
Parametric Dynamic Fault Tree and its Solution through Modularization

Daniele Codetta Raiteri
Dipartimento di Informatica, Università di Torino

Corso Svizzera 185, 10149 Torino, Italy
codetta@di.unito.it

1. Introduction

The Fault Tree (FT) [1] is a widespread model for the
dependability analysis of complex systems and allows to
model how combinations of component failures can deter-
mine the failure of subsystems or of the whole system; an
example is reported in Fig. 1; the nodes can be failure events
or gates: failure events are represented as a bar and are
equivalent to a boolean variable whose value is 0 until the
failure event has not yet occured, or 1 when the event has
occured; gates are connected to events by means of arcs and
have several input events and a unique output event, con-
nected respectively below and above the gate. The events
that are represented as a bar with a circle, are called basic
events (BE) and correspond to the failure events of physi-
cal components of the system; the occurence time of such
events is ruled by a probability distribution associated to
each BE, typically an exponential distribution whose pa-
rameter

�
is called failure rate. The internal events, repre-

sented as an empty bar, correspond to subsystems failures;
an internal event is the output of a gate and occurs when a
particular combination (determined by the type of the gate)
of the gate input events occurs. While BEs can not be the
output of any gate, there is a unique event called Top Event
(TE), indicated by a black bar, that can only be the output of
a gate; TE represents the failure of the whole system. A FT
may contain several kinds of gates; in the standard version
of this model, BEs are considered as statistically indipen-
dent and three gates corresponding to the AND, OR, K of N
boolean functions are defined; such a model can be easily
analyzed in a combinatorial way [1], but it suffers from the
inability to represent dependencies among failure events; in
order to overcome this limitation, some new gates called dy-
namic gates were introduced and they are:

� Priority AND (PAND) - it fails if all of its input events
fail and in a specified order (from left to right);

� Functional Dependency Gate (FDEP) - it forces a set
of dependent events to occur when a particular event
called Trigger occurs;

� Sequence Enforcing Gate (SEQ) - it forces a set of
events to occur in a specified order (from left to right);

� Warm Spare Gate (WSP) - it models the presence of a
set of spare components able to replace one or more
main components when one of them fails; the spares
change their failure rate when turning from the dor-
mant state (stand-by) to the working state.

The resulting model is called Dynamic Fault Tree (DFT)
[2]. The introduction of dynamic gates changes the way
to perform the system dependability analysis: while stan-
dard FTs are solved in a combinatorial way, DFTs require
the state space analysis. Another evolution of the model
concerns the way to represent the system redundancies
and symmetries compactly; this purpose is achieved by the
Parametric Fault Tree (PFT) [3]; using PFT, identical sub-
systems are represented by a unique parameterized sub-
tree whose root is a (Basic) Replicator Event (RE), indi-
cated by a dotted bar; a parameter is associated to the RE
and its variation range (for instance, from 1 to 3) indicates
how many identical subtrees are represented in a compact
way; such parameter will be associated even to the events
inside the replicated subtree; a replicated subtree may fur-
therly contain other REs using combinations of several pa-
rameters. DFT and PFT formalisms can be integrated gen-
erating the Parametric Dynamic Fault Tree (PDFT) [4] sup-
porting both parameterization and dependencies in the fail-
ure mode. As DFT, PDFT needs the state space solution.

2. The solution technique

Fig. 1 is an example of DPFT: this system is composed
by three subsystems called ������� , �����
	 , ������� , and it
fails when two of them are failed ( �� is the output of a K
of N gate with ����	 and ����� ); ������� (output of an OR
gate) fails if at least one among ������� , ������	 and �������
(represented as ������� �"! with � varying from � to � ) fails;
������� �"! fails when all of its components ( #�� �"! and �$� �&%(')!
with ' varying from � to 	 ) fail ( ������� �"! is the output of an
AND gate). �
���
	 is the output of a PAND gate, so it fails
if both C and D F are failed and * failed before + , ; + ,



fails if at least one +-�.�/! is failed; ������� fails if  or 0 ,
fails; 0 , (output of a WSP gate) fails when the main com-
ponent 0 is failed and there are no spares ��12�435! available
to replace it.

