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Chapter 1

Introduction

This work presents several extensions to the Fault Tree [90] formalism used to
build models oriented to the Dependability [103] analysis of systems. In this way,
we increment the modelling capacity of Fault Trees which turn from simple combi-
natorial models to an high level language to represent more complicated aspects of
the behaviour and of the failure mode of systems. Together with the extensions to
the Fault Tree formalism, this work proposes solution methods for extended Fault
Trees in order to cope with the new modelling facilities. These methods are mainly
based on the use of Stochastic Petri Nets.

Some of the formalisms described in this work are already present in the litera-
ture; for them we propose alternative solution methods with respect to the existing
ones. Other formalisms are instead part of the original contribution of this work.

In this chapter, we present the state of art on Fault Trees and their extensions
(section 1.2), and we describe what is the original contribution of this thesis (sec-
tion 1.3). Moreover, the aim of this chapter is also introducing some notions about
Dependability (section 1.1.1), justifying the use of models for the Dependability
analysis (section 1.1.2), and presenting some measures to quantify the Depend-
ability level of a system (section 1.1.3).

1.1 Concepts of Dependability

1.1.1 Definition of Dependability

We talk about safety critical systems when we deal with systems whose incorrect
behaviour may cause undesirable consequences to the system itself, to the oper-
ators, to the population or to the environment. This definition fits categories of
systems such as industrial production plants, electric power plants, and transporta-
tion systems. In these cases, Dependability is a crucial point in the design of the
systems. Dependability is the property of a system to be dependable in time: we
can say that the Dependability level of a system is as high as we are confident
that the system will provide correctly its service during its life cycle. The incorrect
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8 CHAPTER 1. INTRODUCTION

behaviour of a system may be caused by faults, failures or errors involving its com-
ponents; Dependability requirements are part of the design specifications of safety
critical systems.

Dependability does not concern only safety, risks and design specifications of
the system, but it influences other aspects as well, such as the technical assistance
and maintenance of the system, and the market competition. The technical assis-
tance can be planned in terms of time, cost and logistic, according to the Depend-
ability evaluation of the system.

For instance, the decision of the warranty period of a technological item is
linked to the Dependability of the item; moreover, the repair or replacement of
failed components by a maintenance crew, is an aspect to take in account when
forecasting the cost of maintenance of the system; this cost is the sum of the cost
of spare components, of the cost of the personnel dedicated to the system repair,
and of the economic loss due to the production suspension during the repair time.
In order to minimize the maintenance cost, two maintenance policies are possi-
ble: the proactive maintenance and the reactive maintenance; in the first case, the
maintenance action tries to prevent the failure of the components or of the whole
system; in the second case, the maintenance action is triggered by the failure of the
system.

Besides these two policies, the Dependability of a system can be improved by
means of fault forecasting and fault tolerance; a system providing a service is fault
tolerant [56, 101, 102] when the system is characterized by the capacity of assuring
the service although a failure has involved a part of the system. Fault tolerance is
typically achieved by replicating the critical components in the system.

Finally, Dependability may influence customers’ choices: advertisement mes-
sages stress the Dependability and the image of a brand may depend on the De-
pendability of its products or services.

Recently, we assisted at the wide diffusion of computing and information tech-
nologies in several industrial and economic areas; when computing or networking
systems are adopted to support activities with associated relevant risks, the concept
of Dependability becomes relevant also for this class of systems [91, 92, 100, 105].

1.1.2 Dependability evaluation

There are two main methods of evaluation of the Dependability: the Measurement-
based method and the Model-based method. The first method requires the ob-
servation of the behaviour in the operational environment, of the physical objects
composing the system. In this way, Dependability measurements are obtained and
concern objects such as component prototypes or effective components of the sys-
tem; in the second case, the component may be evaluated by means of accelerated
life tests.

The measurement-based method is the most believable, but it may be unprac-
tical or too expensive; in these cases, the model-based method is preferable and
consists of the construction of a model representing the behaviour of the system in
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terms of primitives defined in the formalism associated with the model. The model
of the system must be a convenient abstraction of the system; this means that a
model may not completely capture the behaviour of the system, but the level of ac-
curacy of the model must be enough high to represent correctly the aspects of the
system behaviour which are of interest for the Dependability evaluation of the sys-
tem. The degree of accuracy of a model depends on the capacity of the associated
formalism to extrapolate the system features.

With respect to the measurement-based method, the model-based method is
less believable, but less expensive. Models can be the object of analysis or simu-
lation, and can be mainly classified as combinatorial models and state space based
models. The models in the first category represent the structure of the system in
terms of logical connection of working (failed) components in order to obtain the
system success (failure). State space based models instead, represent the behaviour
of the system in terms of reachable states and possible state transitions.

Combinatorial models have an intuitive notation, they are easy to be designed
and manipulated, and they can be efficiently analyzed by means of combinato-
rial methods. Despite of these advantages, combinatorial models suffer from a
very limited modelling power, mainly due to the assumption of the statistical in-
dependence of the events. Examples of combinatorial models are Reliability Block
Diagrams (RBD) [83, 108], Event Trees [33, 110] and Fault Trees (FT) [90].

When the accuracy of combinatorial models is not enough to capture the char-
acteristics of the system to be modelled, we can resort to state space based models;
the models is this category have a greater modelling power with respect to the com-
binatorial models, but the state space analysis may be computationally expensive.
This depends on the number of states in the model; however, the state space size
may grow exponentially with respect to the number of components in the system.
When the analysis of state space based models become unpractical due to the high
number of states, Dependability measures can be obtained from these models by
means of simulation. In general, state space based models are addressed to ex-
pert model designer. Examples of models in this category are the Markov Chains
[83, 100] and the Stochastic Petri Nets [1, 69, 89].

1.1.3 Measures of Dependability

The concept of Dependability is quite general; in order to evaluate the Dependabil-
ity of an item, we need some measures to characterize numerically the Dependabil-
ity. The mechanisms that lead to failure a technological object are very complex
and depend on many factors, such as physical, technical, human and environmen-
tal factors. These factors may not obey to deterministic laws, so we can consider
the time to failure of an item as a random variable. For this reason, the Depend-
ability evaluation in quantitative terms, is based on the probabilistic approach, and
consists of the computation of several numerical measures characterizing the De-
pendability.

One of these measures is called Reliability [55, 63, 67, 81, 93, 99] and is indi-
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cated by �
����� : the Reliability of an item (component or system) at time � ( �
����� ),
is the probability that the item performs the required function in the interval ���������
given the stress and environmental conditions in which it operates. The Unrelia-
bility of an item at time � , is the probability that the item is already failed at time� .

Repairable systems are characterized by the alternated up and down states, due
to the alternated occurrences of failures and repairs of the systems. In the case
of repairable systems [57], we talk about Availability instead of Reliability: the
Availability ������� of an item at time � , is the probability that the item is correctly
working at time � . The Unavailability of an item at time � is the probability that the
item is not performing the required function at time � . The Unavailability at time �
of an item is the complement of the Availability at the same time: �
��������� .
The probabilistic approach

Let � be the random variable representing the time to failure of a non repairable
item. The cumulative distribution function (cdf) of � is indicated by ������� and
provides the Unreliability of the item at time � :

� �����"!$#&%(')�+*,��- (1.1)

The following properties hold for ������� :
. �����/�0!1�
.32547698;:=<?> �������"!@�
. ������� is non decreasing.

The Reliability of the item at time � is given by the survivor function:

�
�����"!1#&%(')�BA,�C-&!@�	��������� (1.2)

The following properties hold for �
����� :
. �
���/�0!@�
.32547698;:=<?> �
�����0!1�
. �
����� is non increasing.

Given a derivable cdf � ����� , the density function D������ of � , is defined as

D�������! E �������E � (1.3)

D������ E �0!1#=%F')�G*,�BH,�?I E ��-
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The Mean Time To Failure (MTTF) of the item is given by

J$KLK �M!1NPO �RQ?! S
<?>
T �UD������ E �"! S

<?>
T �
����� E � (1.4)

V ����� is the hazard (failure) rate of an item:

V �����"! D�������
����� ! D�������L��������� (1.5)

V �����UW�� is the conditional probability that the item will fail in the interval ���X���)I�W����
given that it is functioning at time � .D������UW�� is the unconditional probability that the unit will fail in the interval ���X���YIW���� .

Fig. 1.1 shows the typical bathtub shape of the
V ����� function curve. The life

cycle of the item consists of the sequence of the following phases:

. Decreasing Failure Rate (DFR) phase - In this phase, the failure rate de-
creases with time. This phase is due to undetected defects of the item.

. Constant Failure Rate (CFR) phase - In this phase, the failure rate is age
independent; this means that the failure rate remains constant in time. More-
over, the failure rate value is much lower than in the early-life period. In this
phase, the failure is caused by random effects. The CFR phase is the useful
life period of the item.

. Increasing Failure Rate (IFR) phase - In this phase, the failure rate increases
with age. This phase is due to deterioration (wear-out) of the item.

The last phase does not concern all the classes of item; for instance, mechanical
components can be object of deterioration, while the IFR phase is not present in
the life cycle of several electronic components.

If the random variable � representing the time to failure of an item, is ruled by
the negative exponential distribution, the failure rate is age independent along the
complete life cycle of the item; in other words, the DFR phase and IFR phase are
not present in the life cycle of the item. This distribution has only one parameter
indicated by Z ; the cdf, the Reliability function and the density function accord-
ing to this distribution are reported in Tab. 1.1. Fig. 1.2 and Fig. 1.3 show the
Reliability function curve and the density function curve, respectively, for ZP!@� .

We suppose that an item has been operating (has not failed) until time �\[ ; the
remaining (residual) lifetime of the item is given by ]^!_�+�`�)[ . The negative
exponential distribution is characterized by the memoryless property: the distribu-
tion of ] does not depend on � [ . This means that the distribution of the residual
lifetime of the item, does not depend on how long the item has been operating. If
the distribution of ] is indicated by a 8�b ����� , the memoryless property can be proved
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Figure 1.1: The bathtub shape of the hazard (failure) rate function (
V ����� ) curve.

cdf �������"!@�L�dcfehg 8
Reliability �
�����"!$ciehg 8
Density function D�������!jZhc ehg 8
Failure rate

V �����0!$D�������kl�
�����"!jZ
Mean Time To Failure

J$KLK �M!@�mkfZ
Table 1.1: The negative exponential distribution.

Figure 1.2: The Reliability function curve for ZP!@� .
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Figure 1.3: The density function curve for Z !@� .

in this way:

a 8�b �����n! #=%F'm]o*,�)p �BA`�C[q-r!
! #=%F')�B*,��[sI3�tp �uA,��[q-v!
! #=%F')��[
H,�u*,�C[YI3��-#&%(')�uA,�C[q- !
! � ���C[sI3���s��������[X��
������� [ � !
! �	�wc ehgyx 8 b <z8;{ �|�U�L�dc ehg 8 b ��
�}�U�
�dc ehg 8 b � !
! cfehg 8 b ��cyehgfx 8 b <z8;{c ehg 8 b !
! c ehg 8�b ��c ehg 8�b"~ c ehg 8c ehg 8�b !
! c ehg 8 b �U�
�dc ehg 8 �c ehg 8 b !
! �	�wc ehg 8 !$������� (1.6)

Thus a 8 b ����� is independent of �q[ and is identical to the original exponential dis-
tribution of � ( ������� ). The failure of the item is not due to its gradual deterioration,
but it is some suddenly appearing failure.

1.2 State of the art on Fault Trees

This thesis presents several extensions to the Fault Tree (FT) formalism, with the
aim of improving its modelling power and consequently to increase its capacity of
capturing the behaviour of the system to be modelled. Due to the introduction of
new modelling facilities, new methods for the analysis of extended FTs, become
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necessary. In this section, we briefly present the characteristics and the solution
techniques for several versions of the FT formalism, present in the literature.

1.2.1 Standard Fault Trees

The FT model was born as a combinatorial model oriented to the Dependability
analysis of systems (section 1.1.1). A FT is a direct acyclic graph (DAG) rep-
resenting how several combinations of basic events lead to the occurrence of a
particular event called top event.

Besides being a combinatorial model (section 1.1.2), the FT is a stochastic
model; in this sense, the basic events of the FT are stochastic events and they
occur after a period of time which is a random variable. On a FT model, we can
compute several measures; in particular, it is possible to compute the probability
of the top event to be occurred at a certain time. If the basic events consist of
the failure events of the system components, each basic event is ruled by some
probability distribution, and the top event corresponds to the failure of the whole
system, then the FT allows the computation of the system Unreliability (section
1.1.3) at a certain time, given by the probability of the top event to be occurred at
that time.

In this thesis, we consider the FT as a model oriented to the Unreliability com-
putation, and we assume that the basic events (component failures) are ruled by the
negative exponential distribution (section 1.1.3) whose parameter Z is the failure
rate of the component. However other probability distributions can be assigned to
the basic events of a FT.

Besides the computation of the system Unreliability on a FT model (quan-
titative analysis), a FT can be the object of the qualitative analysis; this means
computing the Minimal Cut Sets (MCS) (section 2.3.1) of the system. A MCS is
a minimal set of components whose contemporary state of failure determines the
failure of the whole system.

In the original version of the FT formalism, basic events are assumed to be
independent and the combinations of basic events leading to the top event, can only
be expressed by means of Boolean gates (or logic ports) representing the Boolean
operators � and � . Standard FTs can be efficiently analyzed, but their modelling
power is strongly limited by the assumptions mentioned above. A way to perform
both the qualitative and quantitative analysis of FTs, consists of resorting to Binary
Decision Diagrams (BDD) [16, 18, 79, 94].

Several extensions to the FT formalism have been proposed in the literature,
with the purpose of increasing the modelling power of FTs. The introduction of
new primitives in the formalism, determined the necessity of new analysis methods
for the extended FTs.

We concentrate our attention on two extensions to the FT formalism: the Para-
metric Fault Tree (PFT) [11, 51] formalism and the Dynamic Fault Tree (DFT)
[39, 40, 70, 71] formalism.
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1.2.2 Parametric Fault Trees

One of the common ways to improve the dependability of a system, consists of
replicating a unit or a subsystem providing a certain service; for instance, in a
client-server computing system, several servers for the same service might be avail-
able in order to avoid that the failure of a single server unavails the service.

Modelling a system with replicated parts as a FT, would lead to the presence
of several identical ”subtrees”; if their size is too large, the model design would
not be very practical; in order to give a more compact modeling of the system,
the PFT has been proposed; using PFT, identical subtrees are folded to a single
parametric subtree; in this way, only one representative of the several replicas is
present, while the identity of each replica is maintained through the values that the
parameters can assume; parameterization can be applied several times in the same
PFT and at several depths.

Two solution methods were proposed for PFT models in [11]: the first one
consists of unfolding the PFT model, in other words deriving from the PFT the
corresponding FT. The second method consists of converting the PFT model in
the equivalent High-level Stochastic Petri Net using the Stochastic Well-formed
Coloured Petri Net (SWN) [25] formalism.

The unfolding technique reduces the PFT formalism to be only a formal nota-
tion to compactly represent the redundancies in the system, while the analysis is
still performed on the unfolded FT, hence losing the possibility of exploiting in the
analysis phase the regular structure of the model: several subtrees in the unfolded
FT are similar and the analysis could be performed on only one representative sub-
tree per equivalence class.

The use of SWN was motivated by the possibility of analyzing systems with
some kind of dependency (not allowed in standard FT analysis): in this case how-
ever, the model state space must be generated, which could be very expensive from
a computational point of view. The SWN analysis techniques allow to automati-
cally exploit the system symmetries and group states into macro states (state aggre-
gates), however the cost might still be high. In [11] it was proposed to use the SWN
structural analysis technique based on the computation of minimal T-semiflows to
obtain the MCSs. This technique however cannot be applied in general since the
problem of computing a generating family of minimal, parametric T-semiflows of
SWN models is still an open problem.

1.2.3 Dynamic Fault Trees

In the DFT formalism, several new gates, called dynamic gates, have been intro-
duced in order to model dependencies among failure events or component states;
dynamic gates introduce temporal dependency, functional dependency and the pres-
ence of spare components with a failure rate varying with the spare state: dormant
or working. Due to the presence of dependencies, DFT models are state space
based models, instead of combinatorial models.



16 CHAPTER 1. INTRODUCTION

The DFT formalism was introduced by J. B. Dugan et al. The dynamic gates
were defined in [40]; the algorithm to derive from a DFT model, its equivalent state
space in form of Continuous Time Markov Chain (CTMC) [83, 100], was proposed
in [70].

The state space analysis may have very high computational costs, or even be
unfeasible. For this reason, a modular approach to analyze DFTs, was proposed
in [61, 71]; the modularization technique to analyze FTs (section 2.5.3) has been
extended to deal with DFTs. Modules are classified as static or dynamic: static
modules are independent subtree containing only Boolean gates; dynamic modules
contain dynamic gates. Each module is analyzed with the proper technique: a static
module is converted to a BDD; a dynamic module is converted to a CTMC. So, the
state space analysis is limited to dynamic gates, while static modules are solved by
means of less computational expensive BDDs (combinatorial solution).

First, the way to perform the quantitative analysis of DFTs, was studied. More
recently some methods were proposed to perform the qualitative analysis of DFTs
[98], to compute importance measures (section 2.3.3) on DFTs [76] (sensitivity
analysis), and to derive diagnostic systems from DFTs [4, 5].

The qualitative analysis of DFTs returns the MCSs and the Minimal Cut Se-
quences of the system. As a MCS is a minimal set of basic events leading to the
occurrence of the TE, a Minimal Cut Sequence is an ordered sequence of BEs lead-
ing to the occurrence of the top event. In other words, the top event is caused by a
Minimal Cut Sequence if both all its basic events occur, and they occur in a specific
order. Minimal Cut Sequences are justified by the presence in the DFT of dynamic
gates requiring or forcing specific temporal orders among some events in the DFT
model (see section 4.2).

A software tool called Galileo [42, 97] for the quantitative analysis of DFTs,
was recently extended to perform also the sensitivity and qualitative analysis of
DFTs.

Besides the development of the DFT formalism by Dugan et al., some attempts
to combine FTs with models of other nature (mainly state space models) were
proposed in the literature: in [41, 14] FTs are combined with CTMCs; in [19, 12,
20, 64] FTs are combined with Petri Nets. FTs with multistate components are
proposed in [66, 108].

1.3 Original contribution and motivations

Contribution to Parametric Fault Trees. We first concentrated on PFTs trying
to provide a way to analyze this kind of models avoiding the drawbacks charac-
terizing the currently available techniques described in section 1.2.2. At the same
time, our intent was exploiting the parametric form of the PFT models, not only
in the model construction phase, but also in the analysis phase. As the paramet-
ric form allows to reduce the model size, our aim is reducing the number of steps
necessary to perform the model analysis by exploiting the parametric form.
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To this aim, we extended BDDs used to analyze in an efficient way FTs, in
order to cope with PFTs maintaining the parametric form: we obtained Parametric
Binary Decision Diagrams (pBDD) [10]. We succeeded in generating the pBDD
equivalent to a PFT, and in performing both the qualitative and the quantitative
analysis on the pBDD.

Using pBDDs to analyze PFTs, we avoid the unfolding of the model. More-
over, we extended the definition of module (independent subtree) in the case of
PFTs. As in the case of FTs, the detection of PFT modules allows to decompose
the PFT model to further reduce the complexity of its analysis.

Contribution to Dynamic Fault Trees. DFTs or their dynamic module need
the state space analysis; this means generating and analyzing the corresponding
CTMC. A DFT model may represent complex failure modes characterized by sev-
eral kinds of dependency among the events, and modelled by combinations of sev-
eral dynamic gates. Thus, the direct generation of the CTMC from a DFT is a
complicated task and requires a complex algorithm [70].

At the same time, efficient ways to generate the CTMC from a Generalized
Stochastic Petri Net (GSPN) [1] are available. GSPNs allows to represent the fail-
ure mode modelled by a DFT; generating the GSPN equivalent to a DFT is less
complicated then generating the CTMC equivalent to the DFT, especially when the
DFT represents complex failure modes with a lot of dependencies (dynamic gates).

So, we formalized the way to perform the conversion of a DFT model into a
GSPN, in form of model-to-model transformation [36] based on graph transforma-
tions [50]. The conversion of a DFT into GSPN is straightforward even though sev-
eral combinations of dynamic gates are present. After the conversion, the CTMC
can be derived from the GSPN with the available techniques [1].

The conversion from DFT to GSPN can concern the whole DFT or its dynamic
modules; the DFT analysis exploiting modules has been considered taking into
account the possibility of mapping dynamic modules to GSPNs and performing
their analysis in this form.

Contribution to Repairable Fault Trees. In this thesis, we present a new ex-
tension of the FT formalism, called Repairable Fault Tree (RFT) [32]. While the
previous formalisms, such as FT, PFT and DFT, allowed to represent only the fail-
ure mode of the system, the RFT formalism allows to represent the presence of
repair processes as well. Besides events and gates, RFT models contain a new
primitive called Repair Box to represent the repair of a set of components.

As DFTs, RFT models require the state space analysis, since repair processes
establish some kind of dependency among the events in the model. The RFT analy-
sis is realized by means of modularization and conversion of modules into GSPNs.

Contribution to extended FT formalisms integration. Finally, we integrated
the PFT, DFT and RFT formalism, in order to build models including all the mod-
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elling facilities introduced in each formalism: the parametric form, dynamic gates,
repair boxes. The resulting formalism is called Dynamic Repairable Parametric
Fault Tree (DRPFT) [8]. The integration of such facilities required to review the
semantic of dynamic gates in order to be combined with the parametric form and
repair boxes.

The analysis of DRPFT is still performed exploiting modules; the state space
analysis is performed by mapping modules to SWN. SWNs allow to maintain the
parametric form, and to represent the dependencies due to dynamic gates and repair
boxes. Moreover, a lumped CTMC can be derived from a SWN, reducing the state
space size and consequently the computational costs of the state space analysis.

A set of graph transformation rules is provided in this thesis, to implement the
model-to-model transformation from DRPFT to SWN.

1.4 Structure of the thesis

Chapter 2 describes standard FTs focusing on the qualitative and quantitative re-
sults computable on FT models through the BDD based FT analysis. The definition
of FT module and the way to analyze FTs exploiting modules, is also described.

In chapter 3, the PFT formalism is defined; then, pBDDs are presented to-
gether with the way to generate the pBDD equivalent to a PFT model. The method
to perform the PFT qualitative and quantitative analysis by means of pBDDs, is
introduced. Moreover, the concept of module is redefined for PFTs.

The way to convert DFT models into GSPNs is proposed in chapter 4, where
the DFT formalism and some concepts of model-to-model transformations and
graph transformations, are also described. In the same chapter, we deal also with
the DFT modularization. The way to detect and classify DFT modules is discussed.

The RFT formalism is presented in chapter 5; the repair box semantic is intro-
duced together with some repair policies. The way to convert a RFT model into
GSPN is described together with the way to perform the RFT analysis by modular-
ization.

In chapter 6 the PFT, DFT and RFT formalism are integrated producing the
DRPFT formalism. The DRPFT analysis supported by SWNs is discussed in this
chapter, together with the way to detect and classify modules. The architecture of a
software framework for the DRPFT analysis based on these concepts, is presented
in this chapter. The graph transformation rules to convert a DRPFT model into
SWN, are the content of appendix A.

The explanation of the concepts in this thesis, is supported by a running ex-
ample consisting of a multiprocessor computing system [11, 69]. In each chapter,
this system is modelled according to the formalism presented in the chapter evi-
dencing particular aspects of the system behaviour that the facilities in the current
formalism allow to represent. Then, the system model is analyzed according to the
solution technique proposed in each chapter.



Chapter 2

Overview on Fault Trees

2.1 Introduction to Fault Trees

The Fault Tree (FT) [90] is a widespread stochastic model for the Reliability anal-
ysis of complex systems because it provides an intuitive representation of the sys-
tem failure mode, it is easy to manipulate and it is currently supported by several
software tools for its analysis. A FT models how combinations of failure events
relative to the components of the system, can cause the failure of subsystems or of
the whole system. An example of FT model is shown in Fig. 2.3.

The FT is a bipartite direct acyclic graph (DAG) whose nodes can belong to one
of these two categories: events and gates; events concern the failure of components,
subsystems or of the whole system, and they are in general graphically represented
as rectangles; we can consider an event as a Boolean variable: it is initially D�� 2�� c
and it becomes ��%y��c after the failure occurrence.

The events graphically represented as a rectangle with an attached circle are
called Basic Events (BEs) and model the failure of the elementary components
of the system; the occurrence time of such events is a random variable ruled by
a probability distribution, typically the negative exponential distribution. In this
case, the distribution parameter is the component failure rate Z equal to the inverse
of the mean life time of the component. The BEs are statistically independent and
are the terminal nodes of the FT.

The events represented simply by a rectangle are non-terminal nodes and rep-
resent the failure of subsystems; we call them Internal Events (IEs) and their oc-
currence is not ruled by a probability distribution as in the case of BEs, but they
are the output of a gate node; gates are the other category of nodes that a FT can
contain, and they are connected by means of arcs to several input events and to a
unique output event; the effect of a gate is the propagation of the failure to its out-
put event if a particular combination of its input events occurs. The occurrence of
an IE is immediate, as soon as the particular combination of input events required
by the gate is verified.

In the standard version of the FT model, three Boolean gates corresponding to

19
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the ����� ( � ), �&� ( � ) and ”K out of N” ( ����� ) Boolean functions, are present.
In particular, the �B�i� function is applied to � Boolean variables; it returns ��%y�zc
if the value of at least � of the � Boolean variables is ��%y�zc ; otherwise the �u�/�
function returns D�� 2�� c . Actually, the �B�/� Boolean function can be expressed by
means of the functions ����� , �&� . For this reason and for sake of simplicity, we
limit our attention on the �v��� gate and the �&� gate, excluding the �n��� gate
(also referred as voting gate).

Finally, we have a unique event, represented as a black rectangle, called Top
Event (TE), modelling the failure of the whole system; the TE must be the output
of a gate and can not be the input of any gate: we can consider it as the ”root” of
the FT.

A FT is a direct graph: arcs respect a logic circuit orientation: from the input
events to the gate, and from the gate to the output event. A FT is also an acyclic
graph, so the connection of events with gates (and vice-versa) by means of arcs,
must not determine the presence of cyclic paths in the FT.

A FT model encodes a Boolean formula expressing the failure of the system
(TE); the Boolean variables of such formula are the BEs of the FT and are com-
bined through Boolean operators corresponding to the gates present in the FT.

2.2 FT formalism definition

A FT is a bipartite DAG whose nodes are either events ( � ) or gates ( � ), and are
connected by means of arcs ( � ); so, the FT formalism is given by the tuple�
� !����"�C����� ���G�G�U�s��Z?�����
where:

. ��!1�����&�0����' K N�- is the set of the events in the FT; it is the union of the
following sets:

– ��� is the set of the BEs;

– ��� is the set of the IEs;

– {TE} is the set composed by the unique TE.

. �¡ o���`¢£����¤R���}¢��s� is the set of the arcs according to the logic circuit
orientation.

. �¥��!M'm�v���¦���=��- is the set of Boolean gate types and is composed by the����� gate type and the �&� gate type (for sake of simplicity, we omit the�+�F� gate type).

. ���/��§u�G� is the function assigning to each gate its type.

. Given ¨�©R� ,

– . ¨�!M'\cª©9���F«?��ci�U¨��	©R��- is the set of input events of ¨ ;
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– ¨ . !M'\cª©9����«?�5¨h�Cc\�
©9� - is the output event of ¨ .
Given c¬©9� ,

– . cv!­'t¨P©¦�3�F«?�5¨��Cc\�	©R��- is the gate having c as output event;

– c . !­'t¨9©®�3��«¯��cf�U¨��
©R� - is the set of gates having c as one of their
input events.

. The following conditions about the connection of events with gates, must
hold:

– °h¨ ©¦�3�y���5¨����\p . ¨�p�±|²
– °h¨ ©¦���\p ¨ . pf!@�
– °�c=©¦�0���\p . cFpi!1�
– °�c=©¦�0���\p c . p�A`�
– °�c=©
�0���\p . c(pi!­�
– °�c=©
�0���\p c . p�A,�
– p . K N�pi!@�
– p K N . pi!1�

In other words, a gate of any type has at least two input events. Any gate has
one output event. A BE can not be the output of any gate, while the TE can
not be the input of any gate. A BE or an IE must be the input of at least one
gate.

. Z����0�d§´³ µ < is the function assigning to each BE a failure rate, assuming
that BEs are ruled by the negative exponential distribution.

. �j���M§ ³ ¶·!¡')��%l��cf�CD�� 2�� cf- is the function returning the Boolean value
of an event (Boolean variable). Given ¸¹©º')�|�j���»- , ')¼»[)�t½t½t½m��¼�¾¿-ÁÀ')�®� K N�- , ¨ ©®� , . ¨
!M')¼ [ �t½t½t½m��¼ ¾ - , ¨ . !M')¸h- ,

– if ���5¨��0!1�v��� then �s��¸¿�"!ÁÂ ¾ÃÅÄ [ �Y��¼ Ã �
– if ���5¨��0!j�=� then �Y��¸¿�"!ÁÆ ¾ÃÅÄ [ �s��¼ Ã �

Considering that the ��%l��c value of an event indicates the fact that the event
has occurred, if a gate is of type �v�®� (Fig. 2.1.a), then its output event
occurs if all the input events have occurred; if a gate is of type �&� (Fig.
2.1.b), then the output event occurs if at least one of the input events has
occurred.

FTs containing these three types of gate are referred as coherent FTs [90];
this means that in the Boolean formula equivalent to a FT model, the nega-
tion operator ( Ç ) is not present. The negation of events (Boolean variables) is
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possible in FT models, if other two types of gate are used: �£� K and ���&�
[90]. The �£� K gate corresponds to the negation operator, and has only one
input event and the Boolean value of its output event is the negation of the
value of its input event. The ���=� gate indicates the exclusive OR operator;
if an IE is the output of a XOR gate, its value is true if exactly one of the
several input events of the XOR gate is true. However, we limit our attention
on coherent FTs.

. According to the circuit logic orientation of the FT arcs (section 2.2), we
have a path between the node �s[�©j')�����"- and the node �zÈ£©Á')���£�0-
if there is a sequence of nodes � [ ����Éy�t½t½t½)���zÈ e [ ���zÈ,©Ê')�d�d�"- such that° 4 ©�'/�y�t½t½t½l�CË��`�l-i��«?��� Ã ��� Ã < [L©9�
� .
A path between the nodes �s[ and �zÈ is indicated by the expression O �s[¥§B��ÈmQ
and includes all the nodes and the arcs along that path:O �¯[¥§u�zÈtQ�!ÊO �¯[t�m���¯[m��� É ����� É �t½t½t½��zÈ e [ �m���zÈ e [ ����Èf������È\Q. Given the events ci�CcmÌ?©9� , c is reachable from cmÌ if «?OÍc)Ìh§�cqQ .

. Given c¬©9� , Îycr!M'\c Ì ©9����«?OÍc Ì §ÏctQ�- .
In other words, Îyc is the set of events such that c is reachable from them. In
a FT, the following property must hold:°�c¬©��0�Cc¬©®Î K N

. Given c¬©9� , we indicate the subtree rooted in c with the expression Ð c , whereÐ c is composed by any OÍÑ
§�ctQÒ�/Ñr©R��� .

X1
...

X2

Y

X1
...

X2

Y

AND OR

(a) (b)

Figure 2.1: Boolean gates: (a) AND, (b) OR.

2.2.1 Running example

This section provides a case study of multiprocessor computing system (referred
in the next sections as ”Multiproc” system and inspired from [69]). First, a general
description of the system is provided (section 2.2.1); then, the failure mode of the
system (section 2.2.1) is modelled by means of a FT model (section 2.2.1).
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Figure 2.2: Scheme of the Multiproc system.

System description

The system consists of a multiprocessor computing system whose scheme is shown
in Fig. 2.2; it is mainly composed by three processing units ( #�Ó�� , #�Ór² , #�Ó&Ô ),
two shared memories ( ��� , �=² ) and two hard disks ( ��� , �P² ) containing the soft-
ware and the data respectively.

Each processing unit is composed by one processor and three internal memo-
ries; in the case of the device #�Ó�� , they are indicated by #�� , J �f� , J �)² , J �)Ô ,
respectively.

The shared memory ��� is connected to the processing units by means of the
bus Õ�� , while the shared memory �=² can be accessed by the processing units
by means of the bus Õ�² . Each computing device can use ��� and �=² to perform
computations when its internal memories are failed.

The connection of the processing units with the hard disks is established by the
bus � Õ Ó&Ö .

The failure mode of the system

We suppose that the correct functioning of at least one processing unit is required
for the system to be working; so, the failure of all the processing units causes the
whole system failure. The failure of a processing unit is due to the failure of its
processor, or to the contemporary failure of all its internal memories together with
the denied access to the shared memories. It is not possible the use of ��� when it
is failed or when the bus Õ�� is failed; in the same way, �=² can not be accessed by
the processing units when �=² is failed or when the bus Õ�² is failed.

The whole system failure is caused also by the impossibility to access any hard
disk; this happens if the failure of at least one of them occurs, or if the bus � Õ Ó&Ö
fails.

The probability of failure of the components of the system, obeys to the neg-
ative exponential distribution; Tab. 2.1 indicates the failure rates for each type of
component.
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Component Failure rate ( Z )
Processor 5.0E-7

V e [
Disk 8.0E-7

V e [
Memory 3.0E-8

V e [
Bus 2.0E-9

V e [

Table 2.1: The failure rate for each type of component.

FT model of the system

Fig. 2.3 shows the FT model for the Multiproc system; the system failure (
K N ) is

the output of a gate of type �=� , whose input events are � � (disk access) and × J
(computing module); × J represents the impossibility to perform computations
due to the failure of all the processing units, while � � represents the impossibility
to access the hard disks.

The event × J is the output of a gate of type �v��� , whose input events are#�Ó�� , #�Ór² and #�Ó&Ô representing the failure of the corresponding processing
units. #�Ó�� is the output of a gate of type �=� having #
� and

J N J � as input
events; #�� is a BE modelling the failure of the processor of #�Ó�� , while

J N J �
represents the failure of the memories that #�Ó�� can access.

The event
J N J � is the output of a gate of type �v��� having two inputs:J­J � and Ö J ;
J­J � represents the failure of all the internal memories of #�Ó�� ,

while Ö J models the failure of the shared memories.
JMJ � is the output of a gate

of type ����� , whose input events are
J �f� , J �)² and

J �)Ô ; such BEs represent
the failure of each of the internal memories of #�Ó�� . The event Ö J is the output
of a gate of type ����� with input events Õ���� and Õ��=² ; Õ���� represents the
impossibility to access the shared memory ��� , so Õ���� is the output of a gate of
type �=� having ��� and Õ�� as input events; such BEs represent the failure of the
shared memory ��� and of the bus Õ�� , respectively. Similarly, Õ��=² is the output
of a gate of type �=� having �=² and Õ�² as input events.

The subtrees having
J N J � , J N J ² and

J N J Ô respectively as roots,
share a common subtree rooted in the event Ö J , since the failure of all the pro-
cessing units may depend on the state of the shared memories.

Besides the occurrence of the event × J ,
K N is caused also by the event �P� ;

such event is the output of a gate of type �&� , whose input events are �PÕ Ó&Ö andJ Ö . �PÕ�Ó=Ö models the failure of the disk bus, while
J Ö is the failure of at least

one disk;
J Ö is the output of a gate of type �&� , whose input events are ��� and��² .

Tab. 2.2 summarizes the names of the events associated with the failure of the
components or subsystems.
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Figure 2.3: The FT model of the Multiproc system.
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Event Component / Subsystem�P� Disk Access�PÕ Ó&Ö Disk BusJ Ö Mass Storage��� System Disk��² Data Disk× J Computing module#�Ó�� Processing Unit 1#
� Processor of the Processing Unit 1J N J � Memory access of the Processing Unit 1J­J � Internal Memory Module of the Processing Unit 1J �f� Internal Memory 1 of the Processing Unit 1J �)² Internal Memory 2 of the Processing Unit 1J �)Ô Internal Memory 3 of the Processing Unit 1#�Ór² Processing Unit 2#¬² Processor of the Processing Unit 2J N J ² Memory access of the Processing Unit 2J­J ² Internal Memory Module of the Processing Unit 2J ²�� Internal Memory 1 of the Processing Unit 2J ²f² Internal Memory 2 of the Processing Unit 2J ²fÔ Internal Memory 3 of the Processing Unit 2#�ÓrÔ Processing Unit 3#¬Ô Processor of the Processing Unit 3J N J Ô Memory access of the Processing Unit 3J­J Ô Internal Memory Module of the Processing Unit 3J Ô�� Internal Memory 1 of the Processing Unit 3J Ôf² Internal Memory 2 of the Processing Unit 3J ÔfÔ Internal Memory 3 of the Processing Unit 3Ö J Shared Memory accessÕ���� Shared Memory module 1��� Shared Memory 1ÕP� Memory Bus of the Shared Memory 1Õ��=² Shared Memory module 2�=² Shared Memory 2Õ�² Memory Bus of the Shared Memory 2

Table 2.2: Correspondence between the event names and the components or sub-
systems.
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2.3 Fault Tree Analysis

The Fault Tree Analysis (FTA) [95, 96] provides a set of techniques enabling to
derive both qualitative results and quantitative measures from a FT model.

2.3.1 Qualitative analysis

The qualitative analysis supplies information about functional and logic properties
of the system failure mode. One of the possible results of the qualitative analysis of
a FT, is the detection of the Minimal Cut Sets (MCS) [46] of the system. The MCSs
of a FT correspond the minimal scenarios of BEs leading the system to a failure. In
other words, a MCS indicates a minimal set of components whose contemporary
state of failure determines the whole system failure (TE).

Given the Boolean formula � ��¼Y[)�t½t½t½m��¼h¾�� encoded by a FT and expressed on
the set of variables ØÙ!n')¼Y[)�t½t½t½)��¼h¾ } corresponding to the BEs of the FT, an
assignment over Ø is any mapping from Ø to ³ ¶`!M')��%y��cf�CD�� 2�� cy- .

If Ú is an assignment satisfying � ( Ú�p !M� ), then Ú is a solution of � ; in other
words, Ú makes �Û��%y�zc . Given Ú9p !1� , � is monotone if

°�¼ Ã �fÚzO ¼ Ã Qz!$����°�Ú Ì ����Ú Ì O ¼ Ã Qz!��m�¯�£��Ú Ì O ¼�ÜXQ�!ÛÚ�O ¼(ÜXQ��¯��� 4�Ý!,Þ(����Ú Ì p !1� (2.1)

A Boolean formula where the operators are only � , � , is monotone. Any formula
encoded by a coherent FT is monotone.

A literal of Ø is either a Boolean variable ¼ Ã ©,Ø or its negation Çs¼ Ã . A cut
set × of � is a set literals ×�!�' 2 [¯½t½t½ 2Åß -
 $Ø such that if the conjunction of its
elements is ��%l��c , then � is ��%y�zc ; if we indicate such conjunction as à�! Â ßÜ Ä [ 2 Ü ,
then × is a cut set if °�Ú��fÚ9p !1à»��ÚRp !1� (2.2)

In other words, any solution of à is a solution of � . This property can also be
expressed as à|p !­� . A cut set × of � is minimal (MCS) if there is no cut set × Ì
of � such that ×&Ì�À}× .

In the case of monotic functions (coherent FTs), any cut set is composed by
literals which are not negated variables, so there is only one assignment satisfying
the conjunction of the literals of the cut set; this assignment maps any Boolean
variable in the cut set to the value ��%l��c . So, the detection of the MCSs of a co-
herent FT, consists of finding the minimal sets of non negated variables such that
if their conjunction is ��%y��c , also the formula encoded by the FT is ��%y�zc . In other
words, a MCS of a coherent FT indicates a minimal set of BEs whose occurrence
is necessary to determine the TE.

Let ����¼Ò[)�t½t½t½m��¼�¾�� be the Boolean function encoded by a FT. According to the
Decomposition Theorem for Prime Implicants (or MCSs) [45, 80], the set of the
MCSs of � expressed as the conjunction of its elements, can be obtained as the
union of three sets:J ×¬Ö	O ����¼Ò[)�t½t½t½m��¼�¾��7QáQ�! J ×¬Ös[ T � J ×ªÖY[Y� J ×ªÖ T (2.3)
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The definition of
J ×¬Ö»[ T , J ×ªÖY[ and

J ×¬Ö T follows:

J ×¬ÖY[ T ! J ×ªÖ	O ���U�y��¼ É �t½t½t½\��¼h¾��¯����������¼ É �t½t½t½m��¼h¾��7QJ ×¬ÖY[â! ¼¯[s��� J ×¬Ö	O ���U�y��¼ É �t½t½t½m��¼�¾��7Q�� J ×ªÖY[ T �J ×¬Ö T ! Ý!Û¼¯[Y�£� J ×¬Ö	O � ������¼ É �t½t½t½\��¼h¾iQz� J ×ªÖY[��
If the FT is coherent, and consequently the encoded Boolean function in mono-
tonic, the definition of

J ×¬Ö [ T , J ×¬Ö [ and
J ×¬Ö T can be rewritten as follows:

J ×ªÖ [ T ! J ×¬Ö	O � ������¼�Éf�t½t½t½)��¼ ¾ �7QJ ×¬ÖY[â! ¼Ò[s�£� J ×ªÖ	O ���U�y��¼ É �t½t½t½)��¼h¾��7Q�� J ×¬ÖY[ T �J ×¬Ö T ! ã
So, eq. 2.3 in the case of coherent FTs, becomes:

J ×¬Ö
O ����¼¯[t�t½t½t½m��¼�¾��7QáQ¯! J ×ªÖY[ T � J ×¬ÖY[ (2.4)

The recursive application of eq. 2.4 over all the variables ')¼"[)�t½t½t½)��¼�¾h- in the
Boolean formula encoded by the coherent FT, provides the MCSs of the system.

The number of BEs (Boolean variables) in a MCS is called the order of the
MCS. The order is a significant qualitative parameter since it highlights failure
sets of events that might be more critical for the system. In fact, a MCS of order 1
means that the failure of a single basic component is sufficient to determine the TE,
indicating no fault tolerance with respect to that component. In a MCS of order 2,
two simultaneous failures of basic components are needed. For this reason, it is
useful cataloging the MCS in increasing order, so that the list starts with those that
are potentially most critical.

Another form of qualitative analysis of a FT, is the Minimal Path Sets (MPS)
detection, which is dual to the MCSs detection and provides the minimal sets of
components whose contemporary working state assures the working state of the
whole system.

MCSs and MPSs detection allows the Reliability analyst to be concentrated on
minimal sets of components instead of the whole system, in order to study their
degree of participation to the system failure, or the way to improve the Reliability
of the system.

2.3.2 Quantitative analysis

FT quantitative analysis presents the analyst with measures of system Unreliabil-
ity. Several Reliability measures can be computed on the FT: the TE probability
at time � corresponding to the system Unreliability at the same type, the occur-
rence probability of each MCS, and the system Mean Time To Failure (MTTF).
The quantitative analysis of a FT provides also the component importance factors,
which give quantitative information on the criticality of each component.
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Quantitative analysis is performed by providing quantitative information about
the basic component Unreliability expressed as a failure probability (that is the
probability of the component being down). From this information the whole sys-
tem Unreliability can be derived according to the FT structure. Often the failure
probability of components is not directly expressed in the FT, instead a time to
failure distribution is provided, from which a failure probability at time � can be
derived. Typically the distribution is a negative exponential with parameter ZY��¼�� ,
so that the probability that component ¼ is down at time � can be computed through
the following formula: #&%(')¼Ò����-r!@�	�dc gyxåä {Å8 (2.5)

MCSs can also be ranked according to their probability to be occurred at a
given time; given the MCS

J Ì¿!M')¼¯[)�t½t½t½\��¼ ß - ( 6 ±j� ), the probability of
J Ì to

be occurred at time � , is given by

#&%(' J Ì ����-r!1#=%F'
ßæÃÅÄ [ ¼
Ã !1��%y�zci���C-v!

ßçÃÅÄ [ #&%(')¼
Ã ����- (2.6)

If the probability to occur of the BEs ¼»[q�t½t½t½\��¼ ß is ruled by a negative exponential
distribution, the probability of

J Ì to be occurred at time � is given by

#&%(' J Ì ���C-&!
ßçÃÅÄ [ �U�
�dc gyxåä)è

{á8 � (2.7)

where ZÒ��¼ Ã � is the failure rate of the BE ¼ Ã .
The most common measure used to assess the system safety is its Unreliability

in time. The system Unreliability, denoted by Ó , is a function of the basic compo-
nents Unreliability: Ó����s������� , where �»����� is the vector of basic component failure
probabilities. In FT such indicator corresponds to the TE probability to be occurred
at time � ( #=%F' K N
����- ). When the basic components are stochastically independent,
such as in FTs, #&%(' K N
����- may be computed resorting to combinatorial formulas.
In fact, for a given time instant � and fixed the basic components failure occurrence
probabilities �»����� , the TE probability can be derived. This can be done exploit-
ing the results of the MCSs detection and their quantitative analysis, by using the
following inclusion-exclusion expansion, where ×=[q�t½t½t½\��×�¾ are the MCSs:

#=%F' K N
����- ! #&%(' ¾éÃÅÄ [ ×
Ã ���C-r!

! ¾ê ÃÅÄ [ #=%F'l×
Ã ����-L� êë Ã ë Ü #&%('l×

Ãhì × Ü ����-GI
I ê
ë Ã ë Ü ë È #&%('l×

Ãhì × Ü ì ×¥ÈF���C-	I
I3½t½t½yI$�U�=�m� ¾ < [ ~ #&%('l×L[ ì ½t½t½ ì ×�¾����C- (2.8)
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For complex systems the above formula may be prohibitive to derive due to the
huge amount of calculation to be performed; as a result, most FTA tools compute
an approximation [88] based on the kinetic tree theory [104]. Recently, the compu-
tation of both qualitative results and quantitative measures has improved notably by
the introduction of Binary Decision Diagrams (BDD) [16, 17, 18, 38, 79, 87, 111].
BDDs allow to encode the Boolean function characterizing the TE in a very com-
pact way. The BDD representation had an enormous practical impact on the com-
putational efficiency of the FT analysis algorithms allowing to derive the exact
value of the indices of Reliability even for large system, without resorting to an
approximate solution. In [15, 78, 94] innovative BDD-based algorithms showing
improvement in qualitative and quantitative FTA of safety critical industrial sys-
tems are provided.

2.3.3 Importance measures

Among the risk-assessment and safety-analysis objectives, the classification of sys-
tem’s components according to their criticality is very important. So, in addition
to the Reliability measure of a system or its own subcomponents, it is central to as-
sess the role that a component takes on, with regard to the system Reliability. This
analysis is significant to the Reliability engineer both during the design phase and
successively in quantifying the risk-importance of the various system components.

Importance analysis allows to assess which component of the system is most
critical to its Unreliability, so to find out the more cost effective solution to im-
prove Reliability. Moreover, it permits to evaluate how much the results depend on
the accuracy of the input parameters. To this purpose, several indices, commonly
called the importance factors, have been proposed. Importance factors are time
dependent measures and may be divided in two groups: measures calculated at one
point in the time, such as those discussed later, and measures whose values are
obtained averaging on a time period [75].

Among the various importance factors introduced in the context of importance
analysis using FT, the most popular is due to Birnbaum [7] and is defined as the
partial derivative of the system Unreliability with respect to the Unreliability of
the addressed component. This measure is also known as Marginal Impact Factor
(MIF). The importance of component 4 to the system Unreliability is by Birnbaum
defined as: JMí � Ã �����"!·î Ó����s�������î �

Ã ����� (2.9)

It is possible to show that for standard FTs,
JMí � Ã ����� is equal to:JÁí � Ã �����"!1#&%(' K N�p 4 ���C-v��#&%(' K NPp 4 ���C- (2.10)

where #&%(' K NPp 4 ����- and #=%F' K NPp 4 ����- are the system Unreliability given that basic
component 4 is failed and working (not failed), respectively.

