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Istituto Nazionale di Fisica Nucleare - sezione di Napoli

Complesso Universitario “Monte Sant’Angelo”, via Cintia, I-80126 Napoli, Italy

E-mail: antonella.liccardo@na.infn.it

Abstract: We study the D3/D(−1) brane system and show how to compute instanton

corrections to correlation functions of gauge theories in four dimensions using open string

techniques. In particular we show that the disks with mixed boundary conditions that are

typical of the D3/D(−1) system are the sources for the classical instanton solution. This

can then be recovered from simple calculations of open string scattering amplitudes in the

presence of D-instantons. Exploiting this fact we also relate this stringy description to the

standard instanton calculus of field theory.

Keywords: Solitons Monopoles and Instantons, D-branes, Extended Supersymmetry.

c© SISSA/ISAS 2003 http://jhep.sissa.it/archive/papers/jhep022003045/jhep022003045.pdf

mailto:billo@to.infn.it
mailto:frau@to.infn.it
mailto:ipesando@to.infn.it
mailto:fucito@roma2.infn.it
mailto:lerda@to.infn.it
mailto:antonella.liccardo@na.infn.it
http://jhep.sissa.it/stdsearch?keywords=Solitons_Monopoles_and_Instantons+D-branes+Extended_Supersymmetry


J
H
E
P
0
2
(
2
0
0
3
)
0
4
5

Contents

1. Introduction 1

2. A review of the D3/D(−1) system 5

2.1 Broken and unbroken supersymmetries 6

2.2 Massless spectrum 7

3. Effective actions and ADHM measure on moduli space 11

4. The instanton solution from mixed disks 18

4.1 The gauge vector profile 18

4.2 Insertions of the translational zero-modes 22

5. The superinstanton profile 23

5.1 Unbroken supersymmetries 23

5.2 Broken supersymmetries 27

6. String amplitudes and instanton calculus 28

A. Notations and conventions 34

B. A short review of the ADHM construction and of zero modes around an

instanton background 37

C. Subleading order of the instanton profile in the α′ → 0 limit 40

1. Introduction

Recently a lot of effort has been put in investigating various properties of (supersymmetric)

field theories using string theory and in particular D-branes. At the same time, a similar

effort has been devoted to extend and “lift” to string theory many of the methods that have

been developed over the years to study field theories. As a result of these investigations, a

strong and fruitful relation between string and field theory has been established.

Quite generally one can say that in the limit of infinite tension (α′ → 0) a string theory

reduces to an effective field theory with gauge interactions unified with gravity. Even if the

precise dictionary between string and field theory is not always straightforward, the simple

idea of taking α′ → 0 has been throroughly exploited to investigate the perturbative sector

of various field theories using string techniques which, indeed, turned out to be very efficient

computational tools (see e.g. ref. [1]). In this perturbative framework, one typically starts
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from string scattering amplitudes computed on a Riemann surface Σ of a given topology.

In general, a N -point string amplitude AN is obtained from the correlation function among

N vertex operators Vφ1 , . . . , VφN , each of which describes the emission of a field φi of the

string spectrum from the world-sheet. Schematically, we have

AN =

∫

Σ
〈Vφ1 · · · VφN 〉Σ (1.1)

where the integral is over the positions of the vertex operators and the moduli of Σ with

an appropriate measure, and the symbol 〈· · ·〉Σ denotes the vacuum expectation value with

respect to the (perturbative) vacuum represented by Σ.

Let us now focus on the simplest world-sheets, namely the sphere for closed strings

and the disk for open strings, and let us distinguish in the vertex Vφ the polarization φ

from the operator part by writing

Vφ = φ Vφ . (1.2)

Then, for any closed string field φclosed we have

〈Vφclosed〉sphere = 0 , (1.3)

and for any open string field φopen we have

〈Vφopen〉disk = 0 . (1.4)

The relations (1.3) and (1.4) imply that the closed and open strings do not possess tadpoles

on the sphere and the disk respectively; hence these are the appropriate world-sheets to

describe the classical trivial vacua around which the ordinary perturbation theory is per-

formed, but clearly they are inadequate to describe classical non-perturbative backgrounds.

However, after the discovery of D-branes [2] the perspective has drastically changed and

nowadays also some non-perturbative properties can be studied in string theory. The key

point is that the Dp branes are p-dimensional extended configurations of type-II and type-I

string theory that, despite their non-perturbative nature, admit a perturbative description.

In fact, they can be represented by closed strings in which the left and right movers are

suitably identified [3]. Such an identification is equivalent to insert a boundary on the

closed string world-sheet and prescribe suitable boundary reflection rules for the string

coordinates [4]. Thus, the simplest world-sheet topology for closed strings in the presence

of a Dp brane is that of a disk with (p + 1) longitudinal and (9 − p) transverse boundary

conditions. Moreover, due to the boundary reflection rules, on such a disk we have, in

general,

〈Vφ closed
〉diskp 6= 0 . (1.5)

A Dp brane can also be represented by a boundary state |Dp〉, which is a non-perturbative

state of the closed string that inserts a boundary on the world-sheet and enforces on it the

appropriate identifications between left and right movers (for a review on the boundary

state formalism, see for example ref. [5]). If we denote by |φclosed〉 the physical state

associated to the vertex operator Vφclosed , we can rewrite (1.5) as follows

〈φ closed|Dp〉 6= 0 . (1.6)

– 2 –
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Thus, the boundary state, or equivalently its corresponding disk, is a classical source for

the various fields of the closed string spectrum. In particular, it is a source for the massless

fields (like for instance the graviton hµν) which acquire a non-trivial profile and therefore

describe a non-trivial classical background. A precise relation between such a background

and the boundary state has been established in refs. [6, 7]. There it has been shown that if

one multiplies the massless tadpoles of |Dp〉 by free propagators and then takes the Fourier

transform, one gets the leading term in the large distance expansion of the classical p-brane

solutions carrying Ramond-Ramond charges which are non-perturbative configurations of

type-II or type-I supergravity. For example, applying this procedure to the graviton tadpole

〈Vhµν 〉diskp = 〈hµν |Dp〉 , (1.7)

one obtains the metric of the Dp brane in the large distance approximation from which the

complete supergravity solution can eventually be reconstructed. These arguments show

that in order to describe closed strings in a D-brane background it is necessary to modify

the boundary conditions of the string coordinates and, at the lowest order, consider disks

instead of spheres.

A natural question at this point is whether this approach can be generalized to open

strings, and in particular whether one can describe in this way the instantons of four

dimensional gauge theory. To show that this is possible is one of the purposes of this

paper. The crucial point is that the instantons of the (supersymmetric) gauge theories in

four dimensions are non-perturbative configurations which admit a perturbative description

within the realm of string theory. Thus, in a certain sense, they are the analogue for

open strings of what the supergravity branes with Ramond-Ramond charges are for closed

strings. In this analysis a key role is again played by the D-branes; this time, hovever, they

are regarded from the open string point of view, namely as hypersurfaces spanned by the

string end-points on which a (supersymmetric) gauge theory is defined. For definiteness,

let us consider a stack of N D3 branes of type-IIB string theory which support on their

world-volume a N = 4 supersymmetric Yang-Mills theory (SYM) with gauge group U(N)

(or SU(N) if we disregard the center of mass). Then, as shown in refs. [8, 9], in order to

describe instantons of this gauge theory with topological charge k, one has to introduce k

D(−1) branes (D-instantons) and thus consider a D3/D(−1) brane system. The role of D-

instantons and their relation to the gauge theory instantons have been intensively studied

from many different points of view in the last years (see for example refs. [10, 11, 12, 14,

13, 15, 16, 17, 18]; for recent reviews on this subject see refs. [20, 21, 22] and references

therein). In the D3/D(−1) brane system, besides the ordinary perturbative gauge degrees

of freedom represented by open strings stretching between two D3 branes, there are also

other degrees of freedom that are associated to open strings with at least one end-point on

the D-instantons. These extra degrees of freedom are non-dynamical parameters which,

at the lowest level, can be interpreted as the moduli of the gauge (super)instantons in

the ADHM construction [23]. Furthermore, in the limit α′ → 0 the interactions of these

parameters reproduce exactly the ADHM measure on the instanton moduli space [22].

– 3 –
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In this paper we further elaborate on this D-brane description

Figure 1: The sim-

plest mixed disk with

two-boundary changing

operators indicated by

the two crosses. The

solid line represents the

D3 boundary while the

dashed line represents

the D(−1) boundary.

of instantons and show that it is not only an efficient book-keeping

device to account for the multiplicities and the transformation

properties of the various instanton moduli, but also a powerful tool

to extract from string theory a detailed information on the gauge

instantons. First of all, we observe that the presence of different

boundary conditions for the open strings of the D3/D(−1) system
implies the existence of disks whose boundary is divided into dif-

ferent portions lying either on the D3 or on the D(−1) branes (see
for example figure 1). These disks, which we call mixed disks, are

characterized by the insertion of at least two vertex operators as-

sociated to excitations of strings that stretch between a D3 and a

D(−1) brane (or viceversa), and clearly depend on the parameters

(i.e. the moduli) that accompany these mixed vertex operators.

Moreover, due to the change in the boundary conditions caused

by the mixed operators, in general one can expect that

〈Vφ open〉mixed disk 6= 0 . (1.8)

In this paper we will confirm this expectation and in particular show that the massless

fields of the N = 4 gauge vector multiplet propagating on the D3 branes have non-trivial

tadpoles on the mixed disks; for example, for the gauge potential Aµ, we will find that

〈VAµ〉mixed disk 6= 0 . (1.9)

Furthermore, by taking the Fourier transform of these massless tadpoles after including

a propagator [6, 7], we find that the corresponding space-time profile is precisely that of

the classical instanton solution of the SU(N) gauge theory in the singular gauge [24, 25].

For simplicity we show this only in the case of the D3/D(−1) brane system in flat space,

i.e. for instantons of the N = 4 supersymmetry, but a similar analysis can be performed

without difficulties also in orbifold backgrounds that reduce the supersymmetry to N = 2

or N = 1.

We can therefore assert that the mixed disks are the sources for gauge fields with an

instanton profile, and thus, contrarily to the ordinary disks (see eq. (1.4)) they are the

appropriate world-sheets one has to consider in order to compute instanton contributions

to correlation functions within string theory. We believe that this fact helps to clarify the

analysis and the prescriptions presented in refs. [11, 18] and also provides the conceptual

bridge necessary to relate the D-instanton techniques of string theory with the standard

instanton calculus in field theory.

This paper is organized as follows. In section 2 we review the main properties of the

D3/D(−1) brane system, discuss its supersymmetries and the spectrum of its open string

excitations. In section 3 we derive the effective action for the D3/D(−1) brane system by

taking the field theory limit α′ → 0 of string scattering amplitudes on (mixed) disks. In this

derivation we introduce also a string representation for the auxiliary fields that linearize the
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supersymmetry transformation rules, and discuss how the effective action of the D3/D(−1)
system reduces to the ADHM measure on the instanton moduli space by taking a suitable

scaling limit. In section 4 we present one of the main result of this paper, namely that

the gauge vector field emitted from a mixed disk with two boundary changing operators is

exactly the leading term in the large distance expansion of the classical instanton solution

in the singular gauge. We also discuss how the complete solution can be recovered by

considering mixed disks with more boundary changing insertions. In section 5 we complete

our analysis by considering the other components of the N = 4 vector multiplet and obtain

the full superinstanton solution from mixed disks. In the last section we show how instanton

contributions to correlation functions in gauge theories can be computed using string theory

methods, and also clarify the relation with the standard field theory approach. Finally, in

the appendices we list our conventions, give some more technical details and briefly review

the ADHM costruction of the superinstanton solution.

2. A review of the D3/D(−1) system

The k instanton sector of a four-dimensional N = 4 SYM theory with gauge group SU(N)

can be described by a bound state of N D3 and k D(−1) branes [8, 9]. In this section we

review the main properties of this brane system, and in particular analyze its supersym-

metries and the spectrum of its open string excitations.

In the D3/D(−1) system the string coordinatesXM (τ, σ) and ψM (τ, σ) (M = 1, . . ., 10)

obey different boundary conditions depending on the type of boundary. Specifically, on the

D(−1) brane we have Dirichlet boundary conditions in all directions, while on the D3 brane

the longitudinal fields Xµ and ψµ (µ = 1, 2, 3, 4) satisfy Neumann boundary conditions,

and the transverse fields Xa and ψa (a = 5, . . . , 10) obey Dirichlet boundary conditions.

To fully define the system, it is necessary to specify also the reflection rules of the spin

fields SȦ, which transform as a Weyl spinor of SO(10) (say with negative chirality). As

explained for example in ref. [3], these reflection rules must be determined consistently from

the boundary conditions of the ψM’s. Introducing z = exp (τ + iσ) and z̄ = exp (τ − iσ),

and denoting with a ˜ the right-moving part, it turns out that on the D(−1) boundary

SȦ(z) = ε S̃Ȧ(z̄)
∣∣∣
z=z̄

, (2.1)

while on the D3 boundary

SȦ(z) = ε′ (Γ0123S̃)Ȧ(z̄)
∣∣∣
z=z̄

. (2.2)

Here, ε and ε′ are signs that distinguish between branes and anti-branes. However, only

the relative sign εε′ is relevant, and thus we loose no generality in setting ε = 1 from now

on.

Since the presence of the D3 branes breaks SO(10) to SO(4) × SO(6), we decompose

the spin fields SȦ as follows

SȦ →
(
Sα SA, S

α̇ SA
)
, (2.3)

– 5 –
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where Sα (Sα̇) are SO(4) Weyl spinors of positive (negative) chirality, and SA (SA) are

SO(6) Weyl spinors of positive (negative) chirality which transform in the fundamental

(anti-fundamental) representation of SU(4) ∼ SO(6) (see appendix A for our conventions).

