X̄†

α̇ wα̇χ
}

. (2.21)

Proceeding systematically in this way and computing all scattering amplitudes involving

the auxiliary vertices, we obtain a bosonic moduli action with cubic interaction terms only,

namely

S ′ bos
k = trk

{
2Y †

µ Y µ + 2Y †
µ

[
a′

µ
, χ

]
+ 2Yµ

[
a′

µ
, χ†

]

+ X̄†
α̇Xα̇ + X̄α̇X† α̇ + X̄†

α̇wα̇χ + X̄α̇wα̇χ† − χw̄α̇X† α̇ − χ†w̄α̇Xα̇
} (2.22)

which is indeed equivalent to S bos
k in (2.14a) after the auxiliary variables are integrated

out.

The vertices (2.18) are also useful to discuss the supersymmetry transformation laws

of the various moduli. In particular, for the supersymmetries which are preserved both
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X̄†X̄†

χ

ww

φ

(a) (b)

Figure 1: (a) A mixed diagram involving moduli and auxiliary moduli. (b) A mixed diagram

involving also a gauge theory vertex. The solid part of the boundary is attached to a D3, the

dotted part to a D-instanton.

on the D3 branes and on the D-instantons and which are generated by the following four

supercharges

Qα̇A =

∮
dw

2πi
jα̇A(w) with jα̇A(w) = Sα̇(w)SA(w) e−

1
2
ϕ(w) , (2.23)

one can show that (see for example ref. [8])

[
ξα̇A Qα̇A, VY (z)

]
= ξα̇A

∮

z

dw

2πi
jα̇A(w)VY (z) = VδM (z) , (2.24)

where

δMβB = −2
√

2 ξα̇A εAB(σ̄µ)α̇βY µ . (2.25)

After eliminating the auxiliary field Y via its equation of motion, one can rewrite the above

transformation rule as

δMβB = −2
√

2 ξα̇A εAB(σ̄µ)α̇β [χ, a′
µ
] . (2.26)

With similar calculations one can fully recover also the supersymmetry transformations of

the other instanton moduli and find complete agreement with the standard results.

2.3 Introducing v.e.v.’s

The string formalism is well suited also to discuss the case in which the chiral superfield

Φ has a v.e.v. like in (2.6). Indeed, to find how the constants auv enter in the instanton

action one simply has to compute mixed disk diagrams with a constant scalar field φ

emitted from the portion of the disk boundary that lies on the D3 branes. For example,

one should consider the diagram of figure 1b which corresponds to the following amplitude

〈〈
VX̄†VφVw

〉〉
≡ C0

∫ ∏
i dzi

dVCKG
× 〈VX̄†(z1)Vφ(z2)Vw(z3)〉 (2.27)
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where the scalar vertex Vφ is taken at zero momentum to describe the emission of a constant

field φ. The amplitude (2.27) is similar to that of eq. (2.19), the only difference being the

presence of the D3/D3 vertex Vφ in place of the D(–1)/D(–1) vertex Vχ. Since these vertices

differ only in their polarizations but not in their operator structure, the result can be simply

inferred from (2.21), namely

〈〈
VX̄†VφVw

〉〉
= trk

{
X̄†

α̇ awα̇
}

. (2.28)

Proceeding systematically in this way, we can derive the modified moduli actions

S̃ bos
k = trk

{
2Y †

µ Y µ + 2Y †
µ

[
a′

µ
, χ

]
+ 2Yµ

[
a′

µ
, χ†

]

+ X̄†
α̇Xα̇ + X̄α̇X† α̇ + X̄†

α̇

(
wα̇χ − awα̇

)
+ X̄α̇

(
wα̇χ† − ā wα̇

)

−
(
χw̄α̇ − w̄α̇ a

)
X† α̇ −

(
χ†w̄α̇ − w̄α̇ ā

)
Xα̇

}
,

(2.29)

and

S̃ fer
k = trk

{
i

√
2

2
µ̄AεAB

(
µBχ† − ā µB

)
− i

√
2

4
MαAεAB[χ†,MB

α ]
}

. (2.30)

Notice that these actions can be obtained from those in eqs. (2.22) and (2.14b) with the

formal shifts

χij δuv → χij δuv − δij auv and χ†
ij δuv → χ†

ij δuv − δij āuv (2.31)

where i, j = 1, ...k and u, v = 1, ..., N . It is interesting to observe that the matrices a and ā

do not appear on equal footing; in particular a does not appear in the fermionic action S̃ fer
k .

This fact will have important consequences, like for example that the instanton partition

function depends only on a and not on ā (see also section 3.3).

3. Instantons in a graviphoton background

In this section we analyze the instanton moduli space of N = 2 gauge theories in a non-

trivial supergravity background. In particular we turn on a (self-dual) field strength for

the graviphoton of the N = 2 supergravity multiplet and see how it modifies the instanton

moduli action. This graviphoton background breaks Lorentz invariance in space-time (leav-

ing the metric flat) but it allows to explicitly perform instanton calculations and establish

a direct correspondence with the localization techniques that have been recently discussed

in the literature. Since our strategy is based on the use of string and D brane methods, we

begin by reviewing how the graviphoton field is described in our stringy set-up.

3.1 Graviphoton in N = 2 theories

The graviton multiplet of N = 2 supergravity in four dimensions contains the metric

gµν , two gravitini ψ αA
µ and one vector Cµ called graviphoton. This field content can be

organized in the chiral Weyl superfield [23]

W+
µν(x, θ) = F+

µν(x) + θχ+
µν(x) +

1

2
θσλρθ R+

µνλρ(x) + · · · (3.1)
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where F+
µν is the self-dual part of the graviphoton field strength Fµν = ∂(µCν), R+

µνλρ is

the self-dual Riemann curvature tensor and

θχµν ≡ θαAχ βB
µν εαβ εAB (3.2)

with χ αA
µν being the gravitino field strength, whose self-dual part appears in (3.1).

In our context these supergravity fields are associated to massless excitations of the

type IIB closed string in R
4 × C × C

2/Z2. Due to the presence of the fractional branes,

the closed string world-sheet has boundaries and suitable identifications between left- and

right-moving modes must be enforced. Therefore a closed string vertex operator, which is

normally the product of two independent left and right components, i.e.

VL(z) × V ′
R(z̄) , (3.3)

in the presence of D branes becomes of the form

V (z) × V ′(z̄) (3.4)

where both the holomorphic and the anti-holomorphic parts are written in terms of a single

set of oscillators that describe the modes of a propagating open string attached to the D

branes. Furthermore, due to these left/right identifications only eight of the sixteen bulk

supercharges that exist in the Z2 orbifold of Type IIB string theory survive on the D brane

world-volume.

Taking all this into account, we now write the vertex operators associated to the

fields of the N = 2 graviton multiplet in the open string formalism. The graviphoton

vertex operator belongs to the R-R sector and in the (−1/2,−1/2) superghost picture its

properly normalized expression is

VF (z, z̄) =
1

4π
FαβAB(p)

[
Sα(z)SA(z) e−

1
2
ϕ(z) × Sβ(z̄)SB(z̄) e−

1
2
ϕ(z̄)

]
eip·X(z,z̄) (3.5)

where the bi-spinor polarization is related to the self-dual part of the graviphoton field

strength F+
µν in the following manner

FαβAB =

√
2

4
F+

µν

(
σµν)αβ εAB , (3.6)

and

Xµ(z, z̄) =
1

2

[
Xµ(z) ± Xµ(z̄)

]
(3.7)

depending on whether Xµ is a longitudinal (+ sign) or transverse (− sign) direction 5.

The vertex operator for the gravitini ψαA
µ belongs instead to the fermionic R-NS/NS-R

sector and is given by

Vψ(z, z̄) =
1

4π
ψαA

µ (p)
[
Sα(z)SA(z) e−

1
2
ϕ(z) × ψµ(z̄) e−ϕ(z̄)

+ ψµ(z) e−ϕ(z) × Sα(z̄)SA(z̄) e−
1
2
ϕ(z̄)

]
eip·X(z,z̄) .