Others measures of component importance have been proposed by the literature
and they may be found in textbooks [63, 67]. Tab. 2.3 shows some of them.
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Importance factor Acronym Definition
Marginal Importance Factor

JMí � Ã ����� #&%(' K N�p 4 ����-���#&%(' K N�p 4 ����-
Critical Importance Factor × í � Ã ����� JMí � Ã ����� ~ #=%F' 4 ���C-ykl#=%F' K N
����-
Diagnostic Impact Factor � í � Ã ����� #&%(' 4 p K N
����-r!1#&%(' K N$� 4 ����-ykl#&%(' K N
����-
Risk Achievement Worth �&�rï Ã ����� #&%(' K N�p 4 ����-ykl#&%(' K N
����-
Risk Reduction Worth �&�¬ï Ã ����� #&%(' K N����C-fkl#&%(' K NPp 4 ���C-

Table 2.3: Importance factors.

The MIF measure is useful to evaluate the criticality that an improvement in
the component 4 Reliability may play in the system Reliability. The CIF index
extends the MIF index to take into account such factor. The DIF is also known
as Vesley-Fussel Importance factor [55] and it measures the fraction of the system
Unreliability involving the situations in which component 4 has failed.�&�rï Ã for a given component 4 measures the increase in system failure proba-
bility, and calculated for different values of � Ã ����� it is a meter of the importance of
maintaining the current level of Reliability for the component 4 . RRW represents
the maximum decreasing of the risk it may be expected by increasing the Reliabil-
ity of the component. This quantity may be useful to rank the components that are
the best candidates for efforts leading to improving system Reliability.

Several works [43, 47, 48, 78, 94] presented efficient algorithms to derive ex-
actly the importance factors above described using techniques based on BDD rep-
resentations. Many FTA tools exploit these techniques. In the above discussion
only single component importance factor measures have been introduced, but in
principle it may be relevant to also compute importance factors for sets of compo-
nents (e.g. for the MCS). In [13, 77] Bayesian Network (BN) are used to derive
the posterior failure probability of a given subset of events, i.e. the probability that
when the TE is observed, then that subset of events had occurred.

2.4 BDD based FT analysis

An efficient way to perform both the qualitative and quantitative analysis of a FT
model, consists of generating from the FT model the corresponding BDD. From
the BDD, the MCSs and the TE probability (system Unreliability) can be easily
obtained by visiting the BDD nodes.

2.4.1 Introduction to BDDs

A FT model encodes a Boolean formula by means of BEs (corresponding to Boolean
variables) and gates (corresponding to Boolean operators). A BDD can represent
the same formula by means of the Shannon’s decomposition: if � is a Boolean
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function on variables ¼Y[)�t½t½t½)��¼�¾ , then equation 2.11 holds:

�­!Û¼Ò[Ò�9�"[s�RÇ»¼¯[Y��� T (2.11)

In equation 2.11, ��[ is derived from � assuming that ¼s[ is ��%y�zc ( �0[�!ð� p ¼Ò[�!��%y�zc ), while � T is derived from � assuming that ¼ T is D�� 2�� c ( � T !1�Pp ¼¯[¥!$D�� 2�� c ).
Using recursively the Shannon’s decomposition (equation 2.11), we can ex-

press � [ as�0[¥!Û¼ É �9�"[�[s�RÇ»¼ É ���0[ T .
We can express � T as� T !Û¼ É �9� T [s�RÇ»¼ É ��� T�T .
Shannon’s decomposition can be recursively applied until each combination of
Boolean values for the variables ¼ [ �t½t½t½�¼ ¾ has been considered.

The equation 2.11 can be redefined using the if-then-else (ite) notation:

�­! 4 ��c/��¼¯[)���0[m��� T � (2.12)

and can be given a graphical representation. Equation 2.12 must be interpreted as:
if ¼¯[ then �0[ else � T . In other words, if ¼Y[ is true, then ��[ holds; if ¼Ò[ is false,
then � T holds. Also �0[ and � T can be expressed using the ite notation:�0[¥! 4 ��c/��¼ É ���"[�[m���0[ T �� T ! 4 ��c/��¼zÉy��� T [ ��� T�T �

Let us consider the Boolean formula �M!$�&�RÑ»�9ñ expressed on the variables� , Ñ , ñ . We can express a using the ite notation in this way:

a ! 4 �UcF���h���0[m��� T �"!
! 4 �UcF���h�)�y��� T ��!
! 4 �UcF���h�)�y� 4 ��c/��Ñ\��� T [ ��� T�T �"!
! 4 �UcF���h�)�y� 4 ��c/��Ñ\� 4 ��c/��ñl�)�y���/���C� T�T �"!
! 4 �UcF���h�)�y� 4 ��c/��Ñ\� 4 ��c/��ñl�)�y���/���C�/�C�

The final version of the Shannon’s decomposition on a Boolean formula can
be displayed by means of a BDD. A BDD is a DAG representing the Boolean
formula in ite notation; for instance, the expression 4 �UcF���h���
[m��� T � is represented in
a BDD by the node corresponding to the variable � , with two outgoing edges called
1-edge and 0-edge. The 1-edge points to the subgraph relative to �
[ , while the 0-
edge points to the subgraph relative to � T . Typically, the 1-edge is drawn on the left
side of the node, while the 0-edge is drawn on the right side. The terminal nodes of
a BDD correspond to the constants � and � which indicate the ��%y�zc and the D�� 2�� c
value for the whole Boolean formula, respectively, given the values assigned to the
variables, by means of the 1-edges and 0-edges, along a path from the root node of
the BDD, to a terminal node.

The BDD obtained for the boolean formula �M!1�"�¬Ñ¿�&ñ , is shown in Fig. 2.4;
we can verify the equivalence of the BDD to the complete ite notation of � , and
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Figure 2.4: The BDD expressing the Shannon’s decomposition for the Boolean
formula �­!Û�=�9Ñ���ñ .

compute the solution of the formula � for each combination of values assigned to
the variables �h�CÑ\��ñ . For instance, the path ��§ÏÑ	§ÏñL§n� indicates that if �
!1� ,Ñv!o� and ñ=!o� , then �ò!o� . Another possible path is �P§nÑ&§ó� and indicates
that if ��!1� and Ñ
!1� , then �M!1� .
2.4.2 BDD construction

Given a FT model (or the equivalent Boolean formula), the construction of the
corresponding BDD begins with the creation of a BDD for each BE (Boolean vari-
able). Given the BE (Boolean variable) ¼ , we obtain this BDD expressed in ite
form: 4 ��c/��¼Y�)�y���/� .

Let us consider two subtrees1 of the FT encoding the formula � and the for-
mula a respectively; � in BDD form is expressed by 4 ��c/�������G[l��� T � , while a
in BDD form is expressed by 4 �UcF��Ñm��a�[m��a T � , where � and Ñ correspond to BEs
(Boolean variables). Suppose that the roots of these subtrees are the input events
of the same gate ¨ . If the type of ¨ is �=� , then the BDD resulting from the appli-
cation of the �&�
�ô�"� Boolean operator to the BDDs corresponding to � and a is
given by

4 ��c/�������"[\��� T �¯� 4 �UcF��Ñ\��aª[m��a T �"! 4 �UcF���h���0[»� 4 �UcF��Ñm��a�[m��a T ����� T � 4 ��c/��Ñ\��aª[m��a T ���
(2.13)

If the type of ¨ is ����� , then the BDD resulting from the application of the�������ô�0� Boolean operator to the BDDs corresponding to � and a is given by

4 ��c/�������"[\��� T �¯� 4 �UcF��Ñ\��aª[m��a T �"! 4 �UcF���h���0[»� 4 �UcF��Ñm��a�[m��a T ����� T � 4 ��c/��Ñ\��aª[m��a T ���
(2.14)

If both BDDs have the same root node ñ ( �­! 4 �UcF��ñ\��� [ ��� T ����aM! 4 ��c/��ñl��a [ ��a T � ),
then the application of the Boolean operators �&�
�ô�0� , �������ô�"� is ruled by eq.

1Despite its name, a FT is not a tree graph, but it is a DAG; so, we force the use of the expression
”subtree” to indicate a subgraph of the FT.
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2.15 and eq. 2.16, respectively:

4 ��c/��ñl��� [ ��� T �?� 4 ��c/��ñl��a [ ��a T �"! 4 ��c/��ñl��� [ �Ra [ ��� T �Ra T � (2.15)

4 ��c/��ñl���0[m��� T �?� 4 ��c/��ñl��aª[\��a T �"! 4 ��c/��ñl���0[»�Raª[)��� T �Ra T � (2.16)

The commutative property for both operators hold in semantic terms, but it does
not hold in terms of graph topology. For instance, 4 ��c/��¼Ò���
[m��� T �s� 4 �UcF��¸���aª[\��a T �
provides a BDD expressing the same Boolean formula encoded by the 4 ��c/��¸z��a [m��a T �� 4 �UcF��¼Ò���0[m��� T � , but such BDDs differ in terms of variables order and number of
nodes and edges. The size of the final BDD representing a Boolean formula, heav-
ily depends on the chosen variables order to follow while we build the BDD.

For this reason, a total order of the variables of the Boolean formula must be
established before applying eq. 2.13, 2.14, 2.15, 2.16. In eq. 2.13 and in eq. 2.14,
we assume that ¼ precedes ¸ in the order ( ¼�õ,¸ ).

Several heuristics for the variables ordering have been proposed in the literature
[15] with the aim of reducing the BDD size or the number of steps necessary to
build the BDD. Some of them are described in the next section.

A BDD built according to a total order of the Boolean variables is called Or-
dered BDD (OBDD). In a OBDD, given a path from the root node to a terminal
node � or � , the variables are visited in ascending order. The size of a OBDD can
be reduced also by applying the BDD simplification rules:
. Isomorphic subgraphs merging: in a BDD, isomorphic subgraphs have the

same topology and involve the same set of variables. Isomorphic subgraphs
can be merged without changing the graph semantic; this can be done in this
way: we maintain only one isomorphic subgraph and we remove all the other
ones; then, we redirect all the edges pointing on the removed subgraphs,
toward the maintained one.

. Useless nodes deletion: if a node ¼ has both its outgoing edges pointing
to the same node ¸ , then ¼ can be removed: each edge pointing to ¼ is
redirected to ¸ .

After the simplification of an OBDD, we obtain a Reduced OBDD (ROBDD). In a
ROBDD each subgraph represents a distinct logic function.

2.4.3 Ordering variables

Finding the best ordering of the Boolean variables corresponding to the FT BEs,
in order to reduce the size of the BDD corresponding to the FT as much as possi-
ble, is computationally intractable. The best known algorithms to this aim have a
complexity in �
��Ô ¾ � , where ö is the number of Boolean variables. For this reason,
heuristics with an acceptable complexity are used to sort the variables in order to
reduce the size of the BDD encoding the same Boolean formula of a FT. Several
heuristics with different degree of efficiency, have been proposed in the literature.
The description of some heuristics follows.
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. Heuristic H1: variables are ordered according to a depth-first left-most traver-
sal of the FT. The complexity of H1 is �
��öY� , where ö is the number of
Boolean variables (BEs).

. Heuristic A3 [72]: the application of this heuristic follows three steps:

– it assigns to each BE in the FT the weight 1; then, the weights are
propagated bottom-up by assigning to each IE the sum of the weights
of the BEs contained in the subtree rooted in such IE.

– The input events of each gate are sorted with respect to the increasing
order of their weights. This leads to restructure the FT.

– The heuristic H1 is applied to the FT resulting from the gates input
events ordering in the previous step, providing the Boolean variables
order.

The complexity of the heuristic A3 is ����c ~ Ë ~ 2�÷ ¨ªË¿� , where c is the number
of gates, Ë is the maximum number of input events over all the gates of the
FT, and ����Ë ~ 2�÷ ¨¬Ë¿� is the complexity necessary to sort Ë numbers.

. Heuristic H7 [54]: the application of this heuristic follows three steps:

– it determines for every BE and IE in the FT, the number of fanouts; the
number of fanouts for the event c is equal to p c . p (see section 2.2).

– The input events of each gate are sorted with respect to the decreasing
order of their number of fanouts.

– The heuristic H1 is applied to the FT resulting from the gates input
events ordering in the previous step, providing the Boolean variables
order.

The heuristic H7 has the same complexity of the heuristic A3.

In most cases, such heuristics are not deterministic, due to the presence of
ties. We have a tie when we are sorting events according to a certain measure (for
instance, the number of fanouts) and the same value for that measure holds for two
or more events. For instance, if we sort the events according to the heuristic H7,
two input events of the same gate may have the same number of fanouts.

A way to partially cope with the problem of ties, is applying another heuristic
in case of tie. For example, if we use the heuristic H7 and the events c [ and cmÉ have
the same number of fanouts, we can sort cF[ and c É according to the heuristic A3.

The degree of efficiency of a heuristic (or a combination of heuristics) is given
by observing the size of the BDD obtained by sorting the FT BEs according to
the heuristic. The degree of efficiency of a heuristic is not absolute, but it is case
dependent. This means that, given a FT model, a certain heuristic ø may sort
the BEs (Boolean variables) in such a way to obtain a BDD whose size is lower
than the size of the BDDs obtained by sorting the BEs according to any another
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heuristic. This may not happen for another FT model, where the heuristic ø may
be less efficient than the other ones.

In [15] the heuristics proposed in this section, are tested on benchmarks in
order to verify their efficiency on real life coherent FTs presenting a wide range of
specificities, such as size and structure.

Sometimes, it might be convenient to choose the order of the BEs (variables)
of a FT, in an ad-hoc way.

2.4.4 Qualitative analysis on the BDD

Once we have built the BDD corresponding to our FT, we can perform the quali-
tative analysis; this means detecting the MCSs, i.e. the minimal sets of BEs deter-
mining the TE (see section 2.3.1).

If � ��¼ [ �t½t½t½\��¼ ¾ � is the formula encoded by the FT, and ¼ [ õ$¼zÉ�õ�½t½t½Òõ$¼ ¾
is the variables order, the BDD corresponding to the FT will have this ite form:4 ��c/��¼Ò[)���"[\��� T � . Eq. 2.3 can be rewritten in order to be applied to the BDD ( 4 �Uc )
form of a Boolean function, in this way:J ×¬Ö
O 4 �UcF��¼¯[)���0[m��� T �7Q�!Û¼¯[Y�£� J ×
O �0[�Q�� J ×
O � T Q��¯� J ×
O � T Q (2.17)

Using recursively this formula on the BDD starting from the root node and visiting
the whole BDD, we can obtain all the MCSs of the system. The complexity of this
algorithm is linear in the size of the BDD. When we apply eq. 2.17 to a node ¼sÈ of
the BDD having the form 4 ��c/��¼?È(�)�y���/� , we obtain that

J ×¬Ö	O 4 �UcF��¼zÈF�)�y���/�7QÒ!Û¼�È .
There are other ways to determine the MCSs on the BDD. All the cut sets can

be detected on the BDD by considering all the paths from the root node to the
constant � , and for each of these paths, a cut set is given by the variables whose
value is set to � ( ��%y�zc ) along the path. The paths from the root node to the constant� which do not include any other path, provide the MCSs.

Another solution consists of generating from the BDD obtained from the FT,
another BDD representing the disjunction of the conjunctions of the elements of
the MCSs. This can be done by means of a specific algorithm [45, 78].

2.4.5 Quantitative analysis on the BDD

We can perform the quantitative analysis on the BDD; this means computing the
probability that the TE has occurred (system Unreliability) versus time.

If ����¼ [ �t½t½t½m��¼ ¾ � is the formula encoded by the FT, and 4 ��c/��¼ [ ��� [ ��� T � is its
BDD representation, the probability of the TE at a given time � can be computed
by means of eq. 2.18:

#=%F' 4 �UcF��¼¯[)���0[)��� T ������-&!1#=%F')¼Ò[t���C- ~ #=%F'm�0[)����-GI$�U�
��#=%F')¼Ò[t���C-l� ~ #&%('m� T ����-
(2.18)

The value of #=%F')¼ [ ���C- depends on the probability distribution of the BE ¼ [ , and
on the time � ; if the probability of ¼»[ is ruled by a negative exponential distribution
with ZÒ��¼Ò[�� as failure rate, then #=%F')¼s[t���C-r!��
�dc)gfxåä b {�ù 8 .
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When we apply eq. 2.18 to a node ¼?È of the BDD having the form 4 ��c/��¼?ÈF�)�y���/� ,
we obtain that #&%(' 4 �UcF��¼�ÈF�)�y���/������-¬!1#&%(')¼�È/���C- .

The complexity of this algorithm is linear in the size of the BDD.
Besides the system Unreliability, the importance factors (section 2.3.3) can be

easily computed on the BDD corresponding to the FT model [47, 48, 76].

2.4.6 Running example

BDD construction

In this section, we build the BDD corresponding to the Boolean formula encoded
by the FT model in Fig. 2.3. As first step, we need to order the BEs of the TE
(variables of the Boolean formula). We choose this order:� Õ Ó&Ö3õ|�®�=õ|�P²�õ`���&õ|ÕP�¬õ`�=²�õ`Õ�²�õõ`#
�&õ J �f�¬õ J �)²
õ J �)Ô�õ`#ª²�õ J ²��=õ J ²f²�õ J ²fÔ�õõ`#¬Ô�õ J Ô��¬õ J Ôf²
õ J ÔfÔ

The second step to build a BDD corresponding to a FT, is the generation of
the BDD for each BE. For instance, in the case of the BE �PÕ Ó&Ö , we obtain4 �UcF��� Õ Ó=Ös�)�y���/� . Using eq. 2.13, 2.14, 2.15, 2.16, and respecting the variables or-
der, we can compose together the BDDs relative to the BEs according the Boolean
operators corresponding to the gates, in order to build the BDDs corresponding to
the subtrees of the FT.

For instance, the BDD equivalent to the Boolean formula encoded by the sub-
tree ú�P� is shown in Fig. 2.5, while Fig. 2.6 shows the BDD corresponding toúÖ J .

The IE
J N J � is the output of a gate of type ����� having

JMJ � and Ö J
as input events. Since, ����õ JMJ � , the BDD corresponding to ûJ N J � is given
by the composition of the BDD in Fig. 2.6 ( úÖ J ) whose root is ��� , and the BDD
in Fig. 2.7 ( ûJ­J � ) whose root is

J �f� , by means of eq. 2.14; the resulting BDD
is shown in Fig. 2.8. The BDD relative to ü#�Ó�� , is shown in Fig. 2.9.

The BDDs concerning ü#�Ór² and ü#�ÓrÔ are similar to the BDD in Fig. 2.9, and
they all have the same root: ��� . For this reason, their composition, in order to
obtain the BDD corresponding to ú× J (Fig. 2.10), is performed using eq. 2.16.

Composing the BDD in Fig. 2.5 ( ú� � ) and the BDD in Fig. 2.10 ( ú× J ), using
eq. 2.13, we obtain the BDD corresponding to the Boolean formula encoded by
the whole FT ( úK N ); such BDD is shown in Fig. 2.11.

Analysis of the example

Given the failure rates in Tab. 2.1, we have obtained on the BDD, the probability
of the TE (Unreliability) for a time varying from �t�f�f� V to �t�f�f�f� V , by recursively
applying equation 2.18. Such values are reported in Tab. 2.4.



38 CHAPTER 2. OVERVIEW ON FAULT TREES
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D1

D2

1 0

Figure 2.5: The BDD corresponding to ú� � in the FT in Fig. 2.3.
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B1

R2
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1 0

Figure 2.6: The BDD corresponding to úÖ J in the FT in Fig. 2.3.

M11

M12

M13

1 0

Figure 2.7: The BDD corresponding to ûJ­J � in the FT in Fig. 2.3.
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Figure 2.8: The BDD corresponding to ûJ N J � in the FT in Fig. 2.3.
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Figure 2.9: The BDD corresponding to ü#�Ó�� in the FT in Fig. 2.3.



40 CHAPTER 2. OVERVIEW ON FAULT TREES

R1

B1

R2

B2

P1

M11

M12

M13

P2

M21

M22

M23

P3

M31

M32

M33

P1

P2

P3

1 0

Figure 2.10: The BDD corresponding to ú× J in the FT in Fig. 2.3.
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Figure 2.11: The BDD obtained from the FT model in Fig. 2.3.
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time � #=%F' K N
����-
1000 h 1.600717E-03
2000 h 3.198873E-03
3000 h 4.794473E-03
4000 h 6.387520E-03
5000 h 7.978020E-03
6000 h 9.565979E-03
7000 h 1.115139E-02
8000 h 1.273428E-02
9000 h 1.431464E-02

10000 h 1.589248E-02

Table 2.4: Unreliability values for the Multiproc system.

Using eq. 2.17, we can derive the MCSs from the BDD in Fig. 2.11, corre-
sponding to the FT model in Fig. 2.3. The obtained MCSs, sorted by their order
(number of BEs inside a MCS), follow:�&�hO ���XQ²��hO ��²\QÔ��hO �PÕ Ó&ÖYQý �hO #��t#¬²y#¬Ô\Qþ �hO Õ��tÕ�² J �f� J �)² J �)Ôi#¬²y#¬Ô\Qÿ �hO Õ��t�=² J �f� J �)² J �)Ôf#¬²y#¬Ô\Q� �hO ���tÕ�² J �f� J �)² J �)Ôf#¬²y#¬Ô\Q� �hO ���t�=² J �f� J �)² J �)Ôf#¬²y#¬Ô\Q� �hO Õ��tÕ�²y#
� J ²�� J ²f² J ²fÔf#¬Ô\Q�t���zO ÕP�tÕ�²y#
�t#ª² J Ô�� J Ôf² J ÔfÔlQ�f�&�zO ÕP�t�=²y#�� J ²�� J ²f² J ²fÔf#¬Ô\Q�)²��zO ÕP�t�=²y#��t#¬² J Ô�� J Ôf² J ÔfÔlQ�)Ô��zO ���tÕ�²y#�� J ²�� J ²f² J ²fÔf#¬Ô\Q� ý �zO ���tÕ�²y#��t#¬² J Ô�� J Ôf² J ÔfÔlQ� þ �zO ���t�=²y#
� J ²�� J ²f² J ²fÔf#ªÔ\Q� ÿ �zO ���t�=²y#
�t#¬² J Ô�� J Ôf² J ÔfÔyQ� � �zO ÕP�tÕ�² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔf#¬Ô\Q� � �zO ÕP�t�=² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔf#¬Ô\Q� � �zO ���tÕ�² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔf#¬Ô\Q²y���zO ���t�=² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔi#¬Ô\Q²��&�zO ÕP�tÕ�² J �f� J �)² J �)Ôi#¬² J Ô�� J Ôf² J ÔfÔlQ²f²��zO ÕP�t�=² J �f� J �)² J �)Ôf#¬² J Ô�� J Ôf² J ÔfÔyQ²fÔ��zO ���tÕ�² J �f� J �)² J �)Ôf#¬² J Ô�� J Ôf² J ÔfÔyQ² ý �zO ���t�=² J �f� J �)² J �)Ôf#¬² J Ô�� J Ôf² J ÔfÔlQ² þ �zO ÕP�tÕ�²y#
� J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔlQ² ÿ �zO ÕP�t�=²y#�� J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔyQ
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² � �hO ���tÕ�²y#
� J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔlQ² � �hO ���t�=²y#
� J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔlQ² � �hO Õ��tÕ�² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔlQÔy���hO Õ��t�=² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔlQÔ��&�hO ���tÕ�² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔlQÔf²��hO ���t�=² J �f� J �)² J �)Ô J ²�� J ²f² J ²fÔ J Ô�� J Ôf² J ÔfÔlQ

2.5 Module based FT analysis

Despite the efficiency of the use of BDDs, we may have to deal with FTs with a
huge amount of events and gates. Moreover, when we are analyzing large systems,
the qualitative analysis may return an high number of MCSs, and some of them
may involve a lot of components. So, interpreting the MCSs relevance may be
unpractical for the Reliability engineer.

A solution to these problems is solving FT models using the method of de-
composition and aggregation. This means dividing the system (FT) into smaller
subsystems (subtrees) to be analyzed in isolation, and synthesizing the results into
an higher level FT to produce the whole system solution.

Using this approach, the computational cost is reduced by dealing with sub-
trees instead of the whole FT model; at the same time, the MCSs returned by the
analysis of subtrees, concern subsystems instead of the whole system, so they can
be interpreted by the Reliability engineer in an easier way.

2.5.1 Definition of module

The decomposition of the FT must be performed in such a way to obtain the correct
final results when synthesizing the results obtained on the subtrees analyzed in
isolation. To achieve this purpose, the FT must be decomposed in modules [2, 44]:
a module is a subtree which is independent from any other subtree. The definition
of module is provided in [44]:

Definition 1 A module is a subtree whose terminal events (BEs) do no occur else-
where in the FT.

Formally, the event 6 is the root of a module iff for any other event c , eitherc=©®Î 6 , or Î 6 ì Îycr!$ã [44]. The module whose root is 6 is the subtree Ð6 .
According to the definition of module, the whole FT ( úK N ) and the BEs are

modules. However, we do not classify the BEs as modules, since the detachment
and the analysis in isolation of a BE does not allow any benefit in the FT analysis.
A module may contain inner modules; a module rooted in a IE or in the TE, is
minimum if it does not contain any other module (excluding the BEs).
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2.5.2 Modules detection algorithm

In [44], an algorithm to detect the modules of a FT model, is presented. This
algorithm consists of two depth-first left-most visit of the FT, starting from the TE
and assuming the opposite orientation of the arcs with respect to the circuit logic
orientation. Performing this kind of visit, the TE and each IE is visited at least
twice: when descending from the (first) gate the event is input of, and when going
back from the gate the event is output of. A BE is visited at least once, when
descending from the gate the BE is input of.

Three variables are associated with every c ©Á� : �)[ , � É , ��� ; they indicate at
which step of the visit, the event c has been visited for the first time, the second
time and the last time, respectively. We associate other two variables with everyc)Ì�©
�0� : 694 ö 8 b and 6 �F¼ 8�� ; they must be set to the minimum value of the variables��[ in the graph underlying c Ì , and to the maximum values of the variables ��� in the
graph underlying cmÌ , respectively.

Before beginning the first visit, a counter is set to 0. During the first depth-first
left-most visit of the FT, each time an event is visited, such counter is incremented
by 1. The first time we visit the event c , we set the variables �m[ and ��� associated
with c , to the current value of the counter. When we visit c for the second time, we
set the variables � É and ��� to the current value of the counter. Every time we visit
again c , we set the variable ��� to the current value of the counter. When we visit an
event c for the second or successive time, we immediately go back to the gate such
that c is input of, without visiting again the underlying subgraph.

In the second depth-first left-most visit of the FT, we compute for each IE the
value of the variables 694 ö 8 b and 6 �F¼ 8 � . Then, we can detect the modules in this
way: an event cmÌ¯©��0� is the root of a module if the following condition involving
its variables �X[ , � É , 694 ö 8 b and 6 �/¼ 8 � , holds:

� 694 ö 8 b A,��[��?�£� 6 �/¼ 8 � H,� É �
2.5.3 Modularization

Due to its independence, a module which is rooted in a IE, can be detached from
the FT and analyzed in isolation, without affecting the correct analysis of the rest
of the FT.

If we assume that the minimal modules are analyzed in isolation, then the FT
analysis by Modularization, i. e. by exploiting modules, follows these steps:

1. Modules detection

2. Modules classification: for each module, we verify if it is a minimum mod-
ule.

3. If the current FT contains the minimum module úK N , then go to the step 8,
else go to the step 4.
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4. Decomposition: each minimum module is detached from the FT.

5. Minimum modules analysis: the detached minimum modules are analyzed.

6. Aggregation: each detached minimum module is replaced in the FT by a BE.

7. Go to step 1.

8. Analysis of the reduced FT.

In the aggregation step, the qualitative or quantitative analysis results obtained
on the module are assigned to the BE replacing the module:

. if we are performing the quantitative analysis at time � , such BE has not
an associated probability distribution, but a constant probability equal to the
probability of occurrence of the module computed at time � ;

. if we are performing the qualitative analysis, we assign to such BE the MCSs
of the module it replaces.

The reduced FT mentioned in the step 4, is the version of the FT obtained by
replacing the minimum modules, such that it contains a unique minimum module
coincident with the FT. The reduced FT does not require a further modularization,
so it can be entirely analyzed; the analysis of the reduced FT provides the results
for the whole system.

During the analysis by modularization of a FT, it may happen that a mini-
mum module contains a low number of events such that its analysis is not enough
computationally expensive to justify the cost of the decomposition, analysis and
aggregation step of such module. To avoid this inconvenience, we can add a fur-
ther condition to be verified in order to detect if an event c Ì ©3��� is the root of
a module (section 2.5.1): pyÎvcmÌ7pY±ÊË , where Ë indicates the minimum number of
events that a subtree must contain in order to be a module.

2.5.4 Running example

Instead of analyzing entirely the FT model of the Multiproc system (Fig. 2.3), we
can perform its analysis by modularization (section 2.5). In this section, we limit
our attention to the module detection (section 2.5.2).

Fig. 2.12 shows all the modules present in the FT model of the Multiproc
system; they are:úK N , ú�P� , úJ Ö , ú× J , ûJ­J � , ûJMJ ² , ûJ­J Ô , úÖ J , üÕ���� , üÕ��=² .
Each module is graphically indicated by a dashed line around it. The subtrees ü#�Ó�� ,ü#�Ór² , ü#�Ó&Ô , ûJ N J � , ûJ N J ² , ûJ N J Ô are not classified as modules because
they share the common subtree úÖ J . The minimal module in the FT are:úJ Ö , ûJ­J � , ûJMJ ² , ûJ­J Ô , üÕ���� , üÕ��=² .
All of them contain no inner modules.
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Figure 2.12: The modules in the FT model of the Multiproc system.



Chapter 3

pBDD based PFT Analysis

3.1 Introduction to Parametric Fault Trees

One of the ways to improve the Reliability of a system, consists of replicating crit-
ical components or subsystems; sometimes, due to the redundancy of the system,
the FT model contains several similar subtrees concerning the replicated parts in
the system; moreover, the failure rates of the BEs inside such subtrees, may be the
same. So, the construction of such FT becomes quite unpractical for the Reliability
engineer, since he has to draw several identical (large) subtrees. Besides this draw-
back, the analysis of the FT of a redundant system, leads to repeat some steps, due
to the presence of symmetric subtrees, and their analysis returns identical results.

For this reasons, a particular extension of the FT formalism called Parametric
Fault Tree (PFT) [11, 51] was proposed with the purpose of providing the compact
modelling of the redundant parts of the system. An example of PFT model is shown
in Fig. 3.1.

Using the PFT formalism, the subtrees with the same structure and the same
failure rates (replicated subtrees) can be folded in a single parametric subtree, while
their identity is maintained through a parameter: each replicated subtree folded in
a parametric subtree is identified by a specific value of the parameter. Such value
ranges over the type of the parameter; for instance, the type of the parameter 4 is
the set × Ã !M'/�y�t½t½t½m��ö»- , with ö�±j� .

The model design is simplified using the PFT formalism, since the model de-
signer can fold subtrees with the same structure in a single parametric subtree,
avoiding to draw (large) identical subtrees, and consequently reducing the number
of elements in the model. Such reduction is proportional to the level of redundancy
in the system.

The PFT formalism extends the FT formalism; besides the parameters and their
types, the PFT formalism introduces other new primitives, with respect to the FT
formalism. In the construction of the PFT model, each time replicated subsystems
are encountered, a parametric subtree must be drawn in the model. The root of a
parametric subtree is a Replicator Event (RE): a RE graphically appears as a dotted

47
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rectangle, and a parameter is declared together with its type, inside the RE. Such
parameter is associated also with the events in the parametric subtree if an instance
of them is present in each of the replicated subtrees represented in compact form by
the parametric subtree. The cardinality of the type of the parameter declared in the
RE, indicates the number of replicated subtrees folded in the parametric subtree,
while each element of the type identifies a distinct replicated subtree.

Parametric subtrees may be nested, so a parametric subtree may contain inner
parametric subtrees. In this case, the RE which is the root of an inner subtree, may
contain several parameters: the parameters declared in the REs which are the roots
of the outer subtrees, and the parameter declared in the RE which is the root of the
inner parametric subtree. By convention, the set of the parameters associated with
an event, is ordered by the increasing depth of the REs where the parameters are
declared in. So, if the set of parameters of the RE c are ' 4 [)�t½t½t½m� 4ôß - , 4ôß is the
parameter declared in c .

In general, if a RE has several parameters, the relative parametric subtree folds
as many replicated subtrees as the possible combinations of values of the parame-
ters.

Another new primitive introduced in the PFT formalism is the Basic Replicator
Event (BRE); a BRE allows to fold several BEs with the same failure rate and
connected to the same gate. To this aim, a parameter is declared in a BRE which
may have other parameters if it is nested in one or more parametric subtrees.

3.2 PFT formalism definition

The PFT formalism can be defined by the tuple	r�
� !����"�C�����P� 	 � � ���¥���U�s��
������
�)���	��Z¯�����
where

. ��!1�����=�����¦' K N�-��������P����� is the set of the events in the PFT; it is
the union of the following sets:

– ��� is the set of the BEs;

– ��� is the set of the IEs;

– {TE} is the set composed by the unique TE;

– � � is the set of the REs;

– ����� is the set of the BREs.

. �¡ o���`¢£��� ¤ ���}¢��s� is the set of the arcs according to the logic circuit
orientation.

. �¥��!M'm�v���¦���=��- is the set of Boolean gate types.

. ���/��§u�G� is the function assigning to each gate its type.
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. 	
is the set of parameters.

. � is the set of types.

. 
,� 	 § �
is the function assigning to each parameter the corresponding

type.

. ����')�¬�9' K N�-f-r§��¹' 	 ���t- is the function returning the set of parameters
associated with an event.

. Given c¬©9� , Îycv!M'\c Ì ©��w�F«?OÍc Ì §�ctQ�- .
In a PFT, the following property must hold:°�c¬©9�"�Ccª©®Î K N

. Given c�©w� , Ð c is composed by any OÍÑª§ cqQG��Ñ�©3���R�¦����� . Ð c indicates
the subtree rooted in c .

. �ª��'����9��������-r§ 	
is the function returning the parameter declared in a

RE or in a BRE. The following properties must hold:

– °�cf[q�Cc É ©�'����9��������-=�Fcf[ Ý!$c É �
�(��cy[t� ì �F��c É �"!$ã
– °�c=©����"��°���©��F��cl����«�c)Ì?���®©��h��c)Ìá�Ò��ctÌ?©®Îyc
– Given c¦©�� � , �(��c\�¬! '��¯- , c)Ì	©|Îyc , �}©��h��c)Ì;� , we have that °�cmÌ Ì¥©OÍctÌh§�ctQô����©�����ctÌ Ìá�

Given the event cd©}� such that �h��c\� Ý! ã and �h��cl��!¡'��s[)�t½t½t½ � ß - , with6 ±ð� , we indicate such event in the PFT model as c/�!�»[)�t½t½t½\��� ß � . If c¦©'����9�������»- , then �(��c\��!M'�� ß - .
. �,��')���£' K N
-f-r§u³ " is the function returning the multiplicity of an event:

– °�c=©£')���ª�0���®' K N�-f-i���L��cl��!��
– °�c=©£'������P�����"-i���L��c\�0!òp 
¯� �F��cl���tp

. Given ¨P©¦� ,. ¨�!­'\c¬©9�d�(«?��cf�U¨��	©9� - is the set of input events of ¨ ;¨ . !­'\c¬©9�d�(«?�5¨h�Ccl�	©9� - is the output event of ¨ .
Given c¬©9� ,. cr!M't¨P©¦�3�F«¯�5¨h�Cc\�
©9��- is the gate having c as output event;c . !M't¨�©®�3�F«?��cf�U¨��
©9� - is the set of gates having c as one of their input
events.

. The following conditions about the connection of events with gates, must
hold:

– °h¨ ©¦����# ë%$�&('*) �L��c\�GAÁ�
– °h¨ ©¦���\p ¨ . pf!@�
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– °?c¬©�'m�����P������-i�\p . cFpi!$�
– °?c¬©�')��� ' K N�-f-i�\p c . p�A`�
– °?c¬©�'����P�+���"-i�\p . cFp/!@�
– p . K NPpf!��
– p K N . pf!$�

. Z��¯'m�0�R�R�����"-�§ó³ µ < is the function assigning a failure rate to a BE or
to a BRE, if we assume its negative exponential distribution.

. �j�»�­§ ³ ¶ð!¡')��%y�zci�CD�� 2�� cy- is the function returning the Boolean value
of an event (Boolean variable). Given ¸Û©­'f' K N
-=�9�0���,����- , ¨1©Á� ,¨ . !M')¸�- ,

– if �»�5¨��"!1�v�®� then

�Y��¸¿�"! æ
ë%$
- $
&.'*)�/�$�&10�2�354(673(8 �s��cl���

æ
ë%$�- $
&.'*)9/1$
&(0;:<3(4(67:<3(8

æ
ë Ã &%= x?>�x $ {5{

�s��cF� 4 ���

– if �»�5¨��"!j�&� then

�Y��¸¿�"! @ë%$
- $
&.'*)�/�$�&10�2�354(673(8 �s��cl��� @ë%$�- $
&.'*)9/1$
&(0;:<3(4(67:<3(8 @ë Ã &%= x?>�x $ {5{
�s��cF� 4 ���

3.2.1 Running example

In this section, we refer to the Multiproc system and to its FT model described in
section 2.2.1. Several redundancies and symmetries can be observed in the Multi-
proc system: we have three processing units composed by the same type and the
same number of components: one processor and three internal memories. We have
two identical shared memories, and each of them has its own bus in order to be
connected to all the processing units. Finally, we have two hard disks.

Such symmetries and redundancies in the system lead to the presence in the
FT model, of several subtrees with the same structure; for instance, subtrees #�Ó�� ,#�Ó&² , #�Ó&Ô are isomorphic and their BEs concern the same types of components
(processors and memories). Moreover, the basic events referring to the same class
of components (for instance, the processors) have the same failure rate. The subtree
rooted in the event Ö J contemporary belongs to the subtrees ü#�Ó�� , ü#�Ó&² , ü#�ÓrÔ .
Also úÖ J contains symmetries.

The symmetries in the system are reflected first in its FT model (Fig. 2.3),
and consequently in the corresponding BDD (Fig. 2.11) where we can note that
several subgraphs have the same structure and are composed by variables referring
to components of the same type. For instance, the node ��� is connected through
its outgoing 0-edge to ÕP� , while �=² is connected through its outgoing 0-edge, toÕ�² . The subgraph composed by #
� , J �f� , J �)² , J �)Ô has the same structure of
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the subgraphs composed by #¬² , J ²�� , J ²f² , J ²fÔ , and by #¬Ô , J Ô�� , J Ôf² , J ÔfÔ ,
respectively. Moreover, we have three cascading nodes concerning the processors:#
� , #¬² , #¬Ô .
PFT model of the system

Fig. 3.1 shows the PFT model of the Multiproc system; such model is semantically
equivalent to the FT model in Fig. 2.3, but the number of nodes is clearly reduced.

In the PFT model, the whole system failure is still represented by
K N which is

the output of a gate of type �&� whose input events are × J and �P� . With respect
to the FT model, the subtrees ü#�Ó�� , ü#�Ór² and ü#�ÓrÔ have been folded in the PFT
model, in the parametric subtree û#�Ó�� 4 � ( #�Ó�� 4 �	©A��� ); the type of the parameter 4
is ×��L!M'/�y�C²(�CÔF- . The event × J is the output of a gate of type �&� having #�Ó�� 4 �
as its unique input event.

The parameter 4 is associated also with the events # � 4 � , J N J � 4 � and
J­J � 4 � ,

in order to express that an instance of such events is present inside each instance
of the parametric subtree û#�Ó�� 4 � . The BEs modelling the failure of the internal
memories of a processing unit, have been folded in the BRE

J � 4 �CË¿� , with Ë of type× ý !M'/�y�C²(�CÔF- . This expresses that each instance of processing unit (identified by4 ) contains a set of internal memories whose cardinality is pÍ× ý p .
In the PFT model, the event Ö J has no parameters since it belongs to all

the instances of the parametric subtree û#�Ó�� 4 � . In the FT, the subtrees üÕ���� andüÕ��=² have the same structure, so in the PFT model, they have been folded in the
parametric subtree ûÕ��
�áÞF� ( Õ��
�áÞF��©�� � ) with 
¯�áÞ(�¬!·×¬²R!º'/�y�C²F- . Õ��
�áÞ(� is
the output of a gate of type �&� having �
�áÞ(� and Õ9�áÞF� as input events. This means
that in each instance of the parametric subtree ûÕ��
�áÞ(� , there is a distinct instance
of � and of Õ .

The BEs ��� and ��² modelling the failure of the hard disks in the FT model,
have been folded in the PFT model, in the BRE ��� V � , with 
¯� V �"!j×¬Ô¬!M'/�y�C²F- .

Tab. 3.1 indicates the correspondence between the events in the PFT and the
components or subsystems in the Multiproc system.

3.3 PFT analysis

While the quantitative analysis on a PFT model still returns the probability of the
TE (Unreliability of the system) at a given time, the qualitative analysis of a PFT
returns Parametric Minimal Cut Sets (pMCS) [10, 11, 28] instead of the ordinary
ones. An ordinary MCS (section 2.3.1) is a minimal set of basic components whose
contemporary failed state leads to the whole system failure. In a system with re-
dundancies, we may obtain several MCSs with the same order and composed by
components of the same class; a pMCS groups such ordinary MCSs in an equiva-
lence class evidencing only the failure pattern regardless the identity of the repli-
cated components inside the pMCS. This allows a reduction of the failure patterns
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TE

CM

PU(i)
i: C1={1, 2, 3}

P(i)D(h)
h: C3={1, 2}

DBUS

DA

MM(i)

M(i, k)
k: C4={1, 2, 3}

MS

BR(j)
j: C2={1, 2}

R(j) B(j)

SM

MEM(i)

Figure 3.1: The PFT model for the Multiproc system.
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Event Component / Subsystem� � Disk Access� Õ Ó=Ö Disk BusJ Ö Mass Storage��� V � Hard Disks× J Computing module#�Ó�� 4 � Processing Unit 4#�� 4 � Processor of the Processing Unit 4J N J � 4 � Memory access of the Processing Unit 4J­J � 4 � Internal Memory Module of the Processing Unit 4J � 4 �CË¿� Internal Memories of the Processing Unit 4Ö J Shared Memory accessÕ��
�áÞ(� Shared Memory module Þ�
�áÞF� Shared Memory ÞÕ��áÞ(� Memory Bus of the Shared Memory Þ
Table 3.1: Correspondence between the events and the components or subsystems.

to be examined. Interpreting the PFT as a Boolean formula, a pMCS is a set of
solutions of the formula.

As the use of the PFT formalism avoids drawing replicated subtrees, the ap-
proach to perform the analysis of a PFT model has to avoid their repeated analysis
by performing the analysis of only one replica.

An efficient way to perform the analysis of a FT, is based on the use of BDDs,
as shown in chapter 2. In this chapter instead, we adapt the approach based on
BDDs, in order to cope with parametric subtrees: BDDs are extended in order
to deal with parameters obtaining Parametric Binary Decision Diagrams (pBDD)
[10, 28].

3.3.1 Related work on PFT analysis

In [21] a method for computing the MCSs of FT models with event classes has
been proposed: basic nodes can represent subsets of similar basic events. The same
event class c can appear as input of different gates with different multiplicities (the
notation used is cFO ö Ã Q , meaning that at least ö Ã events in class c have occurred,
where ö Ã must of course be less then or equal to the event class cardinality). This
could be expressed by the PFT formalism by using a BRE and one or more gates
of type �B�/� ; on the contrary the full expressiveness of the PFT formalism is not
covered by the extension proposed in [21]. It would be interesting to investigate
whether the analysis method proposed in [21] could be extended to work on PFT.
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3.4 Parametric BDDs

As the use of the PFT formalism allows to compact a FT with symmetric subtrees,
a BDD with symmetric subgraphs can be folded in a pBDD. An example of pBDD
is shown in Fig. 3.11.

pBDDs are an extension of BDDs, studied in order to cope with parameteri-
zation. While in a BDD the nodes are Boolean variables, in a pBDD, a node can
be a Boolean variable, a parametric Boolean variable, or a Parametric Box (pBox)
[10, 28]. A Boolean variable has no parameters, while a parametric Boolean vari-
able of a pBDD has a set of parameters associated with.

A pBox instead, is a new primitive introduced in pBDDs, and is graphically
represented as a dashed rectangle including a parametric graph. A pBox has two
attributes: a replication parameter and a replication operator.

The aim of a pBox is representing in a compact way, the BDD obtained by the
composition according to a Boolean operator ( ����� ( � ), �=� ( � )), of symmet-
ric BDDs. Such BDDs are represented in a compact way inside the pBox, by a
unique parametric graph composed by parametric variables and possibly by inner
pBoxes, while their identity is maintained by the type of the replication parameter.
The replication operator of the pBox is the operator used to compose together the
symmetric BDDs. As in the PFT formalism (section 3.2) the type of the replication
parameter of a pBox, is the set that the parameter can range over.

A pBox has one input interface and two output interfaces: the 1-output inter-
face and the 0-output interface. pBox interfaces are graphically indicated as small
black circles. The incoming edges1 of a pBox must point the input interface of the
pBox. A pBox can be pointed by one or several incoming edges.

Inside a pBox, all the 1-edges which are not pointing to an internal variable, or
to an inner pBox, must be directed to the 1-output interface. All the 0-edges which
are not pointing to an internal variable, or to an inner pBox, must be directed to the
0-output interface.

The aim of the 1-output interface and the 0-output interface, is twofold: they
represent the constant � and the constant � respectively, of the symmetric BDDs
folded in the parametric graph of the pBox; output interfaces are also the point of
connection of the pBox with the underlying nodes.

The outgoing edges of a pBox must be one 1-edge and one 0-edge. The outgo-
ing 1-edge of the pBox is drawn between the 1-output interface of the pBox and an
external node (variable or pBox). The outgoing 0-edge of the pBox is drawn be-
tween the 0-output interface of the pBox and an external node (variable or pBox).
In this way, any node which is external to the pBox can not be connected with
nodes inside the pBox, but only with its interfaces.

All the parametric variables inside a pBox whose replication parameter is � ,
must have � inside their parameter sets.

pBoxes can be nested; in that case, the condition about parameters still holds:

1pBDD edges have the tree structure orientation.
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a parametric variable inside an inner pBox must have all the parameters associated
with the pBoxes containing such parametric variable.

3.4.1 pBDD formal definition

A pBDD is a DAG and can be defined by the tuple	 �CBDB@!��?EM��BP��%\� 	 � � ��F���
��
�m�U�Y������Gz��HG�
where

. E !JId� 	 �£� 	 I��LK is the set of nodes; it is the union of these sets:

– I is the set of Boolean variables.

–
	 � is a set of pBoxes.

–
	 I is the set of Parametric Boolean variables.

– K�!o'/�y���(- is the set composed by the Boolean constants 1 and 0 cor-
responding to the ��%y�zc and D�� 2�� c Boolean value, respectively.

. %�©�'�I�� 	 � } is the root node.

. Bº ��?E ¢�E1� is the set of edges, according to the the tree structure orien-
tation.

. FM�MBð§ ')Ì Ìá�yÌ Ì��ÍÌ Ìy�qÌ Ì�- is the function assigning a label to an edge. The label
can be either ”0” or ”1”.