Then, the D(−1) boundary conditions (2.1) become

Sα(z)SA(z) = S̃α(z̄) S̃A(z̄)
∣∣∣
z=z̄

, Sα̇(z)SA(z) = S̃α̇(z̄) S̃A(z̄)
∣∣∣
z=z̄

, (2.4)

while the D3 boundary conditions (2.2) become

Sα(z)SA(z) = ε′ S̃α(z̄) S̃A(z̄)
∣∣∣
z=z̄

, Sα̇(z)SA(z) = −ε′ S̃α̇(z̄) S̃A(z̄)
∣∣∣
z=z̄

. (2.5)

These reflection rules are essential in determining which supersymmetries are preserved or

broken by the different branes.

2.1 Broken and unbroken supersymmetries

Let us recall that the charge q corresponding to a holomorphic current can be written in

terms of the left and right bulk charges Q and Q̃ as

q = Q− Q̃ =
1

2πi

(∫
dz j(z)−

∫
dz̄j̃(z̄)

)
, (2.6)

where the z (z̄) integral is over a semicircle of constant radius in the upper (lower) half

complex plane. The charge q is conserved at the boundary if the following condition

j(z) = j̃(z̄)
∣∣∣
z̄=z

(2.7)

holds. On the contrary, the other combination of bulk charges

q′ = Q+ Q̃ =
1

2πi

(∫
dz j(z) +

∫
dz̄j̃(z̄)

)
(2.8)

is broken by the boundary conditions (2.7). In this case, when the integration contours are

deformed to real axis, the integrand does not vanish and thus it contributes to q ′ with the

following amount ∫

boundary
dx (j + j̃)

∣∣∣∣
z̄=z≡x

. (2.9)

This corresponds to the integrated insertion on the boundary of the massless vertex op-

erator (j + j̃)(x) which describes the Goldstone field associated to the broken symmetry

generated by q′.

Let us now return to the D3/D(−1) system, and consider the bulk supercharges

QȦ =
1

2πi

∫
dz jȦ(z) , Q̃Ȧ =

1

2πi

∫
dz̄ j̃Ȧ(z̄) , (2.10)

where jȦ (j̃Ȧ) is the left (right) supersymmetry current. In the (−1/2) picture, we simply

have

jȦ(z) = SȦ(z) e−
1
2
φ(z) (2.11)

(and similarly for the right moving current) where φ is the chiral boson of the superghost

fermionization formulas [26].

– 6 –
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Decomposing the spin field as in (2.3), and using the reflection rules (2.4) and (2.5),

from the previous analysis it is easy to conclude that for ε′ = −1

• the charge Qα̇A − Q̃α̇A is preserved both on the D3 and on the D(−1) boundary.

Adopting the same notation as in [18], we denote by ξ̄α̇A the fermionic parameters of

the supersymmetry transformations generated by this charge;

• the charge Qα̇A + Q̃α̇A is broken on both types of boundaries. The corresponding

parameter is denoted by ρα̇A;

• the charge QαA − Q̃αA is preserved on the D(−1) boundary but is broken on the D3

boundary. The corresponding parameter is denoted by ξαA;

• the charge QαA+ Q̃αA is preserved on the D3 boundary but is broken by the D(−1).
The corresponding parameter is denoted by ηαA.

If ε′ = 1, the chiralities get exchanged and the charges QαA − Q̃αA and QαA + Q̃αA are

respectively preserved and broken on both boundaries, while the charges Qα̇A − Q̃α̇A and

Qα̇A+Q̃α̇A are preserved only on the D(−1) boundary and on the D3 boundary respectively.

This exchange of chiralities is consistent with the fact that the two cases ε ′ = ∓1 correspond
to instanton and anti-instanton configurations in the four-dimensional gauge theory.

2.2 Massless spectrum

In the D3/D(−1) brane system there are four different kinds of open strings: those stretch-

ing between two D3-branes (3/3 strings in the following), those having both ends on a

D(−1)-brane ((−1)/(−1) strings), and finally those which start on a D(−1) and end on a

D3 brane or vice-versa ((−1)/3 or 3/(−1) strings).
Let us first consider the 3/3 strings. In the NS sector at the massless level we find a

gauge vector Aµ and six scalars ϕa which can propagate in the four longitudinal directions

of the D3 brane. The corresponding vertex operators (in the (−1) superghost picture) are

V
(−1)
A (z) = Aµ(p)V(−1)

Aµ (z; p) , (2.12)

V (−1)
ϕ (z) = ϕa(p)V(−1)

ϕa (z; p) , (2.13)

where

V(−1)
Aµ (z; p) =

1√
2
ψµ(z) e

−φ(z) eipνX
ν(z) , (2.14)

V(−1)
ϕa (z; p) =

1√
2
ψa(z) e

−φ(z) eipνX
ν(z) (2.15)

with pν being the longitudinal incoming momentum. Here we have taken the convention

that 2πα′ = 1; in the next section when we compute string scattering amplitudes we will

reinstate the appropriate dimensional factors.

In the R sector at the massless level we find two gauginos, ΛαA and Λ̄α̇A, that have op-

posite SO(4) chirality and transform respectively in the fundamental and anti-fundamental

– 7 –
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representation of SU(4). In the (−1/2) picture, the gaugino vertex operators are

V
(−1/2)
Λ (z) = ΛαA(p)V(−1/2)

ΛαA
(z; p) , (2.16)

V
(−1/2)

Λ̄
(z) = Λ̄α̇A(p)V(−1/2)

Λ̄α̇A
(z; p) , (2.17)

where

V(−1/2)

ΛαA
(z; p) = Sα(z)SA(z) e

− 1
2
φ(z) eipνX

ν(z) , (2.18)

V(−1/2)

Λ̄α̇A
(z; p) = Sα̇(z)SA(z) e−

1
2
φ(z) eipνX

ν(z) . (2.19)

The massless fields introduced above form the N = 4 vector multiplet and are connected

to each other by the sixteen supersymmetry transformations which are preserved on a D3

boundary and whose parameters are ξ̄α̇A and ηαA, namely

δAµ = iξ̄α̇A(σ̄
µ)α̇βΛ A

β + iηαA(σµ)αβ̇Λ̄
β̇
A ,

δΛαA =
i

2
ηβA(σµν) αβ Fµν + iξ̄β̇B(σ̄

µ)β̇α(Σa)BA∂µϕa ,

δΛ̄α̇A =
i

2
ξ̄β̇A(σ̄

µν)β̇α̇Fµν − iηβB(σµ)βα̇(Σ̄
a)BA∂µϕa ,

δϕa = −iξ̄α̇A(Σa)ABΛ̄α̇B + iηαA(Σ̄a)ABΛ
B
α , (2.20)

where σ and σ̄ are the Dirac matrices of SO(4), and Σ and Σ̄ are those of SO(6). (see

appendix A for our conventions).

The transformation laws (2.20) can be obtained by reducing to four dimensions the

supersymmetry transformations of the N = 1 SYM theory in ten dimensions. However,

they can also be obtained directly in the string formalism by using the vertex opera-

tors (2.12)-(2.13) and computing their commutators with the supersymmetry charges that

are preserved on the D3 brane. For instance, taking the vertex operator (2.16) for the gaug-

ino ΛαA and the supersymmetry charge qα̇A ≡ Qα̇A− Q̃α̇A, both in the (−1/2) picture, we
have

[
ξ̄α̇Aq

α̇A,V
(−1/2)
Λ (z)

]
= ξ̄α̇A

∮

z

dy

2πi
jα̇A(y)V

(−1/2)
Λ (z)

= −ξ̄α̇AΛβB
∮

z

dy

2πi

(
Sα̇(y)SA(y)e−

1
2
φ(y)

)(
Sβ(z)SB(z)e

− 1
2
φ(z)eipνX

ν(z)
)

=
(
−iξ̄α̇A(σ̄µ)α̇βΛβA

) 1√
2
ψµ(z)e

−φ(z)eipνX
ν(z) (2.21)

where in the last step we have used the contraction formulas (A.19). Comparing with (2.12),

we recognize in the last line of (2.21) the vertex operator of a gauge boson with polarization

δξ̄A
µ = iξ̄α̇A(σ̄

µ)α̇βΛ A
β (2.22)

in agreement with the first of eqs. (2.20). Thus, we can schematically write (2.21) as follows

[
ξ̄ q, VΛ

]
= Vδξ̄A . (2.23)

– 8 –
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By proceeding in this way with all other vertex operators, we can reconstruct the entire

transformation rules (2.20). Since in this approach the supersymmetry generators act on

the vertex operators, and not on their polarizations, in order to derive the transformation

rule of a given field we have to work “backwards” and apply the supercharges to the vertices

of the fields which appear in the right hand side of the supersymmetry transformations.

If one considers N coincident D3-branes, all vertex operators for the 3/3 strings acquire

N ×N Chan-Paton factors T I and correspondingly all polarizations will transform in the

adjoint representation of U(N) (or SU(N)). In this case, the supersymmetry transformation

rules (2.20) must be modified accordingly, and in particular in the variation of the gauginos

one must replace Fµν with the full non-abelian field strength, the ordinary derivatives with

the covariant ones and also add a term proportional to
[
ϕa, ϕb

]
.

Let us now consider the (−1)/(−1) strings. Since now there are no longitudinal Neu-

mann directions, the states of these strings do not carry any momentum, and thus they

correspond more to moduli rather than to dynamical fields. In the NS sector we find ten

bosonic moduli. Even if they are all on the same footing, for later purposes it is convenient

to distinguish them into four aµ (corresponding to the longitudinal directions of the D3

branes) and six χa (corresponding to the transverse directions to the D3’s). Their vertex

operators (in the (−1) superghost picture) read

V (−1)
a (z) =

aµ√
2
ψµ(z) e

−φ(z) , (2.24)

V (−1)
χ (z) =

χa√
2
ψa(z) e

−φ(z) . (2.25)

In the R sector of the (−1)/(−1) strings we find sixteen fermionic moduli which are

conventionally denoted by MαA and λα̇A, and correspond to the following vertex operators

(in the (−1/2) superghost picture)

V
(−1/2)
M (z) = MαA Sα(z)SA(z) e

− 1
2
φ(z) , (2.26)

V
(−1/2)
λ (z) = λα̇A S

α̇(z)SA(z) e−
1
2
φ(z) . (2.27)

The moduli we have introduced so far are related to each other by the sixteen supersym-

metry transformations which are preserved on a D(−1) boundary. These can be obtained

by reducing to zero dimensions the N = 1 supersymmetry transformations of the SYM

theory in ten dimensions. However, since we will be ultimately interested in discussing the

instanton properties of the four-dimensional gauge theory living on the D3 branes, we write

only the moduli transformations which are preserved also by a D3 boundary and whose

parameters have been denoted by ξ̄α̇A. They are

δξ̄ a
µ = i ξ̄α̇A (σ̄µ)α̇βM A

β ,

δξ̄ χ
a = − i ξ̄α̇A (Σa)AB λα̇B ,

δξ̄M
αA = 0 , δξ̄ λα̇A = 0 . (2.28)

Also these supersymmetry transformations can be obtained by commuting the charge q α̇A

with the vertex operators of the various moduli, in complete analogy with what we have
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shown in (2.21). For example, we have

[
ξ̄ q, VM

]
= Vδξ̄ a . (2.29)

If we consider a superposition of k D(−1) branes, the vertex operators (2.25)-(2.27)

acquire k × k Chan-Paton factors tU and the associated moduli an index in the adjoint

representation of U(k). Moreover, the supersymmetry transformations of the fermionic

moduli MαA and λα̇A get modified and become

δξ̄M
αA = −1

2
ξ̄β̇B (σ̄µ)β̇α (Σa)BA [χa, aµ] , (2.30)

δξ̄ λα̇A =
1

4
ξ̄α̇B (Σ̄ab)BA [χa, χb] +

1

4
ξ̄β̇A (σ̄µν)β̇α̇ [aµ, aν ] . (2.31)

Notice that these transformations being non linear in the moduli cannot be obtained using

the vertex operator approach previously discussed. However, in the next section, we will

show that this is actually possible after introducing suitable auxiliary fields.