As mentioned in section 1, PDFT requires the state space
solution because it can contain dependencies in the failure
mode due to dynamic gates; state space solution may be
computationally very expensive, so in our approach we try
to apply such technique only to those subtrees that speci-
fically require it. So, the first step of the adopted solution
process is called modularization and consists of detecting
modules, i. e. indipendent subtrees; a subtree is a module
if both it does not share any node with other subtrees and
it does not descend from a dynamic gate; modules are de-
tected applying a previously realized linear time algorithm
[5] that has been adapted to consider the presence of depen-
dencies due to dynamic gates [6] or shared parameterized
nodes [4]. Once modules are detected, they are classified as
dynamic or static if they contain or not at least one dynamic
gate (classification step). Dynamic modules are then classi-
fied as minimal if they do not contain other modules of any
kind.

Only dynamic modules need a state space solution; a
way to perform such analysis consists of translating them
in a High Level Stochastic Petri Net in the form of Stocha-
stic Well-formed Net (SWN) [7]; this is done by means of a
specific translator (Fig. 3, Fig. 4). Suppose we have to per-
form a transient analysis of the PDFT, in other words we
have to calculate the probability that the system is failed at
a given mission time: we detach each minimal dynamic mo-
dule (MDM) and we translate it in a SWN. Instead of the
ordinary state space, a symbolic state space, whose dimen-
sions are smaller, can be generated from a SWN and ana-
lized; in this way, we solve in isolation every MDM, calcu-
lating its probability of failure at the given mission time (de-
composition step). The combined use of parameterization,
modularization, decomposition and translation of MDMs in
SWN can lead to a relevant reduction of the state space di-
mensions [4].

The translation of a MDM in SWN is performed in this
way: for each BE and for each gate inside the MDM, a SWN
is created separately; considering the MDM in Fig. 1 whose
root is �
���
	 , we create a distinct SWN for the BEs * (Fig.
2.a) and +-�4�6! (Fig. 2.b), and for the gates PAND (Fig. 2.c)
and OR (Fig. 2.d); then, such SWNs are composed together
performing a superposition over the common places corre-
sponding to MDM events; in this case, * , +7�4�/! and + , .
The resulting net is shown in Fig. 3; SWN compositionality
is very flexible allowing the generation of the correspon-
ding SWN even for complicated combinations of gates.

Now we replace in the PDFT each detached MDM with
a BE which has not a failure rate but a probability of failure
that is equal to the probability calculated on the correspon-

ding module (substitution step); at this point we obtain a
PFT that is no more dynamic because it does not contain
any dynamic gate; we call it Reduced PFT (Fig. 5) and it
can be solved in a combinatorial way after having been un-
folded, i. e. converted in the equivalent FT.

The whole process has been implemented following a
multi-solution multi-formalism approach [8] adapting the
graphical tool called DrawNET++ [9] to the PDFT forma-
lism, using the GreatSPN tool [10] as SWN solver and the
SHARPE package [11] to solve the reduced PFT, once un-
folded.

TE

SYS1 SYS2 SYS3

SUB(i)
i: 1, 2, 3

A(i) B(i, j)
j: 1, 2

C

D_F

D(k)
k: 1, 2, 3

E

M

SP(h)
h: 1, 2

M_F

MDM
MDM

k = 2
n = 3

Figure 1. An example of DPFT

D

D_fail

< k >

< k >

C

C_fail

C

D_F

SYS2

NO_FAIL

PAND

NO_PAND

D D_FOR
< k >

a)

b)

c)

d)

Figure 2. SWNs for each BE and gate in SYS2

C

C_fail

D

D_fail

D_F

SYS2

NO_FAIL

OR

PAND

NO_PAND
< k >

< k >

< k >

Figure 3. SWN for the module SYS2



SP

SP_fail_OFF

M

M_fail

< h >

< h >

< h >

< h >

< h >

< S >
< S > SP_fail_ON

SP_current
< h >

M_F
< S >

Figure 4. SWN for the module M F

TE

SYS1 SYS3

SUB(i)
i: 1, 2, 3

A(i) B(i, j)
j: 1, 2

E

SYS2_mod

M_F_mod

k = 2
n = 3

Figure 5. The reduced PFT

3. Future works

Future developing on PDFT will regard mainly these as-
pects:

� the integration of the PDFT formalism with the Re-
pairable Fault Tree (RFT) [12] formalism; this issue
has alreay been partially studied in [4], but only regar-
ding the WSP gate; failure and repair semantics must
be defined in order to integrate dynamic gates and Re-
pair Boxes (RB) [4][12]; for instance, if one of the in-
put events of a PAND gate is repairable, such event is
repeatable: which is the failure order causing the fail-
ure of the PAND gate?

� Currently only the quantitative analysis is available for
PDFT, so a way to perform a qualitative analysis of
PDFT must be studied in order to detect minimal cut
sets (MCS) or sequences, i. e. the minimal sets or se-
quences of BEs leading to the failure of the whole sys-
tem; this issue was already partially faced in the case
of PFT [3] and DFT [13].

� The solution of the reduced PFT requires an unfolding
step; we would like to be able to perform a combi-
natorial analysis of a PFT directly, without unfolding
it; this might be done through a previous qualitative
analysys step.

References

[1] W.G. Schneeweiss. The Fault Tree Method. LiLoLe Verlag,
1999.

[2] R. Manian, D.W. Coppit, K.J. Sullivan, and J.B. Dugan.
Bridging the gap between systems and dynamic fault tree
models. Proceedings IEEE Annual Reliability and Maintain-
ability Symposium, pages 105–111, 1999.

[3] A. Bobbio, G. Franceschinis, R. Gaeta, and L. Portinale.
Parametric fault-tree for the dependability analysis of redun-
dant systems and its high level Petri net semantics. IEEE
Transactions Software Engineering, 29:270–287, 2003.

[4] A. Bobbio and D. Codetta Raiteri. Parametric fault-trees with
dynamic gates and repair boxes. In Proceedings of the An-
nual Reliability and Maintainability Symposium, pages 459–
465, Los Angeles, CA USA, January 2004.

[5] Y. Dutuit and A. Rauzy. A linear-time algorithm to find mod-
ules of fault tree. IEEE Transactions on Reliability, 45:422–
425, 1996.

[6] A. Anand and A. Somani. Hierarchical analysis of fault trees
with dependencies, using decomposition. Proceedings IEEE
Annual Reliability and Maintainability Symposium, pages
69–75, 1998.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Had-
dad. Stochastic Well-Formed coloured nets and multipro-
cessor modelling applications. In K. Jensen and G. Rozen-
berg, editors, High-Level Petri Nets. Theory and Application.
Springer Verlag, 1991.

[8] G.Franceschinis M.Gribaudo M.Iacono N.Mazzocca
V.Vittorini. Towards An Object Based Multiformal-
ism Multi-Solution Modeling Approach. Proceedings Sec-
ond Workshop on Modeling of Objects, Components and
Agents, 2002.

[9] V.Vittorini G.Franceschinis M.Gribaudo M.Iacono
C.Bertoncello. DrawNet++: a Flexible Framework for
Building Dependability Models. Proceedings Interna-
tional Conference on Dependable Systems and Networks,
2002.

[10] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo.
GreatSPN 1.7: Graphical Editor and Analyzer for Timed and
Stochastic Petri Nets. Performance Evaluation, 24:47–68,
November 1995.

[11] R.A.Sahner K.S.Trivedi A.Puliafito. Performance And Relia-
bility Analysis Of Computer Systems; An Example-Based Ap-
proach Using the SHARPE Software Package. Kluwer Aca-
demic Publishers, 1996.

[12] D. Codetta Raiteri, G. Franceschinis, M. Iacono, and V. Vit-
torini. Repairable fault tree for the automatic evaluation of
repair policies. DSN Performance and Dependability Sym-
posium (to appear), July 2004.

[13] Z. Tang and J.B. Dugan. Minimal cut set/sequence genera-
tion for dynamic fault trees. In Procedings of the Annual Re-
liability and Maintainability Symposium, Los Angeles, CA
USA, January 2004.