. 	
is a set of parameters.

. � is a set of types.

. 
�� 	 § � is the function returning the type of a parameter.

. �ª� 	 �,§ 	
is the function returning the replication parameter of a pBox.

. �®� 	 � § 'm�v���¦���=��- is the function returning the replication operator of
a pBox.

. Any Ñv© 	 � can be defined by the tuple � í Ã ��#�a=� , where

–
í Ã

is the input interface of Ñ , where the edges pointing Ñ are concen-
trated.

– #ªa is the parametric subgraph inside Ñ . #ªa can be defined by the
tuple �?E Ì ��B Ì ��% Ì � , whereN E}Ì¿! 	 �0Ì/� 	 I�Ì/��� is the set of nodes in #ªa ; it is the union of

these sets:~ 	 I�Ì¯  	 I is the set of Boolean parametric variables in #�a .~ 	 �0Ì?  	 � is the set of pBoxes in #ªa .
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~ �3!M'/� ��� - , where � is the 1-output interface of Ñ , and � is the
0-output interface of Ñ .N % Ì © 	 I Ì � 	 � Ì is the root node of #ªa .N B Ì  Á�?E Ì ¢LE Ì � is the set of edges in #ªa .

. °�Ñ\�CÑCÌ?© 	 �}�FÑ Ý!$Ñ�Ì��m��Ñ ì Ñ�Ì¿!jãi�¯����ÑrÀ|Ñ�Ìá�Ò�£��ÑPO|Ñ�Ìá�
. Given ¼�©QE , G���¼?�0!Á'\Ñr© 	 �}�i¼®©®Ñm½ EÛÌ5-
. �
� 	 I1§ � 	

is the function returning the set of parameters of a Boolean
parametric variable.

– °z¼®© 	 Ir���h��¼?��! ¤ ë%R*&.SUTV- R*&%W xåä { �(��Ñt�. Given ¼�©+E , Hv��¼?��!op G?��¼��tp is the function returning the nesting level of a
node; this means the number of pBoxes containing that node.°�¼®©AIv��Hv��¼?�0!1�

. °»��¼Ò��¸¿�G©ABP�m�XHv��¼?�0!JHr��¸����¯���XG���¼?�0!JG?��¸����
. Given ¼�©QE ,

– . ¼R!M')¼�Ì?©QE ��«?��¼hÌ���¼��G©�B�- is the set of parent nodes of ¼ .

– ¼ . !M')¼ Ì ©QE ��«?��¼Ò��¼ Ì �G©�B�- is the set of descending nodes of ¼ .

– ¼ . [G!Á')¼�Ì�©LE �F«¯��¼Ò��¼hÌ;�¥©ABj�YFr��¼Ò��¼�Ìá�"!rÌ Ì��qÌ Ì�-
– ¼ . T !Á')¼ Ì ©LE �F«¯��¼Ò��¼ Ì �¥©ABj�YFr��¼Ò��¼ Ì �"! Ì Ì � Ì Ì -
– The following conditions must hold:N °�¸P©LE � 'f')%(-G� ¤ ë%R*&%Z[6 Ñ\½ #ªa�½Í%lÌ�-i�\p . ¸?p(±j�N p . %hpf!1�N °�Ñv© 	 �L�\p . Ñ\½ #ªa�½Í%yÌ7pf!1�N °�¸P©AKs�\p . ¸?p(±j�N °�Ñv© 	 �L��°z¸P©¦Ñ\½ #ªa�½ �L�\p . ¸¯p(±j�N °�¸P©LE � '�K � ¤ ë%R*&5Z[6 Ñ\½ #ªa�½ �L-i�\p ¸ . pf!$²N °�¸P©AKs�\p ¸ . pi!1�N °�Ñv© 	 ��°z¸P©¦Ñ\½ #ªa�½ �L�\p ¸ . pi!1�N °�¸P©LE � '�K � ¤ ë%R*&5Z[6 Ñ\½ #ªa�½ �L-i�\p ¸ . [¥pi!@�l-N °�¸P©LE � '�K �R¤ ë%R*&5Z[6 Ñ\½ #ªa�½ �L-i�\p ¸ . T pi!@�l-N °�¸P©LE � '�K �R¤ ë%R*&5Z[6 Ñ\½ #ªa�½ �L-i��¸ . !}¸ . [ �s¸ . TN °�¸P©£'�K��¦¤ ë%R*&%Z[6 Ñ\½ #ªa�½ �
-i�\p ¸ . [¥pi!1�N °�¸P©£'�K��¦¤ ë%R*&%Z[6 Ñ\½ #ªa�½ �
-i�\p ¸ . T pi!1�

. According to the tree structure orientation of the pBDD edges ( B ), we have
a path between ¼Y[
©QE and ¼zÈ�©\E if the following conditions hold:
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– G���¼Ò[X�"!JG?��¼�Èf�
– «(¼Ò[q��¼ É �t½t½t½)��¼�È�©\E : ° 4 ©�'\²(�t½t½t½\�CË=���l-i��G?��¼ Ã �0!JG���¼Ò[X�"!JG?��¼�Èf�Ò�° 4 ©£'/�y�t½t½t½m�CË��`�l-i��«¯��Ë Ã �CË Ã < [X�¥©AB

A path between the nodes ¼ [ and ¼zÈ is indicated by the expression O ¼ [ §u¼zÈtQ
and includes all the nodes and the edges along that path:

O ¼¯[�§u¼zÈtQ�!ÊO ¼¯[t�m��¼¯[m��¼ É ����¼ É �m��¼ É ��¼^])���t½t½t½m��¼zÈ e [ �m��¼zÈ e [ ��¼zÈy����¼zÈ\Q
– Given ¼Ò��¼ Ì ©_E �`G?��¼��9!aG?��¼ Ì � , ¼ Ì is reachable from ¼ if a path

between ¼ and ¼�Ì exists.

– Given ¼®©QE , ¼�Î&!M')¼ Ì ©LE �(«¯O ¼�§B¼ Ì Q��C- .
– Given ¼|©,E �bG?��¼��&!_ã , we indicate the subgraph rooted in ¼ with

the expression Ð¼ . Ð ¼ is composed by any O ¼R§B¼ Ì QÒ�f¼ Ì ©YK
3.4.2 Parametric ite notation

The 4 ��c notation (section 2.4.1) is used to express the structure of a BDD. In order
to deal with pBDDs, the 4 �Uc notation needs to be extended in order to indicate the
presence of pBoxes and their interfaces.

The structure of a pBDD can be expressed by using the Parametric if-then-else
notation (� 4 �Uc ). Let us consider the pBox Ñ with �(��Ñt��! Ë , 
¯��Ë¿�
! � , �»��Ñt�
!����� , Ñ\½ #ªaÁ!c� 4 ��c/��¼s��Ë¿�����0[f��Ë¿����� T ��Ë¿��� , ¼®©¦Ñ\½ 	 I¥Ì?  	 I , ����¼���!$Ë . Then, Ñ is
represented in � 4 �Uc notation in this way:

O � 4 ��c/��¼s��Ë¿����� [ ��Ë¿����� T ��Ë¿�7Q;È - dfe gbhfi
If the replication operator of Ñ is instead �=� ( �»��Ñt�"!j�=� ), the � 4 ��c representation
of Ñ becomes, O � 4 �UcF��¼s��Ë¿�����0[y��Ë¿����� T ��Ë¿�7Q;È - dfe jUk

For example, the � 4 ��c notation of the pBox #=Õ Ü in the pBDD in Fig. 3.11, is#=Õ	Ü�!uO � 4 �UcF���
�áÞF���)� ��� 4 ��c/��Õ9�áÞF���)� ��� ���7QåÜ - l É e gmhfi where � indicates the 1-output
interface, while � indicates the 0-output interface.

In general, a pBox is indicated in � 4 ��c notation by expressing its internal para-
metric graph inside a couple of square brackets, while the replication parameter
of the pBox, together with its replication operator, is expressed just after the close
square bracket.

A pBox may contain inner pBoxes; in this case, the expression between square
brackets, of the parametric graph of the outer pBox, will contain the name of the
inner pBox(es), while their � 4 �Uc notation is expressed in isolation. For example,
in the pBDD in Fig. 3.11, the pBox named #=Õ
ÌÃ contains the inner pBox named#=ÕrÈ . The � 4 ��c notation of #=Õ=È is

#=ÕrÈr!�O � 4 �UcF� J � 4 �CË¿���)� ��� �7Q;È - lmnoe gbh�i
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So, the � 4 ��c notation of #¬Õ�ÌÃ is

#=Õ ÌÃ !�O � 4 ��c/��#�� 4 ���)� ��� 4 ��c/��#¬ÕvÈ(�)� ��� ���7Q Ã - l [ e gbhfi
The expressions � and � in the � 4 ��c notation of a certain pBox, always refer to

the 1-output interface and the 0-output interface of such pBox, respectively.
In order to provide the � 4 ��c notation relative to a whole pBDD, we have first

to express in � 4 ��c notation, any pBox inside the pBDD. In the case of the pBDD in
Fig. 3.11, we have that:#=Õqp¬!�O � 4 �UcF����� V ���)� ��� �7Qrp - l ] e jUk
#=Õ	Üv!�O � 4 ��c/���
�áÞ(���)� ��� 4 �UcF��Õ��áÞ(���)� ��� ���7QåÜ - l É e gbh�i
#=ÕrÈ&!�O � 4 ��c/� J � 4 �CË¿���)� ��� �7Q;È - lmnoe gmhfi
#=Õ�ÌÃ !@O � 4 ��c/��# � 4 ���)� ��� 4 �UcF��#=ÕrÈ(�)� ��� ���7Q Ã - l [ e gmhfi
#=Õ Ì ÌÃ !�O #�� 4 ���)� ��� Q

The � 4 ��c notation for the whole pBDD is

� 4 �UcF��� Õ Ó&Ö»�)�y��� 4 ��c/��#=Õqp��)�y� 4 ��c/��#¬Õ Ü � 4 ��c/��#¬Õ ÌÃ �)�y���/��� 4 ��c/��#¬Õ Ì ÌÃ �)�y���/�������
where the expressions � and � are the terminal nodes (constants) 1 and 0 corre-
sponding to the Boolean values ��%y��c and D�� 2�� c , respectively.

3.4.3 pBDD unfolding

In order to clarify the semantic of a pBDD, in this section, we show how it is
possible to unfold a pBDD; this means deriving from a pBDD the semantically
equivalent BDD.

We suppose to have the pBox #=Õ¬È expressed in � 4 ��c notation as

O � 4 ��c/��¼»��Ë¿�����"[f��Ë¿����� T ��Ë¿���7Q;È - dfe gbhfi
with 
¯��Ë¿�"!1�^!M'/�y�t½t½t½\��ö»- .

Moreover, we suppose that #=Õ=È has no inner pBoxes, and that we have an
order for the Boolean variables inside such graph. Then, the graph represented in
compact form by #=Õ&È is given by the unfolding of the pBox:¾æ

È Ä [ �
4 ��c/��¼»��Ë¿�����"[f��Ë¿����� T ��Ë¿��� (3.1)

If instead, ����#=Õ&Èi��!j�&� , #=ÕrÈ can be expressed using the � 4 ��c notation as

O � 4 ��c/��¼s��Ë¿����� [ ��Ë¿����� T ��Ë¿���7Q;È - dfe jUk
while the graph represented in compact form by #=ÕªÈ is given by the unfolding of
the pBox: ¾

@È Ä [ �
4 ��c/��¼»��Ë¿�����"[f��Ë¿����� T ��Ë¿��� (3.2)
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The operator � in eq. 3.1 is applied according to eq. 2.14 and eq. 2.16; the
operator � in eq. 3.2 is applied according to eq. 2.13 and eq. 2.15.

In other words, the unfolding of a pBox consists of composing according to
a Boolean relation ( ����� , �&� ), as many instances of the parametric graph con-
tained in the pBox, as the number of possible values of the replication parameter of
the pBox, given by the cardinality of the type of the parameter. For each possible
value of the replication parameter, we have an instance of the parametric graph.
An instance of the parametric graph corresponds to a graph with the same structure
of the parametric graph, where we have instances of the parametric variables ac-
cording to the value of the replication parameter concerning the parametric graph
instance.

An instance of a parametric variable is a variable identified by the name of the
parametric variable and a possible value of the parameter. For instance, given the
parametric variable ¼»��Ë¿� , ¼s� is an instance of ¼s��Ë¿� given that Ë
!@� .

Moreover, in an instance of the parametric graph, the 1-output interface of
the pBox is replaced by the constant 1, while the 0-output interface becomes the
constant 0. For example, an instance of the pBox

#=Õ	Ü�!ÊO � 4 ��c/���
�áÞF���)� ��� 4 ��c/��Õ9�áÞ(���)� ��� ���7QåÜ - l É e gmhfi
in the pBDD in Fig. 3.11, is

� 4 ��c/�����y�)�y��� 4 ��c/��Õ��y�)�y���/���
given Þ�!@� .

If in the order of the parametric variables of the pBDD we have that ¼»��Ë¿��õ¸���Ë¿� , then in the graph resulting from the the unfolding of the pBox #=Õ�È , we have
that . ° 4 ©¦�¦��¼»��Ë ! 4 �	õ,¸���Ë
! 4 �
. ° 4 �7Þ ©R�B� 4 HwÞf��¼s� 4 �	õ,¼»�áÞF�
After the composition of the instances of the parametric graph of the pBox, the

resulting graph must be connected with the rest of the pBDD:. the edge(s) pointing the input interface of the pBox before the unfolding, are
redirected toward the root node of the graph resulting from the unfolding of
the pBox.

. All the edges pointing to the constant 1 in the graph resulting from the pBox
unfolding, are redirected toward the node pointed by the 1-edge of the pBox
before the unfolding. All the edges pointing to the constant 0 in the graph
resulting from the pBox unfolding, are redirected toward the node pointed
by the 0-edge of the pBox before the unfolding.

If we have to unfold a pBox having inner pBoxes, first, any inner pBox must
be unfolded, then the outer pBox can be unfolded. If we perform the unfolding of
the pBDD in Fig. 3.11, we obtain the BDD in Fig. 2.11.
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3.4.4 Related work on BDDs in compact form

In [62] a parametric version of BDD called Linearly Inductive BDD (LIBDD) has
been proposed, which resembles the pBDD introduced in this paper. The applica-
tion area is rather different but the basic idea (which allows to exploit symmetries)
is similar. The LIBDD have in general a more complex structure than the pBDD,
and contain cycles (because are used to represent linearly inductive Boolean func-
tions) but the unfolding semantics behind the two parametric BDD extensions is
very similar. The pBDD extension is powerful enough for our purposes and it is
amenable to a simpler analysis.

3.5 PFT analysis by means of pBDDs

Given a PFT model, we can derive from it the equivalent pBDD. The pBDD shown
in Fig. 3.11 is equivalent to the PFT model in Fig. 3.1.

Observing the pBDD in Fig. 3.11, we can note that the Boolean variables of
the pBDD correspond to a BEs having no parameters in the corresponding PFT. A
parametric Boolean variable of the pBDD corresponds to a BE whose parameter set
is not empty, or to a BRE of the PFT. The parameter set of a parametric variable in
the pBDD, is the same parameter set of the BE or BRE that the parametric variable
corresponds to.

The replication parameters of the pBoxes inside the pBDD, are the parameters
declared in the (B)REs inside the PFT. Such parameters maintain their type when
mapped from the PFT to the pBDD.

In this section, we show how it is possible to derive a pBDD from a PFT model.
The first step consists of ordering the BEs and the BREs of the PFT. Then, the
pBDD relative to the whole PFT, can be built by composing the pBDDs relative to
subtrees of the PFT.

After the creation of the complete pBDD, we can perform on it both the quan-
titative and qualitative analysis.

3.5.1 Restrictions on PFT models

The pBDD based methods for the analysis of PFTs, proposed in this chapter, can
be applied if some restrictions concerning the connection of events with gates, and
the use of parameters, are respected in the PFT model.

The restrictions on the ways to connect events with gates, are:
. the set of types of gate is limited to 'm�v���¦���=��- .
. °�c¬©�'�� ���������"-i�\p c . pf!��
. °h¨P©¦����°�cª©�'����9��������-=�Fcª© . ¨h� . ¨ !M'\cf-

This means that a (B)RE can be the input of only one gate, and a gate having a
(B)RE as input event, must not have other input events.
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The restrictions on the use of the parameters, are:
Given ¸�©A��� , the set Ó is defined in this way:

Ój!M'\c¬©R���Fc=©�Î\¸�� Ý «(¸ Ì ©Y���w�/c¬©�Î\¸ Ì � ¸ Ì Ý!jc��P¸ Ì Ý!1¸&�P¸ Ì ©¦Î\¸h-
The set Ó is the set of the events such that ¸ is reachable from them and there are
no other REs along the paths from the element of Ó and ¸ .
. °�¼�©�Ó ì 'm���ª�v�0�»- , the set of parameters of ¼ can be one of the following

sets:

– �h��¼���!_�h��¸��
– �h��¼���!_�h��¸(Ì ÌÅ����¸(Ì Ì?©A� �P�P¼�©®Î\¸FÌ Ì/�P¸(Ì Ì Ý!Û¸
– �h��¼���!jã

This means that the parameter set of a non replicator event ¼ included in Ó ,
must be the same of ¸ , or the same of another RE ¸¿Ì Ì such that ¸(Ì Ì is reachable
from ¼ (and from ¸ ), or the empty set.

. °�¼ ©,ÓÛ�R¼3©`'����®�¦�C� ��-i� the set of parameters of ¼ can be one of the
following sets:

– �h��¼���!_�h��¸��?���F��¼?�
– �h��¼���!_�h��¸(Ì ÌÅ�?�A�(��¼�����¸(Ì ÌÒ©Y���9�P¼®©®Î\¸(Ì Ì/� ¸FÌ Ì Ý!Û¸=�P¸FÌ Ì Ý!Û¼
– �h��¼���!s�F��¼?�

This means that the parameter set of a (B)RE ¼ included in Ó , must be the
same of ¸ with the addition of a new parameter ( �(��¼�� ), or the same of another
RE ¸(Ì Ì with the addition of a new parameter ( �F��¼?� ), such that ¸hÌ Ì is reachable
from ¼ (and from ¸ ), or the set composed only by �(��¼�� .

3.5.2 Ordering the PFT events

As we need to sort the BEs of a FT before generating the corresponding BDD, an
order for the BEs and the BREs of a PFT, must be set and must be respected during
the construction of the pBDD.

The events order influences the final dimensions of the pBDD. Several heuris-
tics were proposed in the literature [15, 72, 54] in order to reduce the size of the
BDD derived from a FT. For instance, the heuristic named H7 (section 2.4.3) sorts
the BEs by the decreasing number of their fanouts, i.e. the number of gates that a
single BE is input of.

This ordering policy may be useful in the construction of the pBDD corre-
sponding to a PFT model, but in a PFT, an event may be the input of several gates,
even though it has only one fanout. This is due to the presence of parameters. For
instance, in Fig. 3.1, the event Ö J has one fanout, but actually it is the input of
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several gates having
J N J � 4 � as output event, with 4 ranging over its type ×
� .

In other words, úÖ J belongs to several replicated subtrees represented in compact
form by one parametric subtree, in this case, the parametric subtree û#�Ó�� 4 � . So, we
need a way to determine, if a subtree is shared, i. e. it belongs to several replicated
subtrees.

Definition 2 Given ¼}©3���Û' K N
- , and ¸w©���� , Ð ¼ is shared by any replicated
subtree represented in compact form by Ð¸ , if �(��¸�� Ý©��h��¼�����¼�©®Î\¸ . Briefly, we say
that Ð¼ is shared by Ð¸ .

Our approach to sort the BEs together with the BREs of a PFT, is based on this
idea: given Ð ¼ shared by Ð ¸ , any event c Ì ©`Ð¼ must appear in the order before any
event c=�/cª©9Ð¸=�9c Ý©9Ð¼ .

To this aim, instead of directly sorting the B(R)Es of the PFT, we group them
in event classes and we sort the event classes. An event class is a set grouping the
B(R)Es with the same set of parameters. We indicate an event class in this way:

N�×�'��¯[)�t½t½t½)��� ß -r!M'\cª©R��� ���C� �����h��cl��!M'��¯[)�t½t½t½)��� ß -f-
If the restrictions on the use of parameters in the PFT (defined in section 3.5.1),

are respected, the following properties hold:

. °�c¬©9����������c\� Ý!$ã(��«�c Ì ©A���w�1�h��c\�"!_�h��c Ì �
. °�c¬©9�����0� Ý «�ctÌ�©9���t�h��c\��!u����ctÌÅ�

In other words, if the restrictions are respected, for each RE in the PFT we have an
event class collecting the BEs having the same parameter set of such RE. We have
also an event class for each BRE containing only such BRE. The BEs having no
parameters can be grouped in an event class concerning the empty set of parame-
ters: N�×�'f-&!­'\c�©®�0�w���h��c\��!jãF- . So, each B(R)E can be assigned to a specific
event class.

The event class N�×�'��Y[t�t½t½t½m��� ß - groups the B(R)Es having '��Y[)�t½t½t½)��� ß - as
parameter set; such events belong to the subtree Ð¸}��¸}©u� ���������£�v�h��¸¿��!'��¯[)�t½t½t½m��� ß - . We discover if a subtree is shared by several replicated subtrees, by
observing the set of parameters of its root event; such set must be the same as the
set of parameters of a RE or a BRE corresponding to an event class.

Since there is a correspondence between a (B)RE and an event class, ordering
the (B)REs means ordering the event classes. The (B)REs of the PFT can be sorted
by visiting the PFT. We perform a depth-first left-most visit of the PFT.

Initially, the order list is empty. When we visit the first (B)RE, such (B)RE
becomes the first and unique element of the current order. When we visit the suc-
cessive (B)RE ¼ , we verify by means of def. 2 if Ð¼ is shared by some Ð ¸��/¸9©�� � .
If Ð¼ is shared, we look in the order list, starting from the initial element, for the
first element ¸ such that Ð¼ is shared by Ð¸ , and we place ¼ just before ¸ in the order
list. If Ð ¼ is not shared by any subtree, ¼ is appended to the order list.
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When the visit of the PFT is complete, we have sorted all the (B)REs of the
PFT. The order of the event classes is given by N�×�'f- followed by the event classes
corresponding to the ordered (B)REs.

Inside each event class, it is possible to perform a further ordering based on
some heuristic; for instance, we can sort the event in an event class according to
the number of their fanouts.

At this point, we obtain the general ordering of the B(R)Es of the PFT, by the
concatenation of the ordered events inside the ordered event classes. If N�×ª[®õN�× É õ@½t½t½Òõ$N�×�¾ is the ordered list of the event classes, and c Ã [¬õjc Ã É õ�½t½t½ is
the ordered list of events inside the event class N�× Ã , the general order of the B(R)Es
of the PFT is given by c [�[ õ|c [ É&õ$½t½t½hõ|cmÉ [ õ|c)É�É=õj½t½t½hõ|c ¾F[ õ|c ¾ É&õ$½t½t½
3.5.3 The construction of the pBDD

The rules to build a BDD from a FT model, are still valid for the generation of
the pBDD corresponding to a PFT, but in the pBDD construction, we have also to
consider the presence of parameters and we have to create pBoxes.

Once the B(R)Es of the PFT have been ordered (section 3.5.2), we can create
and compose the subgraphs of the pBDD using the same rules used to obtain a
BDD from a FT:

. Given ¼¹©����ð�w����¼���!uã in the PFT, the pBDD corresponding to ¼ is� 4 ��c/��¼Y�)�y���/� with ¼�©AI .

. Given ¼®©R������������������¼���!M'��Ò[)�t½t½t½)��� ß -i� 6 ±j� (we can indicate such
event also as ¼s�!� [ �t½t½t½m��� ß � ) the pBDD corresponding to ¼s�!� [ �t½t½t½\��� ß � is� 4 ��c/��¼»�!�¯[)�t½t½t½m��� ß ���)�y���/� with ¼»�!�¯[t�t½t½t½\��� ß �¥© 	 I .

. Given ¸P©����Y�V��� and ¨ ©¦� such that ¸�©�¨ . and . ¨�!M')¼ [ �t½t½t½)��¼ ¾ -i�m��öw±²i� the pBDD equivalent to Ð¸ is given by the composition of the pBDDs
equivalent to x ¼ [ , x¼zÉ , ½t½t½)�Vx¼ ¾ . If �»�5¨��£!ó�=� , such composition can be
performed by means of eq. 2.13 and eq. 2.15. If ���5¨��
!­�v�®� , such com-
position can be performed by means of eq. 2.14 and eq. 2.16. In both cases,
the order of the B(R)Es of the PFT must be respected. Moreover, eq. 2.13,
2.14, 2.15 2.16 refer to the composition of BDDs, so the terms ���CÑ\��ñ in such
equations, refer to Boolean variables. If we use these equations to compose
pBDDs, the terms �h�CÑ\��ñ are still the root nodes of the pBDDs to be com-
posed, but �h�CÑ\��ñ can be Boolean variables, parametric Boolean variables or
pBoxes.

. Given ¸�©��0���P� � , ¨P©¦� and ¼®©A� �v�r����� such that ¸P©9¨ . , . ¨�!M')¼Ò- ,�(��¼��0!c� ä the pBDD � Ì equivalent to Ð¸ is given by the pBDD � equivalent
to Ð¼ with the addition of some pBoxes:

1. – if °��M©Á�¦��� ä ©s�h���?� then we create one pBox ÕÏ!Ï� í Ã ��#ªa=�
where

í Ã
is the input interface of Õ , and #ªao!Ê� is the internal
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parametric graph of Õ .
– if «(�M©j� �b� ä Ý©y�h����� then for each subgraph Ð z|©j� �b� ä ©�h��zF�¥�®°mz Ì © . z���� ä Ý©{�h��z Ì � , we create a pBox Õ ! � í Ã ��#�a=�

where
í Ã

is the input interface of Õ , and #ªa !oÐ z is the internal
parametric graph of Õ .

In both cases, �(��Õ��¥!�� ä (� ä maintains its type 
¯�!� ä � ), �»��Õ
�¥!1���5¨�� .
Due to the ordering policy of the PFT B(R)Es described in section
3.5.2, the following property holds:°^|P©9�®½ 	 I$�o� ä ©��h�X|�����°^|/Ì?©A|�ÎF��� ä ©��h�X|FÌá�
This happens because, every B(R)E � in Ð¼ such that � ä Ý©}�h����� , pre-
cedes in the order any B(R)E � Ì in Ð ¼ such that � ä ©��h��� Ì � .
Then, we have to redirect the edges of #ªa pointing to the constant �
and � :

– Each ���Ò�)�m��©,Õ ½ #�a�½~B�Ì¥�?�}©,ÕP½ #ªa�½ 	 I Ì �3�9©,ÕP½ K becomes���Ò�)� �¥©¦Õ ½ #�a�½~B Ì �f��©9ÕP½ #ªa�½ 	 I Ì ��� ©RÕP½ #ªa�½ �
– Each ���Ò���/��©,Õ ½ #�a�½~B Ì �?�}©,ÕP½ #ªa�½ 	 I Ì ���£©,ÕP½ K becomes���Ò��� �¥©¦Õ ½ #�a�½~BªÌ��f��©9ÕP½ #ªa�½ 	 I Ì ��� ©RÕP½ #ªa�½ �
Õ must be connected to the constant 1 and 0:

– ��ÕP�)�m�
©R�¦½~B is created.
– ��ÕP���/�
©R�¦½~B is created.

The edges pointing to z before the creation of the pBox Õ , must point
now to the input interface of Õ :

– each ���Ò��z(�G©R�®½~B¹�i��©R�®½ Eu�P��© . z becomes ���Y��Õ��	©R�¦½~B .
In this way, we have created � Ì from � .

2. Given the pBox Õ in the pBDD � Ì , ÕP½ #ªa may contain isomorphic
subgraphs and useless nodes (see section 2.4.2). In ÕP½ #ªa , isomorphic
subgraphs can be merged, while useless nodes can be deleted (section
2.4.2.

3. In the pBDD � Ì isomorphic pBoxes may be present; two pBoxes are
isomorphic if their internal parametric graphs are isomorphic. Isomor-
phic pBoxes can be merged: we maintain only one of the isomorphic
pBoxes, and we remove all the other ones. All the edges pointing the
removed pBoxes, are redirected toward the input interface of the main-
tained pBox. After the creation of the pBox, and the possible simpli-
fication of its internal parametric graph #ªa , #ªa is not modified any
more. Moreover, we deal with the pBox as it was a parametric Boolean
variable, even though it contains a graph.

4. In the pBDD � Ì useless nodes may be present: ��©YI£� 	 I£� 	 � is a
useless node if � . [�!M� . T . A useless node �zÌ can be deleted from the
pBDD � Ì in this way: each ���Ò��� Ì �G©¦� Ì ½~B becomes ���Y��� . [q� .

The pBDD relative to the whole PFT is the pBDD corresponding to úK N .
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3.5.4 Quantitative analysis on the pBDD

The quantitative analysis of a pBDD returns the probability of the TE (Unreliability
of the system) at a given time � . The quantitative analysis of the pBDD requires
first the quantitative analysis in isolation of each of the pBoxes. A pBox can be
analyzed only when the analysis of all its internal pBoxes has been completed.

When the analysis of a pBox has been completed, the pBox is replaced in the
pBDD by a Boolean variable with the same name and the same probability of the
pBox.

Analysis of a pBox

The quantitative analysis in isolation of the pBox Õ such that �F��Õ
�w!âË and
¯��Ë¿�"!1� , is performed in this way: first, we compute the probability of its internal
parametric graph ÕP½ #ªaj!c� 4 ��c/��¼s��Ë¿�����¥[y��Ë¿����� T ��Ë¿��� by means of eq. 3.3:

#&%('mÕ ½ #�aª- ! #=%F'�� 4 �UcF��¼s��Ë¿�����0[y��Ë¿����� T ��Ë¿���C-&!
! #=%F')¼Ò- ~ #&%('m�0[\��Ë¿�C-GI$�U�
��#=%F')¼»��Ë¿�C-l� ~ #&%('m� T ��Ë¿�C- (3.3)

In eq. 3.3, if ¼ replaces an inner pBox Õ
Ì of Õ such that its probability has been
previously computed, then #&%(')¼Ò-r!1#&%('mÕ Ì - . If instead ¼ refers to a B(R)E of the
PFT corresponding to the pBDD, #&%(')¼¯-P! �&�,clgfxåä {�ù 8 where ZY��¼�� is the failure
rate of the B(R)E ¼ according to a negative exponential distribution.

The probability #&%('mÕP½ #ªaª- concerns the parametric graph of the pBox Õ , but
it is not the probability of Õ . In other words, #&%('mÕ ½ #�aª- is the probability of one
instance of such parametric graph. In order to obtain the probability of the pBoxÕ , i. e. the probability of the graph resulting from the unfolding of Õ (section
3.4.3), we need to apply to #&%('mÕP½ #ªaª- an operator depending on the replication
operator associated with Õ ( ����Õ
� ):
. if ����Õ
�"!1�v�®� #&%('mÕ -v!1#&%('mÕP½ #ªaª-�� = x?>�x T {;{ � (3.4)

. if ����Õ
�"!j�&� #&%('mÕ�-v!$�
��#&%('mÕ ½ #�aª-i�\p 
¯� �mÕ
�tpÍ� (3.5)

where � is the recursive function defined in this way:

�
�!�Ò�)�m�n! �
�
�!�Ò� 4 Aj�m�ó! ��I$�U�
�A�����
�!�Ò� 4 �|�m� (3.6)

All the instances of Õ ½ #�a for �(��Õ�� ranging over 
¯� �(��Õ���� have the same prob-
ability #&%('mÕP½ #ªaª- . Moreover, any node of an instance of ÕP½ #ªa does not belong
to any other instance of ÕP½ #ªa .

So, eq. 3.4 can be explained in this way: if the instances of ÕP½ #ªa must be
composed according to the ����� relation, the probability of the resulting graph
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Figure 3.2: BDD with cascading nodes along the 1-edge.
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Figure 3.3: BDD with cascading nodes along the 0-edge.

is equivalent to the probability of the BDD shown in Fig. 3.2 and composed byp 
¯� �(��Õ
���tp cascading nodes along the 1-edge. Each of these nodes has probability#&%('mÕP½ #ªaª- . The probability of such BDD is given by eq. 3.4.
The meaning of eq. 3.4 is the following: if the instances of ÕP½ #ªa must be

composed according to the �=� relation, the probability of the resulting graph is
equivalent to the probability of the BDD shown in Fig. 3.3 and composed byp 
¯� �(��Õ
���tp cascading nodes along the 0-edge. Each of these nodes has probability#&%('mÕP½ #ªaª- . The probability of such BDD is given by eq. 3.5.

Analysis of the complete pBDD

When all the pBoxes in the pBDD have been analyzed and replaced by Boolean
variables, we obtain a pBDD containing no pBoxes; the analysis of such pBDD
can be performed by means of eq. 3.3 returning the final result, i. e. the probability
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of the TE at the given time � .
3.5.5 Qualitative analysis on the pBDD

The qualitative analysis of a pBDD returns the pMCSs (section 3.3) of the system.
The qualitative analysis of the pBDD requires first the qualitative analysis in iso-
lation of each of the pBoxes. A pBox can be analyzed when the analysis of all its
internal pBoxes has been completed.

When the analysis of a pBox has been completed, the pBox is replaced in the
pBDD by a Boolean variable with the same name and the same set of pMCSs of
the pBox.

Analysis of a pBox

The qualitative analysis in isolation of the pBox Õ such that �(��Õ��0!$Ë and 
¯��Ë¿�"!� , is performed in this way: first, we derive the pMCSs of its internal parametric
graph ÕP½ #ªaÁ!�� 4 �UcF��¼s��Ë¿�����0[f��Ë¿����� T ��Ë¿��� by means of eq. 3.7:

� J ×¬Ö
O Õ ½ #�a�Q^! � J ×¬Ö
O � 4 ��c/��¼s��Ë¿�����0[l��Ë¿����� T ��Ë¿���7Q?!
! ¼��£�!� J ×¬Ö	O �0[\��Ë¿�7Q��Y� J ×¬Ö
O � T ��Ë¿�7Q��Ò�
�^� J ×ªÖ	O � T ��Ë¿�7Q (3.7)

In eq. 3.7, if ¼ replaces an inner pBox Õ
Ì of Õ such that its pMCSs have been
previously derived, then � J ×¬Ö	O ¼hQ»!J� J ×ªÖ	O Õ Ì Q . If instead ¼ refers to a B(R)E
of the PFT corresponding to the pBDD, � J ×¬Ö	O ¼hQz!M')¼¯- .

The set � J ×¬Ö	O ÕP½ #ªavQ concerns the parametric graph of the pBox Õ , but it is
not the set of pMCSs of Õ . In other words, � J ×ªÖ	O ÕP½ #ªa�Q is the set of pMCSs
of one instance of such parametric graph. In order to obtain the set of pMCSs
of the pBox Õ , i. e. the pMCSs of the graph resulting from the unfolding of Õ
(section 3.4.3), we need to apply to � J ×¬Ö	O ÕP½ #ªavQ an operator depending on the
replication operator associated with Õ ( �»��Õ
� ):
. if ����Õ
�"!1�v�®�

� J ×ªÖ	O ÕªQ^! '�� J ×¬Ö	O ÕP½ #ªavQ�-��+� $*���!
! �ë È &%= x�>Cx T {;{

� J ×¬Ö	O ÕP½ #ªa���Ë¿�7Q (3.8)

where � indicates the Cartesian product.

. if ����Õ
�"!j�&�
� J ×ªÖ	O ÕªQ^! '�� J ×¬Ö	O ÕP½ #ªavQ�- � � $*���!

! é
ë È &%= x�>Cx T {;{

� J ×¬Ö	O ÕP½ #ªa���Ë¿�7Q (3.9)
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In eq. 3.8 and in eq. 3.9, � J ×ªÖ	O ÕP½ #ªa���Ë¿�7Q is the set of pMCSs of an instance ofÕP½ #ªa according to the value assigned to Ë .
Analysis of the complete pBDD

When all the pBoxes in the pBDD have been analyzed and replaced by Boolean
variables, we obtain a pBDD containing no pBoxes; the analysis of such pBDD
can be performed by means of eq. 3.7 returning the final result, i. e. the pMCSs of
the system.

3.5.6 Running example

Ordering of the events

Before the construction of the pBDD corresponding to the PFT in Fig. 3.1, we have
to sort its B(R)Es. According to the ordering policy proposed in section 3.5.2, we
create an event class corresponding to the parameter set of each (B)RE present in
the PFT, with the addition of an event class for the BEs having no parameters. The
(B)REs in the PFT in Fig. 3.1 are: #�Ó�� 4 ��� J � 4 �CË¿����Õ��
�áÞ(������� V � ; so, we have
these event classes: N�×�' 4 -i��N�×�' 4 �CË�-i��N�×�'�Þ�-i��N�×�' V -i��N�×�'f- . Then, we assign
each B(R)E to the relative event class:N�×�' 4 -r!­'m#�� 4 �C-N�×�' 4 �CË�-=!M' J � 4 �CË¿�C-N�×�'�Þ�-=!M'm�
�áÞF����Õ9�áÞ(�C-N�×�' V -l��!M'm��� V �C-N�×�'f-r!M'm�PÕ Ó&Ö�-

Now, we have to sort the event classes; this means ordering the (B)REs in the
PFT by means of a depth-first left-most visit of the PFT:

1. The first visited (B)RE is ��� V � , so the order list of the (B)RE is set to ��� V � .
2. The second visited (B)RE is #�Ó�� 4 � ; û#�Ó�� 4 � is not shared by ü��� V � , so we

append #�Ó�� 4 � in the order list:

��� V �Gõ|#�Ó�� 4 �
3. The third visited (B)RE is

J � 4 �CË¿� ; ûJ � 4 �CË¿� is shared neither by ü��� V � , nor
by û#�Ó�� 4 � , so we append

J � 4 �CË¿� in the order list:

��� V �Gõ`#�Ó�� 4 �Gõ J � 4 �CË¿�
4. The fourth and last visited (B)RE is Õ��
�áÞ(� ; ûÕ��
�áÞF� is shared by û#�Ó�� 4 � , so

we place Õ��
�áÞ(� before #�Ó�� 4 � in the order list:

��� V �Gõ|Õ��
�áÞ(�Gõ`#�Ó�� 4 �Gõ J � 4 �CË¿�
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DBUS

D(h)

PBh

h: C3={1, 2}
OR

1 0

Figure 3.4: The pBDD corresponding to ú�P� in the PFT in Fig. 3.1.

The order of the event classes is given by N�×�'f- followed by the event classes
corresponding to the ordered (B)REs:

N�×�'f-ªõ`N�×�' V -ªõ|N�×�'�Þ�-�õ`N�×�' 4 -�õ`N�×�' 4 �CË�-
In this example, every event class, with the exception of N�×�'�Þ�- , contains only one
B(R)E, so only the elements of N�×�'�Þ�- need to be ordered: �
�áÞ(�Gõ`Õ9�áÞF� .

The general order of the B(R)Es in the PFT, is given by the concatenation of
the B(R)Es inside the ordered event classes:

�PÕ�Ó=Ö3õ`��� V �Gõ`�
�áÞ(�Gõ`Õ9�áÞF�
õ`#�� 4 �	õ J � 4 �CË¿�
Building the pBDD

Once the B(R)Es of the PFT have been ordered, we can build the pBDD according
to the rules described in section 3.5.3. In this section, we describe some of the
steps necessary to build the pBDD corresponding to the PFT model in Fig. 3.1.

We begin with the construction of the pBDD relative to the subtree ú�P� . The
pBDD relative to the BE � Õ Ó&Ö is � 4 ��c/���PÕ�Ó=Ös�)�y���/� ; the pBDD relative to the
BRE ��� V � is � 4 ��c/����� V ���)�y���/� . The IE named

J Ö is the output of a gate of
type �&� having one input event: the BRE ��� V � . So, we have to create a pBox:
the pBDD corresponding to the subtree úJ Ö is � 4 ��c/��#¬Õqp��)�y���/� where #=Õ�p1!O ��� V ���)� ��� Qrp - l ] e jUk .

The pBDD relative to BE �PÕ Ó&Ö is � 4 �UcF��� Õ Ó=Ös�)�y���/� ; the composition of
such pBDD with the pBDD relative to the subtree úJ Ö by means of eq. 2.13,
provides the pBDD corresponding to the subtree ú�P� and shown in Fig. 3.4.

Let us consider now the construction of the pBDD for the subtree ú× J . Fig.
3.5 shows the pBDD for the subtree ûÕ��
�áÞF� . The RE named Õ��
�áÞ(� is the input
event of a gate of type �=� whose output event is Ö J . The pBDD for the subtreeúÖ J is shown in Fig. 3.6.

The pBDD relative to the subtree ûJ­J � 4 � is shown in Fig. 3.7. Since the eventJ N J � 4 � is the output of a gate of type �v��� having
J­J � 4 � and Ö J as input

events, in order to generate the pBDD relative to the subtree ûJ N J � 4 � , we need to
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R(j)

B(j)

1 0

Figure 3.5: The pBDD corresponding to ûÕ��
�áÞF� in the PFT in Fig. 3.1.

R(j)

B(j)

PBj

j: C2={1, 2}
AND

1 0

Figure 3.6: The pBDD corresponding to úÖ J in the PFT in Fig. 3.1.

compose the pBDD in Fig. 3.6 with the pBDD in Fig. 3.7, by means of eq. 2.14.
The resulting pBDD is shown in Fig. 3.8.

The pBDD for the BE named #�� 4 � is � 4 ��c/��#�� 4 ���)�y���/� . The event #�Ó�� 4 � is the
output of a gate of type �&� having #�� 4 � and

J N J � 4 � as input events. So, in
order to obtain the pBDD for the subtree û#�Ó�� 4 � , we have to compose the pBDD in
Fig. 3.8 with the pBDD relative to #�� 4 � . The result is shown in Fig. 3.9.

The event × J is the output of a gate of type �v��� having as unique input
event the RE named #�Ó�� 4 � . To obtain the pBDD for the subtree ú× J , we need
to create some pBoxes around several subgraphs of the pBDD in Fig. 3.9. The
resulting pBDD is shown in Fig. 3.10.

M(i,k)

PBk

k: C4={1,2,3}
AND

1 0

Figure 3.7: The pBDD corresponding to ûJ­J � 4 � in the PFT in Fig. 3.1.
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R(j)

B(j)

PBj

j: C2={1, 2}
AND

M(i,k)

PBk

k: C4={1,2,3}
AND

1 0

Figure 3.8: The pBDD corresponding to ûJ N J � 4 � in the PFT in Fig. 3.1.

R(j)

B(j)

P(i)

M(i,k)

PBk

k: C4={1,2,3}
AND

1 0

PBj

j: C2={1, 2}
AND

P(i)

Figure 3.9: The pBDD corresponding to û#�Ó�� 4 � in the PFT in Fig. 3.1.
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R(j)

B(j)

P(i)

M(i,k)

PBk

k:C4=
  {1,2,3}
AND

1 0

PBj

j: C2={1, 2}
AND

P(i)

PBi’’

i: C1={1, 2, 3}
AND

PBi’

i: C1=
   {1,2,3}
AND

Figure 3.10: The pBDD corresponding to ú× J in the PFT in Fig. 3.1.

Finally, the pBDD for the whole PFT ( úK N ) is obtained by composing the
pBDD in Fig. 3.4 with the pBDD in Fig. 3.10, by means of eq. 2.13. The re-
sulting final pBDD is shown in Fig. 3.11.

Quantitative analysis

In this section, we perform the quantitative analysis on the pBDD in Fig. 3.11 for
a mission time equal to �t�f�f�f� V . The failure rates of the BEs and BREs in the
PFT in Fig. 3.1 are indicated in Tab. 2.1. Such events are ruled by the negative
exponential distribution. These failure rates are used to compute the probabilities
of the Boolean variables and parametric Boolean variables in the pBDD in Fig.
3.11.

First, we have to analyze the pBoxes in isolation. We begin with the pBox #¬Õ�p
with �F��#¬Õqp/�"! V , 
¯� V �"!j×¬Ô=!M'/�y�C²F- , �»��#=Õqp/�"!Á�&� . We have that

#=Õqp�½ #ªaM!�� 4 ��c/����� V ���)� ��� �
We use eq. 3.3 to compute the probability of the parametric graph of #=Õ�p :

#=%F'm#¬ÕPp�½ #�aª- ! #=%F'm��� V �C- ~ ��I1�U�
��#=%F'm��� V �C-l� ~ �¬!1#&%('m��� V �C-=!
! �L��c x;e�� � T ù [ T9�1� {�ù [ T�T�T�T !1��½ �f� � �fÿ(�

Since �»��#=Õ�p/�"!j�&� the probability of the pBox #=Õ�p is given by eq. 3.5:

#&%('m#=Õqp(- ! �
��#&%('m#=Õqp�½ #ªaª-i�\pÍ×=Ô¿pÍ�¥!1�
����½ �f� � �fÿ(� �C²i�G!
! ��½ �f� � �fÿ(� Ij�U�
����½ �f� � �fÿ(� � ~ �
����½ �f� � �fÿ(� �)�m�	!
! ��½ �f� � �fÿ(� I,��½ �(� ²y�iÔf² ~ ��½ �f� � �fÿ(� !1��½ ��� þ(� � ² �
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Figure 3.11: The pBDD corresponding to the PFT model in Fig. 3.1.
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In the pBDD, we replace the pBox #=Õ�p with a Boolean variable with the same
name and the same probability.

We consider now the pBox #=Õ Ü with �F��#=Õ Ü �
!ÁÞ , 
¯�áÞF�v!Ê×=² !o'/�y�C²F- and����#=Õ Ü �"!1�v��� ; the parametric graph of #=Õ Ü is

#=Õ Ü ½ #�aÁ!�� 4 �UcF���
�áÞF���)� ��� 4 ��c/��Õ9�áÞF���)� ��� ���
We use eq. 3.3 to compute the probability of #=Õ Ü ½ #ªa :

#&%('m#=Õ	Üi½ #ªaª- ! #&%('m�
�áÞF�C- ~ �¥I1�U�
��#&%('m�
�áÞF�C-l� ~ ��#&%('mÕ9�áÞF�C- ~ ��I
�U�
��#&%('mÕ9�áÞF�C-l� ~ �/�"!

! ��½ �f�f�iÔ�� �
Since ����#=Õ	Ül�L!ò����� , the probability of the pBox #=ÕLÜ is computed by means
of eq. 3.4:

#&%('m#=Õ Ü -v!1#=%F'm#¬Õ Ü - � l É � !1��½ �f�f�iÔ�� � É !��y½ �i²fÔ � ² ~ �t� e^�
In the pBDD, we replace the pBox #=Õ�p with a Boolean variable with the same
name and the same probability.

We need to analyze the pBox #=Õ¬È before the analysis of #=Õ\�Ã , since #=Õ&È is
contained inside #=Õ �Ã . We have that �(��#=Õ&Èi��! Ë , 
¯��Ë¿��! × ý !^'/�y�C²(�CÔF- and����#=ÕrÈy�"!$����� . The parametric graph of #=Õ=È is

ÕvÈ/½ #ªaÁ!c� 4 ��c/� J � 4 �CË¿���)� ��� �
. By means of eq. 3.3, we compute the probability of Õ�Èi½ #ªa :

#&%('m#=ÕrÈ/½ #ªa�-r!1#&%(' J � 4 �CË¿�C- ~ �¥I$�U�
��#&%(' J � 4 �CË¿�C-l� ~ �¬!1��½ �f�f�i² �(�
Since �»��#=Õ&Èy�¦!u����� , the probability of #=Õ=È is computed by means of eq.
2.14:

#&%('m#=ÕrÈ/-r!1#&%('m#=ÕrÈ/½ #ªaª- � lmn � !1��½ �f�f�i² �(� ] !$²(½ ÿ(�(� � � ~ �t� e [�[
Inside the pBox #=Õ �Ã , we replace the pBox #=Õ�p with a Boolean variable with the
same name and the same probability.