Finally, let us consider the 3/(−1) and (−1)/3 strings which are characterized by the

fact that four directions (those that are longitudinal to the D3 brane) have mixed boundary

conditions. These conditions forbid any momentum and imply that in the NS sector the

fields ψµ have integer-moded expansions with zero-modes that represent the SO(4) Clifford

algebra. Therefore, the massless states of this sector are organized in two bosonic Weyl

spinors of SO(4) which we denote by w and w̄ respectively. The chirality of these spinors

is fixed by the GSO projection, and depends on whether the D(−1) brane represents an

instanton or an anti-instanton. In the instanton case, i.e. for ε′ = −1 in (2.5), it turns

out that w and w̄ must be anti-chiral, and thus the corresponding vertex operators (in the

(−1) superghost picture) are

V (−1)
w (z) = wα̇∆(z)Sα̇(z) e−φ(z) ,

V
(−1)
w̄ (z) = w̄α̇ ∆̄(z)Sα̇(z) e−φ(z) . (2.32)

Here ∆(z) and ∆̄(z) are the bosonic twist and anti-twist fields with conformal dimension

1/4, that change the boundary conditions of the Xµ coordinates from Neumann to Dirichlet

and vice-versa by introducing a cut in the world-sheet [27].1

In the R sector of the 3/(−1) and (−1)/3 strings the fields ψµ have half-integer mode

expansions so that there are fermionic zero-modes only in the six common transverse direc-

tions. Thus, the massless states of the R sector form two fermionic Weyl spinors of SO(6)

1The fact that w and w̄ must be anti-chiral can be understood by observing that the vertices (2.32)

are local with respect to the supercurrent jα̇A(z) associated to the only conserved supercharges qα̇A of the

D3/D(−1) strings. Indeed, using the OPE’s summarized in appendix A, we have

jα̇A(z) V (−1)
w (y) =

[
Sα̇(z)SA(z) e−

1
2
φ(z)

] [
wβ̇ ∆(y)Sβ̇(y) e−φ(y)

]

∼ 1

(z − y)

[
wα̇∆(y)SA(y) e−

3
2
φ(y)

]
+ · · ·

where the ellipses stand for regular terms. If one had chosen the other chirality (corresponding to chiral

moduli wα and w̄α), one would have obtained a branch cut in the OPE with the supercurrent jα̇A(z) and

thus locality would have been spoiled. On the contrary, the chiral moduli would be local with respect to

the supercurrent jαA(z) that is conserved for an anti-instanton (i.e. for ε′ = −1 in (2.5)).
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which we denote by µ and µ̄ respectively. Again, it is the GSO projection, together with

the requirement of locality with respect to the conserved supercurrent, that fixes the SO(6)

chirality of µ and µ̄. The appropriate choice for instanton configurations is that they must

transform in the fundamental representation of SU(4) so that their vertices (in the (−1/2)
picture) are

V (−1/2)
µ (z) = µA∆(z)SA(z) e

− 1
2
φ(z) ,

V
(−1/2)
µ̄ (z) = µ̄A ∆̄(z)SA(z) e

− 1
2
φ(z) . (2.33)

In the presence of N D3 and k D(−1) branes, the vertices (2.32) and (2.33) acquire Chan-

Paton factors ζui and ζ̄
ui transforming, respectively, in the bifundamental representations

N× k and N̄× k̄ of the gauge groups.

The unbroken supersymmetries of the D3/D(−1) system act on w and µ by the fol-

lowing transformations

δξ̄ wα̇ = − i ξ̄α̇A µ
A , (2.34)

δξ̄ µ
A = − 1√

2
ξ̄α̇B (Σa)BA wα̇ χa , (2.35)

and similarly for w̄α̇ and µ̄A. The linear supersymmetry transformation (2.34) can be

obtained in the string operator formalism by commuting the charge q α̇A with the vertex

operator Vµ; indeed we have
[
ξ̄ q, Vµ

]
= Vδξ̄ w . (2.36)

On the contrary, we have
[
ξ̄ q, Vw

]
= 0 , (2.37)

and to derive the non-linear transformation (2.35) from the string vertex operators suit-

able auxiliary fields are required. Furthermore, the presence of w and w̄ modifies the

supersymmetry transformation of λα̇A by a non-linear term

δξ̄ λα̇A ∼ ξ̄α̇A w̄w , (2.38)

which also requires auxiliary fields in order to be derived in the string operator formalism.

We conclude by mentioning that under the eight supercharges q ′αA that are preserved by

the D3 branes but are broken by the D-instantons, the moduli w, w̄, µ and µ̄ are invariant

and that [η q′, Vw] = 0.

3. Effective actions and ADHM measure on moduli space

In this section we compute the (tree-level) string amplitudes in the D3/D(−1) system by

using the vertex operators previously introduced, and discuss the field theory limit α ′ → 0

that yields the effective actions and the ADHM measure on the instanton moduli space.
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As a first example, let us consider the (color ordered) amplitude among one gauge

boson and two gauginos of the 3/3 strings. This is obtained by inserting the vertex opera-

tors (2.12), (2.16) and (2.17) on a disk representing N D3 branes and is given by

A(Λ̄AΛ) =
〈〈
V

(−1/2)

Λ̄
V

(−1)
A V

(−1/2)
Λ

〉〉

≡ C4

∫ ∏
i dzi

dV123

〈
V

(−1/2)

Λ̄
(z1)V

(−1)
A (z2)V

(−1/2)
Λ (z3)

〉
. (3.1)

In this expression dVabc is the projective invariant volume element

dVabc =
dza dzb dzc

(za − zb)(zb − zc)(zc − za)
(3.2)

and the prefactor C4 represents the topological normalization of a disk amplitude with the

boundary conditions of a D3 brane. In general, the normalization Cp+1 for disk amplitudes

on a Dp brane can be determined using for example the unitarity methods of ref. [28], and

if we take (2πα′)1/2 as the unit of length, it reads

Cp+1 =
1

2π2α′2
1

xp+1 g
2
p+1

(3.3)

where gp+1 is the coupling constant of the (p+ 1)-dimensional gauge theory living on the

brane world-volume which is given by

g2p+1 = 4π
(
4π2α′

)p−3
2 gs (3.4)

in terms of the string coupling constant gs, and xp+1 is the Casimir invariant of the funda-

mental representation of the gauge group of the Dp branes. Here we follow the standard

conventions and normalize the SU(N) generators T I on the D3 branes with x4 = 1/2 , i.e.

Tr(T I T J) =
1

2
δIJ (3.5)

and the U(k) generators tU on the D-instantons with x0 = 1, i.e.2

tr(tU tV ) = δUV . (3.6)

With this choice we have

C4 =
1

π2α′2
1

g2YM

(3.7)

where g2YM ≡ g24 = 4πgs is the gauge coupling constant of the four-dimensional SYM theory,

and

C0 =
1

2π2α′2
1

g20
=

2π

gs
=

8π2

g2YM

. (3.8)

Notice that the normalization C4 of a D3 amplitude is dimensionful, whereas the normal-

ization C0 of a D-instanton amplitude is dimensionless and equal to the action of a gauge

instanton.

2In this way the one-instanton case (k = 1) can be simply obtained by removing the trace symbol from

all formulas without extra numerical factors.
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To compute the amplitude (3.1), we must further remember that in section 2 all vertex

operators have been written with the convention that 2πα′ = 1, and thus suitable dimen-

sional factors must be reinstated in the calculation. This can be systematically done by

rescaling all bosonic fields of the NS sector by a factor of (2πα′)1/2 so that they acquire the

canonical dimension of (length)−1, and by rescaling all fermionic fields of the R sector by a

factor of (2πα′)3/4 so that they acquire the canonical dimension of (length)−3/2. Taking all

these normalization factors into account and using the contraction formulas of appendix A,

we find

A(Λ̄AΛ) = −
2 i

g2YM

Tr
(
Λ̄α̇A Ā/

α̇β
Λ A
β

)
(3.9)

where the δ-function of momentum conservation is understood. The complete result is ob-

tained by adding to (3.9) all other inequivalent color orderings, and thus the total coupling

among two gauginos and one gauge boson is given by

− 2 i

g2YM

Tr
(
Λ̄α̇A

[
Ā/
α̇β
, Λ A

β

])
. (3.10)

All other interactions among the massless 3/3 string modes can be computed in a similar

way. After taking the limit α′ → 0 with gYM held fixed in all string amplitudes and taking

their Fourier transform, one finds that their 1PI parts are encoded in the (euclidean) action

of the N = 4 SYM theory3

SSYM =
1

g2YM

∫
d4xTr

{
1

2
F 2
µν − 2Λ̄α̇A 6D̄α̇β Λ A

β + (Dµϕa)2 −
1

2
[ϕa, ϕb]

2 −

− i (Σa)AB Λ̄α̇A
[
ϕa, Λ̄

α̇
B

]
− i (Σ̄a)AB ΛαA

[
ϕa,Λ

B
α

]}
, (3.11)

which is invariant under the non-abelian version of the supersymmetry transformation

rules (2.20).

Let us now turn to the interactions among the (−1)/(−1) strings which are obtained

by evaluating correlation functions on disks representing k D(−1) branes. For example,

the color ordered coupling among λα̇A, aµ and MαA corresponds to

A(λaM) =
〈〈
V

(−1/2)
λ V (−1)

a V
(−1/2)
M

〉〉
(3.12)

where the vertex operators are given in (2.24), (2.26) and (2.27) with suitable factors of

2πα′ inserted as discussed above in order to assign the canonical dimensions to the various

fields. In (3.12) the expectation value is computed in analogy with (3.1) but now the overall

normalization is C0 given in (3.8), as is appropriate for a disk with a D(−1) boundary. After

adding all color orderings, one finds that the total coupling under consideration is

− i

g20
tr
(
λα̇A

[
ā/α̇β , M A

β

])
(3.13)

3Remember that in euclidean space the 1PI part of a scattering amplitude is equal to minus the cor-

responding interaction term in the action. Moreover, the terms of higher order in α′ in the scattering

amplitudes represent string corrections to the standard field theory.
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where the trace is now taken on the indices labeling the k D(−1) branes. Interestingly, the
various normalization coefficients have conspired to reproduce the (dimensionful) coupling

constant g0 with no other factors of α′ left over. If we proceed in a similar way and take

the field theory limit α′ → 0 with g0 held fixed, we find that all irreducible couplings of

the (−1)/(−1) strings are encoded in the effective action

S(−1) = Scubic + Squartic (3.14)

where

Scubic =
i

g20
tr

{
λα̇A

[
ā/α̇β,M A

β

]
− 1

2
(Σa)AB λα̇A

[
χa, λ

α̇
B

]
− 1

2
(Σ̄a)ABM

αA
[
χa,M

B
α

]}

(3.15)

and

Squartic = −
1

g20
tr

{
1

4
[aµ, aν ]

2 +
1

2
[aµ, χa]

2 +
1

4
[χa, χb]

2

}
. (3.16)

This action, which is the reduction to zero dimensions of the N = 1 SYM action in ten

dimensions, vanishes in the abelian case of a single D(−1) brane, i.e. for k = 1. It is

interesting to observe that the quartic interactions in (3.16) can be decoupled by means of

auxiliary fields. In fact, Squartic is equivalent to

S ′ = 1

g20
tr

{
1

2
D 2
c +

1

2
Dc η̄

c
µν [a

µ, aν ] +
1

2
Y 2
µa + Yµa [a

µ, χa] +

+
1

4
Z 2
ab +

1

2
Zab

[
χa, χb

]}
(3.17)

where η̄ is the anti-self dual ’t Hooft symbol and D, Y and Z are auxiliary fields with

dimensions of (length)−2 which reproduce the quartic couplings of (3.16) after they are

eliminated through their equations of motion. It is worth remarking that, in order to

decouple the interaction tr [aµ, aν ]
2, because of Jacobi identity it is enough to introduce

three independent degrees of freedom which correspond to an antisymmetric tensor Dµν of

a given duality. For definiteness we have chosen this tensor to be anti-self dual and thus

have written Dµν = Dc η̄
c
µν .

The cubic couplings of S ′ can be obtained in the string operator formalism by intro-

ducing the following vertices for the auxiliary fields (in units of 2πα ′ = 1)

V
(0)
D (z) =

1

2
Dc η̄

c
µν ψ

ν(z)ψµ(z) ,

V
(0)
Y (z) = Yµa ψ

a(z)ψµ(z) ,

V
(0)
Z (z) =

1

2
Zab ψ

b(z)ψa(z) . (3.18)

These NS vertices are written in the 0-superghost picture and, even if they are not BRST

invariant,4 they provide the correct structures and interactions. Fox example, the (color-

4The lack of BRST invariance of the vertices (3.18) should not be regarded as a serious problem since,

when dealing with auxiliary fields, one is effectively working off-shell. Vertices similar to those of (3.18)

(but in the (−2) superghost picture) have been considered in ref. [29].
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ordered) coupling among the auxiliary field D and two a’s is reproduced by

A(Daa) =
1

2

〈〈
V

(0)
D V (−1)

a V (−1)
a

〉〉
= − 1

2g20
tr
(
Dc η̄

c
µν a

µ aν
)

(3.19)

where a symmetry factor of 1/2 has been inserted to account for the presence of two alike

vertices, and the auxiliary field has been rescaled with (2πα′) to make it of canonical

dimension. All other cubic interactions of the action (3.17) can be obtained in a similar

way.

The vertex operators (3.18) are useful also because they linearize the supersymmetry

transformation rules of the various moduli which can therefore be obtained completely

within the string operator formalism. In fact, using the method described in section 2, one

can show for example that [
ξ̄ q, VD

]
= Vδξ̄ λ (3.20)

where Vδξ̄ λ is the vertex (2.27) with polarization

δξ̄ λα̇A = − 1

4
ξ̄β̇A (σ̄µν)β̇α̇Dc η̄

c
µν . (3.21)

If the auxiliary fields Dc are eliminated through their equations of motion following from

S ′, then (3.21) reproduces exactly the last non-linear term in the supersymmetry trans-

formation rule (2.31). Similarly, the other terms in (2.31) and (2.30) can be obtained by

computing
[
ξ̄ q, VZ

]
and

[
ξ̄ q, VY

]
.

Let us now analyze the interactions of the (−1)/3 and 3/(−1) strings. In this case

the novelty is represented by the fact that the vertex operators (2.32) and (2.33) contain

the twist and anti-twist fields, ∆ and ∆̄, which change the boundary conditions of the

longitudinal coordinates Xµ. Thus, for consistency in any correlation function a vertex

operator of the (−1)/3 sector must always be accompanied by one of the 3/(−1) sector.

This gives rise to mixed disks whose boundary is divided into an even number of portions

with different boundary conditions.5 The simplest case is the mixed disk represented in

figure 1 where a pair of twist/anti-twist operators divides its boundary in two portions

with D3 and D(−1) boundary conditions respectively. The topological normalization for

the expectation value on such a mixed disk is C0 given in (3.8), i.e. the normalization of

the lowest brane.