(3.8)

5To be very precise also the overall sign of VF (and of other closed string vertices) depends on the type

of boundary conditions; however, as we shall see in the following, this sign is irrelevant in our calculations.
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Notice that in the first term the holomorphic part is of R type with half-integer superghost

charge and the anti-holomorphic part is of NS type with integer superghost charge, while the

roles are reversed in the second term. This “symmetrized” structure is a direct consequence

of the left/right identifications we have mentioned above.

Finally, the vertex operator for the graviton hµν belongs to the NS-NS sector and in

the (−1,−1) picture it is

Vh(z, z̄) =
1

4π
hµν(p)

[
ψµ(z) e−ϕ(z) × ψν(z̄) e−ϕ(z̄)

]
eip·X(z,z̄) . (3.9)

The vertices (3.5), (3.8) and (3.9) are, as usual, dimensionless and their polarizations have

canonical dimensions. In particular, since the graviphoton field strength Fµν has canonical

dimensions of (length)−1, a factor of (2πα′)1/2 should be understood in (3.5).

Using the explicit expression of the above vertex operators and the OPE’s given in ap-

pendix A, it is possible to check various supersymmetry transformation rules. For example,

taking the anti-chiral supercharges Qα̇A given in (2.23), one can show that

[
ξα̇A Qα̇A, VF (z, z̄)

]
= Vδψ(z, z̄) (3.10)

where

δψ βB
µ = i ξα̇A (σ̄ν)α̇β εAB F+

µν . (3.11)

This is the correct graviphoton dependence of the anti-chiral supersymmetry transforma-

tions of the gravitini. Therefore, eq. (3.10) is also a confirmation for the vertex opera-

tors (3.5) and (3.8). With similar calculations one can check other pieces of the N = 2

supersymmetry transformation rules of the various supergravity fields.

In the graviphoton vertex operator (3.5) the holomorphic and anti-holomorphic com-

ponents are both even under the Z2 orbifold projection. For reasons that will be clear in

the following sections, it is convenient to consider also a R-R closed string vertex that is

made up of two odd components, namely

VF̄ (z, z̄) =
1

4π
F̄αβÂB̂(p)

[
Sα(z)SÂ(z) e−

1
2
ϕ(z) × Sβ(z̄)SB̂(z̄) e−

1
2
ϕ(z̄)

]
eip·X(z,z̄) (3.12)

where Â, B̂ = 3, 4 in the notation of appendix A. This vertex operator clearly survives the

orbifold projection since both Sα(z)SÂ(z) and Sβ(z̄)SB̂(z̄) are odd under Z2. In particular,

we will consider the case in which the bi-spinor polarization of VF̄ is

F̄αβÂB̂ =

√
2

4
F̄+

µν

(
σµν)αβ εÂB̂ (3.13)

where ε34 = −ε43 = 1. Notice that the antisymmetric tensor F̄µν cannot be interpreted as

the graviphoton field strength, since the vertex operator (3.12) is not related to the gravitino

vertex (3.8) as required by the rule (3.11) of N = 2 supersymmetry. In fact the tensor F̄µν

corresponds to the field strength of some other vector in the N = 2 supergravity model,

and as such it is independent of Fµν . Despite their different meaning, the two vertices VF

and VF̄ can be treated together in most of our calculations because of their very similar

operator structure.
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3.2 ADHM measure in graviphoton background

We now study how a graviphoton background modifies the instanton moduli action of the

N = 2 gauge theory. To do so, we assume that the chiral graviphoton superfield (3.1) has

a v.e.v.

〈W+
µν〉 ≡ 〈F+

µν〉 = fµν (3.14)

with fµν a constant self-dual tensor. This background can be described by a graviphoton

vertex VF at zero momentum with constant polarization F+
µν = fµν , and the modified

instanton action can be derived by computing all disk amplitudes among the various moduli

with insertions of this closed string vertex. These are mixed open/closed string amplitudes

which are very similar to the ones that have been previously studied in the context of

non-anti-commutative theories [21].

(a) (b)

Y †

F , F̄ F̄

a′ M

M

Figure 2: Disk diagrams encoding the coupling of the closed string RR vertices Fµν (the gravipho-

ton) and F̄µν to bosonic (a) and fermionic (b) moduli. The boundary of the disks is entirely on a

D-instanton.

Let us consider in detail the disk diagram represented in figure 2a which corresponds

to the following amplitude:
〈〈

VY †Va′VF

〉〉
≡ C0

∫
dz1 dz2 dwdw̄

dVCKG
× 〈VY †(z1)Va′(z2)VF (w, w̄)〉 (3.15)

where the open string punctures zi are integrated along the real axis with z1 ≥ z2 while the

closed string puncture w is integrated on the upper half complex plane. More explicitly,

we have
〈〈

VY †Va′VF

〉〉
=

1

4π
trk

{
Y †

µ a′ν fλρ

}(
σλρ

)αβ
εAB

∫
dz1 dz2 dwdw̄

dVCKG
×

〈 e−ϕ(z2)e−
1
2
ϕ(w)e−

1
2
ϕ(w̄)〉 〈Ψ(z1)SA(w)SB(w̄)〉 〈ψµ(z1)ψ

ν(z2)Sα(w)Sβ(w̄)〉 .

(3.16)

Using the correlation functions given in appendix A and exploiting the Sl(2, R) invariance

to fix z1 → ∞ and w → i, we are left with the elementary integral
∫ ∞

−∞

dz2
1

1 + z2
2

= π , (3.17)
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so that in the end we have

〈〈
VY †Va′VF

〉〉
= −4i trk

{
Y †

µ a′ν fµν
}

. (3.18)

A systematic analysis reveals that this is the only non-vanishing disk amplitude involving

the graviphoton field strength fµν and the ADHM instanton moduli. Indeed, all other

diagrams with insertions of VF either vanish at the string theory level, or vanish in the

field theory limit. However, there are a couple of non-vanishing amplitudes containing the

vertex VF̄ of eq. (3.12) at zero momentum (i.e. with a constant polarization F̄+
µν = f̄µν).

The first of these amplitudes, see figure 2a, is the strict analogue of the one we have

presented above, namely

〈〈
VY Va′VF̄

〉〉
= −4i trk

{
Yµ a′ν f̄µν

}
. (3.19)

The second is a fermionic amplitude involving the M moduli, see figure 2b, namely

〈〈
VMVMVF̄

〉〉
=

1

4
√

2
trk

{
MαA MβB f̄µν

}
(σµν)αβεAB . (3.20)

No other (irreducible) diagrams with VF̄ insertions give a non-zero result. It is interesting

to notice that the only non-vanishing amplitudes with insertions of the closed string vertices

VF and VF̄ correspond to disks whose boundary lies entirely on the D-instantons and that

there are no contributions to the instanton action due to graviphoton insertions on mixed

disks 6.

By adding the contributions (3.18), (3.19) and (3.20) to the terms described in section 2

(in particular eqs. (2.29) and (2.30)), we can obtain the N = 2 ADHM moduli action in

the presence of a v.e.v. for the scalar field of the gauge multiplet, for the graviphoton

field strength and for the anti-symmetric tensor f̄µν . Explicitly, after integrating out the

auxiliary fields Y , X and X̄ , the resulting moduli action is

Smoduli(a, ā;f, f̄) = − trk

{
2
(
[χ†, a′µ] − 2 i f̄ ν

µ a′ν
)(

[χ, a′
µ
] − 2 i fµρa′ρ

)

−
(
χ†w̄α̇ − w̄α̇ ā

)(
wα̇χ − awα̇

)
−

(
χw̄α̇ − w̄α̇ a

)(
wα̇χ† − ā wα̇

)}

+ i

√
2

2
trk

{
µ̄AεAB

(
µBχ† + ā µB

)

− 1

2
MαAεAB

(
[χ†,MB

α ] − i

2
f̄µν(σ

µν)αβMβB
)}

+ S c
k ,

(3.21)

where S c
k is the constraint part (2.14c) which is not affected by the background we have

considered.