Now, we can analyze the pBox #=Õ �Ã , since after this replacement, it does
not contain inner pBoxes. #=Õ �Ã has �(��#=Õ �Ã �¦! 4 , 
¯� 4 �R!Ï×
�w! '/�y�C²(�CÔF- and����#=Õ �Ã ��!1�v�®� . The parametric graph of #=Õ �Ã is now

#=Õ �Ã ½ #�aÁ!�� 4 �UcF��#�� 4 ���)� ��� 4 �UcF��#=ÕrÈ(�)� ��� ���
The probability of the parametric graph of #=Õ �Ã is computed using eq. 3.3:

#&%('m#=Õ �Ã ½ #ªaª- ! #&%('m#�� 4 �C- ~ �0I$�U�
��#&%('m#�� 4 �C-l� ~ ��#&%('m#=ÕrÈ/- ~ �
I��U�	��#&%('m#=ÕrÈ/-l� ~ �/�"!

! �	�dc�� ù [ T9�1� ù [ T�T�T�T ~ ��Ij�U�
�|�U�
�dc�� ù [ T9�(� ù [ T�T�T�T ��� ~~ ��²(½ ÿ(�(� � � ~ �t� e [�[ ~ ��I$�U�
��²(½ ÿ(�(� � � ~ �t� e [�[ � ~ �/�
! ��½ �f� ý �(� �
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Since �»��#=Õ��Ã ��!1�v��� , the probability of #¬Õ��Ã is computed using eq. 3.4:

#=%F'm#¬Õ �Ã -r!1#&%('m#=Õ �Ã ½ #ªa�-�� l [ �/!1��½ �f� ý �(� � ] !��y½ ² ý � ÿfÿ ~ �t� e^�
In the pBDD, we replace the pBox #¬Õ �Ã with a Boolean variable with the same
name and the same probability.

The last pBox to be analyzed in isolation is #=ÕL�Ã . #=ÕD�Ã has �(��#=ÕD�Ã �R! 4 ,
¯� 4 �"!j×
�L!M'/�y�C²(�CÔF- and ����#=Õ �Ã �"!1�v��� . The parametric graph of #=Õ �Ã is

Õ �Ã ½ #ªaM!�� 4 ��c/��#�� 4 ���)� ��� �
By means of eq. 3.3, we compute the probability of Õ �Ã ½ #�a :

#=%F'm#¬Õ �Ã ½ #ªa�-r!1#&%('m#�� 4 �C- ~ ��I$�U�
�d#&%('m#�� 4 �C-l� ~ ��!1��½ �f� ý �(� �
Since �»��#=Õ �Ã �"!1�v�®� , the probability of #¬Õ �Ã is computed by means of eq. 3.4:

#=%F'm#¬Õ �Ã -v!1#=%F'm#¬Õ �Ã ½ #ªa�- � l [ � !1��½ �f� ý �(� � ] !��y½ ² ý � ÿfÿ ~ �t� e [�[
Inside the pBDD, we replace the pBox #=Õ �Ã with a Boolean variable with the same
name and the same probability.

Now, in the pBDD, we have no pBoxes; the current pBDD is shown in Fig.
3.12. Its expression in � 4 ��c notation is

aÁ!Ê�!� 4 ��c/���PÕ�Ó=Ös�)�y��� 4 ��c/��#¬ÕPph�)�y��� 4 ��c/��#=Õ Ü ��� 4 ��c/��#=Õ �Ã �)�y���/����� 4 ��c/��#=Õ � �Ã ���������
We can compute the probability of the TE at time �R!n�t�f�f�f� V , on the current
pBDD, by means of eq. 3.3.

#=%F'�ú#¬Õ Ü - ! #&%('m#=Õ Ü - ~ #&%('m#=Õ �Ã -¥I$�U�
�d#&%('m#=Õ Ü -l� ~ #&%('m#=Õ �Ã -r!
! �y½ �i²fÔ � ² ~ �t� e^� ~ �y½ ² ý � ÿfÿ ~ �t� e^� I
I��U�L�`�y½ �i²fÔ � ² ~ �t� e^� � ~ �y½ ² ý � ÿfÿ ~ �t� e^� !

! �y½ ² ý � ÿfÿ ~ �t� e^�

#&%('yü#=Õqp/- ! #&%('m#=ÕqpF-GI$�U�
�d#&%('m#=Õqp(-l� ~ #&%(' ú#=Õ Ü -r!
! ��½ ��� þ(� � ² � I$�U�
�£��½ ��� þ(� � ² � � ~ �y½ ² ý � ÿfÿ ~ �t� e^� !
! ��½ ��� þ(� � ² �

#&%('laª- ! #&%('m�PÕ Ó&Ö�-¥I$�U�L��#&%('m� Õ Ó=Ö�-l� ~ #&%('yü#=Õqp(-v!
! ��½ �f�f�f��� �(�(�(� I$�U�L����½ �f�f�f��� �(�(�(� � ~ ��½ ��� þ(� � ² � !
! ��½ ��� þ(�(� ² þ

The last probability value we have obtained, is the probability of the TE at
time �r!º�t�f�f�f� V . It corresponds to the value computed at the same time, on the
ordinary BDD (Fig. 2.11) corresponding to the FT model in Fig. 2.3 (see section
2.4.6).
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Figure 3.12: The reduced pBDD after the analysis of the pBoxes.

Qualitative analysis

In this section, we perform the qualitative analysis on the pBDD in Fig. 3.11.
First, we have to analyze the pBoxes in isolation. We begin with the pBox #¬Õ�p

with �F��#¬Õqp/�"! V , 
¯� V �"!j×¬Ô=!M'/�y�C²F- and �»��#=Õqp(��!j�&� . We have that

#=Õqp�½ #ªaM!�� 4 ��c/����� V ���)� ��� �
We use eq. 3.7 to derive the pMCSs of the parametric graph of #=ÕDp :

� J ×¬Ö	O #=Õqp�½ #ªavQ�!M'm��� V �C-
Since �»��#=Õ�p/�"!j�&� the pMCSs of the pBox #=Õ�p are given by eq. 3.9:

� J ×¬Ö
O #=ÕqpmQ?!M'm��� V �C- l ]
In the pBDD, we replace the pBox #=Õ�p with a Boolean variable with the same
name and the same pMCSs.

We consider now the pBox #=Õ Ü with �F��#=Õ Ü �
!ÁÞ , 
¯�áÞF�v!Ê×=² !o'/�y�C²F- and����#=Õ	Ü\�"!1�v��� ; the parametric graph of #=ÕLÜ is

#=Õ Ü ½ #�aÁ!�� 4 �UcF���
�áÞF���)� ��� 4 ��c/��Õ9�áÞF���)� ��� ���
We use eq. 3.7 to derive the pMCSs of #=Õ�Üi½ #ªa :

� J ×¬Ö	O #=Õ Ü ½ #�a�Q�!M'm�
�áÞ(����Õ��áÞ(�C-
Since �»��#=Õ
Ü\�=!_�v��� , the pMCSs the pBox #=Õ
Ü are derived by means of eq.
3.8: � J ×¬Ö	O #¬Õ Ü Q�!M'm�
�áÞF����Õ9�áÞ(�C- l É
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In the pBDD, we replace the pBox #=Õ�p with a Boolean variable with the same
name and the same pMCSs.

We need to analyze the pBox #¬Õ=È before the analysis of #=Õ �Ã , since #=ÕrÈ is
contained inside #=Õ �Ã . We have that �F��#¬Õ&Èy��! Ë , 
¯��Ë¿��! × ý !^'/�y�C²(�CÔF- and�»��#=ÕrÈf��!1����� . The parametric graph of #¬Õ=È is

#=ÕrÈi½ #ªaM!�� 4 ��c/� J � 4 �CË¿���)� ��� �
By means of eq. 3.7, we obtain the pMCSs of Õ¬ÈF½ #ªa :

� J ×ªÖ	O #=ÕrÈi½ #ªavQ�!M' J � 4 �CË¿�C-
Since �»��#=Õ&Èy�0!1����� , the pMCSs of #=Õ&È are derived by means of eq. 3.8:

� J ×¬Ö	O #=ÕrÈ)Qz!M' J � 4 �CË¿�C- lmn
Inside the pBox #=Õ �Ã , we replace the pBox #=Õ�p with a Boolean variable with the
same name and the same pMCSs.

Now, we can analyze the pBox #=Õ �Ã , since after this replacement, it does
not contain inner pBoxes. #¬Õ �Ã has �(��#=Õ �Ã �R! 4 , 
¯� 4 �®!Ï×��d! '/�y�C²(�CÔF- and�»��#=Õ �Ã �"!$����� . The parametric graph of #=Õ �Ã is now

#¬Õ �Ã ½ #ªaÁ!�� 4 �UcF��#�� 4 ���)� ��� 4 ��c/��#=ÕrÈF�)� ��� ���
The pMCSs of the parametric graph of #=Õ �Ã are obtained using eq. 3.7:

� J ×ªÖ	O #=Õ �Ã ½ #ªavQ�!M'm#�� 4 ���q' J � 4 �CË¿�C- lmn -
Since �»��#=Õ �Ã ��!1�v��� , the pMCSs of #=Õ �Ã are derived using eq. 3.8:

� J ×¬Ö	O #¬Õ �Ã Qz!M'm#�� 4 ���q' J � 4 �CË¿�C- lmn - l [
In the pBDD, we replace the pBox #¬Õ �Ã with a Boolean variable with the same
name and the same pMCSs.

The last pBox to be analyzed in isolation is #=Õ �Ã . #=Õ �Ã has �(��#=Õ �Ã �R! 4 ,
¯� 4 �"!j×
�L!M'/�y�C²(�CÔF- and ����#=ÕD�Ã �"!1�v��� . The parametric graph of #=Õ\�Ã is

Õ �Ã ½ #ªaM!�� 4 ��c/��#�� 4 ���)� ��� �
By means of eq. 3.7, we obtain the pMCSs of ÕQ�Ã ½ #ªa :

� J ×¬Ö	O #¬Õ �Ã ½ #ªavQ�!M'm#�� 4 �C-
Since �»��#=Õ��Ã ��!1�v�®� , the pMCSs of #¬Õ��Ã are derived by means of eq. 2.14:

� J ×ªÖ	O #=Õ �Ã Q?!M'm#�� 4 �C- l [
Inside the pBDD, we replace the pBox #=Õ �Ã with a Boolean variable with the same
name and the same pMCSs.
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Now, in the pBDD, we have no pBoxes; the current pBDD is shown in Fig.
3.12. Its expression in � 4 �Uc notation is

aj!��!� 4 �UcF��� Õ Ó&Ö»�)�y��� 4 ��c/��#=Õqp¿�)�y��� 4 �UcF��#=Õ Ü ��� 4 �UcF��#=Õ �Ã �)�y���/����� 4 �UcF��#=Õ � �Ã ���������
We can compute the pMCSs of the whole system on the current pBDD, by means
of eq. 3.7.

� J ×ªÖ	O û#=Õ9�áÞF��Q^! � J ×¬Ö	O #¬Õ Ü Q(�£�!� J ×¬Ö	O #=Õ �Ã Qh�
��� J ×¬Ö
O #=Õ �Ã Q��¯��� J ×ªÖ	O #=Õ �Ã Qz!

! 'f'm�
�áÞF����Õ9�áÞ(�C- l É �£��'m# � 4 ���q' J � 4 �CË¿�C- lmn - l [ �
�r'm#�� 4 �C- l [ ���q'm#�� 4 �C- l [ -

� J ×¬Ö
O ü#=ÕqplQ^! � J ×¬Ö	O #¬ÕPp\Q(��� J ×ªÖ	O ú#=Õ Ü Q�!
! 'f'm��� V �C- l ] �q'm�
�áÞ(����Õ��áÞ(�C- l É ����'m#�� 4 ���q' J � 4 �CË¿�C- lmn - l [ �

'm#�� 4 �C- l [ ���q'm#�� 4 �C- l [ -

� J ×ªÖ	O a�Q¡! � J ×ªÖ	O �PÕ�Ó=ÖYQF��� J ×¬Ö	Oåü#¬ÕPplQz!
! 'm� Õ Ó&Ö»�q'm��� V �C- l ]f�q'm�
�áÞF����Õ9�áÞF�C- l É �
�	��'m#�� 4 ���q' J � 4 �CË¿�C- lmn - l [ � 'm#�� 4 �C- l [ ���q'm#�� 4 �C- l [ -

The last set of pMCSs is relative to the whole system. Some of the pMCSs
expressed in such form are not consistent with the definition of pMCS provided in
section 3.3 because a pMCS must collect a set of ordinary MCSs with the same
order and involving BEs concerning the same types of components.

In order to obtain the pMCSs in the correct form, we need to obtain a more ex-
plicit notation for the current pMCSs. This can be done by referring to the meaning
of the operators defined in eq. 3.8 and in eq. 3.9:

. � Õ Ó&Ö is the ordinary MCS number 3 (section 2.4.6).

. 'm��� V �C- l ] becomes ¤ ë p &(l ] ��� V � . Such pMCS collects the ordinary MCSs
number 1 and 2 (section 2.4.6).

. 'm�
�áÞ(����Õ��áÞ(�C- l É ����'m#�� 4 ���q' J � 4 �CË¿�C- lmn - l [ � 'm#�� 4 � l [ -&!!M'm�
�áÞF����Õ9�áÞF�C- l É �®'f'm#
�t#ª²y#¬Ô(��� ë x�� e R*e � { ' J �����CË¿�C-
lmn #���Ñt��#���ñ)���� ë x?� e R*e � { ' J �����CË¿�C-

lmn ' J ��Ñ\�CË¿�C- lmn #���ñ)���' J �U�y�CË¿�C- lmn ' J ��²(�CË¿�C- lmn ' J ��Ô(�CË¿�C- lmn -L�,'m#
�t#¬²y#¬ÔF-f-¬!!M'm�
�áÞF����Õ9�áÞF�C- l É �®'l� ë x?� e R*e � { ' J �����CË¿�C- lmn #���Ñt��#���ñ)���� ë x?� e R*e � { ' J �����CË¿�C- lmn ' J ��Ñ\�CË¿�C- lmn #���ñ)���
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' J �U�y�CË¿�C- lmn ' J ��²(�CË¿�C- lmn ' J ��Ô(�CË¿�C- lmn -r!!M'm�
�áÞ(����Õ��áÞ(�C- l É � ë x�� e R*e � { ' J �����CË¿�C- lmn #���Ñt��#���ñ)���'m�
�áÞF����Õ9�áÞF�C- l É � ë x�� e R*e � { ' J ���h�CË¿�C-
lmn ' J ��Ñ\�CË¿�C- lmn # ��ñt���'m�
�áÞF����Õ9�áÞF�C- l É ' J �U�y�CË¿�C- lmn ' J ��²(�CË¿�C- lmn ' J ��Ô(�CË¿�C- lmn

where ���CÑ\��ñ&©®× [ , and � Ý!$Ñ , � Ý!1ñ , Ñ Ý!1ñ .
– 'm�
�áÞF����Õ9�áÞF�C- l É � ë x?� e R*e � { ' J �����CË¿�C-

lmn #���Ñt��#���ñ)� becomes:

é
ë � e R*e ��&.l [ - �5�Ä R*e �.�Ä ��e R �Ä ��e ë � e $
&.l É - � �

Ä $ �
� E ��Õ9��c\�?�
]æ
È Ä [
J �����CË¿�?�P#���Ñt��#���ñ)�

Such pMCS is in correct form and collects the ordinary MCSs number
6, 7, 11, 12, 13, 14 (section 2.4.6).

é
ë � e R*e ��&.l [ - �5�Ä R*e �.�Ä ��e R �Ä ��e ë � e $
&.l É - � �

Ä $ �
� E ���
��c\�Y�
]æ
È Ä [
J �����CË¿�¯��#���Ñt��#���ñ)�

Such pMCS is in correct form and collects the ordinary MCSs number
8, 15, 16.

é
ë � e R*e ��&.l [ - �5�Ä R*e �.�Ä ��e R �Ä ��e ë � e $
&.l É - � �

Ä $ Õ9� E ��Õ���cl���
]æ
È Ä [
J ���h�CË¿��� #���Ñt��#���ñ)�

Such pMCS is in correct form and collects the ordinary MCSs number
5, 9, 10.

– 'm�
�áÞF����Õ9�áÞF�C- l É � ë x?� e R*e � { ' J �����CË¿�C-
lmn ' J ��Ñm�CË¿�C- lmn #���ñ)� becomes:

é
ë � e R*e ��&.l [ - �5�Ä R*e �.�Ä ��e R �Ä ��e ë � e $
&.l É - � �

Ä $ �
� E ��Õ9��c\���
]æ
È Ä [
J ���h�CË¿��� ]æ

È Ä [
J ��Ñ\�CË¿���»#���ñ)�

Such pMCS is in correct form and collects the ordinary MCSs number
18, 19, 22, 23, 26, 27.

é
ë � e R*e ��&.l [ - �5�Ä R*e �.�Ä ��e R �Ä ��e ë � e $
&.l É - � �

Ä $ �
� E ���
��c\���
]æ
È Ä [
J �����CË¿��� ]æ

È Ä [
J ��Ñ\�CË¿���»# ��ñt�

Such pMCS is in correct form and collects the ordinary MCSs number
20, 24, 28.

é
ë � e R*e ��&.l [ - �5�Ä R*e �.�Ä ��e R �Ä ��e ë � e $
&.l É - � �

Ä $ Õ9� E ��Õ���cl���
]æ
È Ä [
J ���h�CË¿��� ]æ

È Ä [
J ��Ñ\�CË¿���»#���ñ)�

Such pMCS is in correct form and collects the ordinary MCSs number
17, 21, 25.
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– 'm�
�áÞ(����Õ9�áÞF�C- l É ' J �U�y�CË¿�C- lmn ' J ��²(�CË¿�C- lmn ' J ��Ô(�CË¿�C- lmn
becomes:N ¤ ë � e $
&.l É - � �

Ä $ �
� E ��Õ9��c\� J �f� J �)² J �)Ô J ²fÔ J ÔfÔ J Ô�� J Ôf² J ÔfÔ
Such pMCS is in correct form and collects the ordinary MCSs
number 30, 31.N ���t�=² J �f� J �)² J �)Ô J ²fÔ J ÔfÔ J Ô�� J Ôf² J ÔfÔ
Such pMCS is in correct form and is the ordinary MCS number
32.N ���t�=² J �f� J �)² J �)Ô J ²fÔ J ÔfÔ J Ô�� J Ôf² J ÔfÔ
Such pMCS is in correct form and is the ordinary MCS number
31.

. 'm#�� 4 �C- l [ becomes #
�t#ª²y#¬Ô (ordinary MCS number 4).

3.5.7 Parametric form efficiency

In this section, we compare the FT model in Fig. 2.3 with the PFT model in Fig.
3.1; both models represent the failure mode of the Multiproc system described in
section 2.2.1. Moreover, we compare the BDD in Fig. 2.11 with the pBDD in Fig.
3.11, derived from the FT and the PFT model of the Multiproc system, respectively.
Such comparison shows the advantages of modelling redundant systems by means
of PFT models (and performing their analysis by means of pBDDs), in terms of
model size.

If we measure the model size as the number of events, the FT in Fig. 2.3 is
composed by 35 events (the TE, 15 IEs, 19 BEs), while the PFT in Fig. 3.1 is
composed by 15 events (the TE, 6 IEs, 2 REs, 4 BEs, 2 BREs); by means of the
parametric form, the model size is reduced in the second case. If we measure the
size of a (p)BDD as the number of nodes corresponding to (parametric) variables,
the BDD derived from the FT of the Multiproc system, is composed by 22 nodes,
while the pBDD derived from the PFT, is composed by 7 nodes. Thus, the size
reduction of the PFT with respect to the FT, is reflected to the pBDD with respect
to the BDD.

Such reduction becomes more evident if we increase the number of redundant
components or subsystems; such increase produces a combinatorial growth in the
number of events in the FT model and in the number of nodes in the corresponding
BDD.

The redundant parts of the system are: the processing units, the internal mem-
ories of each processing unit, the shared memories with the relative memory buses,
and the hard disks.

For the FT model, the number of events is given by the following formula:

�0Ij��ÔLI ø£�¯I$�U��I$� ý I ��� ~ í I1�U��I`Ô ~.� ���
This formula is the sum of the following addends:

. � takes in account the unique TE.



3.5. PFT ANALYSIS BY MEANS OF PBDDS 81

. ��ÔLI ø£� is the size of the subtree ú�P� , where ø is the number of disks.

. �U�ÒI,� ý I���� ~ í I,�U�ÒI£Ô ~o� ��� is the size of the subtree ú× J , where � is the
number of internal memories,

í
is the number of processing units, and

�
is

the number of shared memories (and of the corresponding memory buses).
The size of the subtree úÖ J is given by �U��I Ô ~(� � .

According to this formula and to the redundancy level, we can compute the size of
the FT model of the Multiproc system.

Since in the PFT all the redundant parts are folded in (B)REs, the size of the
PFT is given by the formula above assuming that ø ! � ! í ! � !¡� . This
means that the increase of the number of redundant parts in the system, does not
determine a variation of the size of the model. In order to model in the PFT, an
increase of the redundant parts, we have only to increase the cardinality of the
types associated with the parameters.

Let us concentrate now on the BDD and the pBDD. The number of nodes of
the BDD derived from the FT is given by this formula:

��I øðI,² ~(� I$���·I1�m� ~ í I í
where ø ,

�
,
í

and � have the same meaning as in the previous formula. Observing
the BDD in Fig. 2.11, the addends of this formula have this meaning:

. � takes into account the DBUS node at the root of the BDD.

. ø takes into account the subgraph composed by the nodes ���y����² ; in the
pBDD, this subgraph is folded in the pBox #=Õ�p .

. ² ~��
takes into account the subgraph composed by the nodes ���y��ÕP� , and

the subgraph composed by �=²(��Õ�² ; these subgraphs are folded in the pBox#=Õ Ü of the pBDD.

. ���BIò�m� ~ í takes into account the subgraph composed by the nodes #�� ,J �f� , J �)² , J �)Ô , the subgraph composed by the nodes #¬² , J ²�� , J ²f² ,J ²fÔ , and the subgraph composed by the nodes #ªÔ , J Ô�� , J Ôf² , J ÔfÔ ; in
the pBDD, these subgraphs are folded in the pBox #¬Õ �Ã containing the inner
pBox #=ÕrÈ .

. í takes into account the subgraph composed by the cascading nodes #
� , #ª² ,#¬Ô ; this subgraph is folded in the pBox #=ÕQ�Ã of the pBDD.

Due to the folded representation of the system redundancies, the size of the
pBDD can be computed by means of this formula assuming that ø !ò�ó! í !� !ð� . This means that the pBDD size is not dependent on the redundancy level.
Moreover, since the increase of the number of redundant parts does not determine
an increase of the PFT size, also the corresponding pBDD does not change its size.
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# proc. units FT size BDD size PFT size pBDD size
3 35 22 15 7
4 42 27 15 7
5 49 32 15 7
6 56 37 15 7
7 63 42 15 7
8 70 47 15 7
9 77 52 15 7

10 84 57 15 7
20 154 107 15 7
30 224 157 15 7
40 294 207 15 7
50 364 257 15 7

Table 3.2: FT, BDD, PFT and pBDD size according to the number of processing
units.

Tab. 3.2 shows how the size of the FT and of the BDD changes with respect to
an increasing number of processing units, assuming that every processing unit is
still composed by one processor and three internal memories, with the presence of
two shared memories and two disks.

3.6 PFT modularization

In this section, we extend the algorithm for the detection of modules [44], described
in section 2.5, in order to deal with PFT models too. In the case of PFTs, modules
can be still detected by means of such algorithm, but we have to add a further
condition in order to verify if an event is the root of a module.

The algorithm still consists of two depth-first left-most visit of the PFT: in the
first visit, we set the values of the variables �)[ , � É , ��� for each event; in the second
visit, we determine the values of the variables 694 ö 8 b and 6 �F¼ 8 � for each IE and
RE of the PFT (see section 2.5.2).

Then, we can detect the modules in this way: an event c Ì ©��0�®�v��� is the
root of the module Ðc Ì if all the following conditions involving its variables �m[ , � É ,694 ö 8 b and 6 �F¼ 8�� , hold:

.w694 ö 8 b A,��[
.w6 �/¼ 8�� H`� É
. °�c¬©��w�/c¬©�Îyc Ì ���h��c\�`���h��c Ì �

The third condition is specific of PFTs: it guarantees that Ðc Ì does not contain any
shared subtree.
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3.6.1 Running example

Instead of analyzing entirely the PFT model of the Multiproc system (Fig. 3.1), we
can perform its analysis by modularization (section 3.6). In this section, we limit
our attention on the modules detection on the PFT model of the system, according
to the PFT module definition provided in section 3.6. Fig. 3.13 shows all the
modules present in the PFT model; they are:úK N , ú�P� , úJ Ö , ú× J , ûJ­J � 4 � , úÖ J , ûÕ��
�áÞF� .
Each module is graphically indicated by a dashed line around it. The subtreesû#�Ó�� 4 � and ûJ N J � 4 � are not classified as modules because the subtree úÖ J is
shared by û#�Ó�� 4 � and ûJ N J � 4 � . So, the third condition indicated in section 3.6,
for a subtree to be a module, is not respected by û#�Ó�� 4 � and ûJ N J � 4 � .
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TE

CM

PU(i)
i: C1={1, 2, 3}

P(i)D(h)
h: C3={1, 2}

DBUS

DA

MM(i)

M(i, k)
k: C4={1, 2, 3}

MS

BR(j)
j: C2={1, 2}

R(j) B(j)

SM

MEM(i)

Figure 3.13: The modules in the PFT model of the Multiproc system.



Chapter 4

Petri Nets supporting DFT
Analysis

4.1 Introduction to Dynamic Fault Trees

In the FT and PFT models, some assumptions hold: component failure events are
assumed to be statistically independent, a component can be only in two states
(working or failed) and the relations among the events are expressed by means of
Boolean operators. All these assumptions allow to easily analyze both in qualitative
and quantitative terms, the system modelled as a FT or a PFT, by resorting to
efficient BDDs (section 2.4) or pBDDs (chapter 3).

At the same time, these assumptions are a relevant limit to the modelling power
of FTs and PFTs, since in these models we can not represent dependencies involv-
ing the failure events or the state of the components.

One of the FT evolutions proposed in the literature in order to increase the mod-
elling power of FTs, is called Dynamic Fault Tree (DFT) [39, 40, 70, 71, 110]. The
DFT formalism in an extension of the FT formalism, where a new class of gates
called dynamic gates, has been introduced. The dynamic gates model functional
dependencies, temporal dependencies and the presence of spare components. A de-
pendency arises in the failure process when the failure behaviour of a component
depends on the state of the system.

Due to the presence of dependencies in the model, the solution techniques used
for FTs, are not suitable to analyze the DFTs. While FTs are combinatorial models,
DFTs need the state space solution; this means generating all the possible system
states and stochastic transitions between states, according to the DFT model. In
other words, we need to obtain the Continuous Time Markov Chain (CTMC) [83,
100] of the system, from the DFT model.

Generating the CTMC directly from a DFT, may not be so straightforward,
while efficient techniques to generate the CTMC from a Generalized Stochastic
Petri Net (GSPN) [1] are already available and are implemented in several tools,
such as GreatSPN [26]. So, an alternative way to perform the state space solu-

85
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tion of a DFT, consists of converting the DFT to the equivalent GSPN; then, the
CTMC can be generated from the GSPN, and the Unreliability of the system can
be computed on the CTMC.

In this chapter, we present a method to convert a DFT model in a GSPN [30].
The conversion of DFTs in GSPNs can be classified as a model-to-model trans-
formation [36, 68], and can be expressed by means of graph transformation rules
[3, 6, 49, 50].

4.2 Dynamic gates semantic

While Boolean gates indicate Boolean relations among the events, dynamic gates
establish some kind of dependency among the events. Dynamic gates differ from
Boolean gates also for other aspects:

. some dynamic gates have no input and output events, but they have trigger
and dependent events;

. the input or dependent events of dynamic gates may be ordered: in this case,
an order number is assigned to each of the arcs connecting the dynamic gate
to its input or dependent events.

The arcs of a DFT are oriented: the arcs touching the Boolean gates have the
same orientation adopted in FTs and PFTs; the orientation of the arcs touching the
dynamic gates depends on the type of the gate.

The description of every dynamic gate follows:

. Functional Dependency Gate ( �=�PN¬# ) (Fig. 4.2.a): a gate ¨ of type �=�PN¬#
is connected to one trigger event � by means of the arc ���F�U¨�� , and to a set
of ö ( ö,±Ê� ) dependent events

E [ , ½t½t½ , E ¾ by means of the arcs �5¨h� E [ � , ½t½t½ ,�5¨h� E ¾h� . When � fails,
E [ , ½t½t½ , E ¾ are forced to fail. � ,

E [ , ½t½t½ , E ¾ can be BEs
or IEs.

. Priority And ( #=�v�®� ) (Fig. 4.2.b): a gate ¨ of type #=����� is connected to
the input events ¼Y[ , ½t½t½ , ¼�¾ ( ö�±|² ) by means of the arcs ��¼Y[t�U¨�� , ½t½t½ , ��¼�¾h�U¨�� ,
and to the output event ¸ by means of the arc �5¨h��¸¿� . If we indicate with �s��¸��
the Boolean value of ¸ , �s��¸¿�"!Û��%y�zc if both the following conditions hold:

– Â ¾ÃÅÄ [ ¼ Ã !Û��%y��c
– ¼ [ �t½t½t½)��¼ ¾ occurred in this order: ¼ [ õ,¼�Érõ$½t½t½zõ,¼ ¾ .

The order of ¼Ò[)�t½t½t½)��¼�¾ is given by an order number ( �y�t½t½t½m��ö ) assigned to
each of the arcs ��¼Ò[)�U¨�� , ½t½t½ , ��¼h¾��U¨�� . ¼¯[t�t½t½t½\��¼h¾ can be BEs or IEs. ¸ must
be an IE.

. Sequence Enforcing Gate ( Ö»ND� ) (Fig. 4.2.c): given a set of ö ( ö ±+² )
events ¼Ò[ , ½t½t½ , ¼h¾ connected to a gate of type Ö»N�� , ¼s[ , ½t½t½ , ¼�¾ are forced



4.2. DYNAMIC GATES SEMANTIC 87

to fail in a specific order: ¼s[&õj¼ É õ@½t½t½Òõ$¼�¾ . We can classify ¼ É , ½t½t½/¼�¾
as dependent events since each of them can occur only after the failure of its
predecessor in the order; ¼s[ instead has no predecessor, so it is independent;
in a sense, ¼Ò[ works as the trigger of this gate since its occurrence enables
the occurrence of the successive events in the order. For this reason, in our
notation, we connect ¼ [ to a gate ¨ of type Ö»N�� by means of the arc ��¼ [ �U¨��
having order number � , while we connect ¨ to ¼ Ã ( 4 ±¹² ) by means of the
arcs �5¨h��¼ Ã � having order number 4 . We assume that the ”trigger” event and
the dependent events of a gate of type Ö�ND� , can be only BEs.

. Warm Spare Gate (WSP) (Fig. 4.2.d): this gate models the presence of a
main component 6 and a set of spare components � [t�t½t½t½m� �mß ( 6 ±j� ) with
the aim of replacing 6 in its function, if 6 fails. � [ �t½t½t½m� � ß are called
”warm” spare components because they can be in three states instead of two:
dormant (or stand-by), working, failed (Fig. 4.1).

A spare is initially dormant and it turns to the working state if it has to
replace the main component; at the same time, a spare may fail both in the
dormant and in the working state; the spare failure rate changes depending
on its current state: if the failure rate of the spare � Ã is ZY� � Ã � in the working
state, �¥� � Ã ��ZÒ� � Ã � is its failure rate in the dormant state, with � HJ�¥� � Ã �
HM� ;�¥� � Ã � is the dormancy factor of the spare � Ã , and its aim is to express the fact
that spares have a reduced failure probability during the dormancy period. If
the working spare � Ã fails, 6 is replaced by the spare � Ã < [ instead of � Ã .
The input events of a gate ¨ of type ï@Ö»# are the BEs 6 � � [t�t½t½t½m� �mß mod-
elling the failure of the main component and the failure of the spares. The
input event 6 is connected to ¨ by means of the arc � 6 �U¨�� , while the input
event � Ã is connected to ¨ by means of the arc � � Ã �U¨�� . The input event 6
is distinguished from the other ones by assigning an order number � to the
arc � 6 �U¨�� . � [t�t½t½t½\� �)ß must be ordered; the arc � � Ã �U¨�� has order number 4
( �=* 4 * 6 ).

If the IE ¸ is the output event of ¨ of type ï@Ö»# , ¸ is connected to ¨ by
means of the arc �5¨h��¸¿� . If we indicate with �Y��¸¿� the Boolean value of ¸ ,

�Y��¸¿�"! 6 � ¾æÃáÄ [
� Ã

We assume that the input events � [ , ½t½t½ , �mß of a gate of type ï@Ö»# , can not
be the dependent events of a gate of type Ö»N�� .

Two alternative versions of this gate exist:

– Cold Spare gate (CSP): ° � Ã �
�¥� � Ã �"!$�
In this version of the gate, the spares can not fail during the dormancy
period.
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DORMANT WORKING

FAILED

λ(M)

λ(S)α(S)λ(S)

Figure 4.1: State space representation of the dependency of the spare Ö on the main
component

J
.

– Hot Spare gate (HSP): ° � Ã �
��� � Ã �"!@�
In this version of the gate, the failure rate of the spares is the same both
in the dormancy period and in the working period.
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1
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Figure 4.2: Dynamic gates: (a) FDEP, (b) PAND, (c) SEQ, (d) WSP.

An example of DFT model is shown in Fig. 4.4.

4.3 DFT formalism definition

The DFT formalism is given by the tupleB �
� !����0�C�0���P�C� � �U�Y�����
�0�����
where

. �w!Á�����
�0����' K N
- is the set of the events in the DFT; it is the union of
the following sets:

– ��� is the set of the BEs;

– ��� is the set of the IEs;

– {TE} is the set composed by the unique TE.

. �o Á���3¢¦����¤R��� ¢��s� is the set of the arcs.

. � � !1�G�9�+B�� is the set of types of gate. It is the union of two sets:



4.3. DFT FORMALISM DEFINITION 89

– �¥�£!M'm�v���¦���=��- is the set of Boolean gate types.

– B��·!n'm#=�v�®�®���=�PN¬#	��Ö»N�����ï@Ö»#�- is the set of Dynamic gate
types (described in section 4.2).

. �®�(��§�� � is the function assigning to each gate its type.

. ���i�Ê§B³ " is the function returning the order number of an arc.

. Given ¨P©¦�3�y���5¨��	©R�G�9� �»�5¨��"!1#=�v�®��� ���5¨��0!jï@Ö»# ,

– . ¨�!M'\cª©9����«?��cf�U¨��
©9� - is the set of input events of ¨ ( p . ¨?p�±|² );
– ¨ . !M'\cª©9����«?�5¨h�Cc\�
©9� - is the output event of ¨ ( p ¨ . pi!@� ).

. Given ¨P©¦�3�y���5¨��0!1�¬� Nª#}� �»�5¨��0!jÖ»N�� ,

– . ¨�!M'\cª©9�¦�,' K N�-¬��«?��cf�U¨��
©9� - is the trigger event of ¨ ( p . ¨�pi!� );
– ¨ . !@'\c�©R�®�,' K N�-���«?�5¨h�Ccl�	©¦��- is the set of dependent events of¨ ( p ¨ . p�±Á� ).

. Given ¨P©¦�3�y���5¨��0!jï@Ö»# ,

– ..  ¨R!_'\cP©��0�}�z«?��ci�U¨��=©�� �^�"��cf�U¨��v!��(- is the input event of ¨
relative to the main component ( p .�  ¨�p/!@� );

– ..¡ ¨
!M'\c¬©R�¦� ' K N
-¬�(«?��ci�U¨��	©9�¹���"��cf�U¨��
A`�(- is the set of input
events of ¨ relative to the spare components ( p .t¡ ¨?p�±j� ).

– . ¨�! .   ¨r� . ¡ ¨ .
. Given c
©�� , . c�!ò't¨�©��}�h«?�5¨h�Cc\�&©���-ª! . j c	� . i c is the set of gates

having c as output event or dependent event; it is the union of

– . j c�!o't¨£©3�Û�»�5�»�5¨��¬©d�G�®�9�»�5¨���!Ê#=�����¹�9�»�5¨��v!òï@Ö»#��Y�«?�5¨h�Ccl�	©9� - is the set of gates having c as output event.

– . i c=!Ê't¨¦©��`���5���5¨��	!j�¬� Nª#1���»�5¨��G!­Ö»ND�ª�Ò�¦«¯�5¨h�Cc\��©���- is
the set of gates having c as dependent event.

c . !º't¨,©}�­�s«?��ci�U¨���©,��-9!·c .5¢ �"c .�£ is the set of gates having c as
input event or trigger event; it is the union of

– c .5¢ !·'t¨d©3�Á���5�»�5¨���©3�¥���R�»�5¨��r!¹#=�v�®�¹�R���5¨��r!oï@Ö»#��Y�«?��ci�U¨��	©9� - is the set of gates having c as input event.

– c .�£ !Ê't¨®©£�|���5���5¨��	!­�=�PN¬#Û���»�5¨��	!@Ö»N��¬�Y�¦«?��ci�U¨��v©���- is
the set of gates having c as trigger event.

. The following conditions about the connection of events with gates, must
hold:
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– °?c¬©9���"�\p . j c(pi!1�
– °?c¬©9���"�\p . i c(p�±`�
– °?c¬©9���"�\p c .5¢ ptIjp c .�£ p(±j�
– °?c¬©����"�\p . j c(pi!@�
– °?c¬©����"�\p . i cFp�±`�
– °?c¬©����"�\p c . ¢ p)Ijp c . £ p�±j�
– p . j K NPp/!@�
– p . i K NPp(±|�
– p K N . pf!$�

. Given ¨�©R�3�f�»�5¨��"!jÖ»N�� , we assume that

– °?c¬© . ¨h�Cc�©R���
– °?c¬©P¨ . �Cc�©R���
– °?c¬©P¨ . � Ý «F¨ ©¦�3�i�»�5¨��"!Áï­Ö�#}�9c=© ..¤ ¨

. ZR�i����§B³ µ < is the function assigning to each BE a failure rate.

. �Ê�����j§ �����)�m� is the function assigning to a BE connected to a gate of
type ï@Ö»# , a dormancy factor.

. �����w§ ³ ¶1!Ê')��%y�zcf�CD�� 2�� cf- is the function returning the Boolean value of
an event (Boolean variable).

. Given c¬©9� , Îycr!M'\c Ì ©9����«?OÍc Ì §ÏctQ�- .
. Given cª©�� , Ð c is composed by any OÍÑG§ÏcqQÒ�FÑv©R���¬���C� � (Ð c indicates the

subtree rooted in c ).
4.3.1 Running example

In this section, we extend the example of the Multiproc system introduced in sec-
tion 2.2.1, by the addition of dependencies among some components in the system.
This justifies the use of the DFT formalism to model the failure mode of the sys-
tem. First, a description of the new version of the Multiproc system is provided,
then its DFT model is presented.

System description

The system is mainly composed by three processing units ( #�Ó�� , #�Ór² , #�Ó&Ô ), two
spare memories ( ��� , �=² ), a primary ( �®� ) and a backup disk ( �P² ). The scheme
of the system is shown in Fig. 4.3. Each processing unit is composed by one
processor and one internal memory. In the case of #�Ó�� , they are indicated by #
�
and

J � respectively.
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Figure 4.3: The scheme of the Multiproc system with dependencies.

Both spare memories are connected to the processing units by means of the
memory bus Õ , and they can replace any internal memory if it fails. A spare
memory can be in one of these three states: dormant, working, failed. A spare
memory is in the dormant state (stand-by), while it is not replacing any internal
memory; a spare memory is working while it is replacing an internal memory;
from both the dormant and the working state, a spare memory can turn to the failed
state. The failure rate of a spare memory changes according to its current state.

The processing units share the common primary hard disk ��� , while ��² is the
backup disk and contains the backup of the data contained in ��� . In the system,
there is a particular device named Õ�� with the aim of performing the periodical
update of ��² . Initially, the processing units access ��� to store and retrieve their
data, while ��² is only periodically accessed by Õ�� for the update operations; so
we assume that in this situation, �P² can not fail. If �®� fails, the processing units
access ��² to read or write data instead of �®� ; from this moment, �P² can fail and
its failure rate is equal to the failure rate of ��� . Both ��� and ��² can be accessed
by the processing units, through the disk bus � Õ Ó=Ö .

The failure mode of the system

The correct functioning of at least one processing unit is required for the system
to be working; so, the failure of all the processing units causes the whole system
failure. A processing unit fails in two cases: if its processor fails, or if its internal
memory fails and there are no available spare memories to replace it. A spare
memory is available to replacement if it is not failed and it is not already replacing
another internal memory. Moreover, the spare memories functionally depend on
the memory bus Õ ; so, if Õ fails the spare memories cannot be accessed by the
processing units, and this has the same effect of the contemporary failure of the
spare memories.

Another cause of failure of the system, is the compromised access to the hard
disks; this happens in three cases: the failure of the disk bus �PÕ Ó&Ö , the failure
of both ��� and �P² , and the failure of Õ�� . The failure of �PÕ Ó&Ö prevents the
access to both hard disks by the processing units; the failure of both disks prevents
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Component Failure rate ( Z ) Dormancy factor ( � )
Processor 5.0E-7

V e [
Disk 8.0E-7

V e [
Memory 3.0E-8

V e [ 0.1
Bus 2.0E-9

V e [
Backup Device 7.0E-8

V e [

Table 4.1: The failure rate for each type of component.

the storing and the retrieving of the data by the processing units; the failure of Õ��
prevents the update of ��² while �®� is not yet failed.

The failure of Õ�� is relevant only if it happens before the failure of ��� . In
this case, when �®� fails and is replaced by �P² , this one is not updated, due to
the previous failure of Õ�� . If instead Õ�� fails after the failure of �®� , the update
operation is no more necessary since the processing units access �P² instead of �®� .
So, in this case, the failure of Õ�� has no negative effect on the correct functioning
of the system.

The time to fail of the components is a random variable obeying to the nega-
tive exponential distribution; Tab. 4.1 indicates the failure rate (and the dormancy
factor) for each type of component.

The DFT model of the system

The DFT model in Fig. 4.4 represents the failure mode of the system described
in section 4.3.1. In this DFT, the

K N is caused by the compromised access to the
hard disks or by the failure of all the processing units, so

K N is the output of a
gate of type �&� whose input events are � � and × J representing the

K N causes
respectively.

The IE named � � is the output of an �&� gate whose input events are �PÕ Ó&Ö ,Ór#=� ,
J Ö representing the failure of the disk bus, the failed update of the backup

disk, and the failure of both disks, respectively. The event Ór#=� is the output of
a gate of type #=�v��� whose ordered input events are Õ�� and ��� , representing
the failure of the primary disk and the failure of the device dedicated to the update
operations, respectively. So, Óv#=� occurs when both Õ�� and �®� have occurred,
and if Õ�� occurred before ��� . The failure of the primary disk is represented by
the BE �®� , while the failure of the backup disk is represented by the BE �P² . Since��² can not fail before the failure of �®� , �®� and ��² are connected to a gate of typeÖ»N�� by means of an arc with order number 1, and by means of an arc with order
number 2, respectively. In this way, we indicate the order of failure ( ����õ­��² ).
The event

J Ö is the output of a gate of type ����� with �®� and ��² as input
events.

The event × J indicates the failure of all the processing units, so it is the output
of a gate of type ����� having the events #�Ó�� , #�Ó&² , #�Ó&Ô as input events. Each
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of these input events represents the failure of one of the processing units. The event#�Ó�� is the output of a gate of type �=� whose input events are #
� and
J N J � ;#
� is a BE modelling the failure of the processor, while

J N J � represents the
failure of the internal memory and the contemporary impossibility of the failed
internal memory to be replaced by any spare memory.

J N J � is the output of a
gate of type ï­Ö�# having as input events

J � , ��� , �=² . J � is the BE relative to
the internal memory and is connected to the gate by means of an arc whose order
number is 0 to indicate that

J � is the main component of the gate. ��� and �=²
are the BEs relative to the spare memories and are connected to the ï­Ö�# gate by
means of an arc with order number 1, and by means of an arc with order number
2, respectively; in this way, we indicate that ��� and �=² are spare components,
and ��� must be used before �=² to replace

J � , if ��� is available, i. e. ��� is not
already replacing another main component, and is not already failed.

The failure of #�Ór² and #�Ó&Ô is modelled in the DFT in a similar way. The
BEs ��� and �=² are connected also to other two gates of type ï@Ö»# , since ���
and �=² can replace also the internal memories of the other processing units. The
functional dependency of the spare memories on the memory bus is modelled by
a gate of type �=�PN¬# having the BE Õ as trigger event, ��� and �=² as dependent
events.

The failure rates (and the dormancy factors) of the BEs relative to the compo-
nent of the system, are indicated in Tab. 4.1. The events in the DFT model and the
corresponding components and subsystems, are summarized in Tab. 4.2.

4.4 Introduction to GSPN

GSPNs are an extension of the Petri Nets, characterized by the presence of two
types of transitions: immediate transitions and timed transitions. Immediate tran-
sitions fire as soon as are enabled, while the firing of timed transitions is delayed of
a period of time whose duration is a random variable ruled by a negative exponen-
tial distribution whose parameter is the firing rate assigned to the timed transition.
Immediate transitions are graphically represented by black rectangles, while timed
transitions are represented by white rectangles.

The primitives of the GSPN formalism are: places, transitions and arcs.
As in ordinary Petri Nets, the places of a GSPN contain a discrete number of

tokens; the marking of a certain place is the number of tokens inside that place.
A place is graphically represented as a circle. In a GSPN, the current state of
the system is modelled by the current net marking, i. e. the number of tokens in
each place of the net. Transitions are used to model the system state transitions;
a transition is enabled when a certain net marking holds, and when the transition
fires, some tokens are moved from a place to another changing the net marking, so
the system state.

In GSPNs we have also two types of arcs: oriented arcs and inhibitor arcs.
Oriented arcs are used to connect places to transitions and vice-versa, with the aim
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Figure 4.4: The DFT model for the Multiproc system.
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Event Component / Subsystem�P� Disk Access�PÕ Ó&Ö Disk BusÓv#=� Backup disk UpdateÕ�� Device for the Backup Disk updateJ Ö Mass Storage�®� Primary Disk�P² Backup Disk× J Computing module#�Ó�� Processing Unit 1#
� Processor of the Processing Unit 1J N J � Memory access of the Processing Unit 1J � Internal Memory of the Processing Unit 1#�Ó&² Processing Unit 2#¬² Processor of the Processing Unit 2J N J ² Memory access of the Processing Unit 2J ² Internal Memory Module of the Processing Unit 2#�Ó&Ô Processing Unit 3#¬Ô Processor of the Processing Unit 3J N J Ô Memory access of the Processing Unit 3J Ô Internal Memory Module of the Processing Unit 3��� Spare Memory 1�=² Spare Memory 2Õ Memory Bus

Table 4.2: Correspondence between the events and the components or subsystems.
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of moving tokens when transitions fire. Inhibitor arcs connect a place to a transition
with the aim of disabling the transition if the place is not empty. A cardinality can
be associated to an arc; in the case of oriented arcs, the cardinality indicates the
number of tokens to be moved on that arc when the transition fires; in the case
of inhibitor arcs, the cardinality indicates the number of tokens inside the place,
necessary to disable the transition.