Let us now consider a 3-point amplitude originating from the insertion of a (−1)/(−1)
state on a mixed disk, like for example

A(wλµ̄) =
〈〈
V (−1)
w V

(−1/2)
λ V

(−1/2)
µ̄

〉〉
. (3.22)

This correlation function can be computed in a straightforward manner by using the OPE’s

of appendix A, and the result is

A(wλµ̄) =
2 i

g20
tr
(
w u
α̇ λα̇A µ̄

A
u

)
(3.23)

5String amplitudes on mixed disks have been previously analyzed in ref. [30, 31] to study the gauge

interactions of the non-BPS D-particles of the type-IIB theory.
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where we have explicitly indicated also the index u of the fundamental representation

of SU(N) carried by the “twisted” moduli. Again all normalizations have conspired to

reconstruct the coupling constant g0 with no other factors of α′ left over. Thus, this

amplitude survives in the limit α′ → 0 with g0 fixed, and must be added to the zero-

dimensional effective action S(−1). Other terms of this effective action could arise from

amplitudes involving the vertex operators (3.18) of the auxiliary fields. For example, we

have

A(wDw̄) =
〈〈
V (−1)
w V

(0)
D V

(−1)
w̄

〉〉

=
1

2g20
η̄cµν tr

(
w u
α̇ Dc w̄

β̇
u

)
(σ̄µν)α̇

β̇
=

2 i

g20
tr (DcW

c) (3.24)

where in the last step we have introduced the k × k matrices

(W c) ij = w ui
α̇ (τ c)α̇

β̇
w̄β̇uj (3.25)

with τ c being the Pauli matrices. We remark in passing that the coupling (3.24) modifies

the field equations of Dc by a term proportional to Wc. Thus, when the auxiliary fields are

eliminated from the supersymmetry transformation rule (3.21), the structure (2.38) can be

reproduced.

If we proceed systematically and compute all amplitudes on mixed disks which survive

in the field theory limit, we can reconstruct the following effective action for w, w̄, µ and µ̄

S ′′ = 2 i

g20
tr

{(
µ̄Auw

u
α̇ + w̄α̇uµ

Au
)
λα̇A −DcW

c +
1

2
(Σ̄a)AB µ̄

A
u µ

Buχa − iχa w̄α̇uw
α̇uχa

}
.

(3.26)

Notice that the auxiliary fields Y and Z do not appear in this action. In fact, all mixed

amplitudes involving them vanish either at the string level, or in the field theory limit.

We point out that in analogy with what we have done before, also the quartic interaction

of (3.26) can be decoupled by introducing a pair of auxiliary fields Xα̇a and X̄α̇a. Their

corresponding vertex operators, which are proportional to S α̇ψa∆ and Sα̇ψa∆̄ respectively,

can be used to derive the non-linear supersymmetry transformations rules (2.35) in the

string operator formalism. However, since these auxiliary fields do not play any other role,

we will not introduce them in our analysis.

We can summarize our findings by saying that the total effective action for the moduli

produced by the D-instantons is given by

Smoduli = Scubic + S ′ + S ′′ . (3.27)

As we have thoroughly discussed, the zero-dimensional action (3.27) arises from string

scattering amplitudes on D(−1) branes in the limit α′ → 0 with g0 fixed, whereas the

four-dimensional SYM action (3.11) is obtained from string amplitudes on D3 branes in

the limit α′ → 0 with gYM fixed. However, as is clear from (3.4), gYM and g0 cannot be

kept fixed at the same time: indeed, when α′ → 0 either gYM → 0 if g0 is fixed, or g0 →∞
if gYM is fixed. This simple fact shows that while a system made of D3 and D(−1) branes
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is perfectly well-defined and stable at the string level, its field theory limit, instead, is more

subtle and requires some care. Since we are interested in analyzing the four-dimensional

SYM theory, we clearly must keep fixed gYM when α′ → 0, and hence we should consider

the zero-dimensional moduli action in the strong coupling limit g0 → ∞. If we take this

limit in a naive way, we obtain a rather trivial result because the action (3.27), which is

inversely proportional to g20 , becomes negligible and all effects of the D-instantons inside

the D3 branes disappear. However, there is another possibility that yields more interesting

results: it consists in taking g0 and (some of) the moduli to infinity. In particular, if we

take

a =
√
2 g0 a

′ , χ = χ′ , M =
g0√
2
M ′ , λ = λ′ ,

D = D′ , Y =
√
2 g0 Y

′ , Z = g0 Z
′ ,

w =
g0√
2
w′ , w̄ =

g0√
2
w̄′ , µ =

g0√
2
µ′ , µ̄ =

g0√
2
µ̄′ , (3.28)

and keep the primed variables fixed when g0 → ∞, we can easily see that the moduli

action (3.27) survives in the field theory limit, and becomes

Smoduli = tr

{
Y ′

2
µa + 2Y ′µa

[
a′
µ
, χ′a

]
+

1

4
Z ′

2
ab + χ′a w̄

′
α̇uw

′α̇u χ′
a
+

+
i

2
(Σ̄a)AB µ̄′

A
u µ

′Bu χ′a −
i

4
(Σ̄a)ABM

′αA
[
χ′a,M

′ B
α

]
+

+ i
(
µ̄′
A
uw

′ u
α̇ + w̄′α̇u µ

′Au +
[
M ′βA, a′βα̇

])
λ′
α̇
A −

− iD′c

(
W ′c + i η̄cµν

[
a′
µ
, a′

ν] )
}
. (3.29)

If we integrate out the auxiliary fields Y ′ and Z ′, the action (3.29) reduces exactly to

the sum of the actions SK and SD defined in eqs. (10.70b) and (10.70c) of ref. [22] (up

to a redefinition of χ′a → −iχ′a). The action (3.29) provides the ADHM measure on the

moduli space of the k-instanton sector of the N = 4 SU(N) SYM theory; in particular, the

equations of motion for D′c are precisely the three non-linear ADHM constraints

W ′c + i η̄cµν
[
a′
µ
, a′

ν]
= 0 , (3.30)

while the equations of motion for λ′α̇A are the fermionic constraints

µ̄′
A
uw

′ u
α̇ + w̄′α̇u µ

′Au +
[
M ′βA , a′βα̇

]
= 0 (3.31)

of the ADHM construction. From now on, to avoid clutter we drop the ′ from all moduli,

but we keep the traditional notation for a′ and M ′.6

6The procedure to obtain the ADHM measure that we have explained consists of two distinct steps: the

first is the field theory limit on the D(−1) branes, the second is the strong coupling limit accompanied by a

rescaling of the D(−1) fields which survive the first step. However, it is also possible to obtain the ADHM

measure directly in a single step. This can be done by using always adimensional polarizations rescaled as
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In this section we have explicitly reviewed that the D3/D(−1) system accomodates all

instanton moduli of a four-dimensional supersymmetric gauge theory. It is worth pointing

out, however, that the ADHM measure on moduli space does not follow automatically from

this construction. In fact, as we have shown, this measure emerges only by taking the field

theory limit of the D3/D(−1) system in a very specific way, which includes a rescaling of

some of the string moduli with the dimensionful coupling g0, as indicated in (3.28), and

the strong coupling limit g0 →∞.

4. The instanton solution from mixed disks

The disk diagrams considered in the previous section do not exhaust all possibilities, since

there exhist also mixed disks with the emission of 3/3 strings. In this and the following

sections we explicitly analyze such mixed diagrams and show that they are directly related

to the classical instanton solutions of the four-dimensional SYM theory. In particular

we show that the D(−1) branes effectively act as a source for the various fields of the

gauge supermultiplet and that the (−1)/(−1) strings together with the boundary changing

operators associated to the 3/(−1) and (−1)/3 strings provide the correct dependence of

the instanton profile on the ADHM moduli. For simplicity we will discuss in detail only

the case of instanton number k = 1 in a SU(N) gauge theory. However, no substantial

changes occur in our analysis if one considers higher values of k. Moreover, in the following

we will set again 2πα′ = 1 since all dimensional factors cancel out in the final results.

4.1 The gauge vector profile

Let us begin by considering the emission of the

PSfrag replacementsI

µ

w̄

w

p

Figure 2: The mixed disk that de-

scribes the emission of a gauge vec-

tor field AIµ with momentum p rep-

resented by the outgoing wavy line.

gauge vector field AI
µ from a mixed disk. The simplest

diagram which can contribute to this process contains

two bosonic boundary changing operators (Vw̄ and Vw)

and no D(−1)/D(−1) moduli, as shown in figure 2.

The amplitude (in momentum space) associated to

this diagram is

AIµ(p; w̄, w) =
〈〈
V

(−1)
w̄ V(0)

AIµ
(−p)V (−1)

w

〉〉
(4.1)

where, like for any mixed disk, the expectation value

is normalized with C0. Since we want to describe the

source for the emission of a gauge boson, in the cor-

relation function (4.1) we have inserted a gluon vertex

follows

a =

(
2gs
π

)1/2

sα a′ , χ = s−α χ′ , M =
( gs
2π

)1/2
sα/2M ′ , λ = s−3α/2 λ′ ,

D = s−2αD′ , Y =
√
2Y ′ , Z = Z′ ,

w =
( gs
2π

)1/2
sα w′ , w̄ =

( gs
2π

)1/2
sα w̄′ , µ =

( gs
2π

)1/2
sα/2 µ′ , µ̄ =

( gs
2π

)1/2
sα/2 µ̄′ ,

with α < 0, and then letting s → 0. It turns out that the action which survives in this limit is precisely

given by eq. (3.29). The standard dimensions of the ADHM moduli can then be recovered by introducing

suitable factors of (2πα′).
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operator with outgoing momentum and without polarization, so that the amplitude (4.1)

carries the Lorentz structure and the quantum numbers that are appropriate for an emitted

gauge vector field. Moreover, the gluon vertex is in the 0 superghost picture. This can be

obtained by performing a picture changing on the vertex (2.14) and reads

V(0)

AIµ
(z;−p) = 2iT I (∂Xµ − i p · ψ ψµ) e−ip·X(z) (4.2)

where T I is the adjoint SU(N) Chan-Paton factor.7 The vertices for the w and w̄ moduli

are instead in the (−1) superghost picture, and are given in (2.32). However, due to the

rescalings (3.28), an overall factor of (gs/2π)
1/2 must be incorporated in each of these

vertices in order to interprete their polarizations as the w and w̄ moduli of the ADHM

construction. Using the contraction formulas of appendix A, and taking into account (see

eq. (A.21)) that
〈
∆̄(z1) e

−ip·X(z2)∆(z3)
〉
= − e−ip·x0 (z1 − z3)−1/2 (4.3)

where x0 denotes the location of the D-instanton inside the world-volume of the D3 branes

(see also eq. (A.21)), one easily finds that the amplitude (4.1) is given by

AIµ(p; w̄, w) = i (T I)vu p
ν η̄cνµ

(
w u
α̇ (τc)

α̇
β̇
w̄β̇v

)
e−ip·x0 ≡ i pν JIνµ(w̄, w) e

−ip·x0 (4.4)

where, in the last step, we have introduced the convenient notation J Iνµ(w̄, w) for the

moduli dependence. Note that the various factors of gs and π’s coming from the rescalings

and from the normalization C0 of the mixed disk have canceled out completely in this

calculation.

As we have discussed before, the mixed disk of figure 2 represents the source in momen-

tum space for the emission of the gauge vector field in a non-trivial background. To obtain

the space-time profile of this background, we simply have to take the Fourier transform

of the amplitude AIµ(p; w̄, w) after attaching to it the gluon propagator δµν/p
2. Thus, the

classical field associated to the mixed disk of figure 2 is

AIµ(x) =

∫
d4p

(2π)2
AIµ(p; w̄, w)

1

p2
eip·x

= − 2 (T I)vu

(
w u
α̇ (τc)

α̇
β̇
w̄β̇v

)
η̄cνµ

(x− x0)ν
(x− x0)4

. (4.5)

This result can also be rewritten in terms of the antisymmetric “source” tensor J Iνµ as

follows

AIµ(x) = J Iνµ(w̄, w)

∫
d4p

(2π)2
ipν

p2
eip·(x−x0) = JIνµ(w̄, w) ∂

νG(x− x0) (4.6)

where

G(x− x0) =
∫

d4p

(2π)2
eip·(x−x0)

p2
=

1

(x− x0)2
(4.7)

is the scalar massless propagator in configuration space.

The gauge field AIµ(x) in (4.5) depends on the 4N moduli w u
α̇ and w̄α̇u, up to an overall

phase redefinition w ∼ eiθw and w̄ ∼ e−iθw̄, and on the position xµ0 of the D-instanton inside
7The overall factor of 2i, which is not determined by the picture changing, is fixed by requiring the

appropriate normalization of the three gluon amplitude.
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the world-volume of the D3 branes. This amounts to 4N + 3 real parameters which are

precisely those of the unconstrained instanton moduli space in the ADHM construction.