A few comments are in order at this point. First of all, if we write the two self-dual

tensors f and f̄ in terms of the three ’t Hooft’s symbols

fµν = fc ηc
µν and f̄µν = f̄c ηc

µν , (3.22)

6Things would be different in an anti-self-dual graviphoton background.
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after some standard manipulations the action (3.21) becomes

Smoduli(a, ā;f, f̄) = − trk

{(
[χ†, a′

αβ̇
] + 2 f̄c (τ ca′)αβ̇

)(
[χ, a′

β̇α
] + 2 fc (a′τ c)β̇α

)

−
(
χ†w̄α̇ − w̄α̇ ā

)(
wα̇χ − awα̇

)
−

(
χw̄α̇ − w̄α̇ a

)(
wα̇χ† − ā wα̇

)}

+ i

√
2

2
trk

{
µ̄AεAB

(
µBχ† − ā µB

)

− 1

2
MαAεAB

(
[χ†,MB

α ] + 2 f̄c (τ c)αβMβB
)}

+ S c
k ,

(3.23)

where, as usual, a′
αβ̇

= a′µ(σµ)αβ̇ , a′β̇α = a′µ(σ̄µ)β̇α and τ c are the three Pauli matrices.

When we use this notation, it is clear that the effects on the instanton moduli of the

gravitational backgrounds f and f̄ can be formally introduced with the following shifts

[χ, (•)α] → [χ, (•)α] + 2 fc (τ c •)α and [χ†, (•)α] → [χ†, (•)α] + 2 f̄c (τ c •)α (3.24)

where the notation (•)α stands for any field in the adjoint representation of U(k) that carries

a chiral Lorentz index α. The shifts (3.24) are in some sense the gravitational counterparts

of the ones in eq. (2.31), which account for the presence of a non-trivial v.e.v. for the

gauge scalar fields, and appear as a rotation on the chiral indices. The rules (3.24) very

much resemble the ones considered in refs. [10, 11, 13, 15] in the study of the localization

properties of the instanton moduli space. Actually, we can be more precise in this respect.

In fact, by choosing the independent parameters fc and f̄c as

fc =
ε

2
δ3c , f̄c =

ε̄

2
δ3c (3.25)

with ε = ε̄, the action (3.23) reduces exactly to the one of refs. [11, 15] with ε1 = −ε2 = ε.

Thus, our derivation gives a direct gravitational meaning to the deformation parameter

introduced in those references as a chiral rotation angle on some moduli; in fact, in our

context this deformation naturally appears as due to a non-vanishing self-dual graviphoton

field strength of N = 2 supergravity. In section 4 we will provide more details on this

point and also comment on the relation of our results with the so-called Ω-background of

ref. [13, 16].

3.3 Holomorphicity

Besides having a different meaning from the supergravity point of view, the parameters fc

and f̄c are not on equal footing in the instanton moduli action (3.23). In particular the

graviphoton parameters fc do not appear in the fermionic part of Smoduli. As noticed at the

end of section 2.3, also the scalar v.e.v.’s auv and āuv have a similar behaviour. This fact

is not surprising since the effects of auv and fc (or āuv and f̄c) on the instanton action can

be generated by shifting χ (or χ†) according to the rules (2.31) and (3.24). This structure

has a very important consequence, namely the instanton partition function

Z(k) ≡
∫

dM(k) e−Smoduli(a,ā;f,f̄) (3.26)
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where M(k) collectively denotes the instanton moduli, depends only on auv and fc and not

on āuv and f̄c. Such holomorphicity is a well-known property as far as the scalar v.e.v.’s

are concerned [6], and here we extend it also to the gravitational parameters fc and f̄c,

with a straightforward generalization of the usual cohomology argument.

Let us give some details. In general, to prove holomorphicity it is rather convenient

to rearrange everything by means of the so-called topological twist. This simply amounts

to identify the index A of the internal SU(2)I symmetry group with the anti-chiral index

α̇ of the SU(2)R factor of the Lorentz group. After this identification, the new Lorentz

group becomes SU(2)L×SU(2)d where SU(2)d is the diagonal subgroup of SU(2)R×SU(2)I.

The bosonic ADHM moduli {a′µ, χ, χ†, wα̇, w̄α̇,Dc} are not affected by the twist, while the

fermionic ADHM moduli become {µα̇, µ̄α̇, η, λc,M
µ} where

λc =
i

2
(τc)

α̇β̇ λα̇β̇ , η =
1

2
εα̇β̇ λα̇β̇ , Mµ = (σµ)αβ̇ Mαβ̇ . (3.27)

Similarly, the eight supersymmetry charges get reorganized as {Q,Qc, Q
µ} where

Q =
1

2
εα̇β̇ Qα̇β̇ , Qc =

i

2
(τc)α̇β̇ Qα̇β̇ , Qµ = (σµ)αβ̇ Qαβ̇ . (3.28)

The supercharge Q, which is the scalar component of the four supercharges that are pre-

served both by the D3 and the D(–1) branes (see eq. (2.23)), plays the role of a BRST charge

in the topologically twisted version of the N = 2 gauge theory. With some straightforward

algebra, it is then possible to show that the moduli action (3.23) is Q-exact, namely

Smoduli(a, ā; f, f̄) = QΞ (3.29)

where

Ξ = trk

{ 1√
2

((
χ†w̄α̇ − w̄α̇ ā

)
µα̇ + µ̄α̇

(
wα̇χ† − ā wα̇

))

−
√

2 Mµ

(
[χ†, a′µ] − 2 i f̄ ν

µ a′ν
)
− 2 iλc

(
w̄α̇(τ c)α̇

β̇
wβ̇ + iη̄c

µν [a′µ, a′ν ]
)}

,

(3.30)

and the action of Q on the various moduli is

Qa′µ = − i

2
Mµ , Qχ = 0 , Qχ† = −

√
2 i η ,

QDc = − i
√

2 [χ, λc] , QMµ =
√

2
(
[χ, a′

µ
] − 2 i fµρa

′ρ
)

,

Q η =
1

2
[χ, χ†] , Qλc =

1

2
Dc ,

Qwα̇ = − i

2
µα̇ , Q w̄α̇ = − i

2
µ̄α̇ ,

Qµα̇ =
√

2
(
wα̇χ − awα̇

)
, Q µ̄α̇ =

√
2
(
χw̄α̇ − wα̇ a) .

(3.31)

It can be checked that Q is indeed nilpotent (up to gauge transformations and chiral

rotations). Notice that ā and f̄ are present only in the fermion Ξ but not in the trans-

formations (3.31). On the contrary a and f appear explicitly through the action of Q.

Therefore, making a variation of the instanton partition function (3.26) with respect to ā

and f̄ produces a Q-exact term and so Z(k) does not depend on ā and f̄ . For this reason,

ā and f̄ can be fixed to any convenient value.
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4. Deformed ADHM construction and the Ω -background

As mentioned in the introduction, in supersymmetric models the computation of the in-

stanton partition function Z(k) for arbitrary k is most easily performed if the gauge theory

is suitably deformed by turning on the so-called Ω-background [13, 16]. On the instan-

ton moduli space this deformation corresponds to enlarge the symmetries of the ADHM

construction. In this section, following ref. [15], we briefly review this deformed ADHM

construction and show that it is directly related to the instanton measure in a graviphoton

background that we have described in the previous section.