In a GSPN, two or more immediate transitions may be enabled at the same
time; in this case, weights and priorities can be used to rule the firing of such
transitions. A weight and/or a priority can be assigned to an immediate transition.
Using weights, given several immediate transitions enabled to fire, higher is the
weight of a transition, higher is its probability to fire. Using priorities, given several
immediate transitions enabled to fire, the transition with highest priority fires.

4.4.1 GSPN analysis

The analysis of a GSPN is performed on the corresponding CTMC; the GSPN
analysis provides measures such as the probability of a certain marking of place or
the throughput of a transition. The analysis of a GSPN can be transient or steady-
state; in the first case, the measures are computed at a given finite time � ; in the
second case they are computed for �"!jI�¥ .

In order to obtain the CTMC corresponding to a GSPN, first the reachability
graph is generated. The reachability graph expresses all the possible markings of
the GSPN, which are reachable from the initial marking through the firing of tran-
sitions. In the reachability graph, we distinguish between vanishing markings and
tangible markings. A vanishing marking enables one or more immediate transi-
tions to fire; a tangible marking enables the firing of one or more timed transitions,
and of no immediate transitions. By reducing the reachability graph to contain
only tangible markings, we obtain the CTMC corresponding to the GSPN, where a
state is given by a marking, while a state transition is given by the firing of a timed
transition. The rates associated with the state transitions are the firing rates of the
timed transitions in the GSPN.

The measures returned by the GSPN analysis, can be obtained also by means
of GSPN simulation. The use of simulation instead of analysis, is useful when
the number of states (and state transitions) in the CTMC, is very high. In this
situation, the analysis becomes computationally expensive, or even unfeasible. The
GreatSPN tool [26] allows to draw, analyze and simulate GSPNs.

Further information on the GSPN formalism, analysis and simulation, can be
found in [1].

4.4.2 GSPN formal definition

The GSPN formalism is given by the tuplea=Ö�#=�^!���#	� K ���ª� 6 ��Z?��¦ª��à»��ñq�/% E �
where
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. # is the set of the places.

. K ! K Ã � K 8 is the set of the transitions; it is the union of two sets:

–
K Ã

is the set of the immediate transitions;

–
K 8 is the set of timed transitions.

. � is the set of arcs; it is the union of two sets:

– � �  Á��#Ê¢
K �¯��� K ¢R#�� is the set of the oriented arcs;

– �Pp� `#Ê¢ K is the set of the inhibitor arcs.

.36 �i#­§u³ " is the function returning the marking of a place.

. ZR� K 8 §u³ µ < is the function returning the firing rate of a timed transition.

. ¦­� K Ã §B³ µ < is the function returning the weight of an immediate transition.

. à­� K Ã § ³ "­�1'm�(- is the function returning the priority of an immediate
transition.

. ñq�/% E �/�1§�³ "Û�3'm�(- is the function returning the cardinality of an arc.

. Given �¥© K
– . � ��!+'��M©$#���«?�!�Y�����P©j� � - is the set of the places such that an

oriented arc is drawn between each of them and � . Such places are
referred as input places.

– � . � !M'��®©R#ò�F«?���X�����¥©R� � - is the set of places such that an oriented
arc is drawn between � and each of them. Such places are referred as
output places.

– . py�"!M'���©R#Ê�F«?�!�Ò�����G©R�Pp(- is the set of places such that an inhibitor
arc is drawn between each of them and � . Such places are referred as
inhibitor places.

. Given �¥© K , � is enabled to fire if all the following conditions hold:

– °��¦© . � ��� 6 �!���	±`ñq�/%
E �����X���i���

– °��¦© . pi��� 6 �!���¥H|ñX�F% E �����X���i���
If 6 Ì �!��� is the marking of �M©$# before the firing of � , and 6 Ì Ì �!�?� is the
marking of � after the firing of � , then the effect of the firing of � is the
following:

– °��¦© . � ��� 6�§ �!���0! 6 Ì �!�?�»��ñq�/% E ���!�Ò�������
– °��¦©9� . � � 6�§ �!���0! 6 Ì �!�?�¯I ñq�/% E ���!�Ò�������
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4.5 Concepts of model-to-model transformation

A model-to-model transformation consists of mapping a model (source model) to
another model (target model) according to a set of rules.

A model-to-model transformation can be described by specifying how a model
conforming a certain formalism (source formalism), is mapped into a correspond-
ing model conforming another formalism (target formalism). Several approaches
were proposed to specify model-to-model transformations; the graph transforma-
tion approach is the natural candidate to describe how a model-to-model transfor-
mation must be performed, when we have to deal with graphical models (such as
DFTs and GSPNs) since they are forms of graph.

Using the graph transformation approach, we specify how the elements of the
source model are mapped into elements of the target model, by means of a set of
graph transformation rules. A model (graph) is derived from another model by
applying one rule after another. The same rule may be applied several times.

4.5.1 Graph transformation rules

A graph transformation rule has the form %­! ��¨L�������¦�U¨ 2 ��cf�Cc 6 Ñm�����1� 2 � [3],
where

. ¨ is the graph called left hand side of the the rule % .
. � is the graph called right hand side of % .
. � is the interface graph, i. e. a common subgraph of ¨ and � .

. ¨ 2 �zc is an occurrence of � in � .

. c 6 Ñ is the embedding relation.

. ���1� 2 is a set of application conditions.

The application of a rule % to the graph a , follows the following steps [3]:

1. SEARCH the occurrences of ¨ in a . If any, the application of % can go on,
else it ends producing no modification to a .

2. CHOOSE an occurrence of ¨ in a .

3. CHECK ���1� 2 in the chosen source match; if all the conditions in ���1� 2 are
satisfied, the application of % to a can go on, else it ends producing no
modification to a .

4. REMOVE from a the occurrence of ¨ up to the occurrence of � ( ¨3�d� );
dangling edges, i. e. edges incident to removed nodes, are removed as well.
This step generates the context graph � . � contains an occurrence of � .
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5. GLUE � and � according to the occurrences of � in � and � . This means
adding �$�d� to � . This step generates the gluing graph N .

6. EMBED � in � according to c 6 Ñ : for each removed dangling edge incident
with a node | in � and with the image of a node |�Ì of ¨ in a , and each node| § in � , a new edge incident with | and | § is created in N , provided that�X| Ì ��| Ì Ì � belongs to c 6 Ñ .

In the steps listed above, we use the concept of occurrence. We have an oc-
currence of the graph � in Õ if there is a mapping ÷ ñXñ���� § Õ such that ÷ ñXñ
maps the nodes and the edges of ¨ to the nodes and edges in a . This means that÷ ñqñ maps each node | in � to its image |�Ì in Õ , and ÷ ñXñ maps each edge �X|�[)��| É �
in � to the edge �X|(Ì[ ��|/ÌÉ � in Õ such that |FÌ[ is the image of | [ and |/ÌÉ is the image
of | É . Often, in order to define an occurrence, the injectivity condition is used: an
occurrence of ¨ in a is a subgraph of a isomorphic to ¨ .

If � and Õ are labelled graphs, i. e. graphs whose elements (nodes or edges)
are identified by a label, ÷ ñqñ must preserve labels: if ¼ is an element of � , and ¼YÌ
is the image of ¼ in Õ , ¼ and ¼zÌ must have the same label.

If � and Õ are attributed graphs, i. e. graphs whose elements are equipped with
attributes (numbers, strings, . . . ), ÷ ñqñ must preserve the attributes and their values:
if ¼ is an element of � , and ¼ Ì is the image of ¼ in Õ , each attribute specified for ¼ Ì
must be specified for ¼ , and the value of the attribute ¼¯Ì�½ � of ¼�Ì must be the same
value of ¼Ò½ � of ¼ .

The application of % to a produces the graph ø ; we call such application a
direct derivation from a to ø trough % , and is denoted by aª©}«�ø . If c 6 Ñ is
empty, the EMBED step is not performed, so no additional edges are inserted. If� is empty, in the GLUE step, � is added disjointly to � .

A set of graph transformation rules is a graph transformation system. If # is a
graph transformation system, a T ©´aª[f©n½t½t½7©´av¾ is the derivation from a T toa ¾ through the rules in # .

A graph transformation system may be non-deterministic. Given a certain
graph, several rules may be applicable to it. In other words, the graph may con-
tain the occurrences of several left hand sides of rules in the graph transformation
system. Moreover, if we choose to apply a certain rule among the applicable ones,
several occurrences of the left hand side of the rule may present in the graph. So,
we might have to choose which rule has to be applied to the graph, and to which
occurrence in the graph, of its left hand side.

The result of the graph transformation may change according to such arbitrary
choices. The non-determinism of a graph transformation system can be limited or
avoided by means of some expedients [3]:. setting an order in which rules must be applied;

. the next rule to apply depends on the currently applied rule;

. assigning a priority to each rule.
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4.5.2 Properties of graph transformation

This section provides some properties that a graph transformation system may
have:

. Invertability. During a graph derivation, if the current graph is a Ã , the undo
operation allows to go backward to graph a Ã e [ . In other words, the undo
operation cancels the effects of the last rule application. The undo operation
consists of an inverted rule application, and it is possible if the rule satisfies
the following conditions:

– Contact condition: no dangling edges arise in the REMOVE step. The
contact condition holds if whenever a node | in the occurrence of ¨ ina , contacts some edge not in the occurrence of ¨ in a , | must be in
the occurrence of � ( �u �¨ ).

– Identification condition: an occurrence of ¨ in a may only identify
nodes and edges in � .

– ¨ 2 ��c is injective.

– c 6 Ñ is empty.

When we invert the application of a rule, the set of application conditions���1� 2 of ¨ , becomes the set of application conditions of � .

. Confluence. Two direct derivations a¬© « b aª[ and a{© «*­ a É commute if a
graph ø exists such that a [ ©c«*­
ø �¦arÉ�©c« b ø . A graph transformation
system is confluent if for each two derivations a®©J¯�aª[ and a°©�¯�a É , a
graph ø exists such that a�[�© ¯ ø ��a É © ¯ ø . The confluence property
implies that every graph can be transformed into at most one irreducible
graph.

. Termination. A graph transformation system is called terminating if infinite
derivations a�[f©´a É ©ó½t½t½ are impossible.

Several graph transformation approaches exist; one of them is called Double
Push Out (DPO) [49]. In this approach, all the following properties hold for all the
rules: the Contact condition, Identification condition, c 6 Ñ is empty.

4.5.3 Rule based model-to-model transformation

A model-to-model transformation based on the use of graph transformation rules,
can be performed by means of a set of compound rules [68]. A compound rule %
consists of two graph transformation rules and is expressed as

%��h��% ¤ ��% 8 �
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where % ¤ is the transformation rule for the source model, and % 8 is the transforma-
tion rule for the target model. % ¤ can be expressed as

% ¤ !���¨ ¤ ��� ¤ ��� ¤ �U¨ 2 ��c ¤ �Cc 6 Ñ ¤ �����1� 2X¤ �
% 8 can be expressed as

% 8 !���¨ 8 ��� 8 ��� 8 �U¨ 2 �zc 8 �Cc 6 Ñ 8 ������� 2Å8 �
(see section 4.5.1).% ¤ and % 8 have the ability of sharing variables; variables are useful to transfer
information from the source model to the target model. For instance, we can use a
variable to set the value of an attribute in the target model, to the value (or to the
modified value) of an attribute in the source model.

The application of a compound rule consists of the application of % ¤ to the
source model, and the application of % 8 to the target model. In other words, the
application of a compound rule consists of the execution of two parallel direct
derivations performed on the source model through % ¤ , and on the target model
through % 8 . A model-to-model transformation is realized through the application
of several compound rules: if � is the set of compounds rules, a model-to-model
transformation is the execution of two parallel derivations performed on the source
model and on the target model respectively, through � .

If ±­!M'�| [ �t½t½t½
| ¾ - is the set of the variables, the application of the compound
rule % to the source model Ö and to the target model

K
, follows these steps [68]:

1. SEARCH the source matches, i. e. the occurrences of ¨ ¤ in Ö . If any, the
application of % can go on, else it ends.

2. CHOOSE a source match.

3. INSTANTIATE the variables according to the attribute values in the chosen
source match. This leads to the variable instantiation denoted by ± ¢

.

4. INSTANTIATE ¨ ¤ , � ¤ , � ¤ , ¨ 8 , � 8 , � 8 according to ± ¢
; this means assign-

ing to the variables in ¨ ¤ , � ¤ , � ¤ , ¨ 8 , � 8 , � 8 the corresponding values in± ¢
, obtaining ¨ ¤ �²± ¢ � , � ¤ �²± ¢ � , � ¤ �²± ¢ � , ¨ 8 �²± ¢ � , � 8 �²± ¢ � , � 8 �²± ¢ � , respec-

tively.

5. APPLY % ¤ �²± ¢ �0!���¨ ¤ �²± ¢ ����� ¤ �²± ¢ ����� ¤ �²± ¢ ���U¨ 2 �zc ¤ �Cc 6 Ñ ¤ �����1� 2X¤ � to Ö , and% 8 �²± ¢ �"!���¨ 8 �²± ¢ ����� 8 �²± ¢ ����� 8 �²± ¢ ���U¨ 2 �zc ¤ �Cc 6 Ñ ¤ �����1� 2 ¤ � to
K

.

We define as model transformation system, a set of compound rules to convert
models conforming a source formalism, into models conforming the target formal-
ism.
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4.6 Converting a DFT model into a GSPN

This section provides a model transformation system to map DFT models to the
equivalent GSPNs. For each type of event and for each type of gate, one or several
compound rules are defined. The source model is a DFT, while the target model
is a GSPN; initially, the target model is empty; at each step of the model-to-model
transformation, an event or a gate of the target model is considered, and mapped in
a net which is added to the target model.

The compound rules proposed in this section are in the form described in sec-
tion 4.5.3. The graph transformation rules for the source model and the target
model are in the form described in section 4.5.1. We indicate a graph transfor-
mation rule by means of three boxes containing the left hand side of the rule ( ¨ ),
the interface graph ( � ), and the right hand side of the rule ( � ), respectively. This
graphical notation was introduced for the DPO approach [49].

The model transformation system proposed in this section, requires the defini-
tion of two new functions in the DFT formalism:

. ñ ÷ ö[|}���M§ ³ ¶ is the function returning the ��%y�zc value if an event in the
source DFT model, has already been mapped in the GSPN target model, and
returning the D�� 2�� c value if an event in the source model has not yet been
mapped in the target model.

.32 ��Ñ9�»�Á§ 'm�¬�t½t½t½\��³=- < is the function returning the label assigned to an
event, where 'm�¬�t½t½t½\��³&- < is the set of all the possible non empty strings we
can compose with the alphabet 'm�¬�t½t½t½\��³&- .

The 2 ��Ñ function has been defined also in the GSPN formalism:

.32 ��Ñª�¿#1� K § 'm�ª�t½t½t½m��³=- < is the function returning the label assigned to
a place or transition.

In the compound rules in our model transformation system, labels are used to iden-
tify the nodes inside the source model and the target model:°�ci�CctÌ?©9���(c Ý!$c)Ì5� 2 ��Ñy��c\� Ý! 2 ��Ñy��ctÌ;�°��Y��� Ì ©¦#���� Ý!�� Ì � 2 ��Ñl�!�?� Ý! 2 �(Ñy�!� Ì �°��X����Ìz© K �i� Ý!1��Ì�� 2 �(Ñy����� Ý! 2 �(Ñy����Ìá�

The ñ ÷ ö[| function is useful to avoid the repeated conversion of the same event
of the DFT source model. In our compound rules we use variables to transfer
information from the graph transformation rule for the source model, to the graph
transformation rule for the target model.

We can classify DFTs and GSPNs as labelled attributed oriented graphs (sec-
tion 4.5.1); labels are returned by the function 2 ��Ñ , while attributes are returned
by other functions defined in the DFT formalism (section 4.3) and in the GSPN
formalism (section 4.4.2).

So, in the transformation rules in our model transformation system, ¨ , � , �
must be labelled attributed oriented graph. In the box containing ¨ we have the
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structure of ¨ in terms of nodes and oriented edges, together with the values that
the labels and the attributes of ¨ must have in order to find an occurrence of ¨ . The
value of a label or an attribute in ¨ is indicated by an expression beginning with
” 4 D ”. For instance, in the compound rule in Fig. 4.5, in ¨ ¤ , the value of the attributeñ ÷ ö[|���N�� of the event N , is expressed in this way: 4 D�ñ ÷ ö[|���N���! D�� 2�� c . In the
compound rule in Fig. 4.9, in ¨ 8 , the value of the label of the place # ( 2 ��Ñy��#ª� ) is
expressed in this way: 4 D 2 ��Ñy��#ª�"!�H,ö¯� 6 ci�¬A}I § _

E ö § , where H,ö¯� 6 ci�&A is a
variable and the I operator allows to append a string to another.

In the box containing � , the values of the labels and of the attributes are not
repeated, but they are the same as in ¨ . In the box containing � , we indicate only
the value of the attributes that must be be changed; for instance, in the compound
rule in Fig. 4.5, in � ¤ , the attribute ñ ÷ ö[|z��N�� of the event N , is set to ��%l��c .

In a compound rule, some variables may be used, they are declared in the box
containing ¨ ¤ , together with the value they must be instantiated to. For instance, in
the compound rule in Fig. 4.5, in ¨ ¤ , we have HÛö¯� 6 c�A&�å! 2 �(Ñy��N�� ; HÛö¯� 6 c�A
is a variable whose value must be instantiated to 2 ��Ñl��N�� .

Some compound rules may have an higher priority with respect to other ones.
There is a general correspondence between DFT elements and the elements of

the equivalent GSPN obtained through our model transformation system:

. generic event ´ place

. not occurred event ´ empty place

. occurred event ´ marked place

. basic event occurrence ´ timed transition firing

. gate ´ set of immediate transitions

The description of all the compound rules used in our model transformation
system, follows. In the target graph (GSPN) transformation rules, whenever it is
not differently indicated, we have that

. the marking of a place (number of tokens in a place) is equal to 0;

. the priority of an immediate transition is equal to 1;

. the cardinality of an oriented arc is 1;

. the cardinality of an inhibitor arc is 1.

4.6.1 Events conversion

IE conversion

Fig. 4.5 is the compound rule to map in the GSPN, an IE of the DFT. % ¤ acts on
the DFT source model and can be applied to N¹©������iñ ÷ ö[|z��N���!$D�� 2�� c ; in other
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Figure 4.5: Compound rule for an IE.

Figure 4.6: Compound rule for the TE.

words, % ¤ can be applied to an IE which has not been yet mapped in the GSPN
target model. The variable H$ö¯� 6 c A is used to transfer the label of N from the
DFT to the GSPN and must be set to the value of 2 ��Ñy��N�� .

Since ¨ ¤ !�� ¤ !�� ¤ , no element is removed or added in the DFT, so % ¤
does not modify the structure of the DFT; % ¤ only changes the value of ñ ÷ ö[|z��N��
setting ñ ÷ ö[|���N�� to the ��%y�zc value, as indicated in � ¤ . In this way, this model
transformation rule can not be applied again to the same IE.% 8 acts on the GSPN target model; since ¨ 8 is empty, the effect of this rule is
the addition of new elements in the GSPN model, with no consideration about its
current composing elements. More precisely, % 8 adds in the GSPN a place # whose
label is given by H|ö¯� 6 c¬AÛI § _

E ö § , where the variable H,ö¯� 6 c¬A contains the
label of the IE N . This place is the mapping of N in the GSPN.

TE conversion

Fig. 4.6 shows the compound rule to map in the GSPN the TE of the DFT. % ¤ can
be applied to the TE of the DFT, if ñ ÷ ö[|z� K N���! D�� 2�� c , i. e. if the TE has not
been already mapped in the GSPN. The effect of % ¤ is removing the TE from the
DFT and replacing it with an IE indicated by N , such that ñ ÷ ö[|���N��ª!_��%l��c and
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Figure 4.7: Compound rule for a BE.

2 ��Ñqc 2 ��N��0! § K N § .
The replacement of the TE with N avoids the repeated application of the rule

in Fig. 4.6. Moreover, since ñ ÷ ö[|���N��
!M��%y�zc , the compound rule in Fig. 4.5 can
not be applied to N . In other words, only one rule is applied to map the TE in the
GSPN, and only once.

The removal of the TE determines the removal of the arc pointing the TE (dan-
gling edge). For this reason, an embedding relation is defined in % ¤ : given the
removed arc �5¨h� K N�� such that ¨�©¦� , an arc �5¨h��N�� is created in the DFT.

The effect of % 8 on the GSPN, is adding a place # such that 2 ��Ñy��#ª�"! § K N _
E ö § .

Such place is the mapping of the TE in the GSPN.

BE conversion

Fig. 4.7 shows the compound rule to map in the GSPN a BE of the DFT. % ¤ can
be applied to a BE N of the DFT such that N has not already been mapped in the
GSPN ( ñ ÷ ö[|z��N���!$D�� 2�� c ). Two variables are present: H,ö¯� 6 c¬A and H,%f�/��c=A ;
they are instantiated to the label of the N and to its failure rate, respectively.

The effect of % ¤ on the DFT is the replacement of the BE N with the IE N�Ì
such that N Ì has the same label of N and ñ ÷ ö[|���N Ì ��! ��%l��c . The removal of N
determines the removal of the arc(s) touching N ; for this reason, an embedding
relation is present in % ¤ : for each removed arc ��N
�U¨�� such that ¨�©o� , an arc��N Ì �U¨�� is created.

The replacement of N with N�Ì avoids the repeated application of the rule in
Fig. 4.7 to the same BE. Moreover, since ñ ÷ ö[|z��N�Ì;�0!$��%y�zc , the compound rule in
Fig. 4.5 can not be applied to N Ì . So, only one rule is applied to map a BE in the
GSPN, and only once.
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Figure 4.8: Compound rule for a BE relative to a spare component.

% 8 adds in the GSPN a place # and a timed transition
K

, together with an
oriented arc � K ��#ª� and an inhibitor arc ��#	� K � . The label of # is H ö¯� 6 c,AI § _

E ö § , where H|ö¯� 6 c¬A contains the label of N . The label of
K

is H|ö¯� 6 cªAI § _ D�� 472�§ , while its firing rate is the same as the failure rate of the BE N in the
DFT.

The net in � 8 is the mapping of a BE in the GSPN. The place # represents the
BE N ; this place contains no token to indicate that the event has not yet occurred.
The transition

K
models the occurrence of the event; when it fires, it puts one token

in # through � K ��#ª� , to represent that the event has occurred. The firing of
K

is not
repeatable due to the inhibitor arc ��#
� K � .
Conversion of BEs relative to spare components

Fig. 4.8 shows the compound rule to map in the GSPN a BE relative to a spare
component. We can apply % ¤ to a BE N which is the input event of a gate of typeï@Ö»# , and has not yet been mapped to the GSPN. Moreover, N must be connected
to the ï@Ö»# gate through an arc having order number ö|AÁ� indicating that N is
the BE relative to a spare component.

Three variables are present: H|ö¯� 6 c�A , H}%f�/��c�A , H1D��FñX� ÷ % A ; H|ö¯� 6 c�A
is set to the label of N , H1%f�/��c
A to the failure rate of N , and HjD��FñX� ÷ %�A to the
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dormancy factor of N .
In the DFT, % ¤ removes the BE N and replaces it with the IE N Ì such thatñ ÷ ö[|���N=Ì;�0!j��%y��c ; moreover N¬Ì has the same label of N . The removal of N deter-

mines the removal of any arc touching N ; so, an embedding relation is present also
in this rule: for each removed arc ��N
�U¨�� such that ¨�©¦� , an arc ��N�Ì��U¨�� is created.

The replacement of N with N�Ì avoids the repeated application of the rule in
Fig. 4.8 to the same BE. Moreover, since ñ ÷ ö[|z��N Ì �0!$��%y�zc , the compound rule in
Fig. 4.5 can not be applied to N�Ì . So, only one rule is applied to map a BE relative
to a spare, in the GSPN, and only once.

The action of % 8 on the GSPN, is the addition of a net composed by the places# and � , and by the timed transitions
K � and

K ² . The label of the place # isH·ö¯� 6 cdA I § _
E ö § ; this place represents the failed state of the spare: if # is

marked, the spare is failed. The label of the place � is H¡ö¯� 6 c}A+I § _ ÷ ö § ;
this place represents the working state of the spare: if � is marked, the spare is
working.

The label of the transition
K � is HMö¯� 6 cPA�I § _ ÷ D?D _ D�� 472�§ , while the value

of its firing rate is given by the product of the failure rate of N and the dormancy
factor of N . The label of the transition

K ² is Hðö¯� 6 c£AºI § _ ÷ ö _ D�� 472�§ , while
the value of its firing rate is the value of the failure rate of N . The transition

K �
represents the failure of the spare during the dormant state;

K � can fire if � is not
marked, i. e. if the spare is not working. When

K � fires, it puts one token in # to
indicate the failed state of the spare. The transition

K ² represents the failure of the
spare during the working state;

K ² can fire only if � is marked, i. e. if the spare is
working. As

K � , when
K ² fires, it puts one token in # to indicate the failed state

of the spare.
K � and

K ² can not be enabled at the same time, and are both disabled
by the presence of one token in # . Such net is the mapping in the GSPN of a BE
relative to a spare component.

Given a BE N in the DFT, such that N is relative to a spare component andñ ÷ ö[|���N��¬!_��%y�zc , both the compound rule in Fig. 4.7 and the compound rule in
Fig. 4.8 can be applied to N , but the correct rule to be applied to N , is in Fig. 4.8.
For this reason, we set for the rule in Fig. 4.8 an higher priority with respect to the
rule in Fig. 4.7. In this way, the rule in Fig. 4.8 is surely applied to N .

4.6.2 Boolean gates conversion

����� gate conversion

Fig. 4.9 shows the compound rule for a gate of type �v�®� and its output event. % ¤
can be applied to a gate ¨ of type �v�®� such that its output event N has already
been mapped in the GSPN (by means of the compound rule in Fig. 4.5 or by
means of the compound rule 4.6). The output event N is identified through the
arc connecting ¨ to N ; such arc must be drawn as a continuous line. The variableH,ö¯� 6 c¬A is instantiated to the label of N .

The effect of % ¤ on the DFT, is the removal of the arc �5¨h��N�� , where ¨ is the
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Figure 4.9: Compound rule for of a gate of type �v��� and its output event.

gate of type �v��� . Such arc is replaced with another arc still connecting ¨ to N ,
but drawn as a dashed line. In this way, the rule in Fig. 4.9 is applied to the same�v�®� gate and the same output event, only once.% 8 can be applied to the place # such that its label is given by Hºö¯� 6 c AI § _

E ö § ; this means that # is the place generated by the mapping of N in the
GSPN. Since ¨ ¤ !M� ¤ , nothing is removed from the GSPN; an immediate transi-
tion

K
is added to the GSPN; the label of

K
is H}ö¯� 6 c�A$I § _ �/ö E § . An oriented

arc � K ��#ª� and an inhibitor arc ��#
� K � are also created.
Fig. 4.10 shows the compound rule for a gate of type �v�®� and one of its input

events. % ¤ can be applied to a gate ¨ of type �v��� such that
. its output event ] has already been mapped in the GSPN (by means of the

compound rule in Fig. 4.5 or by means of the compound rule 4.6);

. the gate ¨ has already been partially mapped in the GSPN through the rule
in Fig. 4.9 (dashed arc connecting ¨ to ] ).

. the input event � has already been mapped in the GSPN (by means of the
compound rule in Fig. 4.5 or by means of the compound rule 4.7). � must
be connected to ¨ through an arc drawn as a continuous line.

Two variables are present: HMö¯� 6 ci� A and HÁö¯� 6 cm²®A . They are instanti-
ated to the label of ] and to the label of � , respectively.

The effect of % ¤ on the DFT is the removal of the arc ���¦�U¨�� and its replacement
with another arc from � to ¨ , but drawn as a dashed line. In this way, we apply the
rule in Fig. 4.10 to the same �v��� gate and to the same input event, only once.% 8 must be applied to a subnet of the GSPN composed by the following nodes:
. a place # whose label is equal to HÁö¯� 6 c/�
A­I § _

E ö § ; this means that #
is the mapping of ] in the GSPN;
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Figure 4.10: Compound rule for a gate of type �v��� and one of its input events.

. a place � whose label is equal to H$ö¯� 6 c\²9A­I § _
E ö § ; this means that �

is the mapping of � in the GSPN;

. an immediate transition
K

whose label is H,ö¯� 6 ci�=A}I § _ �Fö E § ; this means
that this transition was created by the application of the rule in Fig. 4.9 to ¨
and ] .

The effect of % 8 on the GSPN is the addition of a couple of oriented arcs: �²��� K �
and � K ���ª� .
Example. In Fig. 4.11, we can see how a gate of type �v��� whose output event
is labelled as

J Ö and its input events are labelled as ���y���P² , is converted in form
of GSPN, through the application of the compound rules in Fig. 4.5, Fig. 4.7, Fig.
4.9, Fig. 4.10. This gate belongs to the DFT model in Fig. 4.4. The BE labelled
as �®� becomes in the GSPN the place labelled as �®� _ E ö , and the timed transition
labelled as �®� _ D�� 472 ; the BE labelled as �P² becomes the place labelled as ��² _ E ö ,
and the timed transition labelled as ��² _ D�� 472 . The �v�®� gate is converted into
the immediate transition

J Ö _ �/ö E which fires when both ��� _ E ö and ��² _ E ö are
marked, i. e. when all the input events of the gate have occurred. When

J Ö _ �Fö E
fires, one token appears in the place

J Ö _
E ö modelling the occurrence of the eventJ Ö .
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MS_dn

D1

MS

D1_dn D2_dn

MS_and

D2
D2_failD1_fail

Figure 4.11: Conversion of a gate of type ����� in GSPN form.

�=� gate conversion

Fig. 4.12 shows the compound rule for a gate of type �&� and one of its input
events. % ¤ can be applied to a gate ¨ of type �=� such that

. its output event ] has already been mapped in the GSPN (by means of the
compound rule in Fig. 4.5 or by means of the compound rule 4.6);

. the gate ¨ has already been partially mapped in the GSPN through

. the input event � has already been mapped in the GSPN (by means of the
compound rule in Fig. 4.5 or by means of the compound rule 4.7). � must
be connected to ¨ through an arc drawn as a continuous line.

Two variables are present: HMö¯� 6 ci� A and HÁö¯� 6 cm²®A . They are instanti-
ated to the label of ] and to the label of � , respectively.

The effect of % ¤ on the DFT is the removal of the arc ���¦�U¨�� and its replacement
with another arc from � to ¨ , but drawn as a dashed line. In this way, we apply the
rule in Fig. 4.12 to the same �=� gate and to the same input event, only once.% 8 must be applied to a subnet of the GSPN composed by the following nodes:

. a place # whose label is equal to HÁö¯� 6 c/�
A­I § _
E ö § ; this means that #

is the mapping of ] in the GSPN;

. a place � whose label is equal to HÁö¯� 6 c\²9AMI § _
E ö § ; this means that �

is the mapping of � in the GSPN.

The effect of % 8 on the GSPN is the addition of an immediate transition
K

and
of several oriented arcs ( � K ���¬� , �²��� K � , � K ��#�� ) and one inhibitor arc ( ��#	� K � ).
Example. In Fig. 4.13, we can see how a gate of type �=� whose output event
is labelled as �P� and its input events are labelled as �PÕ�Ó=Ö , Ór#=� ,

J Ö , is
converted in form of GSPN, through the application of the compound rules in Fig.
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Figure 4.12: Compound rule for a gate of type �&� and one of its input events.

4.5, Fig. 4.7, Fig. 4.12. This gate belongs to the DFT model in Fig. 4.4. The
IEs labelled as � � and Óv#=� become in the GSPN the places labelled as �P� _

E ö
and Ór#=� _

E ö ; the IE
J Ö was already mapped in the place

J Ö _
E ö during the

conversion of the gate in Fig. 4.11. The BE labelled as � Õ Ó&Ö is converted into the
subnet whose nodes are the place labelled as �PÕ�Ó=Ö _

E ö and the timed transition
labelled as �PÕ Ó&Ö _ D�� 472 . For each place corresponding to an input event of the�&� gate ( � Õ Ó&Ö _

E ö , Ór#=� _
E ö ,

J Ö _
E ö ), an immediate transition is created.

For instance, the transition labelled as � � _ ÷ % _ �PÕ Ó&Ö puts one token inside the
place �P� _

E ö , as soon as �PÕ Ó&Ö _
E ö becomes marked. So, one token appears in� � _

E ö as soon as one of the places �PÕ Ó&Ö _
E ö , Ór#=� _

E ö ,
J Ö _

E ö , becomes
marked, in other words, when one of the gate input events occurs.

4.6.3 Dynamic gates conversion

�=� Nª# gate conversion

Fig. 4.14 shows the compound rule for a gate of type �¬� Nª# and one of its
dependent events. % ¤ can be applied to a gate ¨ of type �=�PN¬# such that

. its trigger event
K

has already been mapped in GSPN (by means of the com-
pound rule in Fig. 4.5 or by means of the compound rule 4.7);

K
is identified

by the presence of an arc � K �U¨�� (drawn as a continuous line);

. the dependent event � has already been mapped in the GSPN (by means of
the compound rule in Fig. 4.5 or by means of the compound rule 4.7). � is
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DA_dn

DA_or_DBUS
DA_or_UPD

UPD MS

DA

DBUS

DBUS_dn

UPD_dn

DBUS_fail

MS_dn

DA_or_MS

Figure 4.13: Conversion of a gate of type �=� in GSPN form.

Figure 4.14: Compound rule for a gate of type �=�PN¬# and one of its dependent
events.
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R1 R2B

R1_dn R2_dn

B_fdep_R1 B_fdep_R2

R1_fail R2_fail

B_dn

B_fail

Figure 4.15: Conversion of a gate of type �=� Nª# in GSPN form.

identified by the presence of an arc �5¨h���9� (drawn as a continuous line).

Two variables are present: HMö¯� 6 c/� A and H­ö¯� 6 c\²RA . They are instanti-
ated to the label of

K
and to the label of � , respectively.

The effect of % ¤ on the DFT is the removal of the arc �5¨h���9� and its replacement
with another arc from ¨ to � , but drawn as a dashed line. In this way, we apply the
rule in Fig. 4.14 to the same �¬� Nª# gate and to the same dependent event, only
once.% 8 must be applied to a subnet of the GSPN composed by the following nodes:

. a place # whose label is equal to Hjö¯� 6 ci�
AMI § _
E ö § ; this means that #

is the mapping of
K

in the GSPN;

. a place � whose label is equal to H$ö¯� 6 c\²9A­I § _
E ö § ; this means that �

is the mapping of � in the GSPN.

The effect of % 8 on the GSPN is the addition of an immediate transition
K �

and of several oriented arcs ( � K �y��#�� , ��#	� K �m� , � K �y���ª� ) and one inhibitor arc
( �²��� K �m� ).
Example. In Fig. 4.15, we can see how a gate of type �=�PN¬# having the
BE labelled Õ as trigger event, and the BEs labelled ���y���=² as dependent events,
is converted in form of GSPN, through the application of the compound rules in
Fig. 4.7 and in Fig. 4.14. This gate belongs to the DFT in Fig. 4.4. The BE
labelled as Õ is mapped to the place labelled as Õ _

E ö and to the timed transitionÕ _ D�� 472 ; the BE labelled as ��� is mapped to the place labelled as ��� _ E ö and to the
timed transition ��� _ D�� 472 ; the BE labelled as �=² is mapped to the place labelled
as �=² _ E ö and to the timed transition �=² _ D�� 4�2 . For each place corresponding to
a dependent event of the �=�PN¬# gate ( ��� _ E ö , �=² _ E ö ), an immediate transition
is created. Such transitions fire as soon as the place labelled as Õ _

E ö (modelling
the occurrence of the trigger event) becomes marked, with the effect of putting one
token inside ��� _ E ö , �=² _ E ö (modelling the occurrence of the dependent events),
unless these places are already marked (the dependent events may have already
occurred for another cause).
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Figure 4.16: Compound rule for a gate of type #=�v��� and its output event.

#=�v��� gate conversion

The mapping of a gate of type #=�v��� is realized by means of three compound
rules shown in Fig. 4.16, Fig. 4.17, Fig. 4.18, respectively.

Fig. 4.16 shows the compound rule for a gate of type #=�v�®� and its output
event. % ¤ can be applied to a gate ¨ of type #=����� such that its output event N
has already been mapped in the GSPN (by means of the compound rule in Fig. 4.5
or by means of the compound rule 4.6). The output event N is identified through
the arc connecting ¨ to N , drawn as a continuous line. The variable H}ö¯� 6 c�A is
present and is instantiated to the label of N .

The effect of % ¤ on the DFT, is the removal of the arc �5¨h��N�� , where ¨ is the
gate of type �v��� . Such arc is replaced with another arc still connecting ¨ to N ,
but drawn as a dashed line. In this way, the rule in Fig. 4.16 is applied to the same#=�v��� gate and the same output event, only once.% 8 can be applied to the place # such that its label is given by Hºö¯� 6 c AI § _

E ö § ; this means that # is the place generated by the mapping of N in the
GSPN. The place � and the immediate transition

K
are added to the GSPN by

means of % 8 , together with one oriented arc ( � K ��#ª� ) and two inhibitor arcs ( �²��� K � ,��#	� K � ). The label of
K

is H@ö¯� 6 cRAòI § _���Fö E § ; the label of � is H@ö¯� 6 c9AI § _ ÷ Ë § .
Fig. 4.17 shows the compound rule for a gate of type #=�v��� and two input

events connected to the gate by means of two arcs having the order numbers 1 and
2 respectively. % ¤ can be applied to a gate ¨ of type #¬����� such that. its output event ] has already been mapped in the GSPN (by means of the

compound rule in Fig. 4.5 or by means of the compound rule 4.6);

. the gate ¨ has already been partially mapped in the GSPN through the rule
in Fig. 4.16 (dashed arc connecting ¨ to ] ).
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Figure 4.17: Compound rule for a gate of type #=�v�®� and its input events with
order number 1 and 2.

. the input events � and Õ have already been mapped in the GSPN (by means
of the compound rule in Fig. 4.5 or by means of the compound rule 4.7). The
event � must be connected to ¨ through an arc ���ª�U¨�� (drawn as a continuous
line) such that �"�����¬�U¨�����!n� ; Õ must be connected to ¨ through an arc��ÕP�U¨�� (drawn as a continuous line) such that �"����ÕP�U¨�����!$² .

Three variables are present: H ö¯� 6 c/�wA , Hºö¯� 6 c\²|A and Hºö¯� 6 c\²|A .
They are instantiated to the label of ] , to the label of � and to the label of Õ ,
respectively.

The effect of % ¤ on the DFT is the removal of the arcs ���ª�U¨�� and ��Õ �U¨�� and
their replacement with other arcs, from � to ¨ (with order number 1) and from Õ
to ¨ (with order number 2) respectively; the new arcs are drawn as a dashed line.
In this way, we apply the rule in Fig. 4.17 to the same �v�®� gate and to the same
input events connected to the gate with arcs having order number 1 and 2, only
once.% 8 must be applied to a subnet of the GSPN composed by the following nodes:

. a place # whose label is equal to Hjö¯� 6 ci�
AMI § _
E ö § ; this means that #

is the mapping of ] in the GSPN;

. a place � whose label is equal to H,ö¯� 6 ci�&A}I § _ ÷ Ë § ;



116 CHAPTER 4. PETRI NETS SUPPORTING DFT ANALYSIS

Y

L

K
R

rs

<name1>:=lab(Y)
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Figure 4.18: Compound rule for a gate of type #¬����� and its input events with
order number ö and ö I1� ( ö�±|² ).

. a place Ó whose label is equal to HÁö¯� 6 c\²9AMI § _
E ö § ; this means that Ó

is the mapping of � in the GSPN;

. a place ÓvÌ whose label is equal to H`ö¯� 6 cmÔ�A1I § _
E ö § ; this means that Ó=Ì

is the mapping of Õ in the GSPN;

. an immediate transition
K

whose label is Huö¯� 6 ci�$A´I § _���Fö E § ; this
means that this transition was created by the application of the rule in Fig.
4.16 to ¨ and ] .

The effect of % 8 on the GSPN is the addition of the immediate transition
K ² , of

several oriented arcs ( � K �qÓ=� , ��Ó�� K � , � K �qÓ&Ì;� , ��Ó�Ì�� K � , ��ÓvÌ�� K ²i� , � K ²(�qÓvÌ;� , � K ²(���¬� ),
and of several inhibitor arcs ( ��Ó¥� K ²i� , �²��� K ²i� ). The label of

K ² is given byH,ö¯� 6 ci�¬A}I § _���Fö E _ § I�H`ö¯� 6 c\Ô�A .
Fig. 4.18 shows the compound rule for a gate of type #=�v��� and two input

events connected to the gate by means of two arcs having the order numbers ö andö I1� respectively ( ö�±|² ).
Example. In Fig. 4.19, we can see how a gate of type #=�v�®� having the event
labelled as Óv#=� as output event, and the events labelled as Õ��®���®� as input, is
converted in form of GSPN, through the application of the compound rules in Fig.
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BD_fail
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UPD_ok

D1_dn

Figure 4.19: Conversion of a gate of type #=�v�®� in GSPN form.

4.5, in Fig. 4.7, in Fig. 4.16, and in Fig. 4.17. This gate belongs to the DFT in Fig.
4.4. The BE labelled as Õ�� is mapped to the place labelled as Õ�� _

E ö and the
timed transition labelled as Õ�� _ D�� 472 . The BE labelled as �®� was already mapped
in the GSPN, during the conversion of the gate in Fig. 4.11.

The #=�v��� gate is mapped to a set of immediate transitions with the purpose
of verifying that the specified order of the input events is respected: the transitionÓv#=� _���/ö E _ �®� fires if ��� _ E ö becomes marked and Õ�� _

E ö is empty, in other
words if the event ��� occurs before the event Õ�� . One token appears in the
place labelled as Óv#=� _ ÷ Ë after the firing of Óv#¬� _�z�/ö E _ ��� , meaning that the
specified order has not been respected. In general, when an input event occurs, we
verify if its predecessor in the specified failure order, has already occurred or not.

When both Õ�� _
E ö and �®� _ E ö are marked, only if the place labelled asÓv#=� _ ÷ Ë is not marked, one token appears in the place labelled as Óv#=� _

E ö (the
mapping in the GSPN of the output event Óv#¬� ), by means of the immediate tran-
sition Ór#=� _�z�/ö E . The transition Óv#=� _���Fö E verifies the #=�v��� gate condition
about the occurrence of all the input events, while the transition Óv#¬� _���Fö E _ ���
verifies the condition about the order of occurrence of the input events of the gate
(section 4.2).

Ö»ND� gate conversion

The mapping of a gate of type Ö»ND� is realized by means of the compound rules
shown in Fig. 4.20 and in Fig. 4.21.

Fig. 4.20 shows the compound rule for a gate of type Ö»ND� and two input
events connected to the gate by means of two arcs having the order numbers 1 and
2 respectively. % ¤ can be applied to a gate ¨ of type Ö»ND� such that the input events� and Õ have already been mapped in the GSPN (by means of the compound rule
4.7). � must be connected to ¨ through an arc ���ª�U¨�� (drawn as a continuous line)
such that �"�����¬�U¨����v!·� ; Õ must be connected to ¨ through an arc ��ÕP�U¨�� (drawn
as a continuous line) such that �"����ÕP�U¨����0!j² .
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<name1>:=lab(A)
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if conv(A)=true
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if σ(A,g)=1
if σ(B,g)=2
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if lab(U’):=<name2>+"_dn"
if lab(T):=<name2>+"_fail"
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Figure 4.20: Compound rule for a gate of type Ö»N�� , its trigger event (with order
number � ) and the first of its dependent events (with order number ² ).

Two variables are present: HMö¯� 6 ci� A and HÁö¯� 6 cm²®A . They are instanti-
ated to the label of � and to the label of Õ , respectively.

The effect of % ¤ on the DFT is the removal of the arcs ���¬�U¨�� and ��ÕP�U¨�� and
their replacement with other arcs, from � to ¨ (with order number 1) and from Õ
to ¨ (with order number 2) respectively; the new arcs are drawn as a dashed line.
In this way, we can apply the rule in Fig. 4.17 to the same Ö»N�� gate and to the
same input events connected to the gate with arcs having order number 1 and 2,
only once.% 8 must be applied to a subnet of the GSPN composed by the following nodes:. a place Ó whose label is equal to HÁö¯� 6 c/�
AMI § _

E ö § ; this means that Ó
is the mapping of � in the GSPN;

. a place ÓvÌ whose label is equal to H`ö¯� 6 cm²�A1I § _
E ö § ; this means that Ó=Ì

is the mapping of Õ in the GSPN;

. a timed transition
K

whose label is HÛö¯� 6 c\²�AjI § _ D�� 472�§ ; this means that
this transition represents the occurrence of the event Õ in the DFT. Õ was
originally a BE, but it has been converted to an IE by the previous application
of the rule in Fig. 4.7.

The effect of % 8 on the GSPN is the addition of a couple of oriented arcs: ��Ó�� K � ,� K �qÓ=� .
Fig. 4.21 shows the compound rule for a gate of type Ö»ND� and two input

events connected to the gate by means of two arcs having the order numbers ö andö I1� respectively ( ö�±|² ).
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Figure 4.21: Compound rule for a gate of type Ö»ND� and its dependent events with
order number ö and ö I1� ( ö�±|² ).

D1_dn D2_dn

D1_fail D2_fail
D1 D2

1 2

Figure 4.22: Conversion of a gate of type Ö»N�� in GSPN form.
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Figure 4.23: Compound rule for a gate of type ï@Ö»# , its output event and its input
event relative to the main component.

Example. Fig. 4.22 shows the conversion in the GSPN form of a gate of typeÖ»N�� with the BE labelled as �®� as trigger event, and the BE labelled as ��² as
dependent event. This gate belongs to the DFT model in Fig. 4.4. The conversion
is performed by means of the rule in Fig. 4.20. ��� and �P² were already mapped
in the GSPN, during the conversion of the gate in Fig. 4.11. In the GSPN resulting
from the Ö»ND� gate mapping, the timed transition ��² _ D�� 472 (modelling the occur-
rence of the BE �P² ), can fire only if the place �®� _ E ö is marked, i. e. if the BE��� has already occurred. In this way, the events connected to the Ö»ND� gate are
forced to fail in the specified order, in the equivalent GSPN.

ï@Ö»# gate conversion

The mapping of a gate of type ï­Ö�# is realized by means of two compound rules
shown in Fig. 4.23 and in Fig. 4.24 respectively. Fig. 4.23 shows the compound
rule for a gate ¨ of type ï@Ö»# , its output event ] and its input event

J
relative

to a main component.
J

is identified by an arc � J �U¨�� having order number 0. % ¤
can be applied to a gate ¨ of type ï@Ö»# such that

. the input event
J

has already been mapped in the GSPN (by means of the
compound rule in Fig. 4.7).

J
must be connected to ¨ through an arc � J �U¨��

(drawn as a continuous line) such that �"��� J �U¨����¥!1� ;
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. the input event ] has already been mapped in the GSPN (by means of the
compound rule in Fig. 4.5 or by means of the compound rule in Fig. 4.6).

Two variables are present: HMö¯� 6 c/� A and H­ö¯� 6 c\²RA . They are instanti-
ated to the label of ] and to the label of

J
, respectively.