In fact, upon enforcing the three bosonic ADHM constraints W c = 0 (see eq. (3.30) for

k = 1), these parameters reduce exactly to the 4N moduli of the SU(N) instanton, namely

the position of its center xµ0 , its size ρ and the 4N − 5 varibles that parametrize the coset

space SU(N)/S[U(N − 2) × U(1)] and specify the orientation of a SU(2) subgroup inside

SU(N). To see this explicitly, let us define

2ρ2 ≡ w̄α̇uw
u
α̇ , (4.8)

and consider the three N ×N matrices

(tc)
u
v ≡

1

2ρ2

(
w u
α̇ (τc)

α̇
β̇
w̄β̇v

)
. (4.9)

Then, it is not difficult to show that these matrices generate a SU(2) subalgebra of SU(N),

i.e. [tc, td] = iεcde te, provided the ADHM constraints W c = 0 are satisfied. In conclusion,

we can rewrite the gauge field (4.5) as follows

AIµ(x) = 4ρ2 Tr(T I tc) η̄
c
µν

(x− x0)ν
(x− x0)4

. (4.10)

In the case of SU(2) the indices I and c can be identified and, taking into account the trace

normalization, we obtain

Acµ(x) = 2ρ2 η̄cµν
(x− x0)ν
(x− x0)4

. (4.11)

In this expression we recognize precisely the leading term in the large distance expansion

(i.e. |x− x0| >> ρ) of the classical BPST SU(2) instanton [24, 25] with center x0 and size

ρ, in the so-called singular gauge, namely

Acµ(x) = 2ρ2 η̄cµν
(x− x0)ν

(x− x0)2 [(x− x0)2 + ρ2]

' 2ρ2 η̄cµν
(x− x0)ν
(x− x0)4

(
1− ρ2

(x− x0)2
+ · · ·

)
. (4.12)

Notice that such a configuration has a self-dual field strength, despite the appearance of

the anti self-dual ’t Hooft symbols η̄cµν .

More generally, from the mixed disk amplitude (4.5) with the ADHM constraint (3.30)

enforced, we can reconstruct the following anti-hermitian SU(N) connection

(Âµ(x))
u
v ≡ − iAµ(x)

I (T I)uv = w u
α̇ (σ̄νµ)

α̇
β̇
w̄β̇v

(x− x0)ν
(x− x0)4

, (4.13)

which is precisely the leading term in the large distance expansion of the one-instanton

connection of the ADHM construction [23] in the singular gauge

(Âµ(x))
u
v = w u

α̇ (σ̄νµ)
α̇
β̇
w̄β̇v

(x− x0)ν
(x− x0)2 [(x− x0)2 + ρ2]

. (4.14)
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This analysis clarifies the interpretation of the string amplitude associated to the mixed

disk of figure 2. However, a few comments are in order. Firstly, we would like to remark

that the amplitude (4.1) is a 3-point function from the point of view of the two dimensional

conformal field theory on the string world sheet, but it should be regarded instead as a

1-point function from the point of view of the four-dimensional gauge theory on the D3

branes. Indeed, the two boundary changing operators Vw̄ and Vw in (4.1) just describe the

non-dynamical parameters on which the background depends, i.e. the size of the instanton

and its orientation inside the gauge group. To emphasize this point, we introduce the

convenient notation

AIµ(p; w̄, w) =
〈〈
VAIµ(−p)

〉〉
D(w̄,w)

(4.15)

where D(w̄, w) is the mixed disk produced by the insertion of Vw̄ and Vw. Secondly, the

fact that the instanton connection is in the singular gauge should not come as a surprise,

but on the contrary it should be expected in this D-brane set-up. In fact, as we have

seen, the gauge instanton is produced by a D(−1) brane which is a point-like object inside

the D3 brane world-volume, and thus it is natural that the instanton connection arising

in this way exhibits a singularity at the location x0 of the D-instanton. We recall that

in the singular gauge all non-trivial properties of the instanton profile come entirely from

the region near the singularity through the embedding of a 3-sphere surrounding x0 into

a SU(2) subgroup of SU(N). This is to be contrasted with what happens in the regular

gauge, where all non-trivial properties of the instanton come instead from the asymptotic

3-sphere at infinity. Furthermore, in the singular gauge the instanton field falls off as 1/x3

at large distances, thus guaranteeing the convergence of many integrals, like for example

that of the topological charge.

An obvious question to ask at this point is whether

PSfrag replacements
I
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w̄

w̄

w

wp

Figure 3: The mixed disk for the

second order contribution to the

gauge vector.

also the subleading terms in the large distance expan-

sion of the instanton solution can have a direct interpre-

tation in string theory. Since these higher-order terms

contain higher powers of ρ2, they are naturally asso-

ciated to mixed disks with more insertions of bound-

ary changing operators. For example, the diagram one

should consider to study the emission of the vector field

at the next-to-leading order is a mixed disk with two

more vertices Vw and Vw̄ as shown in figure 3. However,

extending the closed string analysis of ref. [32] to the

present case, one can argue that in the limit α′ → 0 this

diagram reduces to a simpler one in which two first-order diagrams are sewn with a 3-gluon

vertex of the SYM theory, as shown in figure 4. In appendix C we will explicitly compute

this diagram and find that, for example for SU(2), the corresponding emitted gauge field is

Acµ(x)
(2) = −2ρ4η̄cµν

(x− x0)ν
(x− x0)6

, (4.16)

that is exactly the second-order term in the large distance expansion of Ac
µ(x) in (4.12).

The higher order terms in this expansion can be in principle computed in a similar manner
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and eventually the full instanton solution can be reconstructed. This analysis shows that

the relevant building block for the complete solution is actually the leading term at large

distance which corresponds to the “source” diagram of figure 2 whose evaluation, as we

have seen, is extremely simple.

What we have described above is the open string ana-

PSfrag replacements
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Figure 4: In the field the-

ory limit the mixed disk of

figure 3 reduces to this con-

figuration which accounts for

the second order term in the

large-distance approximation

of the instanton solution for

the gauge vector.

logue of the procedure introduced in refs. [6, 7] for closed

strings. There, the so-called boundary states [5, 33] were

recognized to be the sources for the various massless fields

of the closed string spectrum in a D-brane background, and

the classical supergravity D-brane solutions were obtained

by taking the Fourier transform of the various tadpoles pro-

duced by the boundary states. Similarly here, the mixed

disks have been shown to be the sources for the emission

of open strings in a background whose profile is precisely

that of the classical gauge instanton. Just like the boundary

state approach has been very useful to obtain information

on the classical geometry associated to complicated D-brane

configurations, also the present method based on the use

of mixed disks could play a very useful role in determining

non-standard classical backgrounds of the gauge theory.

4.2 Insertions of the translational zero-modes

It is a familiar fact that in the instanton background there

are collective coordinates associated to the presence of bro-

ken translational symmetries. From the string point of view,

these zero-modes describe the motion of the D-instanton within the D3 branes and corre-

spond to the vertex operators of a′ (see eq. (2.24)) which, in the 0 superghost picture, are

given by

V
(0)
a′ = a′µ ∂σX

µ . (4.17)

These vertex operators can be used to establish in a stringy way a relation between a ′ and

the instanton collective coordinate x0. Indeed, if one considers all disk diagrams obtained

from that of figure 2 by inserting any number of vertices V
(0)
a′ along the D(−1) part of

the boundary, and then resums the corresponding perturbative series, one finds that all

occurrences of x0 are replaced by x0+a
′. This fact could be proved by adding to the action

of the D(−1) open strings the following marginal deformation along the boundary

δS =
1

2πα′

∫
dτ
[
V

(0)
a′ (σ = π, τ)− V (0)

a′ (σ = 0, τ)
]
. (4.18)

However, it is quite difficult to treat this interaction in a non-perturbative way, since it is

not easy to find an exact solution of the new equations of motion for the string coordinates

with the required boundary conditions and regularity properties. For this reason it is

convenient to exploit the open-closed string duality and translate the problem into the

closed string language. This amounts to represent the D-instanton localized at x0 with a
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boundary state |D(−1);x0〉 (see for example ref. [33] for more details) and to perform a

world-sheet modular transformation that interchanges the roles of σ and τ . Then, adding

the marginal deformation (4.18) to the D(−1) open strings is equivalent, in the closed

string channel, to

P exp

(
− i

2πα′

∫ π

0
dσ a′µ ∂τX

µ

)
|D(−1);x0〉 , (4.19)

as one can easily see by generalizing the discussion of ref. [4]. Notice that the path ordering

is a consequence of the Chan-Paton factor that must be added to the vertex operator (4.17)

when k > 1. For k = 1 instead, the path ordering is trivial and the expression (4.19) can

be easily evaluated. In particular, one finds that the relevant zero-more part is given by

e−ia
′
µp

µ
δ4(x− x0) |p = 0〉 = δ4(x− x0 − a′) |p = 0〉 , (4.20)

which clearly shows that all occurrences of x0 are to be replaced by x0+a
′, as desired. For

this reason in the following we will not distinguish any more between x0 and a′.

5. The superinstanton profile

The procedure we have discussed in the previous section can be easily extended to the other

components of the N = 4 vector multiplet, thus allowing to recover the full superinstanton

solution from mixed disks. Indeed, acting with the supersymmetry transformations that are

preserved also by the D(−1) branes, one can obtain from the diagram of figure 2 those that

describe the emission of the gauginos and the scalar fields, and hence their classical profiles

as function of the supermoduli. On the other hand, acting with the supersymmetries that

are broken by the D(−1) branes, one can shift the supermoduli in the classical solution

and account in this way for the fermionic zero-modes of the superinstantons.

5.1 Unbroken supersymmetries

The simplest diagrams which contribute to the emission of a gaugino are mixed disks with

one bosonic and one fermionic boundary changing operators. The two possibilities are

represented in figure 5. The amplitude (in momentum space) associated to the diagram

(a) is given by

Λ̄α̇A , I(p; w̄, µ) ≡
〈〈
VΛ̄Iα̇A(−p)

〉〉
D(w̄,µ)

=
〈〈
V

(−1)
w̄ V(−1/2)

Λ̄Iα̇A
(−p)V (−1/2)

µ

〉〉
(5.1)

where D(w̄, µ) is the mixed disk created by the insertion of Vw̄ and Vµ, and is easily

evaluated to be

Λ̄α̇A , I(p; w̄, µ) = i (T I)vu µ
Au w̄α̇v e

−ip·x0 . (5.2)

Notice again that in the amplitude (5.1) we have inserted a gaugino emission vertex with

outgoing momentum. Similarly, the amplitude corresponding to the diagram (b) is

Λ̄α̇A , I(p; µ̄, w) ≡
〈〈
VΛ̄Iα̇A(−p)

〉〉
D(w,µ̄)

= i (T I)vuw
α̇u µ̄Av e

−ip·x0 . (5.3)
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Figure 5: The two mixed disks that contribute to the emission of a gaugino Λ̄Iα̇A with momentum

p represented by the outgoing solid line.

An alternative method to compute these amplitudes is based on the use of the supersym-

metries which are preserved both on the D3 and on the D(−1) boundary and have been

denoted by ξ̄ q in section 2. Exploiting the fact that these supersymmetries annihilate the

vacuum, we have the following Ward identity

〈〈[
ξ̄ q , Vw̄

]
VAIµ(−p)Vµ

〉〉
+
〈〈
Vw̄

[
ξ̄ q ,VAIµ(−p)

]
Vµ

〉〉
+
〈〈
Vw̄ VAIµ(−p)

[
ξ̄ q , Vµ

]〉〉
= 0 , (5.4)

where for simplicity we have understood the picture assignments.8 The only new ingredient

appearing in (5.4) is the commutator in the second term; this can be computed from (4.2)

and reads [
ξ̄ q ,VAIµ(−p)

]
= ξ̄β̇A pν (σ̄

νµ)β̇α̇ VΛ̄Iα̇A(−p) . (5.5)

Then, using (2.36) and (2.37), we can rewrite the Ward identity (5.4) as follows

ξ̄β̇A pν (σ̄
νµ)β̇α̇

〈〈
Vw̄ VΛ̄Iα̇A(−p)Vµ

〉〉
+
〈〈
Vw̄ VAIµ(−p)Vδξ̄w

〉〉
= 0 (5.6)

which allows to obtain the gaugino amplitude in terms of the gauge boson amplitude (4.4)

with w replaced by its supersymmetry variation δξ̄w given in (2.34). In this way we can

immediately get (5.2), and with a similar relation also (5.3) can be retrieved.

The space-time profile of the emitted gaugino is then obtained by taking the Fourier

transform of the sum of the amplitudes (5.2) and (5.3) multiplied by the free fermion

propagator i 6pβ̇α/p2 ≡ i pν(σ̄ν)
β̇α/p2, that is

ΛαA , I(x) =

∫
d4p

(2π)2

(
Λ̄ A , I

β̇
(p; w̄, µ) + Λ̄ A , I

β̇
(p; µ̄, w)

) i 6pβ̇α
p2

eip·x

= −2i (T I)vu
(
w u
β̇
µ̄Av + µAu w̄β̇v

)
(σ̄ν)

β̇α (x− x0)ν
(x− x0)4

. (5.7)

Just as the gauge field (4.10), also the gaugino (5.7) naturally arises in terms of uncon-

strained parameters which become the instanton moduli when they are restricted to satisfy

8The latter are (−1/2), 0 and (−1) for Vµ, VAIµ and Vw̄ respectively, and (−1/2) for the supercharges.
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the ADHM constraints (3.30) and (3.31). In particular, once the fermionic constraint (3.31)

is imposed, it is immediate to extract from (5.7) the following matrix-valued gaugino profile

(Λ̂αA(x))uv ≡ − i ΛαA , I(x) (T I)uv = (σν)
α
β̇

(
wβ̇u µ̄Av + µAu w̄β̇v

) (x− x0)ν
(x− x0)4

. (5.8)

In this expression we recognize exactly the leading term in the large distance expansion of

the gaugino instanton solution in the singular gauge (see for example appendix B)

(Λ̂αA(x))uv = (σν)
α
β̇

(
wβ̇u µ̄Av + µAu w̄β̇v

) (x− x0)ν√
(x− x0)2

[
(x− x0)2 + ρ2

]3 . (5.9)

The subleading terms can be obtained from diagrams with more sources, in complete

analogy with what we did for the gauge field.