To this aim, let us introduce the standard [N + 2k] × [2k] ADHM matrix 7

∆ =

(
w

a′ − x

)
, (4.1)

where w and a′ are a shorthand for wuiα̇ and a′
ijαβ̇

, and

x ≡ 11[k]×[k] ⊗
(
xαβ̇

)
= 11[k]×[k] ⊗

(
z1 −z̄2

z2 z̄1

)
, (4.2)

with z1 and z2 being the complex coordinates of the (Euclidean) space-time. In the N = 2

theory we introduce the fermionic partners of ∆, namely the [N +2k]× [k] ADHM matrices

MA =

(
µA

MA

)
, (4.3)

where µA and MA stand for µ A
ui and M αA

ij . In terms of these matrices, the bosonic and

fermionic ADHM constraints (2.16) read

∆̄∆ = `−1 ⊗ 11[2]×[2] and ∆̄MA + M̄A∆ = 0 , (4.4)

where ` is the [k] × [k] matrix

` =
(
w̄α̇wα̇ + (a′ − x)2

)−1
. (4.5)

Introducing a [N + 2k] × [N ] matrix U such that ∆̄U = Ū∆ = 0, the N = 2 SU(N)

super-instanton solution can be written as

Aµ =
1

g
Ū∂µU , (4.6a)

ΛαA =
1

g1/2
Ū

(
MA` b̄α − bα`M̄A

)
U , (4.6b)

φ = i

√
2

4
εAB Ū MA`M̄BU + Ū J U , (4.6c)

7Not to be confused with the twist field ∆ of section 2.
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where bα =

(
0

δα
β δij

)
and J is the [N + 2k] × [2k] matrix

J =

(
0 0

0 χ

)
. (4.7)

Here χ is a shorthand for χ ⊗ 11[2]×[2], where χ is a hermitian [k] × [k] matrix such that

Lχ = −i

√
2

4
εAB M̄AMB , (4.8)

with the operator L defined by

L • =
1

2
{w̄α̇wα̇, •} + [a′µ, [a′µ, •]] . (4.9)

Notice that eq. (4.8) is the same equation (2.17a) that follows by varying the moduli

action (2.13) with respect to χ†. In showing that eq. (4.6c) is an instanton solution of the

scalar field equation, a crucial role is played by the following zero-mode (see appendix C

of ref. [6])

Dµ
(
ŪJ U

)
= 2 Im

(
ŪA σ̄µ`b̄ U

)
, (4.10)

where

A =

(
−wχ

[χ, a′]

)
. (4.11)

This ADHM construction of the super-instanton solution can be generalized to include

a v.e.v. for the scalar field φ. In this case the classical profile of φ at the leading order in

the Yang-Mills coupling 8 is still given by eq. (4.6c), but with

J → J (a) =

(
a 0

0 χ

)
, (4.12)

where a is the [N ] × [N ] v.e.v. matrix and χ now satisfies

Lχ = −i

√
2

4
εAB M̄AMB + w̄α̇ awα̇ . (4.13)

Note that (4.13) is precisely the equation of motion that follows varying w.r.t. to χ† the

moduli action presented in section 2.3 (with ā = 0).

The presence of a non-zero v.e.v. for φ can be interpreted as a deformation of the

ADHM construction. To appreciate this point, we can follow ref. [15] and show that the

matrix A given in eq. (4.11) must be replaced by

A(a) =

(
aw − wχ

[χ, a′]

)
. (4.14)

8 We assume the following expansions for the various gauge fields: A = g−1A(0) + gA(1) + ... ; Λ =

g−1/2Λ(0) + g3/2Λ(1) + ... ; Λ̄ = g1/2Λ̄(0) + g5/2Λ̄(1) + ... ; φ = φ(0) + g2φ(1) + ... ; φ̄ = φ̄(0) + g2φ̄(1) + ... .

At leading order for g → 0, one can just work with the first terms in these expansions.
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Notice that A(a) can be obtained from A by means of the same shift (2.31) that we have

derived in section 2.3 from string amplitudes. The structure (4.14) has also a further inter-

pretation if we note that the ADHM constraints are left invariant by the transformations

Tχ = ei χ ∈ U(k) and Ta = ei a ∈ SU(N), which reflect the redundancy in the ADHM

description and do not change the gauge connection (4.6a). Under these transformations

the ADHM data change as

∆ →
(

Ta w T−1
χ

Tχ (a′ − x)T−1
χ

)
= ∆ + iA(a) + · · · (4.15)

Thus, the matrix (4.14) is related to the first order variation of ∆ under the symmetries of

the ADHM constraints.

This construction can be further generalized [15] by including other symmetries of the

ADHM constraints, in particular the chiral rotations in the four dimensional Euclidean

space-time 9 which, as shown in refs. [10, 13, 11, 15], allow to fully localize the integral

on the instanton moduli space on a discrete set of isolated fixed points. Thus, in place

of (4.15) we consider

∆ →
(

Ta w T−1
χ

Tχ Tε (a′ − x)T−1
χ

)
(4.16)

where Tε = ei εcτc ∈ SU(2)L generates chiral rotations in the complex z1 and z2 planes with

angles ε1
c = −ε2

c = εc. At first order we now have ∆ → ∆ + iA(a, ε), where

A(a, ε) =

(
aw − wχ

[χ, a′] + εc τ ca′

)
. (4.17)

To find the instanton profile of the scalar field φ also in the presence of the ε-rotations, we

take the Ansatz (4.10) with A replaced by A(a, ε). Since

A(a, ε) = −∆ χ +

(
a 0

0 χ + εc τ c

)
∆ + εc

(
0

τ cx

)
, (4.18)

we can show that [15]

2 Im
(
ŪA(a, ε) σ̄µ`b̄ U

)
= Dµ

(
ŪJ (a, ε)U

)
− i g Ωνρ xρFµν , (4.19)

where

J (a, ε) =

(
a 0

0 χ + εcτ
c

)
, (4.20)

Ωµν = εc ηc
µν , (4.21)

and Fµν is the instanton gauge field strength which follows from (4.6a) and obeys DµFµν =

0. Furthermore, if χ satisfies the constraint

Lχ = −i

√
2

4
εAB M̄AMB + w̄α̇ awα̇ − i Ωµν

[
a′µ, a′ν

]
, (4.22)

9Actually, as discussed in ref. [15], one could consider both chiral and anti-chiral rotations of the space-

time. However, for our purposes it is enough to restrict our analysis to the chiral ones.
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we can prove that eq. (4.6c) with J → J (a, ε) is a solution of the following field equation

D2φ = −i
√

2 g εABΛαAΛ B
α − i g ΩµνF

µν . (4.23)

A few comments are in order. First of all, since the matrix A(a, ε) is not homogeneous

in ∆ but contains also a x-dependent piece proportional to εc, as is clear from (4.18), in

computing Dµφ we produce also an extra piece proportional to Ω that in turns modifies

the structure of the scalar field equation. Secondly, the constraint (4.22) is precisely the

equation of motion for χ that follows by varying the moduli action (3.21) in a constant

graviphoton background with field strength

fµν =
1

2
Ωµν =

1

2
εc ηc

µν (4.24)

(and with ā = f̄µν = 0). Thus, our analysis shows that the parameters εc of the de-

formed ADHM construction of ref. [15] have a direct interpretation in terms of a constant

graviphoton background, as we already anticipated at the end of section 3.

At this point we can ask what is the meaning of εc at the level of the gauge theory action

in four dimensions. In ref. [13, 16] it has been argued that these deformation parameters are

related to a non-trivial metric in R
4 ×C, called Ω-background and characterized by a self-

dual antisymmetric tensor Ωµν , which indeed leads to the deformed field equation (4.23)

at the leading order in the Yang-Mills coupling constant. Here, however, we show that

also on the gauge theory the ε-deformation can be directly related to the same graviphoton

background (4.24) that modifies the action on the instanton moduli space.

To this aim, we first determine the deformed gauge theory action by computing the

couplings among the various gauge fields and the graviphoton. This can be done by com-

puting disk scattering amplitudes among the vertex operators for the open string massless

excitations of the N fractional D3 branes given in (2.3) and (2.4), and the closed string

vertex operator for the self-dual graviphoton field strength given in (3.5). For example, we

have 〈〈
VAVφ̄VF

〉〉
= 2 i g Tr

{
∂[µAν]φ̄fµν

}
. (4.25)

If we put Vφ instead of Vφ̄ we get a vanishing result due to an unbalanced internal charge.

Actually, the amplitude (4.25) is the only non-zero 3-point function involving the gravipho-

ton field strength.