The effect of % ¤ on the DFT is the removal of the arc � J �U¨�� and its replacement
with another arc from

J
to ¨ (with order number 0); the new arc is drawn as a

dashed line. In this way, we can not apply again the rule in Fig. 4.23 to the sameï­Ö�# gate, the same output event and to the same input event relative to the main
component.% 8 must be applied to a subnet of the GSPN composed by the following nodes:

. a place # whose label is equal to Hjö¯� 6 ci�
AMI § _
E ö § ; this means that #

is the mapping of ] in the GSPN;

. a place � whose label is equal to H$ö¯� 6 c\²9A­I § _
E ö § ; this means that �

is the mapping of
J

in the GSPN.

The effect of % 8 on the GSPN is the addition of the place �ªÌ , of the immediate
transition

K
, of three oriented arcs ( � K ��#ª� , � K ���ª� , �²��� K � ) and of two inhibitor

arcs ( ��#	� K � , �²� Ì � K � ). The label of � Ì is given by H,ö¯� 6 cm²�A}I § _ � ��Ñ § ; the label
of
K

is given by H`ö¯� 6 c/�&A}I § _ ¦ � � § .
Fig. 4.24 shows the compound rule for a gate ¨ of type ï@Ö»# , and an input

event Ö relative to a spare component. This rule considers also the output event] of ¨ and its input event
J

relative to the main component.
J

is identified by
an arc � J �U¨�� having order number 0. Ö is identified by an arc �ôÖs�U¨�� having order
number ö�A`� . % ¤ can be applied to a gate ¨ of type ï@Ö»# such that

. the input event Ö has already been mapped in the GSPN (by means of the
compound rule in Fig. 4.7). Ö must be connected to ¨ through an arc �ôÖs�U¨��
(drawn as a continuous line) such that �"��� J �U¨����¥!1� ;

. ¨ must have already been partially mapped in the GSPN by means of the rule
in Fig. 4.23; this property holds if the arc � J �U¨�� is drawn as a dashed line.

Several variables are present:

. H,ö¯� 6 ci�&A is the label of ] ;

. H,ö¯� 6 cm²�A is the label of
J

;

. H,ö¯� 6 cmÔ�A is the label of Ö ;

. H,ö?� 6 _ � A is set to the number of input events of ¨ ( p . ¨�p );
. H,ö?� 6 _ �PA is set to the order number of the arc connecting Ö to ¨ ( �"���ôÖs�U¨���� ).
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Figure 4.24: Compound rule for a gate of type ï@Ö»# and an input event relative to
a spare component.
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The effect of % ¤ on the DFT is the removal of the arc �ôÖs�U¨�� and its replacement
with another arc from Ö to ¨ (with the same order number of the removed one);
the new arc is drawn as a dashed line. In this way, we can not apply again the rule
in Fig. 4.24 to the same ï­Ö�# gate and the same input event relative to a spare
component.% 8 must be applied to a subnet of the GSPN composed by the following nodes:

. a place # whose label is equal to Hjö¯� 6 ci�
AMI § _
E ö § ; this means that #

is the mapping of ] in the GSPN;

. a place � whose label is equal to H$ö¯� 6 c\²9A­I § _
E ö § ; this means that �

is the mapping of
J

in the GSPN;

. a place �&Ì whose label is equal to H_ö¯� 6 cm² A I § _ � ��Ñ § ; this place was
generated by the application of the compound rule in Fig. 4.23 to ¨ , ] andJ

;

. a place Ó whose label is equal to H ö¯� 6 cmÔ1ABI § _
E ö § ; this place was

generated by the application of the compound rule in Fig. 4.8 to ¨ and Ö ;

. a place ± whose label is equal to H ö¯� 6 c\Ô$A+I § _ ÷ ö § ; this place was
generated by the application of the compound rule in Fig. 4.8 to ¨ and Ö ;

. the immediate transition
K

whose label is H,ö¯� 6 ci�¬A}I § _ ¦ � � § ; this place
was generated by the application of the compound rule in Fig. 4.23 to ¨ , ]
and

J
.

The effect of % 8 on the GSPN is the addition of the place ³ , of the imme-
diate transitions

K � and
K ² , of several oriented arcs ( � K �y����Ì;� , � K �y��±�� , � K �y��³v� ,� K �y���¬� , �²��� K �m� , �²�&Ì�� K ²i� , �²³
� K ²i� , ��Ó�� K ²i� , � K ²(�qÓ&� ) and inhibitor arcs ( �²�¬Ì�� K �m� ,��Ó�� K �m� , �²±�� K �m� ). The label of ³ is HÊö¯� 6 cm²�A_I § _ � ��Ñ _ § I^Hòö¯� 6 c\Ô�A § ;

the label of
K � is H@ö¯� 6 c\²®AòI § _ � ¦ 4 ��ñ V _ § I H­ö¯� 6 c\Ô�A ; the label of

K ² isH}ö¯� 6 cm²PAjI § _ D�� 472 _ § IoHÛö¯� 6 c\Ô A . The priority of the immediate transitionK � is set to H,ö?� 6 _ � Aj�jH,ö?� 6 _ � A}I�� .
Example. Fig. 4.25 shows the conversion in the GSPN form of a gate of typeï­Ö�# having

J N J � as output event,
J � as main component, ��� and �=² as

spare components of
J � . This gate belongs to the DFT model in Fig. 4.4. The

conversion of this gate is realized by applying the compound rules in Fig. 4.7, in
Fig. 4.8, in Fig. 4.23, in Fig. 4.24. In the equivalent GSPN, several timed tran-
sitions and places modelling the failure of the components, are present. The tran-
sition

J � _ D�� 472 models the occurrence of the failure of
J � ; when it fires, it puts

one token in the place
J � _ E ö modelling the failed state of

J � . The place ��� _ ÷ ö
indicates if ��� is dormant ( 6 ����� _ ÷ öY��!$� ) or if it is working ( 6 ����� _ ÷ öY��!@� ).

The transition ��� _ ÷ D?D _ D�� 472 models the occurrence of the failure of ��� while
it is in the dormant state; this transition can fire only if 6 ����� _ ÷ öY�R!�� . The
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transition ��� _ ÷ ö _ D�� 472 models the occurrence of the failure of ��� while it is in
the working state; this transition can fire only if 6 ����� _ ÷ öY��!u� . The effect of
the firing of both the transitions ��� _ ÷ D?D _ D�� 4�2 and ��� _ ÷ ö _ D�� 472 is the appearance
of one token in the place ��� _ E ö modelling the failed state of ��� . The failure of
the spare component �=² is modelled in an analogous way by the places �=² _ ÷ ö ,�=² _ E ö , �=² _ ÷ D?D _ D�� 472 , �=² _ ÷ ö _ D�� 472 .

If 6 � J � _ E öY��! � (
J � is failed), 6 � J � _ � ��Ñq�P!+� (

J � is not currently
replaced by any spare), 6 ����� _ E öY��! � ( ��� is not failed) and if 6 ����� _ ÷ öY��!� ( ��� is dormant), then the immediate transition

J � _ � ¦ 4 ��ñ V _ ��� fires with the
following effects: 6 ����� _ ÷ öY��!ò� to indicate that ��� is working; 6 � J � _ � �zÑt�¥!� to indicate that

J � is currently replaced by any spare; 6 � J � _ � ��Ñ _ ���m�¥!¹� to
indicate that

J � is currently replaced by the spare ��� . In this way, the replacement
of
J � by ��� is modelled in the GSPN. If later ��� _ E ö becomes marked ( ���

is failed), the immediate transition
J � _ D�� 472 _ ��� fires removing the token insideJ � _ � �zÑ and

J � _ � ��Ñ _ ��� .
If 6 � J � _ E öY��! � (

J � is failed), 6 � J � _ � ��Ñq�P!+� (
J � is not currently

replaced by any spare), 6 ����� _ E öY�¦! �=� 6 ����� _ ÷ öY�¦! � ( ��� is failed or is
replacing another main component), 6 ���=² _ E öY�¦!�� ( �=² is not failed), and if6 ���=² _ ÷ öY�	!@� (

J � is dormant), then the immediate transition
J � _ � ¦ 4 ��ñ V _ �=²

fires with the following effects: 6 ���=² _ ÷ öY�w! � to indicate that �=² is work-
ing; 6 � J � _ � �zÑt��!â� to indicate that

J � is currently replaced by any spare;6 � J � _ � �zÑ _ �=²i�"!@� to indicate that
J � is currently replaced by the spare �=² . In

this way, the replacement of
J � by �=² is modelled in the GSPN. If later �=² _ E ö

becomes marked ( �=² is failed), the immediate transition
J � _ D�� 472 _ �=² fires re-

moving the token inside
J � _ � �zÑ and

J � _ � ��Ñ _ �=² .
If 6 � J � _ E öY�	!o� (

J � is failed), 6 � J � _ � �zÑt�	!­� (
J � is not currently re-

placed by any spare), 6 ����� _ E öY�"!@�y� 6 ����� _ ÷ öY�"!@� ( ��� is failed or is replacing
another main component), 6 ���=² _ E öY�&! �L� 6 ���=² _ ÷ öY�&! � ( �=² is failed or is
replacing another main component), then the immediate transition

J N J � _ ¦ � �
fires putting one token inside

J N J � _ E ö ; this place is the mapping in the GSPN
of the output event

J N J � of the gate in Fig. 4.25. In this way, we model the
occurrence of the output event of the gate, in the case the main component

J � is
failed and there is no available spare components to replace it in its function.

Actually, the immediate transitions
J � _ � ¦ 4 �Uñ V _ ��� , J � _ � ¦ 4 ��ñ V _ �=² , J � _ ¦ � �

may be enabled to fire at the same time; their priority values determine which tran-
sition has to fire.

4.6.4 Conversion steps

Given a DFT model to be mapped in a GSPN, the only compound rules which
can be initially applied, concern the events; these rules are in Fig. 4.5, Fig. 4.6,
Fig. 4.7, Fig. 4.8. The TE and the IEs are simply mapped into places of the
GSPN, while the conversion of the BEs generates also timed transitions modelling
their occurrence. A compound rule for a non internal event, maps the event in the
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GSPN, and replaces in the DFT the event with an internal event. This replacement
is useful because in this way, all the input and output events are IEs; so, we have
to define compound rules only for gates having IEs as input and output events,
avoiding to distinguish the events according to their type (BEs, IEs, TE) in the
compound rules for the gates mapping.

The mapping of an event in the GSPN, is independent from the type of gate the
event is input or output of, with the exception of the case of an event relative to a
spare component. For this reason, in the rules in Fig. 4.5, Fig. 4.6, Fig. 4.7 no
gates are present in the source graph transformation rule ( % ¤ ). In the special case of
an event relative to a spare component, we have to apply the rule in Fig. 4.8, where
the ï@Ö»# gate appears. The priorities established among all these rules, allow to
apply the correct rule to each event of the DFT.

The mapping of a gate in the GSPN target model can be performed only when
the mapping of the input events and the output event of the gate, has been per-
formed. The conversion of a gate generates immediate transitions, with the possi-
ble creation in the GSPN of other places necessary to model in the GSPN the gate
semantic.

Several compound rules may be enabled at the same time; the final result of
the DFT mapping into GSPN is not influenced by the order of application of the
compound rules (confluence property (section 4.5.2)). However, priorities among
compound rules must be respected in any order of application.

The use of the attribute ñ ÷ ö[| for the events, and the replacement of some arcs
drawn as continuous lines, with arcs drawn as dashed lines, is a way to allow to
perform the mapping of an event or a gate only once. If we did not use this trick,
it would be possible to apply the same rule to the same event or gate for an infinite
number of times. Moreover, the compound rules have been expressed in a such a
way that whenever the source graph transformation rule can be applied to the DFT,
the target transformation rule can be applied as well. In other words, whenever a
match for ¨ ¤ exists in the DFT, a match for ¨ 8 exists in the GSPN.

Since the DFT is composed by a finite number of nodes, and each event and
gate is mapped in the GSPN only once, the conversion process ends after a finite
number of steps (termination property (section 4.5.2)). More precisely, the conver-
sion process ends when no rules can be applied to the DFT target model.

4.6.5 Running example

Through the application of the transformation rules described in section 4.6, we can
convert the DFT model in Fig. 4.4, into the GSPN in Fig. 4.26. The probability of
the TE (Unreliability of the system) at time � can be computed on the GSPN model
as the probability of the place

K N _
E ö to be marked by one token at time � :

#&%(' K N����C-&!1#&%(' 6 � K N _
E öY��!@�y����-

In the case of this example, and according to the failure rates and dormancy factors
indicated in Tab. 4.1, the probability of the TE versus time, obtained on the GSPN,
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time � #&%(' K N
����-
1000 h 2.347929E-06
2000 h 5.391436E-06
3000 h 9.130105E-06
4000 h 1.356352E-05
5000 h 1.869125E-05
6000 h 2.451289E-05
7000 h 3.102801E-05
8000 h 3.823620E-05
9000 h 4.613702E-05

10000 h 5.473005E-05

Table 4.3: Unreliability values for the Multiproc system with dependencies.

is shown in Tab. 4.3. These values have been computed by means of the GreatSPN
tool; the state space derived from the GSPN by GreatSPN, is composed by 7806
states (7806 tangible markings in the reachability graph of the GSPN). The time to
perform the GSPN analysis, has been 12 seconds1 .

4.7 Module based DFT analysis

The state space analysis of a DFT through its mapping into a GSPN model (or
in a CTMC), is typically computationally expensive, since the number of states
tends to grows exponentially with the number of components. Moreover, the state
space analysis is strictly necessary for the subtrees containing dynamic gates, since
we can not express in Boolean formulas the semantic of dynamic gates. At the
same time, for the subtrees with only Boolean gates, the standard combinatorial
analysis (through the BDD generation) would be enough. So, a way to reduce the
computational cost of the state space analysis, consists of using this technique only
with the subtrees with dynamic gates, and using the combinatorial technique with
the rest of the DFT.

Such approach for the DFT analysis requires the solution of some subtrees in
isolation; in order to analyze a subtree in isolation, the subtree must be independent
from the rest of the DFT (section 2.5). So, the modules (independent subtrees)
detection on a DFT becomes necessary to this aim.

In a FT, a module is a subtree which is structurally independent from the rest of
the FT; this happens if the events contained in the subtree, do not occur elsewhere
in the FT [44]. This notion of module is still valid on a DFT, but we need also
a way to classify the modules according to the analysis technique they require
(combinatorial or state space analysis).

1The GSPN analysis has been performed on a personal computer equipped with a Pentium 4 2.4
MHz processor and with 512MB of RAM.
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4.7.1 Modules detection and classification

The modules detection algorithm [44] for FT models proposed in section 2.5.2, has
the purpose of verifying the independence of a subtree of the FT, in structural terms.
This algorithm is still useful on DFT models, to verify the structural independence
of the subtrees. However, this algorithm is applied on FTs interpreting the FT
as a tree structure by reversing the orientation of the FT arcs; if we perform the
reversing of the orientation of the DFT arcs, we can apply such algorithm to DFTs
too.

By definition the BEs of a FT are modules; in the case of DFTs, we do not
consider the BEs as modules. Moreover, in a DFT, a BE may not be a terminal
node; for instance, the BE c may be the dependent event of a gate ¨ of type �=� Nª# ;
in this case, an arc �5¨��Cc\� is present. So we have that p . c(p Ý!ò� ; in other words c
can be considered the root of a subtree Ð c . However, in a DFT, we always consider
a module as a subtree Ðc Ì rooted in an event c Ì �(c Ì ©���� �®' K N�- . In this sense, the
modules detection algorithm verifies if an event cyÌ is the root of a module, only ifctÌ?©��0�P��' K N�- (section 2.5.2).

After the modules detection through this algorithm, DFT modules can be clas-
sified according to the solution method they need:

. the module Ð c is a Combinatorial Solution Module (CSM) if °h¨3©}�­�?¨3©Îycf�U���5¨��L©R�¥� . In other words, the module Ð c is a CSM if it does not contain
any dynamic gate.

. the module Ð c is State space Solution Module (SSM) if «F¨1©��·�0���5¨��®©B��®�R¨�©,Îyc . In other words, the module Ð c is a SSM if it contains at least
one dynamic gate.

For the CSMs the state space analysis is not necessary; for them, the less expen-
sive combinatorial analysis is enough. The state space analysis is essential for the
SSMs, since they contain dependencies due to the presence of dynamic gates [2].
We indicate with µ the set of the modules in the DFT.

Given a dynamic gate ¨ of the DFT, a Dynamic Module (DM) is the smallest
SSM Ð c in the DFT such that ¨ is contained in Ð c . Formally, Ð c¬©�µ is a DM if

«(¨ ©¦�3�y�»�5¨��	©AB��9� ¨P©®Îycl� Ý « Ðc Ì ©�µ �i¨P©®Îyc Ì �Rc Ì ©¦Îyc
We indicate with BDµ the set of the DMs of a a DFT. A module Ð c is a Maximal
Dynamic Module (MDM) if Ð c is a DM and is not contained inside another DM;
formally, Ð cª©ABDµ is a MDM if

Ý « Ðc Ì ©AB�µ �Fc=©�Îyc Ì
The definition of DM and MDM is useful in the DFT analysis by modulariza-

tion.
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4.7.2 DFT modularization

The main reason to perform the DFT analysis by modularization, i. e. exploiting
modules, is applying the state space analysis to the subtrees of the DFT requiring
it, while the less expensive combinatorial analysis can be performed on the rest
of DFT. We limit our attention on the quantitative analysis of a DFT at a certain
mission time � .

As in the case of the FTs (section 2.5.3), the main steps of the modularization
of a DFT are: modules detection, modules classification, decomposition, modules
analysis and aggregation. As described in the previous section, the modules de-
tection algorithm for FTs, is still valid for the modules detection on DFTs. Still in
the previous section, the modules classification is provided. In the decomposition
step, we have to detach from the DFT, modules needing the state space analysis, in
other words, we have to detach SSMs. The state space analysis of a SSM can be
realized by mapping the DFT module in a GSPN as shown in section 4.6; then, the
resulting GSPN can be analyzed returning the probability to be marked at time � ,
of the GSPN place corresponding to root event of the module.

In the aggregation step, we have to replace each of the detached SSM with a
BE having such probability, instead of a failure rate. At this point a problem arises:
if we iterate the modularization steps and a BE having a probability is part of a
detached SSM to be converted in GSPN, we can not convert such BE in the GSPN,
since it does not have a failure rate: in the model transformation system from DFT
to GSPN (section 5.4), the compound rule to map a BE in GSPN form (Fig. 4.7)
requires the BE to have a failure rate.

In order to avoid this drawback, we have to choose the SSMs to be detached
in such a way to avoid that any BE replacing a SSM, belongs to another SSM.
The solution to this problem, is choosing the MDMs of the DFT as the modules
to be detached from the DFT. Any dynamic gate belongs to a DM and to a MDM.
Choosing the MDMs as the modules to be detached and analyzed in isolation in the
state space, all the dynamic gates in the DFT are included in one of the detached
modules. After the aggregation step, no BEs replacing modules, will be part of a
SSM, since no dynamic gates will be present in the DFT.

Following this strategy, the modularization steps do not need to be iterated, but
it is necessary to perform them only once in order to analyze in the state space any
subtree needing this kind of analysis. If the detached modules are MDMs, after the
aggregation step, the DFT does not contain any dynamic gate, so it is now a FT
and can be analyzed with the combinatorial technique (BDD generation). We can
not map a BE having a probability instead of a failure rate in a GSPN, but a BDD
can deal with such a BE.

If the whole DFT is a MDM, we convert the whole DFT in a GSPN, and we
analyze the resulting GSPN computing the probability of the GSPN place

K N _
E ö

to be marked at the mission time � .
The steps to perform the modularization of a DFT follow:

1. Modules detection
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2. Modules classification: for each module, we verify if it is a MDM.

3. if úK N is a MDM go to step 11, else go to step 4.

4. Decomposition: each MDM is detached from the DFT.

5. MDM conversion to GSPN: each MDM is converted to GSPN.

6. GSPN analysis: each MDM in GSPN form, is analyzed.

7. Aggregation: each detached MDM is replaced in the DFT, by a BE (we
obtain a FT).

8. FT conversion to BDD

9. BDD quantitative analysis returning the final result.

10. end.

11. DFT conversion to GSPN.

12. GSPN analysis: the DFT in GSPN form, is analyzed returning the final re-
sult.

13. end.

4.7.3 Running example

In this section, we perform the quantitative analysis by modularization of the DFT
in Fig. 4.4, for a mission time of �t�f�f�f� V . Fig. 4.27 shows the MDMs of the DFT;
they are ú� � and ú× J . Both of them must be converted to GSPN; Fig. 4.28 shows
the module ú�P� in GSPN form; Fig. 4.29 shows the module ú× J in GSPN form.

The state space analysis of the module ú�P� and of the module ú× J at time��!@�t�f�f�f� V returned these probabilities:#&%('m� �ª���C-&!1#&%(' 6 ��� � _
E öY�"!��y���C-r! þ ½ ý ÿ � þ(�(� NÊ� þ#&%('l× J ���C-v!1#=%F' 6 �ô× J _
E öY�"!@�y����-r!@�y½ ² ý � ÿ � �fNÊ� �

The state space size of the module ú�P� , computed on the equivalent GSPN, is 14
states; the state space size of the module ú× J is 487 states. In both cases, the
time required to perform the analysis of the MDM in GSPN form, is less than
one second. In section 4.6.5, the state space derived from the GSPN in Fig. 4.26
equivalent to the whole DFT in Fig. 4.4, was composed by 7806 states and required
12 seconds to be analyzed. Thus, it is evident the reduction of the computational
cost if the DFT analysis is performed by modularization, instead of converting the
whole DFT into GSPN.

The replacement of the MDMs with BEs having the probability indicated above,
produces the DFT in Fig. 4.30; this DFT is actually a FT so we can generate and
analyze the corresponding BDD. Such BDD is shown in Fig. 4.31, and its quanti-
tative analysis returns the probability of the TE (

þ ½ ýt� Ôy�f� þ NÊ� þ ).
Tab. 4.4 reports the probabilities of the MDMs and of the TE, versus time.



132 CHAPTER 4. PETRI NETS SUPPORTING DFT ANALYSIS

TE

D1 D2

DBUS

DA

MS

1
2

BD

UPD

CM

PU1 PU2 PU3

P1 P2 P3

MEM3MEM1 MEM2

0 0 0
1 1 12 2 2

R1 R2

M1 M3M2

B

1 2

Figure 4.27: The MDMs in the DFT model of the Multiproc system.
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Figure 4.31: The BDD equivalent to the (D)FT in Fig. 4.30.

time � #&%('m�P�¬����- #=%F'l× J ����- #&%(' K N����C-
1000 h 2.347804E-6 1.25E-10 2.347929E-06
2000 h 5.390438E-6 9.99E-10 5.391436E-06
3000 h 9.126738E-6 3.367E-9 9.130105E-06
4000 h 1.355554E-5 7.976E-9 1.356352E-05
5000 h 1.867569E-5 1.5567E-8 1.869125E-05
6000 h 2.448601E-5 2.6879E-8 2.451289E-05
7000 h 3.098536E-5 4.2651E-8 3.102801E-05
8000 h 3.817258E-5 6.3617E-8 3.823620E-05
9000 h 4.604651E-5 9.0513E-8 4.613702E-05

10000 h 5.460599E-5 1.24067E-7 5.473005E-05

Table 4.4: Unreliability values for the Multiproc system with dependencies.



Chapter 5

Modelling repair processes using
RFT

5.1 Introduction to Repairable Fault Trees

As mentioned in section 3.1, a way to improve the Reliability of the system, con-
sists of replicating its critical components or subsystems. Moreover, the Reliability
can be improved by providing spare components able to replace a failed compo-
nent in its function (section 4.2). Another way to improve the system Reliability
is introducing repair or recovery processes with the purpose of repairing the failed
components.

While the failure of a component determines the component state transition
from the working state to the failed state, the accomplishment of the repair process
allows a failed component to turn back to the working state. The behaviour of a non
repairable component is acyclic; this means that the component can not turn back
to a previous state: a non repairable component is initially working and may turn
to the failed state; this state is an absorbing state meaning that no state transitions
are possible from the failed state. In the case of a repairable component instead,
the failed state is not an absorbing state because the repairable component can turn
back to the working state due to the repair process; in other words, the behaviour
of a repairable components is cyclic, in the sense that the working and the failed
state may be repeatedly alternated during the life time of the component.

If the repair process involves a subsystem instead of a single component, the
behaviour of the subsystem becomes cyclic. In general, we talk about repairable
systems, when some repair process involves single components of the system, sub-
systems or the whole system.

Actually, when we deal with repairable components (systems), the term Avail-
ability should be used instead of Reliability, to indicate the probability that the
component (system) is correctly working at a certain time (see section 1.1.3).

Besides the PFT (section 3.2) and the DFT formalism (section 4.3), a further
extension of the FT formalism becomes necessary to model systems characterized
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by the presence of repairable components or subsystems. To this aim, the Re-
pairable Fault Tree (RFT) [32, 52] formalism has been developed together with its
evaluation technique: the presence of repair processes in the system and in its RFT
model, establishes some dependencies among the component failure events (state
transitions from the working to the failed state) and the repair events (state transi-
tions from the failed to the working state). Moreover, the model must be able to
capture all the transient behaviour that happen whenever the failure of a repairable
component (subsystem) is detected with the consequent activation of the repair
action. The combinatorial analysis used for FTs can not fit these aspects, so the
possibility of modelling repair processes requires the state space based analysis.

The RFT formalism differs from the FT formalism, for the introduction of a
new primitive called Repair Box (RB) [8, 32]. A RB allows the model designer
to represent the presence of a repair action involving a certain set of components.
The repair action is activated by the occurrence of a specific failure event (trigger
event) concerning a component or a subsystem. A repair process is characterized
by a repair policy describing the repair mode, and by repair rates influencing the
repair time; actually the time to repair a component can be considered as non de-
terministic, so the duration of a repair process is a random variable. In the RFT
formalism, the time to repair is ruled by a negative exponential distribution (as the
time to failure).

The usefulness of the RFT formalism does not regard only the possibility to
model repair processes, but also the possibility to evaluate and compare the effi-
ciency of several repair policies if applied to the same system.

A way to perform the state space analysis of the repair process involving a
subsystem modelled in the RFT, consists of mapping the failure mode and the
repair mode of the subsystem in a GSPN model and exploiting the available GSPN
solvers. The way to perform such mapping is described in section 5.4.

An example of RFT model is depicted in Fig. 5.1.

5.2 A new primitive: the Repair Box

In the RFT formalism, a new primitive called Repair Box (RB) is introduced with
the aim of indicating the presence of a repair process in the system. A RB graph-
ically appears as a wrench inside a square, and is connected by means of oriented
arcs to the events in the RFT. In particular, the event c connected to the RB Ñ by
means of the oriented arc ��cf�CÑt� is called trigger event; the aim of the trigger event
is twofold: its occurrence enables the repair action modelled by Ñ , and it is the
”root” of the subtree whose BEs are influenced by the repair action. Moreover,
a RB Ñ is connected to a set of BEs representing the components to be repaired;
this set is called the basic coverage set of Ñ and is indicated by × ÷ | T[¶ ��Ñt� ; given
the BE c)Ì belonging to × ÷ | T[¶ ��Ñt� , Ñ is connected to cmÌ by means of the oriented
arc ��Ñ\�Cc Ì � . The effect of the RB Ñ is setting the value of the BEs in × ÷ | TU¶ ��Ñq� to��%y�zc (working), if their current value is D�� 2�� c (failed). This happens after random
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period of time starting in the moment of activation of the RB, i. e. when the trigger
event occurs.

Actually, the effect of the RB does not influence only the BEs in its basic cov-
erage set, but also all the IEs whose value can be expressed by a Boolean function
over a set of BEs including at least one BE in the basic coverage set of the RB:
changing the value of a BE c\Ì in the basic coverage set, may determine the change
of the value of an IE c such that a path exists from c Ì to c according to the logic
circuit orientation of the RFT arcs connecting input events to gates and gates to
output events. The coverage set of the RB Ñ is indicated by × ÷ | ¶ ��Ñt� and is com-
posed by all the BEs and IEs whose value is influenced by the action of Ñ . × ÷ | ¶ ��Ñt�
is the union of × ÷ | T[¶ ��Ñt� with any IE c such that a path exists from any element
of × ÷ | T[¶ ��Ñt� to c .

Besides the trigger event and the basic coverage set, a RB is characterized also
by a repair rate and a repair policy. The repair rate is the parameter of the negative
exponential distribution ruling the time to repair of the RB or the time to detect the
failure (this depends on the repair policy). The repair policy describes each aspect
of the repair process, such as the maximum number of components under repair at
the same time, the order of repair of the components, etc. In some repair policies,
a repair rate must be set for each BE in the basic coverage set.

We assume that an event can be the trigger of only one RB. All these aspects
are formally defined in section 5.3, while in section 5.3.1 three repair policies are
proposed.

5.3 RFT formalism definition

The RFT formalism in an extension of the FT formalism, with the addition of the
RBs. The RFT formalism is given by the tuple� �
� !Ê���"�C����� �v��� ���G���U�Y��Z¯��·���� 	 ��¸s�
where:
. �w!­�����������£' K N�- is the set of the events in the RFT; it is the union of

the following sets:

– �0� is the set of the BEs;
– �0� is the set of the IEs;
– {TE} is the set composed by the unique TE.

. �_ Á���d¢¦����¤R��� ¢R�s��¤9���w¢�� �¥��¤¦�X� �Û¢R���Y� is the set of the arcs.
. �G��!­'m�����¦���=��- is the set of Boolean gate types.
. �®�(��§u�¥� is the function assigning to each gate its type.
. Given ¨P©¦� ,. ¨�!­'\c¬©9�d�(«?��cf�U¨��	©9� - is the set of input events of ¨ ;¨ . !­'\c¬©9�d�(«?�5¨h�Ccl�	©9� - is the output event of ¨ .
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. Given c¬©9� ,. cv!M't¨9©¦�w�(«?�5¨��Cc\�	©R��- is the gate having c as output event;c . !­'t¨P©¦�3�(«¯��cf�U¨��
©9��- is the set of gates having c as one of their input
events.

. given Ñv©A�P� ,. Ñ
!M'\c¬©R���(«?��ci�CÑq�	©9��- is the trigger event of Ñ ;Ñ . !M'\c¬©¦�0���F«¯��Ñm�Ccl�	©�� -r!j× ÷ | T[¶ ��Ñt� is the basic coverage set of Ñ .
. The following conditions about the connection of events with gates, must

hold:

– °�¨P©¦���\p . ¨?p�±|²
– °�¨P©¦���\p ¨ . pi!@�
– °?c¬©9���"�\p . c(pi!1�
– °?c¬©9���"�\p c . p(A`�
– °?c¬©����"�\p . cFp/!@�
– °?c¬©����"�\p c . p(A`�
– p . K NPpf!��
– p K N . pf!$�

. Given c¬©9� , Îycr!M'\c)Ì?©9����«?OÍctÌ¿§ÏctQ�- .
. Given cª©�� , Ð c is composed by any OÍÑG§ÏcqQÒ�FÑv©R���¬���C� � (Ð c indicates the

subtree rooted in c ).
. The following conditions about the connection of events with RBs, must

hold:

– °?Ñ�©�� ���\p . Ñfpi!@�
– °?Ñ�©�� ���\p Ñ . p�±j�
– °?Ñm�CÑ�Ì?©A�P�|�/Ñ Ý!$Ñ�Ì�� . Ñ ì . Ñ�Ìh!$ã

. Given Ñv©A�P� ,

– ÎyÑ
!­'\c¬©9�d�(«?OÍc)Ì¿§ÏctÌ Ì Q��9ctÌ?©RÑ . ��c)Ì Ì?© . Ñ��9cª©dOÍc)Ì¿§ÏctÌ Ì Q�-
– ÑtÎ=!­'\c¬©9�d�(«?OÍc Ì § K N&Q(�9c Ì © . Ñ��9c¬©wOÍc Ì § K N=Q�-�� . Ñ× ÷ | ¶ ��Ñq�0!jÎyÑ��9ÑtÎ is the coverage set of Ñ .

. Given Ñv©A�P� and cmÌ�© . Ñ , the following conditions hold:

– × ÷ | T[¶ ��Ñt�G }Îyc Ì
– ÎyÑr ÛÎyctÌ
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– × ÷ | T[¶ ��Ñt�G }× ÷ | ¶ ��Ñt�
. Z����0�d§´³ µ < is the function assigning to each BE a failure rate, assuming

that BEs are ruled by the negative exponential distribution.

. ·,�M�P�Û§n³ µ < is the function returning the repair rate of a RB. The repair
rate of the RB rules the time to repair (or to detect) the failure according to
the repair policy associated with the RB. Some repair policies require also
the specification of a repair rate for each BE in the basic coverage set (see
section 5.3.1).

. � 	 !@'la&� K ��Ö»� K � í ��Ö»� K ���	�t½t½t½Å- is the set of repair policies. Some
of them are described in section 5.3.1.

. ¸��1�P� §¹� 	
is the function assigning a repair policy to a RB.

5.3.1 Defining a repair policy

In a repair policy, we set several aspects and parameters characterizing the repair
mode of a subsystem. The first aspect to be defined in a repair policy is the trigger
condition, i. e. the condition enabling the repair action.

The trigger condition can be

(a) a failure event;

(b) a condition expressed as a function of a set of failure events.

Besides the trigger condition, we can specify in a repair policy the following
aspects concerning the execution of the repair action:

(a) the repair order of repairable components;

(b) the number of available repair facilities: this number determines how many
components can be repaired at the same time.

Another aspect to be defined in a repair policy, is the time to repair a component
(or a subsystem); the time to repair is a random variable; if it is ruled by a negative
exponential distribution, then the parameter of the distribution is the repair rate of
the component (subsystem), equal to �mk J$K
K � , where

JjK
K � is the Mean Time
To Repair of the component (subsystem). If the repair action involves a subsystem,
the time to repair can be characterized in two ways:

(a) setting a global repair rate ruling the time to repair the subsystem entirely; the
global repair rate might be state dependent, i.e. it might depend on the actual
set of components to be repaired when the repair action is triggered;

(b) setting a repair rate for each component, so that the time to repair of each
component is ruled separately.
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Moreover, a random period of time may be necessary to detect the trigger condition
enabling the repair action.

When the repair action involves a subsystem, another important aspect is the
definition of when a repair action should be considered as completed:

(a) when all components in the subsystem have been repaired;

(b) as soon as the trigger condition is no more true.

A relevant aspect in the specification of a repair policy, is the influence of the
repair action on the component failure processes:

(a) they may be stopped until repair ends;

(b) they may continue during the repair action so that new failures may occur
while the repair is taking place.

Global Repair Time policy

In this section, we provide the specification of the repair policy called Global Re-
pair Time (GRT) [32].

According to the GRT policy, the repair of a subsystem is triggered by the
occurrence of the failure of the subsystem. The detection of the trigger condition
is immediate.

The repair action may involve all the failed components of the subsystem or a
subset of them. The number of repair facilities is infinite, so there is no limit to the
number of components under repair at the same time.

A global repair rate is defined in the GRT policy, so the recovery of all the
components involved in the repair process, is considered as an atomic action which
is enabled by the trigger condition, and is completed after a random period of
time ruled by the negative exponential distribution having the global repair rate as
parameter.

During the execution of the repair action, the GRT policy assumes that no fail-
ure events can occur.

The RFT formalism defined in section 5.3, allows to associate a GRT policy to
a RB: given Ñv©A� �}�(¸���Ñt�"!ja&� K ,

.,. ¨ is the trigger condition of Ñ , i. e. the event modelling the failure of the
subsystem to be repaired, and enabling the repair action of Ñ ;

. ¨ . !·× ÷ | TU¶ ��Ñq� is set of BEs modelling the failure of the components in-
volved in the repair action modelled by Ñ ;

. the global repair rate of Ñ is given by ·0��Ñq� .
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Single event Repair Time policy

In [32], another repair policy called Single event Repair Time (SRT) policy is de-
fined. In this policy, the trigger condition is still the failure of the subsystem, but
the time to detect the trigger condition and to enable the repair action, is a random
variable. Moreover, a repair rate is defined for each repairable component, so that
the end of the repair of each component, is not contemporary.

Two versions of the SRT policy are presented in [32]: with infinite repair facil-
ities (SRT-I) and with finite repair facilities (SRT-F).

In [32] the GRT, SRT-I and SRT-F policy are evaluated and compared by means
of the RFT formalism; in this chapter, we limit our attention on the GRT policy.

5.3.2 Running example

Repair mode of the system

Fig. 5.1 shows the RFT model for the Multiproc system described in section 2.2.1,
with the addition of two repair processes. One process involves the shared memory��� together with its memory bus Õ�� ; the repair process is activated when both the
shared memories ��� and �=² can not be accessed by the processing units, due to
the failure of the shared memories or to the failure of the memory buses. The
other repair process involves both hard disks ( ��� , �P² ) together with the disk bus� Õ Ó&Ö . This repair process is activated when both hard disks can not be accessed
by the processing units, due to the failure of the disks or to the failure of the disk
bus.

RFT model of the system

The RFT model of the system including the repair processes and shown in Fig.
5.1, has been obtained from the FT model in Fig. 2.3 with the addition of two
RBs named �&N¬#
� and �&Nª#¬² . Tab. 2.2 indicates the correspondence between
the events in the RFT and the system components and the subsystems. The failure
rates of the components are the same as in Tab. 2.1. The repair policy associated
to �&N¬#
� and �&Nª#¬² is the GRT policy (section 5.3.1); the repair rate of �&Nª#
�
and �&N¬#ª² is ��½ ��� V e [ ( ·0���&Nª#
�m�0!1��½ ��� V e [ , ·0���&Nª#¬²i�"!1��½ ��� V e [ ).�&N¬#
� models the repair process involving Õ�� and ��� ; its trigger event is
the IE Ö J representing the denied access to both shared memories. The basic
coverage set of �&Nª#
� is composed by the BEs ��� and Õ�� ( × ÷ | T[¶ ���&Nª#
�m�¬!'m���y��ÕP�l- ). So, when the IE Õ�� occurs ( Õ��ª!­��%y�zc ), the RB �&Nª#
� is activated
with the effect of repairing the BEs ��� and Õ�� ( ����!$D�� 2�� c , Õ��L!$D�� 2�� c ) after a
random period of time ruled by a negative exponential distribution with parameter·0���&N¬#
�m� . As a consequence of the repair of Õ�� and ��� , the value of other events
may become ��%y�zc . The events whose value is influenced by the RB �&Nª#
� is
contained in the coverage set of �&N¬#�� : × ÷ | ¶ ���&Nª#
�m�L!_'m��� , Õ�� , Õ���� , Ö J ,J N J � , J N J ² , J N J Ô , #�Ó�� , #�Ór² , #�Ó&Ô , × J ,

K N�- .
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Figure 5.1: RFT model of the Multiproc system with repair processes.

The RB �&Nª#¬² models the repair process involving directly �®� , ��² and �PÕ�Ó=Ö .
The trigger event of �&N¬#¬² is the IE �P� , while × ÷ | T[¶ ���&N¬#ª²i�0!M'm���y���P²(���PÕ Ó&Ö�- .
The repair process represented by �&Nª#¬² is activated when the event �P� occurs
( �P� ! ��%y�zc ), and after a random period of time the BEs ��� , ��² and � Õ Ó=Ö
are repaired ( ����!¹D�� 2�� c , ��² !ÊD�� 2�� c , � Õ Ó&Ö}!ÊD�� 2�� c ). The coverage set of�&Nª#¬² is × ÷ | ¶ ���&N¬#ª²i�"!M'm���y���P²(� J Ös���PÕ�Ó=Ös���P�¬� K N
- .
5.4 Converting a RFT model into a GSPN

This section describes the model transformation system (section 4.5) to convert a
RFT model (source model) to a GSPN (target model), assuming that a GRT repair
policy (section 5.3.1) is associated to each RB in the RFT.

Some of the compound rules dealing with the RB, need the specification of a
new attribute for the RBs, called �=c���N�| ; before the begin of the model transfor-
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mation process, for each RB Ñ in the RFT, we set the attribute �=c���N�|z��Ñt� to the set
of labels of the events belonging to the set × ÷ | ¶ ��Ñt�»�w× ÷ | T[¶ ��Ñt� . In other words,
the attribute �=c���N�| of the RB Ñ contains the set of the labels of the non basic
events belonging to the coverage set of Ñ .

The compound rules in the model transformation system from RFT to GSPN,
are in the form described in section 4.5.3. These rules need the introduction in the
RFT formalism, of some new functions:

. ñ ÷ ö[||�»�M§ ³ ¶ is the function returning the ��%y��c value if an event in the
source RFT model, has already been mapped in the GSPN target model, and
returning the D�� 2�� c value if an event in the source model has not yet been
mapped in the target model.

. 2 �(ÑR�Y�Á§ 'm�ª�t½t½t½\��³=- < is the function returning the label assigned to an
event, where 'm�¬�t½t½t½l��³=- < is the set of all the possible non empty strings we
can compose with the alphabet 'm�ª�t½t½t½m��³=- .

The 2 �(Ñ function has been defined also in the GSPN formalism:

. 2 �(Ñª�¿#$� K § 'm�ª�t½t½t½m��³=- < is the function returning the label assigned to
a place or transition.

In the compound rules in our model transformation system, labels are used to iden-
tify the nodes inside the source model and the target model:°�cf�Cc Ì ©R���/c Ý!jc Ì � 2 �(Ñy��c\� Ý! 2 �(Ñy��c Ì �°��Ò���hÌ�©9#Ê�o� Ý!c�hÌ5� 2 ��Ñy�!��� Ý! 2 ��Ñl�!��ÌÅ�°������ Ì © K �f� Ý!Û� Ì � 2 �(Ñy����� Ý! 2 ��Ñl��� Ì �
We can classify RFTs and GSPNs as labelled attributed oriented graphs (section
4.5.1); labels are returned by the function 2 ��Ñ , while attributes are returned by the
other functions defined in the RFT formalism (section 5.3) and in the GSPN for-
malism (section 4.4.2).

In order to map in the GSPN the failure mode of the system, we can use the
compound rules to convert the events and the Boolean gates, defined in the model
transformation system from DFT to GSPN (section 4.6). Such rules are depicted
in Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.9, Fig. 4.10, Fig. 4.12. In order to map in the
GSPN the repair mode of the system, we use the compound rules defined in this
section.

5.4.1 RB conversion

The compound rule in Fig. 5.2 can be applied to the a RB and to its trigger event. % ¤
can be applied to a subgraph of the target model, composed by a RB Õ connected
to the trigger event N by means of the arc ��N
��Õ
� ; moreover, N must already be
mapped in the GSPN ( ñ ÷ ö[|���N��=!o��%y�zc ) by means of the compound rule in Fig.
4.5, in Fig. 4.6 or in Fig. 4.7. In % ¤ , N is an IE, but it might be originally a BE
or the TE; this is due to the previous application of the rule in Fig. 4.7 to a BE,
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Figure 5.2: Compound for the trigger event of a RB.
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Figure 5.3: Compound for an event in the basic coverage set of a RB.

or of the rule in Fig. 4.6 to the TE. The effect of % ¤ on the source model is the
removal of the arc ��N
��Õ
� and its replacement with an arc drawn as a dashed line,
still from N to Õ ; in this way, the rule in Fig. 5.2 can not be applied again to the
same RB and on the same trigger event. % 8 creates in the GSPN target model, the
subnet modelling the trigger condition of the RB, the begin of the repair action, the
time to repair, and the end of the repair action. All these aspects respect the GRT
repair policy (section 5.3.1) associated with the RB.

The compound rule in Fig. 5.3 concerns a RB and one of the events in its basic
coverage set. % ¤ can be applied to a subgraph of the RFT, composed by the repair
box Õ , the trigger event N Ì and the event N belonging to the basic coverage set
of Õ . The trigger event NªÌ is identified by the arc ��N�Ì���Õ
� ; since in % ¤ this arc is
drawn as a dashed line, the compound rule in Fig. 5.3 can be applied only if the
compound rule in Fig. 5.2 has already been applied to Õ and N
Ì . The event N
appears in % ¤ of the compound rule in Fig. 5.3 as an IE; originally, it was a BE; this
is due to the previous application to N of the compound rule in Fig. 4.5, in Fig. 4.6
or in Fig. 4.7. The effect of the application of % ¤ of the compound rule in Fig. 5.3
to the RFT source model, is the removal of the arc ��ÕP��N�� and its replacement with
an arc drawn as a dashed line, still from Õ to N ; in this way, we avoid the further
application of the compound rule in Fig. 5.3 to the same RB and the same event in
the basic coverage set. The effect of the application of % 8 to the target model, is the
creation of an immediate transition modelling the repair of the failure event in the
basic coverage set of the RB.

The compound rule in Fig. 5.4 concerns a RB and one of the non basic events
in its coverage set. % ¤ can be applied to a subgraph of the RFT composed by the
RB Õ , the trigger event N Ì and the non basic event N in the coverage set of Õ . The
trigger event NªÌ is identified by the arc ��NªÌ���Õ
� ; since in % ¤ this arc is drawn as a
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Figure 5.4: Compound for an IE in the coverage set of a RB.

dashed line, the compound rule in Fig. 5.4 can be applied only if the compound
rule in Fig. 5.2 has already been applied to Õ and N�Ì . The event N appears in % ¤
of the compound rule in Fig. 5.3 as an IE; originally, it might be the TE; in this
case, it was converted to an IE by the application of the compound rule in Fig. 4.6.
However, the event N must already be mapped in the GSPN ( ñ ÷ ö[|z��N��=!o��%y�zc ).
The non basic event N is classified as an element of the coverage set of Õ , if its
label is contained inside the attribute �=c���N�| of Õ ( 4 D 2 ��Ñy��N�� 4 öP�=c���N�|z��N�� ). The
application of % ¤ of the compound rule in Fig. 5.4 determines in the source RFT
model, the removal of the label of N from the set contained inside �=c���N�|z��N�� ; in
this way, the rule in Fig. 5.4 can be applied only once to the same RB and to the
same non basic event belonging to the coverage set of the RB. The application of% 8 to the target model, creates an immediate transition modelling the repair of the
non basic event in the coverage set of the RB.

Any of the compound rules introduced in this section need the previous map-
ping of the RFT events by means of the rules in Fig. 4.5, in Fig. 4.6, in Fig. 4.7.
Any of the compound rules in this model transformation system can be applied
only once to the same elements of the RFT; this property combined with the fact
that a RFT model is composed by a finite number of nodes and arcs, guarantees the
termination of the model transformation process. The order of application of the
compound rules does not influence the final result of the transformation.

5.4.2 Running example

With the purpose of clarifying the conversion of a RFT model in GSPN, we take
into account the subtree úÖ J of the RFT model in Fig. 5.1. The conversion into
GSPN of this subtree, is shown in Fig. 5.6. In úÖ J the RB �&Nª#
� is present, with× ÷ | T[¶ ���&Nª#
�m� = 'm���y��Õ��l- ; the trigger event of �&N¬#
� is Ö J .
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In the GSPN, the places Ö J _
E ö , Õ���� _ E ö , Õ��=² _ E ö , ��� _ E ö , Õ�� _ E ö , �=² _ E ö ,Õ�² _ E ö and the transitions Ö J _ �/ö E , Õ���� _ ÷ % _ ��� , Õ���� _ ÷ % _ Õ�� , Õ��=² _ ÷ % _ �=² ,Õ��=² _ ÷ % _ Õ�² , ��� _ D�� 472 , Õ�� _ D�� 472 , �=² _ D�� 472 , Õ�² _ D�� 4�2 are the conversion of the

events and of the gates in úÖ J modelling the failure mode of the subsystem. Their
conversion is realized by means of the compound rules for the events and the
Boolean gates described in section 4.6. The explanation of the conversion of the
RB �&Nª#
� in the GSPN in Fig. 5.6, follows.