Let us now turn to the scalar components ϕIa of
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Figure 6: The mixed disk describ-

ing the emission of an adjoint scalar

ϕIa of momentum p represented by

the outgoing dashed line.

the N = 4 vector multiplet. The simplest diagram

which can describe their emission is a mixed disk with

two fermionic boundary changing operators, like the one

represented in figure 6. The corresponding amplitude in

momentum space is

ϕIa(p; µ̄, µ) ≡
〈〈
VϕIa(−p)

〉〉
D(µ̄,µ)

=
〈〈
V

(−1/2)
µ̄ V(−1)

ϕIa
(−p)V (−1/2)

µ

〉〉

= − i

2
(T I)vu (Σ̄a)AB µ

Bu µ̄Av e
−ip·x0 (5.10)

where D(µ̄, µ) is the mixed disk created by the insertion

of Vµ̄ and Vµ. Defining

ϕAB =
1

2
√
2
(Σa)AB ϕa , (5.11)

we can rewrite (5.10) as

ϕAB , I(p; µ̄, µ) = − i√
2
(T I)vu µ

[Au µ̄B]
v e
−ip·x0 (5.12)

where the square brackets mean antisymmetrization with weight one. Alternatively, this

result can be obtained from the Ward identity
〈〈[
ξ̄ q , Vµ̄

]
VΛ̄Iα̇A(−p)Vµ

〉〉
+
〈〈
Vµ̄

[
ξ̄ q ,VΛ̄Iα̇A(−p)

]
Vµ

〉〉
+
〈〈
Vµ̄ VΛ̄Iα̇A(−p)

[
ξ̄ q , Vµ

]〉〉
= 0 (5.13)

which establishes a relation between the scalar and the gaugino amplitudes.9 Indeed,

working out the commutators, we find
〈〈
Vδξ̄w̄ VΛ̄Iα̇A(−p)Vµ

〉〉
− i ξ̄α̇B (Σa)BA

〈〈
Vµ̄ VϕIa(−p)Vµ

〉〉
+
〈〈
Vµ̄ VΛ̄Iα̇A(−p)Vδξ̄w

〉〉
= 0 , (5.14)

from which (5.12) easily follows upon using (5.2), (5.3) and (2.34).

9In eq. (5.13) all vertex operators, as well as the supersymmetry charges, are in the (−1/2) picture.
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The space-time profile of the adjoint scalars is obtained by taking the Fourier transform

of the amplitude (5.12) multiplied by the massless scalar propagator 1/p2, namely

ϕAB , I(x) =

∫
d4p

(2π)2
ϕAB , I(p; µ̄, µ)

1

p2
eip·x

= − i√
2
(T I)vu µ

[Au µ̄B]
v

1

(x− x0)2
. (5.15)

When the parameters are restricted to satisfy the ADHM constraints, this expression rep-

resents the leading term of the adjoint scalars in the singular gauge. Moreover, from (5.15)

one can see that

(ϕ̂AB(x))uv ≡ − iϕAB , I(x) (T I)uv = −
1

2
√
2

(
µ[Au µ̄B]

v −
1

2
µ[Ap µ̄B]

p δ̃
u
v

)
1

(x− x0)2
(5.16)

with

‖δ̃uv‖ =
(
0[N−2]×[N−2] 0[N−2]×[2]
0[2]×[N−2] 1[2]×[2]

)
, (5.17)

which is indeed the leading term at large distance of the exact instanton solution (see for

example appendix B). As before, the subleading terms are given by diagrams with more

insertions of source terms.

We can summarize our findings by saying that the mixed disks with two boundary

changing operators represented in figures 2, 5 and 6 describe, respectively, the large distance

behavior in the instanton background of the vector AI
µ, of the gaugino Λ

I
αA and of the scalars

ϕIAB in the singular gauge, and that their space-time profiles can be written as

AIµ(x) = J Iνµ ∂
νG(x− x0) ,

ΛαA , I(x) = JA , I
β̇

(σ̄ν)β̇α ∂νG(x− x0) ,
ϕAB , I(x) = JAB , I G(x− x0) , (5.18)

where the scalar Green function G(x− x0) is defined in (4.7) and the various source terms

JIνµ, J
A , I

β̇
and JAB , I are bilinear expressions in the instanton moduli which can be read

from (4.4), (5.2), (5.3) and (5.10) respectively. Moreover, taking into account the fall-off at

infinity of the various fields, one can easily realize that the equations of motion that follow

from the SYM action (3.11) in the Lorentz gauge reduce at large distances simply to free

equations,10 i.e.

¤AIµ = 0 , ∂/αβ̇ Λ
αA , I = 0 , ¤ϕAB , I = 0 , (5.19)

which indeed admit a solution of the form (5.18) in the presence of source terms.

10At first sight there is a problem with the large distnace behaviour of ϕ∂ϕ ∼ O(1/x5) which is the same

(and not a stronger) behaviour of ∂2A. However the eq.s (5.19) are still valid since the dangerous terms

in AAB equation of motion, namely
[
ϕ̄AB , ∂µϕ

AB
]
, cancel identically: upon use of eq. (5.18) they become

porportional to εABCD [JAB , JCD] = 0.
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5.2 Broken supersymmetries

Let us now consider the supersymmetries of the D3 branes which are broken by the D-

instantons, namely those that are generated by the charges q ′αA ≡
(
QαA + Q̃αA

)
(see

section 2.1). As shown in (2.9), when one pulls the integration contour of a charge operator

to a boundary that does not preserve it, one obtains the integrated emission vertex for the

Goldstone field corresponding to the broken charge. In our case, the goldstino associated

to the breaking of q′αA by the D(−1) boundary is the modulus M ′αA. Therefore, by

acting with the broken supercharges q ′αA on a given instanton solution, one can modify it

by shifting its supermoduli with M ′ dependent terms. In particular, one can relate the

“minimal” emission diagrams of figures 2, 5 and 6, that contain no D(−1)/D(−1) moduli,

to diagrams which instead have additional insertions of M ′ moduli [18]. Thus, the use of

the broken supersymmetries allows us to determine the M ′ dependence and complete the

full superinstanton solution.

Let us see how this works in a specific example and consider the following Ward identity
〈〈[
M ′q′, Vw̄

]
VΛ̄Iα̇A(−p)Vw

〉〉
+
〈〈
Vw̄

[
M ′q′,VΛ̄Iα̇A(−p)

]
Vw

〉〉
+ (5.20)

+
〈〈
Vw̄VΛ̄Iα̇A(−p)

[
M ′q′, Vw

]〉〉
= −

〈〈
Vw̄VΛ̄Iα̇A(−p)Vw

∫
VM ′

〉〉
.

Differently from the identities (5.4) and (5.13) associated to the preserved supersymmetries,

the right hand side of (5.20) is non-zero as a consequence of the fact that the supercharge

q′ is broken on the D(−1) boundary. A pictorial representation of this Ward identity is

provided in figure 7. Using the fact that the commutators of q ′ with Vw and Vw̄ vanish (as

we already noticed at the end of section 2), and that
[
M ′q′,VΛ̄Iα̇A(−p)

]
= iM ′βA (σµ)

α̇
β VAIµ(−p) , (5.21)

we can deduce from (5.20) the following relation

Λ̄α̇A , I(p; w̄, w,M ′) ≡
〈〈
VΛ̄Iα̇A(−p)

〉〉
D(w̄,w,M ′)

=
〈〈
Vw̄ VΛ̄Iα̇A(−p)Vw

∫
VM ′

〉〉
−

= − iM ′βA (σµ) α̇β AIµ(p; w̄, w) , (5.22)

PSfrag replacements

+

w̄w̄w̄

www

Λ ΛΛ

Figure 7: The Ward identity for the broken supersymmetries. The internal oriented line represents

the integration contour for the supercurrentM ′(j+̃). The diagram in the left hand side corresponds

to the term 〈〈Vw̄ [M ′q′ ,VΛ̄Iα̇A ]Vw〉〉 in (5.20). The two diagrams in the right hand side are obtained

by deforming the integration contour. The first of them corresponds to −〈〈[M ′q′ , Vw̄]VΛ̄I
α̇A

Vw〉〉 −
〈〈Vw̄ VΛ̄Iα̇A [M

′q′ , Vw]〉〉 (where the minus sign is due to the clockwise orientation of the contours),

whereas the last diagram corresponds to the right hand side of (5.20).
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which reduces the calculation of the 4-point amplitude Λ̄α̇A , I(p; w̄, w,M ′) to an algebraic

manipulation on the 3-point amplitude (4.1). Notice again that, despite the presence of

many vertex operators, the amplitude (5.22) is actually a 1-point function from the point

of view of the four-dimensional gauge theory, since the only dynamical field is the emitted

gaugino. To obtain its corresponding space-time profile we multiply Λ̄ α̇A , I

β̇
(p;w, w̄,M ′)

by the propagator i 6pβ̇α/p2 and take the Fourier transform, getting

ΛαA , I(x) =

∫
d4p

(2π)2
Λ̄ A , I

β̇
(p; w̄, w,M ′)

i 6pβ̇α
p2

eip·x

= M ′βA (σµ σ̄ν) αβ

∫
d4p

(2π)2
pν A

I
µ(p;w, w̄)

p2
eip·x

= − iM ′βA (σµ σ̄ν) αβ ∂ν A
I
µ(x)

x→∞' i

2
M ′βA (σµν) αβ F I

µν(x) . (5.23)

In the last step we have used the fact that in the instanton solution (4.4) the vector field

AIµ is in the Lorenz gauge and that, due to the fall-off at infinity of the potential, the asso-

ciated non-abelian field strength F I
µν simply reduces to ∂µA

I
ν − ∂νAIµ in the large distance

limit. Eq. (5.23) shows that a mixed disk with one M ′ insertion and one emitted gaugino

reproduces exactly the chiral fermionic profile that is created by acting with a broken su-

percharge on the instanton background according to the η-supersymmetry transformation

rules (2.20). Of course, with a repeated use of these supercharges, further insertions of M ′

can be obtained and the entire structure of the superinstanton zero-modes can be recon-

structed (see for example eq. (4.60) in the recent review [22]). Our analysis, which for

simplicity we have illustrated only in the simplest case, shows the precise relation between

these zero-modes and the mixed disk amplitudes with insertions of M ′ vertex operators.

Finally, we recall that with the replacement

M ′αA → −ζ̄ A
α̇ (σ̄µ)α̇β a′µ (5.24)

one can account for the superconformal zero-modes of the N = 4 instanton solution

parametrized by the fermionic variables ζ̄.

6. String amplitudes and instanton calculus

In this section we want to explain what is the stringy procedure to compute instanton

corrections to scattering amplitudes in gauge theories and show its relation with the stan-

dard instanton calculus of field theory. The key ingredient will be the identification of the

instanton solution with the string theory 1-point function on mixed disks that we have

proven in the previous sections. Exploiting this fact, we will also be able to relate our

approach to the analysis of the leading D-instantons effects on scattering amplitudes that

has been presented in ref. [18]. Let us first recall a few basic facts on the relation between

string theory correlators, effective actions and Green functions in field theory. As we have

reviewed in section 3, the tree-level scattering amplitude among n states of the 3/3 strings
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Figure 8: Pictorial representation of the “disk” D(M). For example, the second disk in the r.h.s.

corresponds to the amplitude A(wλµ̄) (see eq. (3.22)) which in the field theory limit gives rise to the

term tr
(
i µ̄Auw

u
α̇ λα̇A

)
of the moduli action.

(which we denote generically by φi) is given by11

Aφ1···φn =
〈〈
Vφ1(p1) · · · Vφn(pn)

〉〉
≡ φn(pn) · · · φ1(p1)

〈〈
Vφ1(p1) · · · Vφn(pn)

〉〉
(6.1)

where the correlator among the vertex operators is computed on a disk with D3 boundary

conditions (see for example eq. (3.1)). By taking the limit α′ → 0 and extracting the 1PI

part, we obtain the following contribution to the effective action

−
∫

d4p1
(2π)2

· · · d
4pn

(2π)2
φn(pn) · · · φ1(p1)

〈〈
Vφ1(p1) · · · Vφn(pn)

〉〉∣∣∣
1PI

α′→0
, (6.2)

which, in turn, induces the following amputated Green function12

〈
φ1(p1) · · · φn(pn)

〉∣∣∣
amput.

=
〈〈
Vφ1(−p1) · · · Vφn(−pn)

〉〉∣∣∣
1PI

α′→0
. (6.3)

If one computes the above correlators on world-sheets with more boundaries one obtains

the perturbative loop corrections to the effective action and Green functions.

We now want to investigate how the previous relations get modified by the presence

of k D-instantons. In this case, as we have thoroughly explained, the correlators of vertex

operators receive contributions also from world-sheets with a part of their boundary on the

D-instantons, and specifically, at the lowest order in the string perturbation theory, from

mixed disks. It is convenient to denote by D(M) the sum of all disks with all possible

insertions of the moduli M of the k instantons, as represented in figure 8. Each term in

this sum corresponds to an amplitude with no vertex operator of the 3/3 strings, and thus

it represents a vacuum contribution from the point of view of the theory on the D3 branes.

A noteworthy point is that also the first term in D(M), i.e. the pure D(−1) disk without

insertions, contributes. Indeed, as shown in ref. [10], it evaluates to minus k times the

topological normalization C0 given in (3.8). Collecting all terms and using the results of

section 3, we obtain that the vacuum contribution of the “disk” D(M) is such that

〈〈1〉〉D(M)
α′→0' − S[M] ≡ −8π2k

g2YM

− Smoduli (6.4)

where the moduli action is defined in (3.29).