To find higher order contributions it is convenient to follow the method described in

detail in ref. [21] in the context of non-anti-commutative theories and introduce the aux-

iliary fields that disentangle the non-abelian quartic interactions among the gauge vector

bosons. It turns out that these auxiliary fields have non-vanishing couplings also with the

R-R graviphoton vertex VF and, when they are integrated out, two effects are obtained:

∂[µAν] in (4.25) is promoted to the full non-abelian field strength Fµν , and a quartic term

∼ g2
(
φ̄fµν

)2
is produced.

Collecting all contributions, we find that the action for the gauge fields of N fractional

D3 branes in a self-dual graviphoton background fµν is given by

SSYM +

∫
d4x Tr

{
− 2 i g Fµν φ̄fµν − g2

(
φ̄fµν

)2
}

(4.26)
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where SSYM is the super Yang-Mills action (2.5). We remark that the deformation terms

in (4.26) are in perfect agreement with the general couplings between the Weyl and gauge

vector multiplets required by N = 2 supergravity (see for instance the review [25] and

references therein). It is now easy to see that at the leading order in the coupling constant

g (using the standard expansions mentioned in footnote 8), the field equation for φ that

follows from (4.26) is precisely eq. (4.23) once the relation (4.24) between fµν and Ωµν is

taken into account. Thus, the f -dependent terms in (4.26) correctly describe, at the gauge

theory level, the same deformation which on the instanton moduli is realized as a chiral

rotation. The action (4.26) coincides with the Ω-background action of refs. [13, 16] at the

linear order in g, but differs at higher orders. However, since the instanton calculus is

concerned with linearized actions, this difference is unimportant.

Our analysis shows that both on the ADHM moduli space and on the four-dimensional

gauge theory the ε-rotations have the same supergravity interpretation since they are re-

lated to the components of the graviphoton field strength of the Weyl multiplet. Our

method treats the ε-deformation in exactly the same way on the ADHM moduli and on

the gauge fields. This is quite natural in the string realization of the instanton calculus by

means of systems of D3 and D(–1) branes, in which gauge fields and ADHM moduli arise

from different sectors of the same bound state of D branes.

5. Instanton contributions to the effective action

In this section we study the instanton partition function in a graviphoton background.

Using the holomorphicity properties of section 3.3 we can set ā = f̄µν = 0 with no loss

of generality, and concentrate only on the a and fµν dependence. These parameters are

actually the v.e.v.’s of the lowest components of chiral superfields but, implementing tech-

niques and ideas of ref. [5] (see also ref. [8]), it is rather straightforward to derive the

full dependence on the entire superfields Φ(x, θ) (along the unbroken gauge directions of

U(1)N−1) and W+
µν(x, θ).

5.1 The field-dependent moduli action

Let us start by considering the gauge superfield Φ. The dependence of Smoduli on the lowest

component φ can be derived by computing the same mixed disk diagrams which produce

the a-dependent contributions, such as the one of figure 1b, but with a dynamical (i.e.

momentum dependent) vertex Vφ. For example, the amplitude (2.28) becomes

〈〈
VX̄†VφVw

〉〉
= trk

{
X̄†

α̇wα̇φ(p) eip·x0

}
, (5.1)

where the dependence on the instanton center x0 (defined in eq. (2.10)) originates from the

world-sheet correlator 〈∆̄(z1) eip·X(z2)∆(z3)〉 ∝ eip·x0. A similar dependence on x0 arises in

all other mixed diagrams involving the vertex operator Vφ. From these string correlators,

after taking the Fourier transform with respect to p, we can extract a moduli action which

is given by eq. (3.21) (at ā = f̄µν = 0) with

a → φ(x0) . (5.2)
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With this replacement, Smoduli, which originally did not depend on the instanton center,

acquires a non-trivial dependence on x0 that, from now on, we will simply denote by x.

There are other non-vanishing disk diagrams that couple the various components of

the gauge supermultiplet to the instanton moduli. These diagrams are related to the ones

containing only φ by the Ward identities of the supersymmetries that are broken by the

D(–1) branes and are generated by the chiral supercharges

QαA =

∮
dw

2πi
jαA(w) with jαA = SαSA e−

1
2
ϕ . (5.3)

Note that the supercurrents jαA (which carry trivial Chan-Paton factors) coincide with

the vertex for the moduli θαA introduced in eqs. (2.9a) and (2.10). The transformations

generated by θαAQαA are precisely the ones that connect the various components of the

chiral superfield Φ(x, θ). For instance, we have

[
θαAQαA, VΛ(z)

]
= Vδφ(z) , (5.4)

where the vertices are given in eqs. (2.3b) and (2.3c), and the supersymmetry variation

δφ = θαAΛ B
α εAB is encoded in the superfield structure of Φ(x, θ), see eq. (2.1). Thus,

besides the amplitude (5.1) we also have a correlator in which the vertex Vφ is replaced by

Vδφ, i.e. 〈〈
VX̄†VδφVw

〉〉
=

〈〈
VX̄†

[
θαAQαA, VΛ

]
Vw

〉〉
. (5.5)

Deforming the integration contour for the supercharge and taking into account the fact

that QαA commutes with VX̄† and Vw, we can move it onto the D(–1) part of the boundary

and get 10
〈〈

VX̄†

[
θαAQαA, VΛ

]
Vw

〉〉
= −

〈〈
VX̄†VΛVw

∫
Vθ

〉〉
. (5.6)

In this way a 4-point amplitude containing one insertion of VΛ on the D3 boundary and one

(integrated) insertion of Vθ on the D(–1) boundary can be related to a 3-point amplitude

with Vδφ. Therefore, the corresponding result can be simply obtained from eq. (2.28) with

the replacement

φ → δφ = θΛ . (5.7)

This analysis can be further iterated, revealing new couplings with the higher components

of Φ and more θ-insertions. Altogether it turns out that these additional interactions in

the moduli action can be summarized by extending the replacement (5.2) to

a → Φ(x, θ) . (5.8)

A similar pattern can be followed also with the Weyl superfield (3.1). Introducing the

momentum dependence for the R-R vertex VF in the amplitude (3.15), we obtain11

〈〈
VY †Va′VF

〉〉
= −4i trk

{
Y †

µ a′ν Fµν(p) eip·x
}

. (5.9)

10We refer to ref. [5] and in particular to section 5.2 of the first paper in ref. [8] for more detailed

explanations.
11Notice that the momentum dependence arises from the one-point function of the plane-wave term

eip·X(z,z̄) in the closed string vertex VF on a disk with D(–1) boundary conditions.
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The couplings with the other components of W+
µν are related to this one by the Ward

identities for the supercharges QαA broken by the D-instantons, so that the dependence of

Smoduli on W+
µν can be obtained by simply replacing in eq. (3.21)

fµν → W+
µν(x, θ) . (5.10)

Altogether, performing the replacements (5.8) and (5.10) in Smoduli(a, 0, f, 0) given in

eq. (3.21), we obtain

Smoduli(a, 0; f, 0) → Smoduli

(
Φ(x, θ), 0;W+(x, θ), 0

)
≡ S

(
Φ;W+;M̂

)
, (5.11)

which describes the couplings of the abelian superfield Φ in the unbroken gauge directions

and of the Weyl superfield W+
µν to the centered instanton moduli M̂, i.e. all moduli except

x and θ.

5.2 The low-energy effective action and the prepotential

Let us neglect for the moment the Weyl multiplet and concentrate on the usual N = 2

SYM theory for which the low-energy effective action is a functional of the chiral superfield

Φ in the unbroken gauge directions (and of its conjugate Φ̄). For simplicity, but without

loss of generality, we focus on the SU(2) gauge theory; in this case, from eq. (2.6) we see

that the unbroken U(1) chiral superfield is Φ = Φ3 τ3. In the following Φ3 will be simply

denoted by Φ without any ambiguity.