The trigger condition of the RB is modelled in the GSPN by the immediate
transition Ö J _ � ���F%y� which puts one token in the place Ö J _ %ic���� 4 % as soon as the
place Ö J _

E ö becomes marked ( Ö J _
E ö corresponds to Ö J ). The marking ofÖ J _ %ic��z� 4 % indicates the begin of the time to repair the subsystem modelled byúÖ J in the RFT. The random time to repair the subsystem is modelled in the GSPN

by the timed transition Ö J _ � 4ô6 c whose firing rate is equal to the repair rate of the
RB �&Nª#
� . The firing of this transition determines the end of the time to repair
the subsystem; the effect of the firing is moving the token from Ö J _ %ic���� 4 % toÖ J _ %ic 6R÷ |�c ; the marking of Ö J _ %fc 6R÷ |(c indicates the end of the time to repair
the subsystem.

At this point, the immediate transitions Ö J _ ñ 2 c)�F% _ Ö J , Ö J _ ñ 2 c)�F% _ Õ���� ,Ö J _ ñ 2 c)�F% _ ��� , Ö J _ ñ 2 c)�F% _ Õ�� are enabled to fire with the effect of removing
the token inside the places Ö J _

E ö , Õ���� _ E ö , ��� _ E ö , Õ�� _ E ö corresponding to
the events of úÖ J included in the coverage set of the RB �&Nª#
� . Finally, the
immediate transition Ö J _ c)ö E removes the token inside Ö J _ %ic 6R÷ |�c to complete
the execution of the repair action.

The places Ö J _ %ic��z� 4 % , Ö J _ %ic 6R÷ |(c and the transitions Ö J _ � ���F%y� , Ö J _ � 476 c ,Ö J _ ñ 2 c)�F% _ Ö J , Ö J _ ctö E are the result of the application of the compound rule in
Fig. 5.2 to the RB �&N¬#
� and its trigger event Ö J . The transitions Ö J _ ñ 2 cm�/% _ ���
and Ö J _ ñ 2 cm�/% _ Õ�� are the result of the application of the compound rule in Fig.
5.3 to �&N¬#�� and to the events in its basic coverage set. The application of the
compound rule in Fig. 5.4 to �&Nª#
� and the event Õ���� , produced the transitionsÖ J _ ñ 2 c)�F% _ Õ���� .

The priorities assigned to the immediate transitions in the GSPN in Fig. 5.6
allow the correct order of the steps of the repair action. Moreover, all the immediate
transitions modelling the repair process have a priority à « ± ² , higher than the
priority à � ! � of the immediate transitions modelling the failure mode. In this
way, we assure that no failure events can occur during the repair process.

5.5 Module based RFT analysis

In a RFT model, the state space analysis is actually required only by the subtrees
where the value of the events depends on the action of some RB. The other subtrees
can be solved with the standard combinatorial method (BDD based analysis). So,
the evaluation of a RFT consists of the analysis in the state space of the subtrees
where some RB is present, and of the combinatorial analysis of the rest of the RFT.
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Such approach for the RFT analysis requires the solution of some subtrees in
isolation; in order to analyze a subtree in isolation, the subtree must be independent
from the rest of the RFT (section 2.5). So, the modules (independent subtrees)
detection on a RFT becomes necessary to this aim.

In a FT, a module is a subtree which is structurally independent from the rest of
the FT; this happens if the events contained in the subtree, do not occur elsewhere
in the FT [44]. This notion of module must be extended in the case of RFTs, but we
need also a way to classify the modules according to the analysis technique they
require (combinatorial or state space analysis).

5.5.1 Modules detection and classification

The modules detection algorithm [44] for FT models proposed in section 2.5.2, has
the purpose of verifying the independence of a subtree of the FT, in structural terms.
This algorithm is still useful on RFT models, to verify the structural independence
of the subtrees. However, this algorithm is applied to FTs interpreting the FT as a
tree structure by reversing the orientation of the FT arcs; in order to perform the
algorithm on a RFT, we have to ignore the RBs and the arcs touching the RBs, and
we have to perform the reversing of the orientation of the arcs connecting events to
gates and vice-versa.

In a RFT, we consider the subtree Ð c ( c`©1���£�`' K N
- ) as a module if two
conditions hold:

. Ð c is structural independent from the rest of the RFT. This condition can be
verified using the algorithm to detect FT modules (section 2.5.2).

.­Ý «�Ñ�©A� �}�Fc=©�ÎyÑG� . Ñ .
Once the RFT modules have been detected, we can classify the RFT modules

according to the solution method they need:

. the module Ð c is a Combinatorial Solution Module (CSM) if

Ý «�c Ì ©R�s� Ý «�Ñv©A�P�|�/c Ì ©�Îyc¥�9c Ì ©®× ÷ | ¶ ��Ñq�
In other words, the module Ð c is a CSM if it any of its events does not belong
to the coverage set of a RB.

. the module Ð c is State space Solution Module (SSM) if

«�c Ì ©9�P�¦«�Ñv©Y� �}�Fc Ì ©¦ÎycG�9c Ì ©®× ÷ | ¶ ��Ñt�
In other words, the module Ð c is a SSM if it contains at least one event be-
longing to the coverage set of a RB.

For the CSMs the state space analysis is not necessary; for them, the less expen-
sive combinatorial analysis is enough. The state space analysis is essential for the
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SSMs, since they contain dependencies due to the presence of RBs. We indicate
with µ the set of the modules in the RFT.

Given a RB Ñ of the RFT and its trigger event |`© . Ñ , a Repairable Module
(RM) is the smallest SSM Ð c in the RFT such that | is contained in Ð c . Formally,Ð c=©�µ is a RM if

«¿Ñ�©Y�P���¦«7| ©9�d�1| © . Ñ"�Y| ©®Îycl� Ý « Ðc Ì ©�µ �(|�©®Îyc Ì �Rc Ì ©¦Îyc
We indicate with �+µ the set of the RMs of a RFT. A module Ð c is a Maximal
Repairable Module (MRM) if Ð c is a RM and is not contained inside another RM;
formally, Ð cª©A��µ is a MRM if

Ý « Ðc Ì ©A��µ �/cª©¦Îyc Ì
The definition of RM and MRM is useful in the RFT analysis by modulariza-

tion.

5.5.2 RFT modularization

The main reason to perform the RFT analysis by modularization, i. e. exploiting
modules, is applying the state space analysis to the subtrees of the RFT requiring
it, while the less expensive combinatorial analysis can be performed on the rest
of RFT. We limit our attention on the quantitative analysis of a RFT at a certain
mission time � .

As in the case of the FTs (section 2.5.3), the main steps of the modularization
of a RFT are: modules detection, modules classification, decomposition, modules
analysis and aggregation. In the decomposition step, we have to detach from the
RFT, modules needing the state space analysis, in other words, we have to de-
tach SSMs. The state space analysis of a SSM can be realized by mapping the
RFT module in a GSPN as shown in section 5.4; the SSM must include the RB(s)
connected to the events of the SSM. Then, the resulting GSPN can be analyzed
returning the probability to be marked at time � , of the GSPN place corresponding
to root event of the module.

As in the case of DFT modularization (section 4.7.2), we have to choose the
SSMs to be detached in such a way to avoid that any BE replacing a SSM, belongs
to another SSM. The reason for that is the impossibility to map in GSPN a BE
having a probability to fail instead of a failure rate (compound rule in Fig. 4.7).
So, in the Decomposition step, the MRMs of the RFT are the modules chosen to
be detached from the RFT. Any trigger event of a RB belongs to a RM and to a
MRM. Choosing the MRMs (together with the RBs connected to their events) as
the modules to be detached and analyzed in isolation in the state space, all the RBs
in the RFT are included in one of the detached modules. After the aggregation step,
no BEs replacing modules, will be part of a SSM, since no RBs will be present in
the RFT.

Following this strategy, the modularization steps do not need to be iterated, but
it is necessary to perform them only once in order to analyze in the state space any
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subtree needing this kind of analysis. After the aggregation step, the RFT does
not contain any RB, so it is now a FT and can be analyzed with the combinatorial
technique (BDD generation). While we can not map a BE having a probability
instead of a failure rate in a GSPN, a BDD can deal with such a BE.

If the whole RFT is a MDM, we convert the whole RFT in a GSPN, and we
analyze the resulting GSPN computing the probability of the GSPN place

K N _
E ö

to be marked at the mission time � .
The steps to perform the modularization of a RFT follow:

1. Modules detection

2. Modules classification: for each module, we verify if it is a MRM.

3. if úK N is a MRM go to step 11, else go to step 4.

4. Decomposition: each MRM is detached from the RFT.

5. MRM conversion to GSPN: each MRM is converted to GSPN.

6. GSPN analysis: each MRM in GSPN form, is analyzed.

7. Aggregation: each detached MRM is replaced in the RFT, by a BE (we
obtain a FT).

8. FT conversion to BDD

9. BDD quantitative analysis returning the final result.

10. end.

11. RFT conversion to GSPN.

12. GSPN analysis: the RFT in GSPN form, is analyzed returning the final re-
sult.

13. end.

5.5.3 Running example

In this section, we perform by modularization, the quantitative analysis at time�"!@�t�f�f�f� V of the RFT model in Fig. 5.1.
According to the RFT module definition and classification provided in section

5.5.1, the RFT in Fig. 5.1 contains the following CSMs: üÕ��=² , ûJMJ � , ûJ­J ² ,ûJ­J Ô . The SSMs in the RFT in Fig. 5.1 are: úÖ J , ú× J , ú�P� , úK N .
Fig. 5.5 shows the MRMs present in the RFT model of the Multiproc sys-

tem, according to the MRM definition provided in section 5.5.1; they are úÖ J andú�P� . According to the RFT modularization steps listed in Fig. 5.5.2, each of these
MRMs together with the RB connected to its events, needs to be detached from the
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Figure 5.5: The MRMs in the RFT model of the Multiproc system.
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Figure 5.6: The GSPN corresponding to the module úÖ J .

RFT (decomposition step), converted in GSPN form (conversion step), analyzed in
GSPN form (analysis step) and replaced by a BE whose probability to occur is the
probability of the MRM to be failed at the required mission time.

By means of the model transformation system from RFT to GSPN described
in section 5.4, the MRM úÖ J has been converted in the GSPN depicted in Fig.
5.6, while the MRM ú�P� has been converted in the GSPN shown in Fig. 5.7. The
probability of the MRM úÖ J to be failed at time �v!º�t�f�f�f� V is computed as the
probability of the place Ö J _

E ö in the corresponding GSPN, to be marked at time�"!@�t�f�f�f� V :

#&%('lÖ J ���C-r!$#&%(' 6 �ôÖ J _
E öY�"!@�y����-r!$²(½ �f� ÿ N�� �

The module úÖ J is replaced in the RFT model by the BE Ö J having this probabil-
ity. The probability of the MRM ú�P� to be failed at time �0!��t�f�f�f� V is computed
as the probability of the place �P� _

E ö in the corresponding GSPN, to be marked
at time �"!@�t�f�f�f� V :

#&%('m�P�¬����-r!1#=%F' 6 ���P� _
E öY��!@�y����-&!­�y½ ÿ ��� �\ý ÔyNÊ� ý

The module ú� � is replaced in the RFT model by the BE � � having this proba-
bility.

Replacing the MRMs of the RFT with BEs, we obtain the RFT shown in Fig.
5.8; this RFT contains no RBs, so it is actually a FT: it can be solved by generating
and analyzing the corresponding BDD depicted in Fig. 5.9. The probability of the
TE (Unavailability of the system) at time ��!Ê�t�f�f�f� V is �y½ ÿ �i² �(� ý Nò� ý ; Tab. 5.1
shows the results obtained on the RFT for a mission time varying between �t�f�f� V
and �t�f�f�f� V .
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Figure 5.7: The GSPN corresponding to the module ú� � .

time � #&%('lÖ J ���C- #=%F'm�P�ª���C- #&%(' K N
����-
1000 h 1.84E-10 1.601671E-4 1.601672E-4
2000 h 3.89E-10 1.601743E-4 1.601753E-4
3000 h 5.73E-10 1.601743E-4 1.601777E-4
4000 h 7.78E-10 1.601743E-4 1.601823E-4
5000 h 9.83E-10 1.601743E-4 1.601899E-4
6000 h 1.188E-9 1.601743E-4 1.602012E-4
7000 h 1.392E-9 1.601743E-4 1.602170E-4
8000 h 1.597E-9 1.601743E-4 1.602379E-4
9000 h 1.802E-9 1.601743E-4 1.602648E-4

10000 h 2.006E-9 1.601743E-4 1.602984E-4

Table 5.1: Unavailability values for the Multiproc system with repair processes.
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Figure 5.8: The RFT model of the Multiproc system after the analysis of the
MRMs.
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Figure 5.9: The BDD corresponding to the (R)FT in Fig. 5.8.



156 CHAPTER 5. MODELLING REPAIR PROCESSES USING RFT



Chapter 6

Integration of extended FT
formalisms

6.1 Integrating the PFT, DFT and RFT formalism

In this chapter, we compose the PFT, DFT and RFT formalism described in chap-
ters 3, 4 and 5 respectively, to generate a unique formalism called Dynamic Re-
pairable Parametric Fault Tree [8, 9, 29] (DRPFT). The DRPFT formalism in-
cludes and integrates the primitives of the FT formalism (BEs, IEs, TE, Boolean
gates), the primitives introduced in the PFT formalism (REs, BREs, parameters,
types), the primitives introduced in the DFT formalism (dynamic gates), and the
primitive introduced in the RFT formalism (repair box (RB, for short)).

So, the DRPFT formalism allows to build models where replicated components
and subsystems can be represented in compact form, dependencies among compo-
nent failure events can be represented by means of dynamic gates, and the presence
of repair processes can be modelled using RBs.

An example of DRPFT model is shown in Fig. 6.6.
Due to the presence of dynamic gates and RBs, a DRPFT model needs the

state space analysis. While a DFT model or a RFT model can be converted in
a GSPN model (sections 4.6 and 5.4), a DRPFT model can not be mapped in a
GSPN because there is no way to maintain the parametric form using the GSPN
formalism. Instead of GSPN, a DRPFT model can be mapped in a High-level
Stochastic Petri Net, in form of Stochastic Well-formed coloured Nets (SWN) [24,
25]. The SWN formalism extends the GSPN one, with the addition of coloured
tokens [23], introduced for the first time in Coloured Petri Nets (CPN) [65]. The
conversion of a DRPFT in a SWN allows to perform the state space analysis and
to maintain the representation of the redundancies in parametric form.

As in the case of GSPN, the analysis of a SWN begins with the generation
of the reachability graph. SWNs have the property that they generate symbolic
markings that may be viewed as a high level description of sets of actual markings.
So, from a SWN, a symbolic reachability graph [25] can be derived; the definition

157
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of symbolic markings allows to exploit symmetry properties in the model and to
generate the underlying CTMC in lumped form. The degree of saving in the state
space generation depends on the redundancies present in the system and can be
very consistent [11].

The way to convert a DRPFT model in a SWN is described in appendix A.
A further reduction of the computational costs of the state space analysis of

a DRPFT, can be achieved by analyzing the DRPFT by modularization, in such
a way to apply the state space analysis only to the DRPFT subtrees containing
dynamic gates and/or RBs, while the rest of the DRPFT (containing only Boolean
gates) can be solved through the combinatorial approach (pBDD).

6.1.1 Considerations on SWN and SAN

A coloured subnet of a SWN model, folds several symmetric GSPNs representing
them in a compact way; from this point of view, the SWN formalism reminds the
Stochastic Activity Networks (SAN) [86]. The main composing elements of the
SAN formalism are immediate and timed activities (similar to GSPN transitions),
places (containing tokens), and gates (differing from FT gates and used to set which
place markings enable activities to fire, together with effect of the activities firing
on the place markings). In the SAN formalism, there are no coloured tokens.

The Replicate/Join formalism [85] was conceived for SAN models; such for-
malism allows to express by means of a tree structure, the way to compose together
several SAN models in a unique large composed SAN model. In the tree structure,
leaf nodes are atomic SAN models, each non leaf nodes is a

� ÷\4 ö or �=c�� 2�4 ñq�/��c
operator, and the root node is the model resulting from the composition of atomic
models according to the operators in the composed model. In particular, the

� ÷l4 ö
operator compose two or more SAN models by superposition over their common
elements; the �=c�� 2�4 ñq�/��c operator constructs a model consisting of a number of
identical copies of a certain SAN model (copies may share common elements).

The composition and the analysis of SAN models is supported by the Möbius
tool [27, 34, 35, 37]. As in the case of SWN models, if a composed SAN model
presents structural symmetries, its analysis exploits such symmetries by solving a
smaller state space than if the symmetry were not present [85].

While in a composed SAN model, the replication (folding) is obtained by
means of atomic SAN models and the use of specific operators in an associated
tree structure, the SWN formalism allows to specify any aspect concerning the
symmetric structure of the system to be modelled, directly in the SWN model by
exploiting coloured tokens, with no external composition model. In other words,
a composed SAN model involves two formalisms (the SAN formalism and the
Replicate/Join formalism), while a SWN model is based on a unique formalism.

For this reason, mapping the semantic of a DRPFT model in a SWN is easier
to be implemented by a a model transformation system based on graph transfor-
mation rules (section 4.5.3), than mapping a DRPFT in a composed SAN model.
Moreover, the SWN formalism can be classified as an evolution of the GSPN for-
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malism, as the DRPFT formalism can be considered as an extension of the DFT
and RFT formalism; since a model transformation system from DFT to GSPN (sec-
tion 4.6) and from RFT to GSPN (section 5.4) were already studied, the conversion
of DRPFTs into SWNs can be obtained by combining and extending such model
transformation systems (appendix A).

6.1.2 Dynamic gates in parametric form

The semantic of the dynamic gates described in section 4.2, must be extended in
order to cope with the presence of (B)REs among the input, trigger or dependent
events of a dynamic gate.

Let us consider first the �=�PN¬# gate; the trigger event of a �=�PN¬# gate must
not be a (B)RE; in the original notation of the this type of gate, given in the DFT
formalism (section 4.3), the trigger event must be a single event; a (B)RE folds
several (B)Es, so a (B)RE as trigger event of a �=� Nª# gate would not be consistent
with the notation of this type of gate. The trigger event cfÌ of a gate of type �¬� Nª#
can be a BE or an IE. A (B)RE c can be instead the dependent event of a �=�PN¬#
gate, modelling the functional dependency of several events folded in c , on the
trigger event cmÌ .

A gate of type #=�v�®� can have a (B)RE as input event; in this case, we assume
that it is not allowed for the gate to have other input events. Suppose that the (B)REc is the input of a gate ¨ of type #=����� ; � is the parameter declared in c , and the
type of � is ×�º¬!­'/�y�t½t½t½m� 6 - ( 6 ±}² ) If c Ì is the output event of ¨ , then the value
of c)Ì is ��%y�zc if two conditions holds:

. c/�!�R!@�m�"!Û��%y�zci�Cc/�!��!$²i�0!Û��%y��cf�t½t½t½m�CcF�!�9! 6 ��!1��%y�zc
This means that the value of each event folded in c according to the parame-
ter � , is ��%l��c .

. c/�!�R!@�m�Gõ|cF�!��!$²i�Gõj½t½t½�õ`c/�!�R! 6 �
This means that the events folded in c according to the parameter � occurred
in a certain order given by the increasing order of the elements of the type of� ( 
¯�!�?�"!j×Vº ).

The output event of a gate of type #=�v��� can be an IE or a RE.
A gate ¨ of type Ö�ND� can be connected to a BRE c by means of the arc �5¨h�Cc\� .

In this case, we assume that the ¨ can not be connected to other events, while c
folds several BEs, including the ”trigger” event and the dependent events of ¨ . If �
is the parameter declared in c , and the type of � is ×Cº¬!­'/�y�t½t½t½\� 6 - , then c/�!�9!��m�
is the ”trigger event” of ¨ , and cF�!�£!¹²i���t½t½t½m�CcF�!��! 6 � are the dependent events
of ¨ . In other words, the BEs folded in c are forced to fail respecting the increasing
order of the elements of the type of � :c/�!��!@�m�	õ|c/�!�R!$²i�Gõ$½t½t½hõ}c/�!�9! 6 � .

In the notation of a gate of type ï@Ö»# , provided in the DFT formalism, a gate
of type ï@Ö»# must have as input events one BE relative to a main component, and
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one or several BEs relative to the spare components. In the DRPFT formalism, aï@Ö»# gate must still have one BE relative to a main component as input event.
The input events relative to spare components, can be BEs or BREs. In the case of
a gate ¨ of type ï@Ö»# with the BE 6 and the BRE � as input events, 6 models
the failure of the main component, while � folds several BEs modelling the failure
of spare components with the same failure rate and the same dormancy factor. In
this case, we assume that ¨ can not have other B(R)Es as input events. The output
event of a gate of type ï@Ö»# can be an IE or a RE. Moreover, we assume that the
B(R)Es concerning spare components, can not be connected also to gates of typeÖ»N�� .

The conditions ruling the use of parameters in a PFT model (section 3.2) still
holds in a DRPFT.

6.1.3 Repair Box semantic in a DRPFT

The RB semantic in a DRPFT model must take into account the dependency exist-
ing among events connected to dynamic gates, together with the representation of
symmetric subsystems in compact form by means of parameterization.

As in the RFT formalism (section 5.3), in the DRPFT formalism a RB must be
connected to its trigger event and to the elements of its basic coverage set by means
of arcs, while the coverage set of a RB is the set of events whose Boolean value
is influenced by the repair action of the RB on the elements of its basic coverage
set. The basic coverage set of the RB must be composed by events belonging to
the subtree whose ”root” is the trigger event of the RB. In a DRPFT, the trigger
event of a RB can belong to these categories: BEs, BREs, IEs, REs, TE; the basic
coverage set can be composed by BEs and BREs.

Given a RB Ñ such that the parameter set of its trigger event c , is not empty, Ñ
models the presence of several repair processes, each acting on one of the symmet-
ric subsystems represented in compact form by the subtree Ð c . If a BRE ¼ belongs
to the coverage set of a RB Ñ , then Ñ repairs all the BEs folded in ¼ .

In this chapter, we limit our attention to the GRT repair policy (section 5.3.1)
associated to a RB.

6.1.4 Dynamic gates semantic in case of repair

The failure event of a repairable component, is repeatable; so, the presence of RBs
in the model, influences the semantic of the dynamic gates requiring or forcing a
set of events to occur in a certain order. Let us suppose the presence in the DRPFT
of a gate of type #=�v�®� whose output event is ] , whose input events are �w� and��² , and the failure order required to determine the occurrence of ] , is: �w�=õ`��² .
If ��² is repairable (i. e. ��² belongs to the coverage set of some RB), the event ��²
is repeatable, i. e. the value of ��² can change repeatedly from D�� 2�� c to ��%y��c , and
from ��%y�zc to D�� 2�� c . Let us suppose that ��² fails and is repaired; then, �3� fails.
In this case, the failure order has been respected or not? Actually, when �3� fails,
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��² is not failed; this can be interpreted as the respect of the failure order; however,
when �w� fails, ��² had previously been in the failed state; from this point of view,
the failure order has not been respected by the input events of the #=����� gate.
In other words, when we deal with a gate of type #=�v��� having some repairable
input event � , we have to decide if the first or the last failure of � must be taken
into account in the verification of the failure order of the input events. In our
interpretation, we consider the first failure of the repairable component.

A similar problem arises when a gate of type Ö»N�� forces a set of events to
occur in a certain order, and one (or more) of these events is repairable. Let us
suppose that by means of a gate ¨ of type Ö»N�� , the events �3� and ��² are forced
to fail in this order: �3�9õ@��² ; moreover, �w� is repairable. Let us suppose that�w� fails and is repaired; if ��² has not yet failed, is it possible the failure of ��²
now? Two answers can be given to this question: we can say that ��² can not fail
now because �3� is not currently failed, or we can say that ��² can fail because �3�
failed in the past. In other words, when we deal with a gate of type Ö�ND� acting
on some repairable component � , we have to decide if the successor of � in the
failure order, can fail if � is currently failed, or if � failed at least once in the past.
We assume that the first interpretation holds.

Also the semantic of a gate of type ï@Ö»# is influenced by the presence of
some RB. We suppose that the gate ¨ is of type ï@Ö»# ,

J
is its input event relative

to the main component, and ÖG� , Ö�² , Ö�Ô are its input events relative to the spare
components available to replace the main one in case of failure. Moreover,

J
is

repairable. Let us suppose that
J

fails and
J

is replaced by ÖG� ; then, ÖG� fails
and

J
is replaced by Ö�² . If now

J
is repaired, Ö�² must turn to the dormant state.

In general, if the main component is repairable, the effect of its repair is twofold:
the main component turns from the failed to the working state, and the spare com-
ponent replacing the main one when the repair ends, turns from the working state
to the dormant state (stand-by). If later, the main component fails again, such spare
component is still available to replace the main one.

6.2 The DRPFT formalism

The DRPFT formalism is the union of the PFT (section 3.2), DFT (section 4.3) and
RFT (section 5.3) formalism. The DRPFT formalism can be defined by the tupleB�� 	r��� !����"�C�����P� 	 � � ��� ���C� � �����U�s��
������
�m���	��Z?�
�0��·���� 	 ��¸"�����
where:

. ��!$���P�����P�®' K N
-	�+� ��������� is the set of the events in the DRPFT;
it is the union of the following sets:

– �0� is the set of the BEs;

– �0� is the set of the IEs;

– ' K N�- is the set composed by the unique TE;
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– � � is the set of the REs;

– ����� is the set of the BREs.

. � is the set of the gates.

. � � is the set of the RBs.

. �o Á���3¢¦����¤R��� ¢��s��¤¦���w¢Y�P�G��¤9�X�P�}¢¦�0�s� is the set of the arcs.

. �£�f��§u³ " is the function returning the order number of an arc.

. � � !1�G�9�+B�� is the set of types of gate. It is the union of two sets:

– �G��!M'm�v�®�®���&��- is the set of Boolean gate types.

– B�� ! 'm#¬�����¦���¬� Nª#	��Ö»ND����ï@Ö»#�- is the set of Dynamic gate
types (described in section 4.2).

. ���/��§�� � is the function assigning to each gate its type.

. 	
is the set of parameters.

. � is the set of types.

. 
`� 	 § �
is the function assigning to each parameter the corresponding

type.

. ����')�ª��' K N�-f-r§ � ' 	 ���q- is the function returning the set of parameters
associated with an event.

. ����'����9���C� �»-r§ 	
is the function returning the parameter declared in a

RE or in a BRE. The following properties must hold:

– °?cy[)�Cc É ©�'����9���C� �»-i�
�F��cf[t� ì �(��c É �"!$ã
– °?c¬©Y� �?°��¦©��(��c\����«¿ctÌ¯�o��©��h��c\�?�RctÌ?©®Îyc
– Given c¦©���� , �F��cl�¬! '��¯- , c Ì ©}Îyc , �|©��h��c Ì � , we have that °�c Ì Ì ©OÍctÌ�§�ctQô����©��h��c)Ì Ìá�

Given the event c£©1� such that �h��cl� Ý! ã and �h��c\��!¡'�� [ �t½t½t½²� ß - , with6 ±ó� , we indicate such event in the DRPFT as c/�!�»[)�t½t½t½)��� ß � . If c}©'������9�C� ��- , then �(��c\��!M'�� ß - .
. �`��')�P��' K N�-f-=§B³ " is the function returning the multiplicity of an event:

– °?c¬©�')�9���0� �®' K N�-f-i���L��c\�¥!@�
– °?c¬©�'�� ����������-i���L��cl�0!Êp 
¯� �(��c\���tp

. Given ¨�©R�3�f�»�5¨��G©R�G���P�»�5¨���!1#=�v�®��� �»�5¨��"!jï@Ö»# ,. ¨
!M'\cª©9���F«¯��cf�U¨��
©9��- is the set of input events of ¨ ;¨ . !M'\cª©9���F«¯�5¨h�Cc\�
©9��- is the output event of ¨ .
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. Given ¨P©¦�3�y���5¨��0!1�¬� Nª#}� �»�5¨��0!jÖ»N�� ,. ¨�!­'\c¬©9�d�(«?��cf�U¨��	©9� - is the trigger event of ¨ ;¨ . !­'\c¬©9�d�(«?�5¨h�Ccl�	©9� - is the set of dependent events of ¨ .
. Given ¨P©¦�3�y���5¨��0!jï@Ö»# ,.   ¨�!ò'\c�©��,�h«?��ci�U¨��r©�� �»�"��cf�U¨��
!­�(- is the input event of ¨ relative

to the main component ( p .1  ¨�pi!@� );..¡ ¨®!·'\c�©3�}�¯«?��cf�U¨���©d� �b�"��cf�U¨���A­�(- is the set of input events of ¨
relative to the spare components ( p .�¡ ¨�p�±j� ).. ¨�! ..  ¨r� ..¡ ¨ .

. given Ñ�©�� � ,. Ñ
!M'\cª©��d�F«?��ci�CÑt�	©�� - is the trigger event of Ñ ;Ñ . !M'\cª©9�0�
�������d�(«?��Ñ\�Cc\�G©R��-v!j× ÷ | TU¶ ��Ñq� is the basic coverage set
of Ñ .

. Given c
©�� , . c�!ò't¨�©��}�h«?�5¨h�Cc\�&©���-ª! . j c	� . i c is the set of gates
having c as output event or dependent event; it is the union of

– . j c�!o't¨£©3�Û�»�5�»�5¨��¬©d�G�®�9�»�5¨���!Ê#=�����¹�9�»�5¨��v!òï@Ö»#��Y�«?�5¨h�Ccl�	©9� - is the set of gates having c as output event.

– . i c=!Ê't¨¦©��`���5���5¨��	!j�¬� Nª#1���»�5¨��G!­Ö»ND�ª�Ò�¦«¯�5¨h�Cc\��©���- is
the set of gates having c as dependent event.

c . !º't¨,©}�­�s«?��ci�U¨���©,��-9!·c .5¢ �"c .�£ is the set of gates having c as
input event or trigger event; it is the union of

– c .5¢ !·'t¨d©3�Á���5�»�5¨���©3�¥���R�»�5¨��r!¹#=�v�®�¹�R���5¨��r!oï@Ö»#��Y�«?��ci�U¨��	©9� - is the set of gates having c as input event.

– c . £ !Ê't¨®©£�|���5���5¨��	!­�=�PN¬#Û���»�5¨��	!@Ö»N��¬�Y�¦«?��ci�U¨��v©���- is
the set of gates having c as trigger event.

. The following conditions about the connection of events with gates, must
hold:

– °h¨ ©¦�3�y���5¨��	©¦�¥�9�®'m#=�v���¦��ï@Ö»#�-i� # ë%$
&.'*) �L��c\�
Aj�
– °h¨ ©¦�3�y���5¨��	©¦�¥�9�®'m#=�v���¦��ï@Ö»#�-i�\p ¨ . pf!@�
– °h¨ ©¦�3�y���5¨��0!Áï­Ö�#	� ..  ¨PÀ`���
– °h¨ ©¦�3�y���5¨��0!Áï­Ö�#	� ..¡ ¨�À`�0���P�C� �
– °h¨ ©¦�3�y���5¨��0!$�=� Nª#	� . ¨9À£�0� �����
– °h¨ ©¦�3�y���5¨��0!$�=� Nª#	�\p . ¨?pi!@�
– °h¨ ©¦�3�y���5¨��0!$�=� Nª#	�\p ¨ . p�±j�
– °h¨ ©¦�3�y���5¨��0!ÁÖ»ND���\p . ¨�pi!��
– °h¨ ©¦�3�y���5¨��0!ÁÖ»ND���\p ¨ . p�±|�
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– °?c¬©9���P�������"�\p . j cFpi!$�
– °?c¬©9���P�������"�\p . i cFp�±`�
– °?c¬©9���P�������"�\p c .5¢ p)IÁp c .�£ p�±Á�
– °?c¬©����P�+���0�\p . j cFp/!@�
– °?c¬©����P�+���0�\p . i cFp�±|�
– °?c¬©����P�+���0�\p c .5¢ ptIjp c .�£ p�±j�
– p . j K NPp/!@�
– p . i K NPp(±|�
– p K N . pf!$�

. The following conditions about the connection of events with RBs, must
hold:

– °?Ñ�©�� ���\p . Ñfpi!@�
– °?Ñ�©�� ���\p Ñ . p�±j�
– °?Ñm�CÑ�Ì?©A�P�|�/Ñ Ý!$Ñ�Ì�� . Ñ ì . Ñ�Ìh!$ã

. Given Ñv©A�P� ,

– ÎyÑ
!­'\c¬©9�d�(«?OÍc)Ì¿§ÏctÌ Ì Q��9ctÌ?©RÑ . ��c)Ì Ì?© . Ñ��9cª©dOÍc)Ì¿§ÏctÌ Ì Q�-
– ÑtÎ=!­'\c¬©9�d�(«?OÍc)Ì¿§ K N&Q(�9c)Ì?© . Ñ��9c¬©wOÍctÌh§ K N=Q�-�� . Ñ× ÷ | ¶ ��Ñq�0!jÎyÑ��9ÑtÎ is the coverage set of Ñ .

. Given Ñv©A�P� and cmÌ�© . Ñ , the following conditions hold:

– × ÷ | T[¶ ��Ñt�G }ÎyctÌ
– ÎyÑr ÛÎyctÌ
– × ÷ | T[¶ ��Ñt�G }× ÷ | ¶ ��Ñt�

. Given ¨�©R�3�f�»�5¨��"!jÖ»N�� , we assume that

– °?c¬© . ¨h�Cc�©R���P�������
– °?c¬©P¨ . �Cc�©R���P�������
– °?c¬©P¨ . � Ý «F¨ ©¦�3�i�»�5¨��"!Áï­Ö�#}�9c=© ..¤ ¨

. Z��¯'m�0�R�R�����"-�§ó³ µ < is the function assigning a failure rate to a BE or
to a BRE, if we assume its negative exponential distribution.

. �d�F�0���P������§ �����)�m� is the function assigning to a B(R)E connected to a
gate of type ï@Ö»# , a dormancy factor.

. ·£�1� �,§B³ µ < is the function returning the repair rate of a RB.



6.3. INTRODUCTION TO SWN 165

. � 	 !­'lar� K ��Ö»� K � í ��Ö»�&�Á�d�	�t½t½t½Å- is the set of repair policies. How-
ever, in the DRPFT formalism, we limit our attention to the GRT policy.

. ¸��1�P� §¹� 	
is the function assigning a repair policy to a RB.

. ���(�w§ ³ ¶$!ò')��%y�zci�CD�� 2�� cy- is the function returning the Boolean value of
an event (Boolean variable).

6.3 Introduction to SWN

The SWN formalism extends the GSPN one, mainly through the introduction of
colour classes. A colour class is a finite non empty set of colours; any two colour
classes are disjoint sets. Colours are used in SWNs to identify the tokens inside a
place, by assigning a colour to each token. Typically, a colour class is used to iden-
tify object of the same nature. A colour class may be ordered; in this case, given
a colour in the colour class, we can determine its predecessor and its successor in
the ordered colour class.

Each place of a SWN has a colour domain which is the Cartesian product of
the set of colour classes associated with the place. The colour of a token inside a
place, must belong to the colour domain of the place. Any two tokens in the same
place, can not have the same colour. The colour domain of the place � is indicated
by ñ E �!��� .

In a SWN, also the transitions have a colour domain; the colour domain of a
transition is constrained by the colour domains of the places connected to the tran-
sition by means of oriented or inhibitor arcs. The colour domain of the transition �
is indicated by ñ E ����� . The relation between the the colour domain of the transition
and the colour domain of such places, is defined through arc expressions.

An arc expression is assigned to an oriented or inhibitor arc connecting the
transition to a place, or vice-versa. An arc expression consists of a weighted sum
of tuples, where each element of a tuple in turn is a weighted sum of terms denoting
multisets of colour classes.

A multiset � over the set � ( � Ý!^ã ), is the mapping �}©@'m� § ³ "=- ( �,!Õ��/¨z���&� ). In other words, � can contain several occurrences of the same element¼®©R� . Formally,
��!1Õ��i¨z���&�"! ê

ä &.g
����¼���¼ (6.1)

where ����¼�� is the coefficient expressing the multiplicity of ¼ in � , i. e. the number
of occurrences of ¼ in � .

An arc expression is structured according to the colour domain of the place
touched by the arc. If the colour domain of the place contains Ë colour classes, the
arc expression is the sum of Ë -tuples. Given a Ë -tuple, each of its elements is the
weighted sum of terms; the 4 th element of a Ë -tuple, is an expression denoting a
multiset of × Ã , where × Ã is the 4 th colour class composing the colour domain of the
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place. The 4 th element of a Ë -tuple is the weighted sum of terms; each term can be
expressed by means of one of the following basic function:

. the projection function: this function is indicated by a parameter ¼ denoting
an element of × Ã .

. The successor function: this function is indicated by ¼Í¼ , where ¼ is a pa-
rameter; this function denotes the successor element of the element of × Ã
denoted by ¼ ( × Ã must be an ordered class).

. the diffusion/synchronization function: this function is indicated by Ö l è and
returns the whole set × Ã .

A whole arc expression denotes a multiset in the Cartesian product of the colour
classes composing the colour domain of the place.

The transitions in a SWN, can be considered to be procedures with parameters;
these parameters are present in the arc expressions assigned to the arcs touching
the transition. The parameters compose the colour domain of the transition. To
each parameter, a colour class is assigned. The colour domain of a transition may
be composed even by a predicate (guard); a predicate is a Boolean expression
expressed over the parameters; given the parameters ¼ and ¸ , the allowed predicates
are ¼�!Û¸ and ¼ Ý!1¸ .

A transition instance is a transition whose parameters have been instanced to
actual values. An actual value is an element of the colour class corresponding to
the parameter. An instance of the transition � is indicated by O ����ñ�Q , where ñ is the
assignment of the parameters of � , to actual values. In a SWN, we can only fire
transition instances.

A transition instance O �X��ñCQ is enabled to fire iff all the following conditions hold:

. the predicate of O ����ñ�Q is evaluated to ��%y�zc (in the case the predicate is present).

. For each oriented arc �!�Ò����� , the place � contains the multiset resulting from
the evaluation of the arc expression assigned to �!�Ò����� .

. For each inhibitor arc �!�Ò����� , each tuple contained in � has a smaller multi-
plicity than the same tuple in the multiset resulting from the evaluation of
the corresponding arc expression assigned to �!�Y����� .

The effect of the firing of an instance O �X��ñ�Q is the following:

. for each oriented arc �!�Ò����� , the multiset resulting from the evaluation of the
arc expression through the assignment ñ , is removed from the place � .

. for each oriented arc �������?� , the multiset resulting from the evaluation of the
arc expression through the assignment ñ , is added to the place � .
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The same parameters may appear in several arc expressions. If a parameter
appears in two (or more) arc expressions assigned to arcs touching the same tran-
sition, then the parameter always refer to the same element of the corresponding
colour class. If instead a parameter appears in two (or more) arc expression related
to different transitions, then there is no relation among the elements referred by the
parameter in every arc expression.

Many instances of the same transition may be enabled to fire concurrently; in
this case, the firing of one of such transition instances is independent from the firing
of the other transition instances.

However, in a SWN, the colour domain of a place may be empty (no colour
classes are associated with the place). In this case, the tokens inside the place have
a neutral colour such that the tokens inside the place are not distinguishable. An arc
connecting a transition to a place �w�hñ E �!�?�L!Êã (or vice-versa), has an empty arc
expression, but it may have a cardinality. The rules for the transition firing enabling
and the firing effect, defined in the GSPN formalism, still hold in a SWN, when a
transition has a place with empty colour domain, as input, output or inhibitor place.

Further notions and information on the SWN formalism can be found in [25].
An example of SWN is shown in Fig. 6.2.

6.4 SWN formalism definition

The SWN formalism is given by the tuple ��#	� K ���ª��×v��ñ E � 6 ���h%ic E �CDz��ñq�/% E ��Z¯��¦¬��àÒ�
where

. # is the set of the places.

. K ! K Ã � K 8 is the set of the transitions; it is the union of two sets:

–
K Ã

is the set of the immediate transitions;

–
K 8 is the set of timed transitions.

. � is the set of arcs; it is the union of two sets:

– � �  Á��#Ê¢
K �¯��� K ¢R#�� is the set of the oriented arcs;

– �Pp� `#Ê¢ K is the set of the inhibitor arcs.

. × is the set of colour classes. The following properties hold:

– °zñr©®×v��ñ Ý!$ã
– °zñy�y��ñt²
©®×­�Fñl� Ý!1ñt²(��ñl� ì ñt²¬!$ã

. ñ E ��#j� K § � 'l×$�½�q- is the function returning the colour domain of a
place or a transition.

.36 is the function returning the marking of a place � .
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– If ñ E �!��� Ý!$ã , then 6 �!��� is expressed as a multiset of the colour domain
of � ( Õ��/¨z��ñ E �!�?� ).

– If �®�/ñ E �!���"!jã , then 6 �!�?� is expressed as the number of tokens inside� .

. �h%ic E is the function returning the predicate (if any) of the transition �,�ñ E ����� Ý!$ã .
. D is the function returning the arc expression of assigned to an arc touching

a place �¦�/ñ E �!��� Ý!$ã .
. ñX�F% E �	�B§ ³ "Ê�Á'm�(- is the function returning the cardinality of an arc

touching a transition �¦�iñ E �!���0!$ã .
. ZR� K 8 §B³ µ < is the function returning the firing rate of a timed transition.

. ¦M� K Ã §B³ µ < is the function returning the weight of an immediate transition.

. à@� K Ã § ³ "@�1'm�(- is the function returning the priority of an immediate
transition.

. Given �G© K
– . � ��!¡'��­©j#���«?�!�Ò�����P©$� � - is the set of the places such that an

oriented arc is drawn between each of them and � . Such places are
referred as input places.

– � . � !­'���©R#���«?�������?�¥©R� � - is the set of places such that an oriented
arc is drawn between � and each of them. Such places are referred as
output places.

– . pf��!­'��®©R#��(«¯�!�Ò�����¥©¦�¾p(- is the set of places such that an inhibitor
arc is drawn between each of them and � . Such places are referred as
inhibitor places.

6.5 Module based DRPFT analysis

The use of SWNs instead of GSPNs to perform the state space analysis of a DRPFT,
leads to reduce the computational costs; a further reduction of the computational
effort can be achieved by exploiting the DRPFT modules. As in the case of DFT
and RFT models, the state space analysis can be limited to the subtrees of the
DRPFT containing some kind of event dependency due to the presence of dynamic
gates or RBs. If the quantitative analysis of a DRPFT model is required at time� , an independent subtree (module) requiring the state space analysis can be ana-
lyzed in isolation with the proper technique, and replaced by a BE having the same
probability of the module to be failed at time � .

In the previous chapters, several definitions of module have been provided ac-
cording to the current formalism (FT, PFT, DFT, RFT). In each of these cases, some
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conditions must hold in order to verify if a subtree is independent from the rest of
the model. In order to detect the modules of a DRPFT, we must take into account
all the conditions identifying a module in each of the formalisms integrated in the
DRPFT formalism. We assume that the DRPFT modules are rooted in IEs, in REs
or in the TE. The whole DRPFT model ( úK N ) is a module by definition.

6.5.1 Modules detection and classification

The first step to detect the DRPFT modules consists of detecting the structurally
independent subtrees; this can be performed by the modules detection algorithm
for FTs (section 2.5.2), applied to the DRPFT ignoring the presence of the RBs
and of the arcs connecting the RBs to the events and vice-versa, and inverting the
orientation of the other arcs.

In the second step, appropriate conditions on the parameter set of the root of
every structurally independent subtree, are checked in order to verify the presence
of parameterized shared subtrees. So, a subtree Ðc Ì ( c)Ì�©��,���������w�����s� ) is
structurally and parametrically independent if two condition holds:

. the subtree is structurally independent

. °�c¬©9���Fc¬©®Îyc Ì ���h��cl�w���h��c Ì �
In the third and final step, we have to consider the presence of RBs; so, a

structurally and parametrically independent subtree Ðc Ì is a DRPFT module if the
following condition holds:

Ý «�Ñv©A� �}�/c Ì ©®ÎyÑG� . Ñ
DRPFT modules can be classified according to the technique they need to be

analyzed:

. the module Ð c is a Combinatorial Solution Module (CSM) if both the follow-
ing conditions hold:

– Ý «�c Ì ©��»� Ý «�Ñ�©A� �}�Fc Ì ©®ÎycG�9c Ì ©�× ÷ | ¶ ��Ñt�
– °h¨ ©¦�3�y¨�©®Îycf�U���5¨��L©R�¥�

In other words, the module Ð c is a CSM if any of its events does not belong
to the coverage set of a RB, and the module does not contain any dynamic
gate.

. the module Ð c is State space Solution Module (SSM) if at least one of the
following condition holds:

– «�c)Ìz©9���R«�Ñv©A� �}�/ctÌ?©®ÎycG�9c)Ì�©¦× ÷ | ¶ ��Ñt�
– «F¨ ©¦�3�y���5¨��	©�B��9� ¨�©®Îyc
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In other words, the module Ð c is a SSM if it contains at least one event be-
longing to the coverage set of a RB, or if it contains at least one dynamic
gate.

For the CSMs the state space analysis is not necessary; for them, the less ex-
pensive combinatorial analysis is enough. The state space analysis is essential for
the SSMs, since they contain dependencies due to the presence of dynamic gates
or RBs. We indicate with µ the set of the modules in the DFT.

The definition of MDM (section 4.7.1) and the definition of MRM (section
5.5.1) still hold in the DRPFT formalism. In a DRPFT, a module may be contem-
porary a MDM and a MRM.

6.5.2 DRPFT modularization

The modularization of a DRPFT model, requires some new steps with respect to
the modularization of a DFT or RFT module:

1. Modules detection

2. Modules classification: for each module, we verify if it is a MDM or a MRM.

3. if úK N is a MDM or a MRM go to step 12, else go to step 4.

4. Decomposition: each module classified as MDM or MRM is detached from
the DRPFT.

5. Module simplification: the parameter set of the module root event is sub-
tracted from the parameter set of every event in the module.

6. MDM/MRM conversion to SWN.

7. SWN analysis: each MDM/MRM in SWN form, is analyzed.

8. Aggregation: each detached MDM/MRM is replaced in the DRPFT, by a
BE/BRE (we obtain a PFT).

9. PFT conversion to pBDD
(or PFT unfolding to FT followed by FT conversion to BDD).

10. (p)BDD quantitative analysis returning the final result.

11. end.

12. DRPFT conversion to SWN.

13. SWN analysis: the DPRFT in SWN form, is analyzed returning the final
result.

14. end.
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We limit our attention to the quantitative analysis of a DRPFT model at time � .
First, modules must be detected and classified. In the following Decomposition

step, the modules to be detached are those classified as MDM or MRM (the same
module may be classified as both a MDM or a MRM).

At this point, a problem arises: the root event c of a module may be an event
having a non empty parameter set; in this case, c folds several events according to
its parameter set, while the root event of a module should be a unique event. A
way to solve this problem, consists of removing from the parameter set of every
event in the module Ðc Ì (including c Ì ), the parameter set of c Ì . Since a module of a
DRPFT model is a parametrically independent subtree (section 6.5.1), every eventc inside Ðc Ì includes the parameters of c Ì in its parameter set. Formally, °�c9© �j�c¬© Ðc Ì ���h��ctÌÅ�G ¿����c\� . So, before the conversion into SWN of a MDM/MRM Ðc Ì , we
perform on every event cR© Ðc Ì , this operation: �h��cl��!°�h��cl�"������cmÌá� . We call this
new step module simplification. Moreover, in this step, if the module root event is
a RE, it is converted to an IE, because its parameter set becomes empty.