11Suitable symmetry factors must be included when not all field φi are different.
12For simplicity, we assume that the propagators are 〈φi(p)φj(k)〉 = (2π)2δ4(p + k)

δij
p2

; if this does not

happen, like for instance for the gauginos, appropriate changes are required, but these can be straightfor-

wardly implemented in our formulas.
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Figure 9: Mixed disk string diagrams correspond in the field-theory limit to interactions of the

first-quantized world-lines with the instantonic background.

Let us now consider the correlators of 3/3 string vertex operators on D(M), which are

defined by

〈〈
Vφ1(p1) . . . Vφn(pn)

〉〉
D(M)

= (6.5)

= C0

∑

m

∫ ∏
i dzi

∏
j dyj

dVabc

〈
Vφ1(z1; p1) · · · Vφn(zn; pn)VM1(y1) · · · VMm(ym)

〉
.

As is obvious from this definition, the string theory correlator depends on the k-instanton

moduli M, over which one has to integrate in order to account for all possible configura-

tions. This fact is intuitively clear, since in our description all possible mixed boundary

conditions are obtained by inserting the moduli.

The integration over M is the analogue of what one typically does in quantum field

theory, where the path integral describing a specific correlator is split into the sum of path

integrals restricted to the different topological sectors, namely

∫
Dφφ1(p1) · · · φn(pn) e−S[φ] =

∑

k

∫
Dδφ(k) δφ(k)1 (p1) · · · δφ(k)n (pn) e

−Sk−S[δφ
(k)] (6.6)

where δφ(k) denotes the fluctuation of φ around a classical background with topological

charge k and action Sk. In this framework, the integration over all moduli of the non-trivial

background arises directly from the path-integral, as a trade-off for the integration over the

zero-mode fluctuations. However, from string theory we obtain a first-quantized description

in which the string world-sheet gives rise for α′ → 0 to the world-lines of a (super)particle

description of the Feynman diagrams of the field theory. In this description, the different

topological sectors can be described only by explicitly coupling the (super)particle to a

non-trivial background field Aµ through the insertion of

TrP exp

(∫

γ
Aµ(x(τ);M)ẋµ dτ

)
(6.7)
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Figure 10: A connected amplitude with n external Vφ vertex operators in a D-instanton back-

ground receives contributions from topologically disconnected world-sheets, characterized by the

insertion of li vertex operators for φ fields in each connected component, with
∑

i li = n.

and then integrating over the background parameters M. This procedure is pictorially

illustrated in figure 9 for a specific disk amplitude.

The integration over the moduli M has several important consequences. First of all,

also world-sheets with disconnected components must be taken into account. For example,

besides the correlator (6.5), one should also consider the following one

〈〈Vφ1(p1) · · · Vφn(pn)〉〉D(M)〈〈1〉〉D(M) , (6.8)

which is disconnected from the two-dimensional point of view but connected from the

point of view of the four-dimensional theory on the D3 branes. Obviously, we can add

more disconnected components, and thus in general we have

1

` !
〈〈Vφ1(p1) · · · Vφn(pn)〉〉D(M)

(
〈〈1〉〉D(M)

)`
(6.9)

where the symmetry factor is due to the combinatorics of boundaries [10]. Summing over

all these terms, we therefore get

〈〈Vφ1(p1) · · · Vφn(pn)〉〉D(M) e
〈〈 1 〉〉D(M) . (6.10)

However, this is not yet the full story. In fact, for the same arguments we should also

take into account diagrams in which the n vertex opertors Vφi(pi) are distributed among

various disconnected components. For example, besides the correlator (6.10) we should

also consider the following one

〈〈Vφ1(p1)Vφ2(p2)〉〉D(M) 〈〈Vφ3(p3) · · · Vφn(pn)〉〉D(M) e
〈〈 1 〉〉D(M) . (6.11)

This contribution appears to be totally disconnected; however, it is connected with respect

to the φ’s because of the integration over the moduli M which all sit at the same point

where the stack of k D-instantons is located. Distributing the φ’s in all possible ways, one

generates various configurations which are compactly represented in figure 10.
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Figure 11: The dominant contribution to an amplitude with n external Vφ vertex operators in a

D-instanton background is a product of tadpoles.

Since each expectation value on D(M) is proportional to C0 ∝ g−1s (see eqs. (6.5)

and (3.8)), the dominant contribution for small gs is the one in which a single vertex Vφ is

inserted in each disk [11, 18], namely

〈〈Vφ1(p1)〉〉D(M) · · · 〈〈Vφn(pn)〉〉D(M) e
〈〈 1 〉〉D(M) , (6.12)

whereas other terms, like for example (6.11), are subleading for small gs.
13 Moreover, this

correlator is clearly 1PI. Thus, we can conclude that in the field theory limit, the dominant

contribution to the amputated Green function of n fields of the 3/3 string sector in the

presence of k D-instanton is given by (see figure 11)

〈φ1(p1) . . . φn(pn)〉|D−inst.amput. =

=

∫
dM 〈〈Vφ1(−p1)〉〉D(M) · · · 〈〈Vφn(−pn)〉〉D(M) e

〈〈1〉〉D(M)

∣∣∣
α′→0

. (6.13)

Reinstating the propagators (see footnote 12) and Fourier transforming, we obtain the

following Green function in configuration space

〈φ1(x1) · · · φn(xn)〉|D−inst. =
∫
dM φdisk1 (x1;M) · · · φdiskn (xn;M) e−S[M] (6.14)

where we have used (6.4) and defined

φdisk(x;M) =

∫
d4p

(2π)2
eip·x

1

p2
〈〈Vφ(−p)〉〉D(M)

∣∣
α′→0

. (6.15)

Using the results of sections 4 and 5 we can identify the right hand side of (6.15) with the

classical profile φcl(x;M) of the superinstanton solution for the field φ. For example, the

contributions from the simplest mixed disks, i.e. those with only two insertions of boundary

changing operators, account for the leading terms in the large distance expansion of the

superinstanton solution, as we have seen explicitly for k = 1 in eqs. (4.5), (5.7) and (5.15).

The contributions from mixed disks with more boundary changing operators in the limit

α′ → 0 account instead for the sub-leading terms in the large distance expansion, as we

have shown for the gauge field in section 4 (see also appendix C). Thus, we can write

φ(x;M)disk = φcl(x;M) (6.16)

13Notice that world-sheets with higher Euler number can also give contributions to the sub-leading orders.
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and conclude that the stringy prescription (6.14) of computing correlation functions in the

presence of D-instantons is exactly equivalent to the standard field theory prescription of

the instanton calculus

〈φ1(x1) . . . φn(xn)〉|inst. =
∫
dM φcl1 (x1;M) · · · φcln (xn;M) e−S[M] . (6.17)

The effects of D-instantons on the scattering amplitudes of the gauge theory on the D3

branes can be encoded by introducing new effective vertices for the 3/3 fields φi’s which

suitably modify the SYM action (see also ref. [18]). These D-instanton induced vertices

originate from the amputated Green functions (6.13) upon including the polarization fields

for the external legs, and are clearly moduli dependent. At fixed moduli, only the 1-point

functions are irreducible and so the gauge effective action induced by the D-instantons on

the D3 branes will be

S(−1)/3 = −
∑

φ

∫
d4p

(2π)2
φ(p) 〈〈Vφ(p)〉〉D(M)

∣∣
α′→0

(6.18)

where the sum is over all massless fields of the N = 4 vector multiplet. Since the tad-

poles 〈〈Vφ(p)〉〉D(M) are generically of the form Jφ(M) eip·x0 (see for instance eqs. (5.2)

and (5.10)),14 we can write this effective action simply as

S(−1)/3 = −
∑

φ

φ(x0) Jφ(M) (6.19)

which manifestly shows that the 1-point functions on the mixed disks are sources for the

gauge fields at the instanton location. Using the expressions for the various tadpoles

computed in sections 4 and 5, it is easy to realize that

S(−1)/3 = −1

2
F I
µν(x0) J

µν , I(M)− Λ̄Iα̇A(x0) J
α̇A , I(M)− ϕIAB(x0) JAB , I(M) (6.20)

where the various sources are defined in (5.18). This expression represents the non-abelian

extension of the action given for example in refs. [18, 19].

We think that our analysis clarifies the role played by D-instantons on the scatter-

ing amplitudes of four-dimensional gauge theories already discussed in the literature. In

particular we have shown that the stringy procedure to compute instanton corrections to

correlation functions reproduces in the field theory limit the standard instanton calculus in

virtue of the identification (6.16). We hope that these ideas and techniques can be useful

also for practical calculations in the N = 4 SYM theory considered in this paper as well

as in gauge theories with lower supersymmetries.
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A. Notations and conventions

Notations: we use the following notations for indices:

• d = 10 vector indices: M,N, . . . ∈ {1, . . . , 10};

• d = 4 vector indices: µ, ν, . . . ∈ {1, . . . , 4};

• d = 6 vector indices: a, b, . . . ∈ {5, . . . , 10};

• chiral and anti-chiral spinor indices in d = 10: A and Ȧ;

• chiral and anti-chiral spinor indices in d = 4: α and α̇;

• spinor indices in d = 6: A and A in the fundamental and anti-fundamental of SU(4) '
SO(6).

Our choice for the group indices is the following:

• SU(N) colour indices: I, J, . . . ∈ {1, . . . , N 2 − 1};

• U(k) colour indices: U, V, . . . ∈ {1, . . . , k2};

• D3 indices: u, v, . . . ∈ {1, . . . , N};

• D(−1) indices: i, j, . . . ∈ {1, . . . , k};

• SU(2) adjoint indices: c, d, . . . ∈ {1, 2, 3}.

d = 4 Clifford algebra: the euclidean Lorentz group SO(4) ∼ SU(2)+ × SU(2)− is

realized on spinors in terms of the matrices (σµ)αβ̇ and (σ̄µ)α̇β with

σµ = (1,−i~τ ) , σ̄µ = σ†µ = (1, i~τ ) , (A.1)

where τ c are the ordinary Pauli matrices. They satisfy the Clifford algebra

σµσ̄ν + σν σ̄µ = 2δµν 1 , (A.2)

and correspond to a Weyl representation of the γ-matrices,

γµ =

(
0 σµ

σ̄µ 0

)
(A.3)

acting on the spinor

ψ =

(
ψα
ψα̇

)
. (A.4)

Out of these matrices, the SO(4) generators are defined by

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ); (A.5)

the matrices σµν are self-dual and thus generate the SU(2)+ factor; the anti-self-dual ma-

trices σ̄µν generate instead the SU(2)− factor. Notice that the indices in the 2 of SU(2)+
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are denoted by α and those for the 2 of SU(2)− by α̇. The charge conjugation matrix is

block-diagonal in this Weyl basis:

C(4) =

(
Cαβ 0

0 Cα̇β̇

)
=

(−εαβ 0

0 −εα̇β̇

)
(A.6)

with ε12 = ε12 = −ε1̇2̇ = −ε1̇2̇ = +1. Moreover we raise and lower spinor indices as follows

ψα = εαβ ψβ , ψα̇ = εα̇β̇ ψ
β̇ . (A.7)

’t Hooft symbols: the explicit mapping of a self-dual SO(4) tensor into the adjoint

representation of the SU(2)+ factor is realized by the ’t Hooft symbols ηcµν ; the analogous

mapping of an anti-self dual tensor into the adjoint of the SU(2)− subgroup is realized by

η̄cµν . One has

(σµν)
β
α = i ηcµν (τ

c) βα , (σ̄µν)
α̇
β̇
= i η̄cµν (τ

c)α̇
β̇
. (A.8)

An explicit representation of the ’t Hooft symbols is given by

ηcµν = η̄cµν = εcµν , µ, ν ∈ {1, 2, 3},
η̄c4ν = −ηc4ν = δcν , (A.9)

ηcµν = −ηcνµ, η̄cµν = −η̄cνµ .