Up to two-derivative terms, N = 2 supersymmetry constrains the effective action for

Φ to be of the form

Seff [Φ] =

∫
d4x d4θF(Φ) + c.c , (5.12)

where F is the prepotential. In the semi-classical limit F displays a 1-loop perturbative

contribution plus instanton corrections [26], namely

F(Φ) =
i

2π
Φ2 log

Φ2

Λ2
+

∞∑

k=1

F (k)(Φ) , (5.13)

where Λ is the dynamically generated scale and k is the instanton number.

Focusing on a given sector with positive k, the instanton induced effective action for

Φ is given by 12

S
(k)
eff [Φ] =

∫
d4x d4θ dM̂(k) e

− 8πk
g2 −S(Φ; cM(k)) , (5.14)

where in the exponent we have added also the classical part of the instanton action Scl
k =

8πk/g2. Upon comparison with eq. (5.12), we obtain

F (k)(Φ) =

∫
dM̂(k) e

− 8πk
g2 −S(Φ; cM(k)) . (5.15)

12Since we are dealing with N = 2 theories, we do not distinguish between effective actions a la Wilson

and effective actions a la Coleman-Weinberg.
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Thus, the k-instanton contribution to the prepotential is given by the centered k-instanton

partition function [27, 28]. Since the superfield Φ(x, θ) is a constant with respect to the

integration variables M̂(k), one can compute F (k) by fixing Φ(x, θ) to its v.e.v., use the

existing results of the literature (see for example ref. [6]) and finally replace the v.e.v. with

the complete superfield Φ(x, θ). In this way one finds

F (k)(Φ) = ck Φ2

(
Λ

Φ

)4k

. (5.16)

where the factor Λ4k originates from the classical action term exp(−8πk/g2), upon taking

into account the β-function of the N = 2 SU(2) theory. The numerical coefficients ck have

been explicitly computed for k = 1 and k = 2 by evaluating the integral over the instanton

moduli space [29, 27] and checked against the predictions of the Seiberg-Witten theory [17],

finding perfect agreement. More recently, using the localization formulas of the instanton

integrals, the coefficients ck have been computed also for arbitrary k [10, 11, 20, 15].

Let us now consider the gravitational corrections to the N = 2 effective theory by

introducing also the dependence on the Weyl superfield W+
µν induced by the D-instantons.

In perfect analogy with eqs. (5.14) and (5.15), we have to construct connected diagrams

that describe also the couplings of the instanton moduli to W+
µν , and thus write

S
(k)
eff [Φ;W+] =

∫
d4x d4θF (k)(Φ;W+) (5.17)

where the prepotential is

F (k)(Φ;W+) =

∫
dM̂(k) e

− 8πk
g2 −S(Φ;W+; cM(k)) . (5.18)

Since both Φ(x, θ) and W+
µν(x, θ) are constant with respect to the integration variables, we

can simply compute F (k)(a; f) and then replace the v.e.v.’s with the corresponding super-

fields in the result. By examining the explicit form of the moduli action Smoduli(a, 0; f, 0)

given in eq. (3.21), we see that it is invariant under the simultaneous sign reversal of a

and f , if at the same time also the signs of χ, w and of the SU(k) part of a′ (named yc

in eq. (2.10)) are reversed. This is a change of integration variables in eq. (5.18) with unit

Jacobian, so that we can conclude that F (k)(a; f) is invariant under the exchange

a, fµν → −a,−fµν . (5.19)

The prepotential F (k)(a; f) has a regular expansion for f → 0, where it reduces to the

super Yang-Mills expression F (k)(a) of eq. (5.16). Moreover, it cannot contain odd powers

of (afµν), that would be compatible with the symmetry (5.19) but would have necessarily

some uncontracted indices and therefore are unacceptable because of their tensorial nature.

As a consequence, the expansion of F (k)(a; f) must contain even powers of both a and fµν ,

the latter suitably contracted. Replacing the v.e.v.’s with the corresponding superfields,

and remembering that the prepotential has dimensions of (length)−2, from the previous

arguments we can deduce that

F (k)(Φ;W+) =
∞∑

h=0

ck,h Φ2

(
Λ

Φ

)4k(W+

Φ

)2h

, (5.20)
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where ck,0 = ck so as to reproduce eq. (5.16) at W+ = 0. The problem of finding the

non-perturbative gravitational contributions to the N = 2 superpotential is then reduced

to that of finding the numerical coefficients ck,h.

The series (5.20) is obtained from a perturbative expansion of the linear couplings

to the graviphoton multiplet which appear in e−S(Φ;W+;M(k)). As discussed in detail in

section 3.2, these couplings originate from disk diagrams whose boundary lies on the D(–1)

branes, each of which emits a graviphoton. Thus, the term of order (W+)2h in eq. (5.20)

comes from 2h disks, which correspond to a single (degenerate) Riemann surface with 2h

boundaries and Euler characteristic

χEuler = 2h − 2 . (5.21)

This world-sheet is seemingly disconnected, but in the construction of the effective action it

plays the rôle of a connected diagram because of the integration over the instanton moduli

(see the related discussion in section 6 of ref. [8]).

Let us consider now the entire set of non-perturbative contributions to the prepotential

Fn.p.(Φ;W+) =

∞∑

k=1

F (k)(Φ;W+) =

∞∑

h=0

Ch(Λ,Φ)(W+)2h , (5.22)

where

Ch(Λ,Φ) =

∞∑

k=1

ck,h
Λ4k

Φ4k+2h−2
. (5.23)

The effective action corresponding to this prepotential contains many different terms, con-

nected to each other by supersymmetry. For instance, if we saturate the θ-integral with four

θ’s all coming from the Φ superfield, we obtain, among others, four-fermion contributions

proportional to

Λ4k

∫
d4x φ−4k−2h−2

(
ΛαAΛ B

α εAB

)2 (
F+

)2h
, (5.24)

which for h 6= 0 represent the gravitational corrections to the four-gaugino interaction

induced by an instanton of charge k.

If instead the θ-integral is saturated with four θ’s all coming from the W+ superfields,

we obtain, among others, a contribution proportional to

∫
d4x Ch(Λ, φ) (R+)2(F+)2h−2 . (5.25)

When the scalar field φ is frozen to its expectation value, this describes a purely gravita-

tional F-term of the N = 2 effective action. As we remarked above, in our approach based

on the instanton calculus, the contribution (5.25) arises from mixed open/closed string

amplitudes on 2h disks. Originally, this structure was discovered by computing pure closed

string amplitudes on Riemann surfaces of genus h and through them a precise connection

with the topological string was established. We will comment more on this point in the

following subsection.
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5.3 Relation with topological amplitudes

The gravitational F-terms (5.25) can be computed also in the context of Type II strings

compactified on a Calabi-Yau (CY) manifold, which is another well-known string setting

from which one can obtain a N = 2 low-energy effective theory. In this case, the coefficients

Ch are functions of the moduli of the CY manifold [18, 19] which can be computed by

topological h-loop string amplitudes arising from closed world-sheets of genus h, whose

Euler characteristic is given again by eq. (5.21). When the two settings correspond to the

same effective theory, the topological string computation of Ch should be in agreement

with the gauge theory instanton calculations presented here, and indeed this is the case.

As shown by Seiberg and Witten (SW) [17], the N = 2 low-energy effective action for

a super Yang-Mills theory with a gauge group G can be described in terms of an auxiliary

Riemann surface. The so-called geometrical engineering constructions [30, 31] embed the

N = 2 theory in a consistent Type IIB string context, thus accounting for the “physical”

emergence of the SW Riemann surface. For this one has to consider Type IIB strings

on a “local” CY manifold M(B)
G whose geometrical moduli are related to the quantities

characterizing the gauge theory, namely the dynamically generated scale Λ and the gauge

invariant composites Tr Φk of the scalars 13. The dependence of the IIB prepotential on the

moduli of M(B)
G has a geometric expression in terms of periods of suitable forms. Mapping

the geometrical moduli to gauge theory quantities, the prepotential matches the field-

theoretic SW expression [30, 31]. Also the higher genus topological [18, 19] amplitudes Ch

on M(B)
G can be computed as functions of the moduli [33, 20], and hence of the gauge theory

parameters. In this way one can get, for instance, explicit expressions for the couplings

Ch(Λ,Φ) of eq. (5.23) in the SU(2) case.