Then, the module (including the RBs and the arcs touching the RBs) can be
converted into SWN by means of the model transformation system reported in
appendix A (Conversion step). The module in SWN form can be analyzed com-
puting the probability of the place corresponding to the root event of the module,
to be marked at time � (Analysis step).

In the Aggregation step, if the module root event before the module simpli-
fication step, was an IE, the module is replaced in the DRPFT by a BE with the
probability to occur computed on the correspondent SWN; if the module root event
was a RE before the simplification step, it is replaced by a BRE. In both cases, the
parameter set of the B(R)E replacing the module, is equal to the parameter set of
the module root event before the simplification step.

After the Aggregation step, the DRPFT contains no dynamic gates and no RBs;
now, the model is actually a PFT. If the current DRPFT respects the restrictions on
the use of parameters reported in section 3.5.1, the corresponding pBDD can be
generated and analyzed; if such restrictions are not respected, the DRPFT can be
unfolded [11] (i. e. converted to a FT model), and the corresponding BDD can be
generated and analyzed.

The analysis of the (p)BDD returns the final result, i. e. the probability of the
TE at time � (system Unreliability or Unavailability). It may happen that the whole
DRPFT is a MDM or a MRM; in this case, the whole model is mapped to SWN
and analyzed in this form.

6.6 Running example

In this section, we refer to the Multiproc system and to its DFT model described in
section 4.3.1. Several redundancies and symmetries can be observed in the Mul-
tiproc system: we have three processing units ( #�Ó�� , #�Ór² , #�Ó&Ô ) composed by
the same type and the same number of components: one processor and one inter-
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nal memory; we have two identical spare memories ( ��� , �=² ), and each of them
is functionally dependent on the memory bus Õ connecting the shared memories
to the processing units. Moreover, every spare memory is available to replace any
failed internal memory (

J � , J ² , J Ô ).
Such symmetries and redundancies in the system lead to the presence in the

DFT model in Fig. 4.4, of several subtrees with the same structure; for instance,
subtrees ü#�Ó�� , ü#�Ór² , ü#�Ó&Ô are isomorphic and their BEs concern the same types
of components. Moreover, the BEs referring to the same class of components
(for instance, the processors) have the same failure rate. The BEs ��� and �=²
contemporary belong to the subtrees ü#�Ó�� , ü#�Ó&² , ü#�Ó&Ô . Both ��� and �=² are
the input events of three gates of type ï@Ö»# whose output events are the eventJ N J � , J N J ² , J N J Ô , respectively. Moreover, both ��� and �=² are the
dependent events of the same �=� Nª# gate having Õ as trigger event.

The symmetric structure of the DFT model in Fig. 4.4 is reflected in the equiv-
alent GSPN in Fig. 4.26, where symmetric subnets are present and represent the
failure mode of the redundant parts of the system.

6.6.1 The DRPFT model

If we model the same system as a DRPFT, the symmetric subtrees are folded in a
parametric subtree, as shown in Fig. 6.1, where the DFT subtrees ü#�Ó�� , ü#�Ó&² andü#�Ó&Ô are folded in û#�Ó�� 4 � with the parameter 4 of type ×
�
!º'/�y�C²(�CÔF- ; the BRE�
�áÞ(� with 
¯�áÞF��!j×=²=!M'/�y�C²F- , folds the DFT BEs ��� and �=² .

Fig. 6.2 shows the conversion to SWN of the DRPFT in Fig. 6.1; comparing
the GSPN in Fig. 4.26 and the SWN in Fig. 6.2, we can observe that the symmetric
subnets present in the GSPN are folded in a coloured subnet of the SWN. In this
way, the SWN formalism allows to maintain the parametric form concerning the
redundant parts of the system.

A size reduction can be observed also in the state space (CTMC) derived from
the SWN, with respect to the dimensions of the state space derived from the GSPN.
This is due to the fact that we can derive a symbolic state space from the SWN.
The state space generated from the GSPN in Fig. 4.26 by means of the GreatSPN
tool, is composed by 7806 states (7806 tangible markings in the GSPN reacha-
bility graph), while the symbolic state space derived from the SWN in Fig. 6.2
is composed by 1374 symbolic states (1374 tangible markings in the SWN sym-
bolic reachability graph). Moreover, the time to analyze the GSPN by means of the
GreatSPN tool, consists of 12 seconds; the analysis of the SWN instead, requires 4
seconds1 . Thus the use of the parametric form allows to reduce the computational
cost of the system analysis both in terms of state space size and in terms of time.

The probability of the TE is computed on the SWN in Fig. 6.2, as the proba-
bility of the place

K N _
E ö (corresponding to the TE of the DRPFT in Fig. 6.1) to

1Both the GSPN and SWN analysis have been performed on a personal computer equipped with
a Pentium 4 2.4 MHz processor and with 512MB of RAM.
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Figure 6.1: DRPFT model for the Multiproc system with dependencies (without
repair).

be marked at a certain mission time:

#=%F' K N
����-r!1#&%(' 6 � K N _
E öY�"!@�y����-

We obtained the same results given by the DFT model in Fig. 4.4, and reported in
Tab. 4.3, but decreasing the computational cost.

Modularization

A more evident reduction of the state space size, is achievable if we perform the
analysis of the DRPFT in Fig. 6.1 exploiting modules. In such model two MDMs
are present: ú� � and ú× J (Fig. 6.3). The module ú�P� is not in parametric form,
so its conversion into SWN actually produces a GSPN (shown in Fig. 6.4); the
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Figure 6.3: The MDMs in the DRPFT model of the Multiproc system with depen-
dencies (without repair).

result of the conversion into SWN of the module ú× J , is shown in Fig. 6.5. Both
modules have been converted into SWN by means of the model transformation
system provided in appendix A.

The state space for the module ú�P� consists of 14 states, while the state space
for the module ú× J is composed by 85 states. The state space obtained from the
complete mapping to SWN of the DRPFT model, was instead composed by 1374
states. Moreover, for both modules, the time to perform their state space analysis
is less than 1 second.

The probabilities obtained for the modules and for the whole system on the
DRPFT model, are the same as those reported in Tab. 4.3 and obtained by the
modularization of the DFT model in Fig. 4.4 (see section 4.7.3).
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Figure 6.4: The SWN corresponding to the module ú�P� of the DRPFT in Fig. 6.1.
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# p. u. ú× J size (DFT) ord. st. sp. size ú× J size (DRPFT) sym. st. sp. size
3 16 487 7 85
4 20 2479 7 157
5 24 12703 7 263
6 28 64447 7 410
7 32 321663 7 605
8 36 1577727 7 855
9 40 7612927 7 1167

10 44 36199423 7 1548

Table 6.1: State space size of the module ú× J according to the number of process-
ing units.

6.6.2 Parametric form efficiency

In this section, we investigate how the state space size of the module ú× J changes
if we increase the number of processing units in the system. In order to model such
increase in the DRPFT of the system, we only have to change the cardinality of the
type ×�� associated with the parameter 4 declared in the RE #�Ó�� 4 � and identifying
the processing units. If instead, we want to model the increase of the number of
the processing units in the DFT (Fig. 4.4), we have to add some new subtrees in
the model.

For a number of processing units varying from 3 to 10, Tab. 6.1 indicates the
following measures:. the size of the module ú× J of the DFT model in terms of number of events.

. the size of the ordinary state space derived from the module ú× J of the DFT.

. the size of the module ú× J of the DRPFT model in terms of number of
events.

. the size of the symbolic state space derived from the module ú× J of the
DRPFT.

Observing the values in Tab. 6.1, the size reduction of the model and of the
state space size due to the parametric form, is evident.

The size of the DFT module ú× J is given by the formula

��I ý ~ í I,Ô
This formula is the sum of the following addends:. � takes into account the root event × J .

. ý ~ í is the number of events concerning the processing units;
í

is the number
of processing units.
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. Ô takes into account the events ��� , �=² , Õ .

The size of the module ú× J in the DRPFT instead, is constant: only the cardinality
of ×�� changes according to the number of processing units:

í !òpÍ×��/p .
The ordinary state space is obtained from the GSPN equivalent to the DFT

module ú× J , while the symbolic state space size is obtained from the SWN equiv-
alent to the DRPFT module ú× J . The respective size have been computed by
means of the GreatSPN tool.

6.6.3 Repairable version of the system

In this section, we add some repair processes in the Multiproc system described in
section 4.3.1. The DRPFT model of this version of the Multiproc system, is shown
in Fig. 6.6.

We assume the presence of a repair process recovering both the disk �®� and
the disk �P² , the disk bus �PÕ Ó&Ö , and the device Õ�� performing the periodical
update of �P² . The repair process is activated when the access to the disks is com-
promised. This repair process is represented in the DRPFT model in Fig. 6.6 by
the RB �&Nª#
� whose trigger event is the IE �P� representing the impossibility to
access the disks, due to the failure of the disk bus (event �PÕ Ó&Ö ), to the failure of
both disks (event

J Ö ), or to the missing update of �P² (event Óv#¬� ). The basic
coverage set of �&N¬#
� is × ÷ | T[¶ ���&N¬#��m�0!M'm�PÕ Ó&Ös��Õ��®���®�y����²F- . The cover-
age set of �&N¬#�� is × ÷ | ¶ ���&N¬#��m�"!j× ÷ | T[¶ ���&Nª#
�m��� 'fÓv#¬�¦� J Ös���P�¬� K N
-i½

Other repair processes are present in this version of the Multiproc system. For
each processing unit, a repair process is present, acts on the processor and on the
internal memory of the processing unit, and is activated as soon as the failure of
the processing unit occurs. As the failure of the processing units is represented
in parametric form in the DRPFT in Fig. 6.6, also their repair is represented in
parametric form by the RB �&N¬#ª² whose trigger event is the event #�Ó�� 4 � , while
its basic coverage set is × ÷ | TU¶ ���&N¬#¬²i�	!ò'm#�� 4 ��� J � 4 �C- . In this way, we model
the presence of several repair processes, each activated by the occurrence of an
instance of the RE #�Ó�� 4 � identified by a possible value of the parameter 4 , and
acting on the instances of #�� 4 � and

J � 4 � for the same value of 4 . The coverage set
of �&N¬#ª² is × ÷ | ¶ ���&N¬#¬²i��!j× ÷ | T[¶ ���&N¬#ª²i�¯�R' J N J � 4 ����#�Ó�� 4 ����× J � K N
- .

The repair policy associated to every RB (repair process) is the GRT policy
(section 5.3.1) with repair rate equal to ��½ �f��� V e [ .

The structurally independent subtrees in the DRPFT model in Fig. 6.6 are the
following: úK N , ú�P� , ú× J , û#�Ó�� 4 � , ûJ N J � 4 � . The structurally and parametrically
independent subtrees are: úK N , ú� � , ú× J . The modules are: úK N , ú�P� , ú× J ; all
of them are SSMs. The module ú� � and the module ú× J can be classified as both
MDM and MRM. Fig. 6.6 shows the MDM/MRM in the DRPFT model. The
conversion of ú� � in SWN is shown in Fig. 6.7, while the conversion of ú× J in
SWN is shown in Fig. 6.8.
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Figure 6.6: The DRPFT model for the Multiproc system with dependencies and
repair.
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Figure 6.7: The SWN corresponding to the module ú� � of the DRPFT in Fig. 6.6.

In the SWN corresponding to the module ú�P� (Fig. 6.7), the subnet represent-
ing the repair process, clears the places corresponding to the events belonging to
the module and included in the coverage set of the RB �&N¬#
� .

In the SWN in Fig. 6.8 (corresponding to the module ú× J ), the subnet gen-
erated by the conversion of the RB �&Nª#¬² , is ”coloured”; in this way, this subnet
models several repair processes, each involving one of the processing units. The
aim of the immediate transition called

J
_ � ¦ 4 �Uñ V _ ÷ D?D _ � is modelling the state

transition from the working state to the dormant state of the spare component re-
placing the main one when the repair of the latter is completed.

If we want to perform the quantitative analysis of the system at time �3!�t�f�f�f� V , we have to compute on the SWN in Fig. 6.7 the probability of the place� � _
E ö to be marked at time ��!��t�f�f�f� V , while we have to compute on the SWN

in Fig. 6.8 the probability of the place × J _
E ö to be marked at the same time. We

obtain these probability values:

#&%('m� �ª���C-&!1#&%(' 6 ��� � _
E öY�"!��y���C-r! � ½ ²�� ÿ ý ² � NÊ� ÿ

#&%('l× J ����-v!1#&%(' 6 �ô× J _
E öY�"!@�y����-r!@�y½ ² þ N@�`�t�

In the DRPFT, the module ú�P� is replaced by the BE �P� having
� ½ ²�� ÿ ý ² � Nw�ÿ

as probability to occur; the module ú× J is replaced by the BE × J whose prob-
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Figure 6.8: The SWN corresponding to the module ú× J of the DRPFT in Fig. 6.6.
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Figure 6.9: The DRPFT model after the analysis of the MDM/MRMs.
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Figure 6.10: The pBDD corresponding to the (DR)PFT model in Fig. 6.9.

ability is �y½ ² þ NÊ�}�t� . In this way, we obtain the DRPFT in Fig. 6.9; from it, the
corresponding pBDD can be generated and is shown in Fig. 6.10. The analysis of
this pBDD returns the unavailability of the system:

� ½ ²�� ÿfþfþ ²yNÊ� ÿ .
Tab. 6.2 reports the probabilities obtained for the modules and for the whole

system, and computed on the DRPFT model in Fig. 6.6, for a mission time varying
from �t�f�f� V to �t�f�f�f� V .

6.7 A software framework for DRPFT analysis

All the concepts introduced so far on the DRPFT analysis, have been implemented
in a software framework [8, 31] for the quantitative analysis of DRPFT models.
Fig. 6.11 shows the architecture of the framework.

The DRPFT models are drawn by means of the customizable graphical user
interface called Draw-Net [53, 58, 59, 60, 106, 109]; Draw-Net can be adapted to
draw any kind of graph based models; the formalisms must be defined in XML for-
mat files; in a formalism, several aspects have to be defined, such as the primitives
of the formalism, the measure to be computed on the models, and the graphical
representation of the formalism primitives. The most recent version of Draw-Net
allows to draw multi-formalism models [58]. Once the model has been drawn by
the user, the model can be saved in a file, still in XML format, together with the
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time � #&%('m� �ª���C- #&%('l× J ���C- #=%F' K N
����-
1000 h 1.520130E-6 3.2E-11 1.520162E-6
2000 h 2.518513E-6 8.1E-11 2.518594E-6
3000 h 3.324223E-6 1.07E-10 3.324330E-6
4000 h 4.058319E-6 1.18E-10 4.058437E-6
5000 h 4.765339E-6 1.22E-10 4.765461E-6
6000 h 5.461667E-6 1.24E-10 5.461791E-6
7000 h 6.153333E-6 1.24E-10 6.153457E-6
8000 h 6.842556E-6 1.25E-10 6.842681E-6
9000 h 7.530153E-6 1.25E-10 7.530278E-6

10000 h 8.216427E-6 1.25E-10 8.216552E-6

Table 6.2: Unavailability values for the Multiproc system with dependencies and
repair.

specification of the results request.
In our case, Draw-Net has been adapted to draw DRPFT models; the user can

specify at which mission time the quantitative analysis of the DRPFT must be
performed. When the user invokes the analysis of the DRPFT model, Draw-Net
saves the model and the mission time specification in a XML file (indicated as�P�&#=� K ½Í¼ 6R2 in Fig. 6.11), and is passed to the DRPFTproc block for the modules
detection and classification (section 6.5.1); each MDM/MRM in the model is saved
in a XML file and passed to the DRPFT2SWN block (in Fig. 6.11 the XML files
for the modules are indicated as 6R÷ E �y½Í¼ 6R2 , 6R÷ E ²(½Í¼ 6R2 , ½t½t½ ). In the XML file
containing the module, also the mission time is indicated.

The block �P�&#=� K ²iÖ0ïÁ� implements the model transformation system from
DRPFT to SWN, expressed by means of compound rules in appendix A. The block�P�&#=� K ²iÖ0ïÁ� receives one or several modules, each contained in a XML file;�P�&#=� K ²iÖ0ïÁ� translates every module in a SWN which is saved in a couple
of files according to the GreatSPN tool [22, 26] format. For instance the mod-
ule inside 6R÷ E �y½Í¼ 6R2 is converted into the SWN described in the files 6R÷ E �y½ÍöÒct�
and 6R÷ E �y½ E c\D ; 6R÷ E �y½ÍöÒct� contains the specification of the places, the transitions
and the arcs of the SWN, while 6R÷ E �y½ E cmD contains the specification of the colour
classes used in the SWN, and of the results to be computed on the SWN.�P�&#=� K ²iÖ"ïM� specify in the ½ E c\D file of each module that the following
result has to be computed: the probability to be marked at the mission time of the
place corresponding to the module root event.

GreatSPN is a tool developed for the design, the analysis and the simulation
of GSPN or SWN models. In our framework, the SWN analyzer developed for
GreatSPN is exploited. The ½ÍöÒct� and ½ E c\D files containing the description of every
SWN are passed to the GreatSPN SWN analyzer computing the result indicated in
the ½ E cmD file. Once all the SWNs corresponding to the DRPFT modules, have been
processed by the SWN analyzer, the obtained result for each SWN is passed back
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Figure 6.11: The architecture of the framework for the DRPFT analysis.

to the �P�&#=� K �h% ÷ ñ block.
Now, �P�&#=� K �h% ÷ ñ replaces the MDM/MRMs in the DRPFT with B(R)Es;

the probability to occur of every B(R)E replacing a module, is the probability com-
puted on the SWN corresponding to the module. By replacing the MDM/MRMs
in the DRPFT, a PFT is obtained. The PFT is saved by �P�&#=� K �h% ÷ ñ in a XML
file (indicated as #=� K ½Í¼ 6R2 in Fig. 6.11) containing also the indication of the
mission time. This file is passed to #=� K _ �höÒD ÷y2 E c)% performing the PFT un-
folding (PFT conversion to FT); the equivalent FT is saved by #=� K _ ��öÒD ÷l2 E ct%
in a XML file (indicated as � K ½Í¼ 6R2 in Fig. 6.11). This XML file is passed to
the � J ¨¥²iÖ»ø����&#=N block which converts the FT from the XML format to the
SHARPE [82, 83] tool format.

SHARPE is a tool developed for the analysis of several kinds of models, such
as FTs, CTMCs and GSPNs. In our case, SHARPE is used to perform the quan-
titative analysis of the final FT at the required mission time. The result returned
by SHARPE is the probability of the TE at the required mission time; this value is
passed back to Draw-Net to be showed to the user.

Fig. 6.12 shows a screenshot of Draw-Net used as graphical interface in our
framework for the quantitative analysis of DRPFT models.
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Figure 6.12: A screenshot of Draw-Net.



Chapter 7

Conclusions

In this work, we presented several extensions to the FT formalism; each extension
introduces new primitives with the purpose of increasing the FT modelling capac-
ity. Each extended FT formalism (PFT, DFT, RFT) is oriented to the modelling of
particular features characterizing the behaviour or the failure mode of the system:
the PFT formalism is oriented to represent systems with redundant parts, the DFT
formalism is oriented to model dependencies in the failure mode, and the RFT
formalism allows to model both the failure and repair mode of a system.

For each extended FT formalism, we proposed a way to perform the analysis
of the models built according to that formalism; in the case of the PFT formalism,
we introduced a new version of BDD called pBDD with the aim of performing the
analysis of a PFT model exploiting both the efficiency of BDDs and the parametric
form for the compact representation of the redundancies in the system. In the case
of the DFT and RFT formalism, our solution method is based on the conversion
of DFT and RFT models (or of their modules) into GSPNs by means of model-to-
model transformation based on graph transformation rules. In the solution methods
proposed for each formalism, our intent is reducing the computational cost of the
analysis; we achieved this purpose by means of the parametric form or by means
of the model modularization.

Finally, we integrated all the extended FT formalisms described in this work,
in a unique formalism called DRPFT collecting and integrating all the primitives
introduced in each extended FT formalism. The analysis of DRPFT models is
supported by the conversion of DRPFT models (or of their modules) into SWNs
(the ”coloured” version of GSPNs).

Actually, a model designer could represent the system behaviour directly in
form of SWN, but this way of modelling the system, is usually rather complicated
with respect to the more practical and intuitive modelling in form of DRPFT; for
instance, if we compare the module ú× J in the DRPFT model in Fig. 6.6 with the
equivalent SWN depicted in Fig. 6.8, we can observe how the DRPFT is easier to
be drawn, decisely more intuitive to be interpreted, and more compact in terms of
model size.

187
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So, the DRPFT formalism can be interpreted as an high level language allowing
the model designer to express in a straightforward way the relations among the
failure and repair events in the system, while their modelling in form of SWN is
obtained by the automatic conversion of the DRPFT model (or modules) into SWN.

Open problems

Some aspects concerning the formalisms described in this work, can be the object
of further studies and development. For instance, in the case of the PFT models,
their analysis by resorting to pBDDs is possible if some restrictions about the use
of parameters are respected; the pBDD based technique for the analysis of PFT
models could be extended in order to remove such restrictions. Moreover, the
pBDD technique have been developed for PFT models where the gates can be of
type ����� or of type �=� ; actually the PFT formalism includes also the �Ù�Ò�
gate, so the PFT solution method based on pBDD needs to be extended in order to
deal with gates of type �+�/� as well.

In this work, the � �¯� gate has been omitted in the DFT, RFT and DRPFT
formalism, but the mapping of this type of gate to GSPN (or SWN), can be easily
implemented by introducing other compound rules in the model transformation
systems from DFT (or RFT) to GSPN, and from DRPFT to SWN: in [30], the
transformation rule to convert to GSPN a � ��� gate of a DFT, is provided; in
[11], the way to map in SWN form a �B�/� gate, is described, but the authors limit
their attention to the case of a �â�¯� gate having a unique (B)RE as input event
(such input event folds � input events).

In the case of RFTs, new repair policies might be defined and represented: we
limited our attention to policies where the trigger condition is a single failure event;
it would be of interest evaluating policies where the recovery process is oriented
to the preventive maintenance of the system, instead of the repair of the failed
subsystem.

The evaluation methods that we proposed in this work for DFT, RFT and
DRPFT models, concern exclusively the quantitative analysis of the models with
the aim of computing the probability of the TE at a given time. The computation
of the importance measures (section 2.3.3), the qualitative analysis and the compu-
tation of the MCS probabilities, are still open problems for these kinds of model.

Future directions

A parallel research direction on DFT analysis, is oriented to the use of Bayesian
Networks (BN) and Dynamic Bayesian Networks (DBN) [13, 73, 74, 77], instead
of CTMCs or GSPNs. BNs and DBNs are based on the concept of conditional
probability and their use to support DFT analysis has several advantages such as
the computation of diagnostic and importance indices in a straightforward way.
Exploiting DBNs for the analysis of DRPFT models would be of interest.
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Though the DRPFT formalism collects all the primitives introduced in the PFT,
DFT and RFT formalism, the modelling capacity of a DRPFT model may not be
enough to fit the behaviour of a very complex system. In this case, we can build
multi-formalism [58, 84, 107] models; this means creating a model composed by
several submodels, each conforming to a certain formalism. In this way, instead
of referring to a single formalism, several formalisms are involved in the model.
Every aspect of the system behaviour is modelled according to the formalism which
is the most suitable to fit that aspect. The submodels of a multi-formalism model
interact with each other by exchanging measures or by means of common nodes.
The extended FT formalisms can be involved in a multi-formalism model, together
with other formalisms not deriving from the FT one.
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Appendix A

Model transformation from
DRPFT to SWN

This appendix provides a model transformation system (section 4.5.3) to map DRPFT
models to the equivalent SWNs. The source model is a DRPFT, while the target
model is a SWN. The compound rules in this model transformation system concern
RBs and the several types of event and gate. Such rules are in the form described in
section 4.5.3. The model transformation system proposed in this section, requires
the definition of two new functions in the DRPFT formalism:

. ñ ÷ ö[||�»�M§ ³ ¶ is the function returning the ��%y��c value if an event in the
source DRPFT model, has already been mapped in the SWN target model,
and returning the D�� 2�� c value if an event in the source model has not yet
been mapped in the target model.

. 2 �(ÑR�Y�Á§ 'm�ª�t½t½t½\��³=- < is the function returning the label assigned to an
event, where 'm�¬�t½t½t½l��³=- < is the set of all the possible non empty strings we
can compose with the alphabet 'm�ª�t½t½t½m��³=- .

The 2 �(Ñ function has been defined also in the SWN formalism, together with two
new functions concerning colour classes:

. 2 �(Ñª�¿#$� K § 'm�ª�t½t½t½m��³=- < is the function returning the label assigned to
a place or transition.

. Given the ordered colour class ñr©®× ,D 4 % � �q��ñ)� returns the first element of ñ ;2 � � �t��ñt� returns the last element of ñ .
In the compound rules in our model transformation system, labels are used to iden-
tify the nodes inside the source model and the target model.

Some of the compound rules dealing with RBs, need the specification of a new
attribute for the RBs: before the begin of the model transformation process, for
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each RB Ñ in the DRPFT, we set the attribute �=c���N�|z��Ñt� to the set of labels of the
events belonging to × ÷ | ¶ ��Ñt�s�w× ÷ | TU¶ ��Ñq� .

We can classify DRPFTs and SWNs as labelled attributed oriented graphs (sec-
tion 4.5.1); labels are returned by the function 2 ��Ñ , while attributes are returned by
other functions defined in the DRPFT formalism (section 6.2) and in the SWN
formalism (section 6.4).

Some compound rules may have an higher priority with respect to other ones.
There is a general correspondence between DRPFT elements and the elements

of the equivalent SWN obtained through our model transformation system:. generic event ´ place

. BE, IE or TE ´ place �¦�Fñ E �!���"!$ã
. RE or BRE ´ place �®�iñ E �!��� Ý!$ã
. type ´ colour class

. Cartesian product of types ´ colour domain

. not occurred event ´ empty place

. occurred event ´ marked place

. BE occurrence ´ timed transition firing

. gate ´ set of immediate transitions

The description of all the compound rules used in our model transformation
system, follows. In the target graph (SWN) transformation rules, whenever it is
not differently indicated, we have that. the marking of a place is equal to ã ;
. the colour domain of a place equal to ã ;
. the priority of an immediate transition is equal to 1;

. the cardinality of an oriented arc touching a place �¦�iñ E �!���0!1ã , is 1;

. an oriented arc has no arc expression;

. the cardinality of an inhibitor arc touching a place �¦�iñ E �!�?�0!$ã , is 1;

. an inhibitor arc has no arc expression.

Moreover, we assume that all the colour classes are ordered. The colour domain
of a place is indicated as the set of colour classes composing it; actually the colour
domain is given by the Cartesian product of the colour classes composing it (section
6.3). Similarly, we indicate the initial marking of a place with non empty colour
domain, as the set of colour classes whose Cartesian product provides the colours
of the tokens initially contained in the place.
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Figure A.1: Compound rule for an IE.

Events conversion

Fig. A.1, Fig. A.2 and Fig A.3 show the compound rules to map the non replicator
events (BEs, IEs, TE) of the DRPFT source model in the SWN target model. REs
and BREs can be mapped in the target model by means of the compound rules
in Fig. A.4 and in Fig. A.5, respectively. The BEs and the BREs representing
the failure of spare components must be mapped in the SWN by means of the
compound rules in Fig. A.6 (BEs) and in Fig. A.7 (BREs). If the rule in Fig. A.6
can be applied to a BE of the source model, also the rule in Fig. A.3 can be applied
to the same BE; this conflict is avoided by assigning an higher priority to the rule
in Fig. A.6 with respect to the rule in Fig. A.3. After the application of the rule
in Fig. A.6 to a BE, the rule in Fig. A.3 can not be applied to the same BE. In a
similar way, given a BRE representing the failure of a set of spare component, both
the rule in Fig. A.7 and the rule in Fig. A.5 can be applied to the BRE. For this
reason, the rule in Fig. A.7 has an higher priority with respect to the rule in Fig.
A.5.

The rules dealing with gates require the previous conversion of the events con-
nected to the gate.

Boolean gates conversion
ÀDÁcÂ

gate conversion

Given a gate of type �v�®� whose output event is an IE, the compound rule in Fig.
A.8 must be applied to map the gate in the SWN, together with the application of
the rule in Fig. A.9 to every non replicator input event of the gate, and with the
application of the rule in Fig. A.10 to every replicator input event of the gate.

We omit the compound rules for the conversion of a gate of type �v�®� with a
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Figure A.2: Compound rule for the TE.

Figure A.3: Compound rule for a BE.
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Figure A.4: Compound rule for a RE.

Figure A.5: Compound rule for a BRE.
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Figure A.6: Compound rule for a non replicator event relative to a spare.
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Figure A.7: Compound rule for a replicator event relative to a set of spares.

Figure A.8: Compound rule for a gate of type �v�®� with an IE as output event.



208 APPENDIX A. MODEL TRANSFORMATION FROM DRPFT TO SWN

Figure A.9: Compound rule for a gate of type �v�®� with a non replicator event as
input event (and an IE as output event).

Figure A.10: Compound rule for a gate of type �v�®� with a replicator event as
input event (and an IE as output event).
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Figure A.11: Compound rule for a gate of type �=� with a non replicator event as
input event (and an IE as output event).

RE as output event; such rules differ from the rules in Fig. A.8, in Fig. A.9 and in
Fig. A.10, only by the presence of a RE as output event of the gate, instead of an
IE.

Ã�Ä
gate conversion

Given a gate of type �&� having an IE as output event, the gate is converted into
SWN by means of the application of the compound rule in Fig. A.11 to every non
replicator input event of the gate, and of the compound rule in Fig. A.12 on every
replicator input event of the gate.

We omit the compound rules for the conversion of a gate of type �=� with a
RE as output event; such rules differ from the rules in Fig. A.11 and in Fig. A.12,
only by the presence of a RE as output event of the gate, instead of an IE.

Dynamic gates conversion
Å ÂvÆ�Ç

gate conversion

The dependence of a non replicator event on some other event, expressed by means
of a gate of type �¬� Nª# , can be mapped in the SWN target model by means of the
compound rule in Fig. A.13. If the dependent event is a replicator event, the rule
in Fig. A.14 must be used.
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Figure A.12: Compound rule for a gate of type �&� with a replicator event as input
event (and an IE as output event).

Figure A.13: Compound rule for a gate of type �=� Nª# with a non replicator event
as dependent event; the trigger event must be a non replicator event.
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Figure A.14: Compound rule for a gate of type �=�PN¬# with a replicator event as
dependent event; the trigger event must be a non replicator event.

ÇQÀ�Á�Â
gate conversion

A gate of type #=����� whose output event is an IE and its input events are non
replicator events, can be mapped in the SWN by applying the following rules: the
compound rule in Fig. A.15 on the output event of the gate, the compound rule in
Fig. A.16 on the first and the second of its input events, and the compound rule in
Fig. A.17 on the following input events of the gate, if any. If the #=����� gate has
an IE as output event and a replicator event as unique input event, the compound
rule to be applied to the input event, is shown in Fig. A.18.

We omit the compound rules for the conversion of a gate of type #=�v�®� with
a RE as output event; such rules differ from the rules in Fig. A.15, in Fig. A.16,
in Fig. A.17 and in Fig. A.18, only by the presence of a RE as output event of the
gate, instead of an IE.

È Æ�É
gate conversion

A gate of type Ö»N�� whose ”trigger” and dependent events are all non replicator
events, is converted to SWN by means of the application of the compound rule
in Fig. A.19 to the trigger event and on the first of the dependent events. If the
gate has other dependent events, the rule in Fig. A.20 must be applied to them. If
a Ö»ND� gate is connected to a unique replicator event, folding the trigger and the
dependent events, the gate must be converted into SWN by means of the rule in
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Figure A.15: Compound rule for a gate of type #=�v�®� with an IE as output event.

Fig. A.21.

Ê È Ç
gate conversion

Given a gate of type ï­Ö�# having an IE as output event, the gate can be mapped
into SWN, by applying the following compound rules: the rule in Fig. A.22 to the
output event of the gate and to the event relative to the main component, the rule
in Fig. A.23 to every non replicator event relative to a spare component, the rule in
Fig. A.24 to every replicator event relative to a set of spare components.

We omit the compound rules for the conversion of a gate of type ï­Ö�# with a
RE as output event; such rules differ from the rules in Fig. A.22, in Fig. A.23 and
in Fig. A.24, only by the presence of a RE as output event of the gate, instead of
an IE.

Repair Boxes conversion

A RB having a non replicator event as trigger event is converted into SWN by
applying the following compound rules:

. the rule in Fig. A.25 to trigger event of the RB;

. the rule in Fig. A.26 to every non replicator event in the basic coverage set
of the RB;
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Y

L

K
R

rs

<name1>:=lab(Y)
<name2>:=lab(A)
<name3>:=lab(B)
<expr1>:=θ(Y)
<expr2>:=θ(A)
<expr3>:=θ(B)
<dom1>:=τ(θ(A))
<dom2>:=τ(θ(B))

if conv(Y)=true
if conv(A)=true
if conv(B)=true
if σ(A,g)=1
if σ(B,g)=2

A B

1 2
Y

A B

Y

A B

1 2

σ(A,g):=1
σ(B,g):=2

P

if lab(P):=<name1>+"_dn"
if lab(T1):=<name1>+"_pand"
if lab(Q):=<name1>+"_ok"
if lab(U):=<name2>+"_dn"
if lab(U’):=<name3>+"_dn"

T1Q
P

T1Q

U U’

P

T1Q

R R’

T2

lab(T2):=<name1>+"_pand_"+<name3>
lab(T3):=<name1>+"_fail_"+<name2>
lab(T4):=<name1>+"_fail_"+<name3>
cd(R):=<dom1>       cd(R’):=<dom2>
lab(R):=<name1>+"_"+<name2>+"_ko"
lab(R’):=<name1>+"_"+<nam3>+"_ko"
f(U,T1):=<expr2>    f(T1,U):=<expr2>
f(U’,T1):=<expr3>   f(T1,U’):=<expr3>
f(R’,T2):=<expr3>   f(T2,R’):=<expr3>
f(U,T3):=<expr2>   f(T3,U):=<expr2>
f(T3,R):=<expr2>   f(R,T3):=<expr2>
f(U’,T4):=<expr3>   f(T4,U’):=<expr3>
f(T4,R’):=<expr3>   f(R’,T4):=<expr3>
f(R,T2):=<expr2>    f(T2,Q):=<expr1>
f(Q,T2):=<expr1>

U U’rt

L

K

R

g

g
g

U U’

T3 T4

Figure A.16: Compound rule for a gate of type #=�v��� and its input events with
order numbers 1 and 2 (with an IE as output event).
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Y

L

K
R

rs

<name1>:=lab(Y)
<name2>:=lab(A)
<name3>:=lab(B)
<expr1>:=θ(Y)
<expr2>:=θ(A)
<expr3>:=θ(B)
<dom>:=τ(θ(B))

if conv(Y)=true
if conv(A)=true
if conv(B)=true
if σ(A,g)=n>1
if σ(B,g)=n+1

A B

n n+1
Y

A B

Y

A B

n n+1

σ(B,g):=n+1

P

if lab(P):=<name1>+"_dn"
if lab(T1):=<name1>+"_pand"
if lab(Q):=<name1>+"_ok"
if lab(U):=<name3>+"_dn"
if lab(R):=<name2>+"_ko"

T1Q
P

T1Q

P

T1Q

R R’

T2

lab(T2):=<name1>+"_pand_"+<name3>
lab(T3):=<name1>+"_fail_"+<name3>
lab(R’):=<name2>+"_ko"
cd(R’):=<dom>
f(U,T1):=<expr3>   f(T1,U):=<expr3>
f(R’,T2):=<expr3>   f(T2,R’):=<expr3>
f(U,T3):=<expr3>   f(T3,U):=<expr3>
f(T3,R’):=<expr3>   f(R’,T3):=<expr3>
f(R,T2):=<expr2>    f(T2,Q):=<expr1>
f(Q,T2):=<expr1>

R

Urt

L

K

R

g

g
g

U

T3

R

U

Figure A.17: Compound rule for a gate of type #=�v�®� and its input events with
order numbers ö and ö IÛ� (with an IE as output event).
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Y

L

K
R

rs

<name1>:=lab(Y)
<name2>:=lab(X)
<expr1>:=θ(Y)
<expr2>:=θ(X)-δ(X)
<expr3>:=θ(X)
<dec_par>:=δ(X)
<col>:=τ(δ(X))
<dom>:=τ(θ(X)-δ(X))

if conv(Y)=true
if conv(X)=true

X

1 Y
Y

σ(X,g):=1

P

if lab(P):=<name1>+"_dn"
if lab(T1):=<name1>+"_pand"
if lab(Q):=<name1>+"_ok"
if lab(U):=<name2>+"_dn"

T1Q
P

T1Q

U

P

T1Q

lab(T2):=<name1>+"_pand_"+<name2>
lab(R):=<name2>+"_ko"
lab(U’):=<name2>+"_last"
cd(R):=<col>       cd(U’):=<col>
f(U,T1):=<<expr2>, S>
f(T1,U):=<<expr2>, S>
f(U,T3):=<expr3>    f(T3,U):=<expr3>
f(T3,R):=<expr3>    f(R,T3):=<expr3>
f(R,T2):=<<expr2>, ! <dec_par> >
f(T2,R):=<<expr2>, ! <dec_par> >
f(R,T2):=<expr3>    f(U’,T2):=<expr3>
f(T2,Q):=<expr1>    f(Q,T2):=<expr1>
m(U’):=<dom>, last(<col>) 

Urt

L

K

R

g

g
g

X

1

X

U

U’m

T2

<expr3><<expr2>, 
! <dec_par >>

R

T3

Figure A.18: Compound rule for a gate of type #=�v��� having a replicator event
as input event (with an IE as output event).
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L

K
R

rs

<name1>:=lab(A)
<name2>:=lab(B)
<expr>:=θ(A)

if conv(A)=true
if conv(B)=true
if σ(A,g)=1
if σ(B,g)=2

A B

1 2

A B
A B

1 2

σ(A,g):=1
σ(B,g):=2

if lab(U):=<name1>+"_dn"
if lab(U’):=<name2>+"_dn"
if lab(T):=<name2>+"_fail"

rt

L

K
R

g

T

U U’

T

U U’

T

U U’

f(T, U):=<expr>
f(U, T):=<expr>

Figure A.19: Compound rule for a gate of type Ö»N�� having a non replicator event
as ”trigger” event, and a non replicator event as dependent event with order number
2.

L

K
R

rs

<name1>:=lab(A)
<name2>:=lab(B)
<expr>:=θ(A)

if conv(A)=true
if conv(B)=true
if σ(A,g)=n>1
if σ(B,g)=n+1

A B

n n+1

A B
A B

n n+1

σ(B,g):=n+1

if lab(U):=<name1>+"_dn"
if lab(U’):=<name2>+"_dn"
if lab(T):=<name2>+"_fail"

rt

L

K
R

g

T

U U’

T

U U’

T

U U’

f(T, U):=<expr>
f(U, T):=<expr>

n

Figure A.20: Compound rule for a gate of type Ö»ND� having two non replicator
events as dependent events, with order numbers ö and ö I1� respectively.
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Figure A.21: Compound rule for a gate of type Ö»N�� having a replicator event as
dependent event.

. the rule in Fig. A.27 to every replicator event in the basic coverage set of the
RB;

. the rule in Fig. A.28 to every non basic non replicator event in the coverage
set of the RB;

. the rule in Fig. A.29 to every non basic replicator event in the coverage set
of the RB.

We omit the compound rules for the conversion of a RB with a RE as trigger
event; such rules differ from the rules in Fig. A.25, in Fig. A.26, in Fig. A.27, in
Fig. A.28 and in Fig. A.29, only by the presence of a RE as trigger event of the
RB, instead of an IE.
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Figure A.22: Compound rule for a gate of type ï@Ö»# with an IE as output event.
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M

<name1>:=lab(Y)
<name2>:=lab(M)
<name3>:=lab(S)
<num_s>:=|   g|
<num_a>:=σ(S,g)
<dom1>:=τ(θ(M))
<dom2>:=τ(θ(M))
<expr1>:=θ(Y)
<expr2>:=θ(M)
<expr3>:=θ(S)

L

if conv(S)=true
if σ(S,g)=n>0

Y

0

σ(S,g):=n

K R

if lab(P)=<name1>+"_dn"
if lab(Q)=<name2>+"_dn"
if lab(Q’)=<name1>+"_sub"
if lab(U)=<name3>+"_dn"
if lab(V)=<name3>+"_on"
if lab(T)=<name1>+"_wsp"

L

K

S

g
n

M

Y

0

S

g

M

Y

0

S

g
n

Z

V

U

Q

P

Q’

Τ

T1

T2

V

U

Q

P

Q’

Τ

V

U

Q

P

Τ

Q’
lab(T1):=<name2>+"_switch_on_"+<name3>
lab(T2):=<name2>+"_fail_"+<name3>
lab(T1):=<name2>+"_switch_off_"+<name3>
lab(Z):=<name2>+"_sub_"+<name3>
cd(Z):=<dom1>, <dom2>
π(T1):=<num_s>-<num_a>+1
f(Q,T1):=<expr2>    f(T1,Q):=<expr2>    f(T1,Q’):=<expr1>   
f(Q’,T1):=<expr1>   f(U,T1):=<expr3>    f(T1,V):=<expr3>
f(V,T2):=<expr3>    f(T1,Z):=< <expr2>, <expr3> >
f(Q’,T2):=<expr1>   f(Z,T2):=< <expr2>, <expr3> >
f(U,T2):=<expr3>    f(T2,U):=<expr3>
f(Q,T3):=<expr2>    f(V,T3):=<expr3>
f(Z,T3):=< <expr2>, <expr3> >      f(Q’,T3):=<expr1>

rs

rt

T3

R

Figure
A

.23:C
om

pound
rule

fora
gate
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a
non
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as

inputevent(and
an

IE
as

outputevent).
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M

<name1>:=lab(Y)
<name2>:=lab(M)
<name3>:=lab(S)
<num_s>:=|   g|
<num_a>:=σ(S,g)
<dom1>:=τ(θ(M))
<dom2>:=τ(θ(M))
<expr1>:=θ(Y)
<expr2>:=θ(M)
<expr3>:=θ(S)

L

if conv(S)=true
if σ(S,g)=n>0

Y

0

σ(S,g):=n

K R

if lab(P)=<name1>+"_dn"
if lab(Q)=<name2>+"_dn"
if lab(Q’)=<name1>+"_sub"
if lab(U)=<name3>+"_dn"
if lab(V)=<name3>+"_on"
if lab(T)=<name1>+"_wsp"

L

K

R

S

g
n

M

Y

0

S
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Y

0

S
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Τ

V
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Τ
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rt

Z

V

U

Q

P
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Τ

T1

T2

lab(T1):=<name2>+"_switch_on_"+<name3>
lab(T2):=<name2>+"_fail_"+<name3>
lab(T1):=<name2>+"_switch_off_"+<name3>
lab(Z):=<name2>+"_sub_"+<name3>
cd(Z):=<dom1>, <dom2>
π(T1):=<num_s>-<num_a>+1
f(Q,T1):=<expr2>    f(T1,Q):=<expr2>    f(T1,Q’):=<expr1>   
f(Q’,T1):=<expr1>   f(U,T1):=<expr3>    f(T1,V):=<expr3>
f(V,T2):=<expr3>    f(T1,Z):=< <expr2>, <expr3> >
f(Q’,T2):=<expr1>   f(Z,T2):=< <expr2>, <expr3> >
f(U,T2):=<expr3>    f(T2,U):=<expr3>
f(Q,T3):=<expr2>    f(V,T3):=<expr3>
f(Z,T3):=< <expr2>, <expr3> >      f(Q’,T3):=<expr1>

T3

Figure
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<name>:=lab(E)
<rate>:=µ(B)
<expr>:=θ(E)
<dom>:=τ(θ(E))

P

L

K R

if conv(E)=true

L
K

R

rs

rt

B

if lab(P)=<name>+"_dn"

E

B E B E’

P

R

Q

P
π=2

T1

T2

T3 π=4

π=3

T4

lab(Q):=<name>+"_repair"
lab(R):=<name>+"_remove"
cd(Q):=<dom>         cd(R):=<dom>
lab(T1):=<name>+"_start"
lab(T2):=<name>+"_time"
lab(T3):=<name>+"_clear_"+<name>
lab(T4):=<name>+"_end"
π(T1):=2
π(T3):=4
π(T3):=3
f(P,T1):=<expr>      f(T1,P):=<expr>
f(P,T3):=<expr>      f(T1,Q):=<expr>
f(Q,T1):=<expr>      f(Q,T2):=<expr>      
f(T2,R):=<expr>      f(T3,R):=<expr>      
f(R,T3):=<expr>      f(R,T4):=<expr>

Figure A.25: Compound rule for the trigger event of a RB; the trigger is a non
replicator event.
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E

<name1>:=lab(E)
<name2>:=lab(E’)
<expr1>:=θ(E’)
<expr2>:=θ(E)

P T

lab(T):=<name2>+"_clear_"+<name1>
π(T):=4
f(Q,T):=<expr1>
f(T,Q):=<expr1>
f(P,T):=<expr2>

L

K R

if conv(E)=true
if conv(E’)=true

L
K

R

rs

rt

B

if lab(P)=<name1>+"_dn"
if lab(Q)=<name2>+"_Remove"

E’

E

B E’
B E’

Q
PQ

PQ

E

π=4

Figure A.26: Compound rule for a non replicator event in the basic coverage set of
a RB whose trigger event is a non replicator event.

E

<name1>:=lab(E)
<name2>:=lab(E’)
<expr1>:=θ(E’)
<expr2>:=θ(E)

P T

lab(T):=<name2>+"_clear_"+<name1>
π(T):=4
f(Q,T):=<expr1>
f(T,Q):=<expr1>
f(P,T):=<expr2>

L

K R

if conv(E)=true
if conv(E’)=true

L
K

R

rs

rt

B

if lab(P)=<name1>+"_dn"
if lab(Q)=<name2>+"_Remove"

E’

E

B E’
B E’

Q
PQ

PQ

E

π=4

Figure A.27: Compound rule for a replicator event in the basic coverage set of a
RB whose trigger event is a non replicator event.
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E

<name1>:=lab(E)
<name2>:=lab(E’)
<expr1>:=θ(E’)
<expr2>:=θ(E)

P

L

K
R

RepEv(E):=RepEv(E)-lab(E)

if conv(E)=true
if conv(E’)=true
if lab(E) in RepEv(E)

L
K

rs

rt

B

if lab(P)=<name1>+"_dn"
if lab(Q)=<name2>+"_Remove"

E’

E

B E’

E

B E’

Q
PQ

T

lab(T):=<name2>+"_clear_"+<name1>
π(T):=4
f(Q,T):=<expr1>
f(T,Q):=<expr1>
f(P,T):=<expr2>

R

PQ

π=4

Figure A.28: Compound rule for a non basic non replicator event in the coverage
set of a RB whose trigger event is a non replicator event.

E

<name1>:=lab(E)
<name2>:=lab(E’)
<expr1>:=θ(E’)
<expr2>:=θ(E)

P

L

K
R

RepEv(E):=RepEv(E)-lab(E)

if conv(E)=true
if conv(E’)=true
if lab(E) in RepEv(E)

L
K

rs

rt

B

if lab(P)=<name1>+"_dn"
if lab(Q)=<name2>+"_Remove"

E’

E

B E’

E

B E’

Q
PQ

T

lab(T):=<name2>+"_clear_"+<name1>
π(T):=4
f(Q,T):=<expr1>
f(T,Q):=<expr1>
f(P,T):=<expr2>

R

PQ

π=4

Figure A.29: Compound rule for a non basic replicator event in the coverage set of
a RB whose trigger event is a non replicator event.