As we argued above, the non-perturbative superpotential Fn.p.(Φ;W+) can be com-

puted also on the gauge theory side, where it is given by the multi-instanton centered

partition functions (5.18), by freezing Φ and W+
µν to their v.e.v.’s a and fµν . We have

shown in section 3.2 (see in particular eqs. (3.22) and (3.25)), that the choice fµν = 1
2 ε η3

µν ,

corresponds to the deformation of the instanton moduli space with parameter ε that has

been introduced in refs. [10, 11, 15] as a tool for the explicit evaluation of multi-instanton

partition functions. Therefore, the expansion in powers of the deformation parameter ε and

of the v.e.v. a of the centered multi-instanton partition functions determines the coefficient

ck,h of eq. (5.23).

That these coefficients must agree with those derived from the topological amplitudes

on M(B)
G is a conjecture put forward in ref. [10] and checked in ref. [20] for the SU(2)

case. We think that in the present paper we have made this conjecture extremely natural

and self-evident by recognizing that the deformation parameter is nothing else that the

graviphoton itself. Furthermore, our analysis puts the evidence found in ref. [20] in a

broader perspective.

13The manifold M
(B)
G is usually determined via “local mirror symmetry” [31] from a type IIA CY manifold

M
(A)
G , whose singularity structure reproduces the N = 2 effective theory for G, in the low-energy limit

and upon decoupling gravity. The form of the IIB local CY space M
(B)
G can also be inferred directly,

independently of the mirror construction, as explained for example in ref. [32].
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5.4 Consequences of the ε-deformation for the prepotential

There is however an important subtlety to be considered in checking the agreement be-

tween the instanton calculations and the topological string results. To reproduce the de-

formations (3.25), besides the graviphoton background we have to turn on also a vacuum

expectation value f̄µν = 1
2 ε̄ η3

µν for a different R-R field strength (setting moreover ε̄ = ε

as discussed in section 3.2). The holomorphicity properties of the instanton moduli action

discussed in section 3.3 ensure that the instanton partition function does not smoothly

depend of ε̄; however, the case ε̄ = 0 is a limiting one and some care is needed.

To determine the coefficients ck,h of the prepotential expansion, it is enough to consider

constant background values for the scalar and Weyl multiplets. In this case, the instanton

contributions to the prepotential F (k)(a; f) of eq. (5.18) are well defined, but of course

the corresponding contributions to the effective action S(k)[a; f ] diverge because of the

(super)volume integral
∫

d4x d4θ. However, in presence of the complete deformations (3.25)

(i.e. when also ε̄ is present), the superspace integral is regularized by a gaussian term, and

thus it becomes possible to work at the level of the effective action, that is at the level of

the full instanton partition function (as opposed to the centered one). To be concrete, let

us consider the simplest case k = 1. The moduli action (3.23) (with ā = 0) reduces simply

to

S
(k=1)
moduli = −2ε̄ε x2 − ε̄

2
θαAεAB(τ3)αβθβB + Ŝ

(k=1)
moduli , (5.26)

where the last term, containing only the centered moduli M̂(k=1) = {w,µ, χ,Dc, λ}, is

Ŝ
(k=1)
moduli = −2w̄α̇wα̇χ† (χ + a) + i

√
2

2
χ†µAεABµB − iDcW

c − iλα̇
A

(
wα̇µ̄A + µAw̄α̇

)
(5.27)

and does not depend on the deformation parameters ε and ε̄ 14. The corresponding partition

function is therefore given by

Z(k=1)(a, ε) =

∫
d4x d4θ e−2ε̄εx2− 1

2
ε̄ θ·θ F (k=1)(a) =

1

ε2
F (k=1)(a) . (5.28)

In the last step we have trivially performed the gaussian integration over x and θ and

produced a factor of 1/ε2, since the centered partition function

F (k=1)(a) =

∫
dM̂(k=1)e

− 8π2

g2 − Ŝ
(k=1)
moduli (5.29)

is ε, ε̄-independent. Effectively, in the presence of the full deformation we have the rule
∫

d4x d4θ → 1

ε2
. (5.30)

It is interesting to remark that the same effective rule appears also in other contexts related

to topological string amplitudes, like in their relation to black hole free energy recently

proposed by Ooguri-Strominger-Vafa (see in particular section 3.2 of ref. [34]).

14Notice that all the D(–1)/D(–1) moduli, which in general are k × k matrices, reduce just to numbers

for k = 1, and that a′
µ and MαA contain only their components along the identity, namely the center

coordinate xµ, and its super-partner θαA (cf. eq. (2.10)).
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Turning on the deformations, we can therefore compute the full partition function

Z(a; ε) by integrating over all the moduli and convert the would-be (super)-volume di-

vergences into ε-singularities. In this respect, a further important point has to be taken

into account. The combined effect of the scalar v.e.v.’s au and of the ε, ε̄-deformations

localizes completely the integral over the moduli space, in the sense that only point-like

solutions contribute. Thus, a trivial superposition of two instantons of charge k1 and k2

contributes to the sector of charge k1 +k2. This cluster decomposition implies [10, 16] that

the localized integral over the deformed instanton moduli space of a fixed charge k contains

both connected and disconnected contributions. For ε̄ = 0 the disconnected configurations,

consisting of separated instantons of charges ki such that
∑

i ki = k, do not contribute to

the sector of charge k, but instead they do in the fully localized case when ε̄ 6= 0. There-

fore, the partition function computed via the localization techniques corresponds to the

exponential of the non-perturbative prepotential, namely

Z(a; ε) = exp

(Fn.p.(a; ε)

ε2

)
= exp

(
∞∑

k=1

F (k)(a; ε)

ε2

)

= exp

(
∞∑

h=0

∞∑

k=1

ck,h
ε2h−2

a2h

(
Λ

a

)4k
) (5.31)

where Fn.p.(a; ε) and F (k)(a; ε) are the expressions given in eqs. (5.22), (5.18) and (5.20)

evaluated for constant values of the scalar and Weyl multiplets. Notice that the factor

of 1/ε2 in the exponent of eq. (5.31) effectively represents the (super)-volume integral

according to eq. (5.30), while the disconnected contributions now cancel.

The relation (5.31) allows to check successfully [20] the expression of the coefficients ck,h

obtained from the multi-instanton deformed calculus against the results from topological

string amplitudes, as originally conjectured in ref. [10].

6. Conclusions

Realizing supersymmetric gauge theories by means of fractional D3 branes allows to com-

pute instanton effects by considering the inclusion of D(–1) branes and offers a natural way

to study the effect of turning on closed string “gravitational” backgrounds. In this paper we

have considered, in particular, the effect of including a self-dual graviphoton field-strength

coming from the R-R closed string sector in a N = 2 gauge theory.

We have shown that a constant graviphoton field-strength proportional to ε exactly

produces those modifications of the instanton sectors which have been advocated in the

literature to fully localize the integration over the moduli. This localization allows to

perform explicitly calculation of the instanton partition functions Zk(a, ε), where a is the

scalar v.e.v., for arbitrary value of the topological charge k. Moreover, we have shown that

extending the computation to a dynamical graviphoton determines a prepotential for the

resulting N = 2 low-energy effective theory which includes gravitational F-terms.

These F-terms can be alternatively computed in a different setting, where the low-

energy N = 2 effective action is engineered by considering closed strings on a suitable CY
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manifold; in this case such couplings are encoded in topological string amplitudes on the

same manifold. The two different roads to determine these F -couplings must lead to the

same result. This is a very natural way to state the conjecture by N. Nekrasov [10] that the

coefficients arising in the ε-expansion of multi-instanton partition functions match those

appearing in higher genus topological string amplitudes on CY manifolds. It would be very

nice15 to be able to follow the fate of the constant RR background that we turn on in the

fractional brane set-up through a series of geometrical operations (including the blow-up

of the orbifold) and string dualities connecting this set-up to the local CY set-up. This

does not seem to be a completely trivial task and this point deserves further investigation.
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A. Useful formulae

Z2 orbifold: our notation and conventions are as follows: we label the four longitudinal

directions of the D3 branes with indices µ, ν, ... = 1, 2, 3, 4, and the six transverse directions

with indices a, b, ... = 5, ..., 10. On the complexified internal string coordinates

Z ≡ X5 + iX6

√
2

, Z1 ≡ X7 + iX8

√
2

, Z2 ≡ X9 + iX10

√
2

,

Ψ ≡ ψ5 + iψ6

√
2

, Ψ1 ≡ ψ7 + iψ8

√
2

, Ψ2 ≡ ψ9 + iψ10

√
2

,

(A.1)

the Z2 orbifold generator h acts as

h :

{
(Z,Z1, Z2) → (Z,−Z1,−Z2)

(Ψ,Ψ1,Ψ2) → (Ψ,−Ψ1,−Ψ2)
. (A.2)

Under the SO(10) → SO(4) × SO(6) decomposition induced by the presence of the D3

branes, the ten-dimensional (anti-chiral) spin fields SȦ (Ȧ = 1, . . . , 16) of the RNS formal-

ism become products of four- and six-dimensional spin fields according to

SȦ → (SαSA′ , Sα̇SA′

) (A.3)

where the index α (or α̇) denotes positive (or negative) chirality in four dimensions, and the

upper (or lower) index A′ labels the chiral (or anti-chiral) spinor representation of SO(6).

15We thank N. Nekrasov and M. Vonk for having pointed out to us this issue.
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Under the further SO(6) → SO(2) × SO(4) breaking induced by the orbifold projection,

a chiral SO(6) spinor SA′
splits into

(
+ 1

2 ; (2,1)
)

+
(
− 1

2 ; (1,2)
)
, labeled respectively by

an upper index A = 1, 2 and Â = 3, 4, while an anti-chiral SO(6) spinor SA′ splits into(
+ 1

2 ; (1,2)
)

+
(
− 1

2 ; (2,1)
)
, labeled respectively by a lower index A = 1, 2 and Â = 3, 4.

On the internal spinor indices the orbifold generator acts as a SO(4) chirality operator
16 as follows

SA′ SA′
h

S1 = S−−− S1 = S+++ +1

S2 = S−++ S2 = S+−− +1

S3 = S+−+ S3 = S−+− −1

S4 = S++− S4 = S−−+ −1

(A.4)

Thus, the spinors belonging to the
(
± 1

2 ; (2,1)
)

representation are even under the orbifold

projection while the ones transforming in the
(
± 1

2 ; (1,2)
)

representation are odd.

d = 4 Clifford algebra: the matrices (σµ)αβ̇ and (σ̄µ)α̇β which generate the Clifford

algebra in four dimensions are defined as

σµ = (11,−i~τ ) , σ̄µ = σ†
µ = (11, i~τ ) , (A.5)

where τ c are the ordinary Pauli matrices.

Out of these matrices, the SO(4) generators are defined by

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) ; (A.6)

the matrices σµν are self-dual and thus generate the SU(2)L factor of SO(4); the anti-self-

dual matrices σ̄µν generate instead the SU(2)R factor. The explicit mapping of a self-dual

SO(4) tensor into the adjoint representation of the SU(2)L factor is realized by the ’t Hooft

symbols ηc
µν ; the analogous mapping of an anti-self dual tensor into the adjoint of the

SU(2)R subgroup is realized by η̄c
µν . One has

(σµν) β
α = i ηc

µν (τ c) β
α , (σ̄µν)α̇

β̇
= i η̄c

µν (τ c)α̇
β̇

. (A.7)

String field correlators: the non-trivial OPE’s of the world-sheet fields with space-time

indices that are used in the main text are

Sα̇(z)Sβ(w) ∼ 1√
2

(σ̄µ)α̇β ψµ(w) , Sα̇(z)Sβ̇(w) ∼ − εα̇ β̇

(z − w)1/2

Sα(z)Sβ(w) ∼ εαβ

(z − w)1/2
, ψµ(z)Sα̇(w) ∼ 1√

2

(σ̄µ)α̇β Sβ(w)

(z − w)1/2

(A.8)

Other relations can be obtained from eq. (A.8) by suitable changes of chirality.

16The indices ± appearing in the table (A.4) denote the charge ±1/2 carried by the spin field under the

three bosons that bosonize the three world-sheet spinors Ψ, Ψ1 and Ψ2.
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The relevant OPE’s between fields with internal indices are instead

SA(z)SB(w) ∼ i δA
B

(z − w)3/4
, SA(z)SB(w) ∼ − i εABΨ(w)

(z − w)1/4
,

SÂ(z)SB̂(w) ∼ − i εÂB̂Ψ̄(w)

(z − w)1/4
, SA(z)SB(w) ∼ i εABΨ̄(w)

(z − w)1/4
,

SÂ(z)SB̂(w) ∼ i εÂB̂Ψ(w)

(z − w)1/4
, Ψ(z)SA(w) ∼ εABSB(w)

(z − w)1/2
,

Ψ̄(z)SÂ(w) ∼ εÂB̂SB̂(w)

(z − w)1/2
, Ψ(z)SÂ(w) ∼ εÂB̂SB̂(w)

(z − w)1/2
,

Ψ̄(z)SA(w) ∼ εABSB(w)

(z − w)1/2
, Ψ(z) Ψ̄(w) ∼ 1

z − w
.

(A.9)

From these OPE’s we can derive the following 3- and 4-point correlators which are needed

for the calculation of the scattering amplitudes presented in the main text

〈
Ψ(z1)SA(z2)SB(z3)

〉
=

i εAB

(z1 − z2)1/2(z1 − z3)−1/2(z2 − z3)1/4
,

〈
Ψ̄(z1)SÂ(z2)SB̂(z3)

〉
=

i εÂB̂

(z1 − z2)1/2(z1 − z3)1/2(z2 − z3)1/4
,

(A.10)

and 〈
ψµ(z1)ψν(z2)Sα(w)Sβ(w̄)

〉
= Aδµν εαβ + B(σµν)αβ , (A.11)

where

A =
1

2

(z1 − w)(z2 − w̄) + (z2 − w)(z1 − w̄)

(z1 − z2)
[
(z1 − w)(z1 − w̄)(z2 − w)(z2 − w̄)(w − w̄)

]1/2
(A.12)

and

B = −1

2

(w − w̄)1/2

[
(z1 − w)(z1 − w̄)(z2 − w)(z2 − w̄)

]1/2
. (A.13)

Bosonic twist fields: for the open strings that stretch between a D3 and a D(–1) brane,

the string fields Xµ along the D3 brane world-volume have mixed Neumann-Dirichlet

boundary conditions, which can be seen as due to twist and anti-twist fields ∆(z) and

∆̄(z). These fields change the boundary conditions from Neumann to Dirichlet and vice-

versa by introducing a cut in the world-sheet (see for example ref. [24]). The twist fields

∆(z) and ∆̄(z) are bosonic operators with conformal dimension 1/4 and their OPE’s are

∆(z1) ∆̄(z2) ∼ (z1 − z2)
1/2 , ∆̄(z1)∆(z2) ∼ − (z1 − z2)

1/2 , (A.14)

where the minus sign in the second correlator is an “effective” rule to correctly account for

the space-time statistics in correlation functions.

Superghost correlators:

〈e−ϕ(z1) e−
1
2
ϕ(z2) e−

1
2
ϕ(z3)〉 = (z1 − z2)

−1/2 (z1 − z3)
−1/2 (z2 − z3)

−1/4 , (A.15)

〈e− 1
2
ϕ(z1) e−

1
2
ϕ(z2) e−

1
2
ϕ(z3) e−

1
2
ϕ(z4)〉

=
[
(z1 − z2) (z1 − z3) (z1 − z4) (z2 − z3) (z2 − z4) (z3 − z4)

]−1/4
.

(A.16)
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