From it one can easily see that

ηcµν η
d µν = 4 δcd , (A.10)

ηcµν η
c
ρσ = δµρ δνσ − δµσ δνρ + εµνρσ . (A.11)

Analogous formulas hold for the contractions of two η̄’s with a minus sign in the ε term

of (A.11).

d = 6 Clifford algebra: taking advantage of the equivalence SO(6) ∼ SU(4), upon which

a positive (negative) chirality spinor corresponds to a fundamental (anti-fundamental)

SU(4) representation, we can represent the SO(6) spinor as

Λ =

(
ΛA

ΛA

)
(A.12)

on which the following gamma matrices act

Γa =

(
0 Σa

Σ̄a 0

)
. (A.13)

The matrices Σa and Σ̄a realize the six-dimensional Clifford algebra

(Σa)AB(Σ̄b)BC + (Σb)AB(Σ̄a)BC = 2 δab δAC , (A.14)

(with (Σ̄a)AB = (ΣaBA)∗). An explicit realization can be given in terms of ’t Hooft symbols

Σa =
(
η3, iη̄3, η2, iη̄2, η1, iη1

)
, Σ̄a =

(
−η3, iη̄3,−η2, iη̄2,−η1, iη1

)
. (A.15)

The charge conjugation matrix is off-diagonal in this chiral basis:

C(6) =

(
0 C B

A

CA
B 0

)
=

(
0 −i δ B

A

−i δAB 0

)
. (A.16)
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d = 10 Clifford algebra: the ten-dimensional γ-matrices ΓM(10) and the charge conjuga-

tion matrix C(10) are expressed in terms of the four- and six-dimensional matrices as

Γµ(10) = γµ ⊗ 1 , Γa(10) = γ5 ⊗ Γa ,

Γ11
(10) = γ5 ⊗ Γ7 , C(10) = C(4) ⊗C(6) , (A.17)

such that

C(10)Γ
M
(10)C

−1
(10) = −Γ

M T
(10) . (A.18)

Spin field correlators: From the general formulae of [34]:

S(+1/2)
A (z)S(−1/2)

Ḃ
(w) ∼ 1

z − wC
AḂ

S(+1/2)
A (z)S(−1/2)

B (w) ∼ i

(z − w)1/2ψ
MΓABM

by decomposing the ten-dimensional fields into four-dimensional and six-dimensional ones,

we can derive the following “effective” OPE’s:

Sα̇(z)Sβ(w) ∼
1√
2
(σ̄µ)α̇β ψµ(w) , SA(z)SB(w) ∼

i δAB
(z − w)3/4 ,

Sα̇(z)Sβ̇(w) ∼ − εα̇ β̇

(z − w)1/2 , SA(z)SB(w) ∼ i√
2

(Σa)AB ψa(w)

(z − w)1/4 ,

Sα(z)Sβ(w) ∼
εαβ

(z −w)1/2 , ψa(z)SA(w) ∼
1√
2

(Σ̄a)AB S
B(w)

(z − w)1/2 ,

ψµ(z)Sα̇(w) ∼ 1√
2

(σ̄µ)α̇β Sβ(w)

(z − w)1/2 , ψa(z)SA(w) ∼ − 1√
2

(Σa)AB SB(w)

(z − w)1/2 ,

ψµψν(z)Sα̇(w) ∼ − 1

2

(σ̄µν)α̇
β̇
Sβ̇(w)

(z − w) , ψaψb(z)SA(w) ∼ 1

2

(Σab)AB S
B(w)

(z − w) . (A.19)

Other OPE’s which do not appear in (A.19) can be simply obtained by a suitable change

of the chiralities. From these OPE’s we can derive the following 3-point functions which

have been used in the main text

〈Sα̇(z1)ψµ(z2)Sβ(z3)〉 =
1√
2
(σ̄µ)

α̇
β(z1 − z2)−1/2(z2 − z3)−1/2 ,

〈Sα̇(z1)ψµψν(z2)Sβ̇(z3)〉 = −1

2
(σ̄µν)

α̇β̇(z1 − z3)1/2(z1 − z2)−1(z2 − z3)−1 ,

〈SA(z1)ψa(z2)SB(z3)〉 =
i√
2
(Σa)AB(z1 − z2)−1/2(z1 − z3)−1/4(z2 − z3)−1/2 ,

〈SA(z1)ψa(z2)SB(z3)〉 = − i√
2
(Σ̄a)AB(z1 − z2)−1/2(z1 − z3)−1/4(z2 − z3)−1/2 . (A.20)

Twist field correlators: the (−1)/3 and the 3/(−1) strings have four Neumann-Diri-

chlet directions, namely those along the world-volume of the D3 branes. Thus, the string

fields Xµ have twisted boundary conditions; this fact can be seen as due to the presence of
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twist and anti-twist fields ∆(z) and ∆̄(z) that change the boundary conditions from Neu-

mann to Dirichlet and vice-versa by introducing a cut in the world-sheet (see for example

ref. [27]). The twist fields ∆(z) and ∆̄(z) are bosonic operators with conformal dimension

1/4 and their OPE’s are

∆(z1) ∆̄(z2) ∼ (z1 − z2)1/2 , ∆̄(z1)∆(z2) ∼ − (z1 − z2)1/2 , (A.21)

where the minus sign in the second correlator is again an “effective” rule to correctly

account for the space-time statistics in correlation functions.

B. A short review of the ADHM construction and of zero modes around

an instanton background

Following the notation of refs. [22, 20], we begin by introducing the basic objects in the

ADHM construction of the SU(N) instanton solution in four dimensions, namely the [N +

2k] × [2k] and [2k]× [N + 2k] matrices

∆(x) = a+ bx , ∆̄(x) = ā+ x̄b̄ (B.1)

where xαβ̇ = xµ (σ
µ)αβ̇ and x̄α̇β = xµ (σ̄

µ)α̇β describe the position of the multi-instanton

center of mass, and all the remaining moduli are collected in the matrix a (see formula (B.3)

below). Finally, b is a [N + 2k]× [2k] matrix which can be conveniently chosen to be

b =

(
0

1[2k]×[2k]

)
, b̄ = (0,1[2k]×[2k]) . (B.2)

The moduli space of the solutions to the self-dual equations of motion is characterized in

terms of the supercoordinates

a ≡
(
w ui
α̇

a′αβ̇ li

)
, MA ≡

(
µAui

M ′βA
li

)
, (B.3)

which satisfy the bosonic and fermionic ADHM constraints

∆̄∆ = f−1k×k 1[2]×[2] , (B.4)

∆̄MA = M̄A∆ (B.5)

with fk×k an invertible k × k matrix.

The solutions to the self-dual equations of motion for the various fields in the N = 4

vector multiplet are given by

Âµ = Ū ∂µ U ,

Λ̂A = Ū
(
MAf b̄− b f M̄A

)
U ,

ϕ̂AB = − i

2
√
2
Ū
(
MBf M̄A −MAf M̄B

)
U −

− i Ū ·
(
0[N ]×[N ] 0[N ]×[2k]

0[2k]×[N ] L−1ΛAB[k]×[k] ⊗ 1[2]×[2]

)
· U , (B.6)
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in terms of the kernels U[N+2k]×[N ] and Ū[N ]×[N+2k] of the ADHM matrices ∆̄ and ∆.

In (B.6), the hatted gauge fields are taken to be anti-hermitian, ΛAB is the fermionic

bilinear

ΛAB =
1

2
√
2

(
M̄AMB − M̄BMA

)
, (B.7)

and the operator L is defined as

L · Ω =
1

2
{W 0,Ω}+ [aµ, [a

µ,Ω]] , (B.8)

with (W 0) ij = w ui
α̇ w̄α̇uj .

For simplicity, from now on we concentrate on solutions with winding number k = 1,

which for SU(N) can be found starting from those for SU(2). For k = 1 the ADHM

constraints drastically simplify; indeed, the bosonic constraint (B.4) simply reduces to

w̄α̇uw
u
β̇

= ρ2 δα̇
β̇

(B.9)

(see eq. (4.8)), which is solved by

‖w u
α̇ ‖ =

∥∥w̄α̇u
∥∥ = ρ T

(
0[N−2]×[2]
1[2]×[2]

)
(B.10)

where T ∈ SU(N)/SU(N−2). This is just the standard SU(2) instanton solution embedded

inside the SU(N) in the lower right corner. The matrices T describe the orientation of

the SU(2) instanton inside SU(N) with SU(N − 2) being the stability group of the SU(2)

instanton solution. If we temporarily set T = 1, the vector field, which solves the equations

of motion in the singular gauge, can be written as

(Âµ)
u
v =

ρ2

x2 (x2 + ρ2)
(σ̄νµ)

u
v x

ν , (B.11)

where

(σ̄νµ)
v
u =

(
0[N−2]×[N−2] 0[N−2]×[2]

0[2]×[N−2] (σ̄νµ)
β̇
α̇

)
, (B.12)

and the center of the instanton has been set at x0 = 0 for simplicity. If we remove

the T = 1 constraint and shift the instanton center, we find the general SU(N) solution

Âµ = T Âµ T
−1 which is given in (4.14). As we have also found in the main text, an

explicit representation of our embedding is given by the matrices in (4.9) where the w u
α̇ ’s

are chosen according to (B.10).

We now turn to the fermionic the zero modes. Their number is 2kNN and obviously

depends on the number of supersymmetries. For compatibility with the rest of the paper

we will discuss the N = 4 case. The N = 2 and N = 1 cases can easily be deduced

from our discussion by restricting the range of the capital latin indices in the following to

A,B = 1, 2 and A,B = 1 respectively. It is well-known that in the SU(2) case the fermionic

zero modes are in the adjoint representation and that their explicit form can be found by

acting with the supersymmetry charges of the superconformal algebra on the instanton

solution, leading to

ΛαA =
i

2

(
ηβA − ζ̄ A

γ̇ (σ̄ρ)
γ̇β xρ

)
(σµν) αβ Fµν . (B.13)
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These solutions can be singled out also for arbitrary winding numbers k, since they corre-

spond to solutions of the constraint (B.5) in which the fermionic matrix MA is taken to

be proportional to the matrices a, b introduced in (B.1), namely

µAui = 0 , M ′βA
ij = bij η

βA , (B.14)

and

µAui = w ui
α̇ ζ̄ α̇A , M ′βA

ij = −ζ̄ A
α̇ (σ̄µ)α̇β a′µij , (B.15)

for the supersymmetric and superconformal zero-modes respectively.

Besides the zero-modes (B.13), in the SU(N) case we have other 4N (N − 2) fermionic

zero-modes, which are the partners of the color rotations parametrized by w u
α̇ ’s. They

transform in the fundamental representation of the embedded SU(2) and correspond to

the 2(N − 2) doublets in the decomposition of the adjoint representation of SU(N) with

respect to SU(2). For example, for SU(3) we have 8 = 3 ⊕ 2 ⊕ 2̄ ⊕ 1. Since there are no

solutions to the Dirac equation which are SU(2) singlets, and since we already know the

form (B.13) of the solution in the adjoint representation, we simply have to recall the form

of the SU(2) solutions in the fundamental. They are

ψαs =
ρ εαs√

(x2 + ρ2)3
(B.16)

where s = 1, 2 is an index which runs in the fundamental. The solutions for 2̄ are obtained

from those in (B.16) by raising the indices α and s. Let us now turn to the SU(N) case and

introduce the gauge invariant quantity (W α̇
β̇
)ji = w̄α̇uiw

uj

β̇
. By definition, the infinitesimal

gauge rotations which leave this quantity invariant are those which satisfy

δw̄α̇uiw
uj

β̇
+ w̄α̇ui δw

uj

β̇
= 0 . (B.17)

Using for δw and δw̄ the transformations (2.35), from (B.17) we get

ξ̄α̇A µ̄
A
uiw

uj

β̇
+ ξ̄β̇A w̄

α̇
ui µ

Auj = 0 , (B.18)

from which we infer

µ̄Auiw
uj

β̇
= 0 , w̄α̇uiµ

Auj = 0 . (B.19)

For k = 1, given the choice eq. (B.9), this implies µAu = (µA1 , . . . , µ
A
N−2, 0, 0). Starting

from (B.16) we can now deduce the SU(N) formulae by replacing the index s in the

fundamental of SU(2) with an index v in the fundamental of SU(N), and adding another

index u to label the N − 2 different solutions. For convenience the range of u will be

extended to N . For consistency with our previous notation, we also substitute ε with µ.

Putting together doublets and anti-doublets, we finally find

(Λ̂α̇A)uv

∣∣∣
reg.

=
ρ√

(x2 + ρ2)3
(µAu δα̇v + εα̇u µ̄Av) (B.20)

where εα̇u = (0, . . . , 0, εα̇β̇) is a natural extension of the Levi-Civita symbol to our case. To

go to the singular gauge we perform a SU(N) gauge transformation extending the standard
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SU(2) one, i.e. g = xµσ
µ/
√
x2, to g′ = (0, . . . , 0, xµσ

µ)/
√
x2, and get

(Λ̂αA)uv =
ρ√

x2(x2 + ρ2)3
(µAu xαv + xαuµ̄Av) , (B.21)

where xαv = (0, . . . , 0, xµ (σ
µ)α

β̇
).

At last we discuss the inhomogeneous solutions of the equations of motion for the

adjoint scalars ϕ̂AB . These equations follow from the SYM action (3.11)15 and are

D2 ϕ̂AB − 1√
2

{
Λ̂αA , Λ̂ B

α

}
+ · · · = 0 , (B.22)

where the ellipses stand for terms that contain Λ̄αA or are trilinear in the scalar fields,

which are not relevant for our present analysis. A first part of the solution of (B.22) is

obtained by using for Λ̂αA the supersymmetric zero-modes (B.13). This leads to

(ϕ̂AB)uv =
4
√
2

(x2 + ρ2)2
η[AuηB]

v . (B.23)

In the SU(N) case there is an additional contribution to (B.23) coming from the zero

modes (B.21). For k = 1 and T = 1, it is easy to see that

{
Λ̂αA, Λ̂ B

α

}u
v
=

4ρ2

(x2 + ρ2)3

(
µ[Auµ̄B]

v −
1

2
µ[Ap µ̄B]

p δ̃
u
v

)
(B.24)

where δ̃uv is defined in (5.17). Substituting the tentative solution

(ϕ̂AB)uv = f(x, ρ)
(
µ[Auµ̄B]

v −
1

2
µ[Ap µ̄B]

p δ̃
u
v

)
(B.25)

in (B.22) and solving the resulting differential equation for f(x, ρ), one obtains

f(x, ρ) = − 1

2
√
2(x2 + ρ2)

. (B.26)

C. Subleading order of the instanton profile in the α′ → 0 limit

In section 4.1 we mentioned that the subleading terms in the large distance expansion

of the instanton solution are naturally associated to mixed disks with more insertions of

boundary changing operators (see figure 3), and that in the limit α′ → 0 they reduce to

simple tree-level field theory diagrams, in complete analogy with the gravitational brane

solutions as discussed in ref. [32]. As an example, in this appendix we explicitly compute

the second order contribution to the gauge field, which is represented by the diagram in

figure 4. For simplicity we just consider the SU(2) case. The necessary ingredients to

compute this diagram are:

15We recall that the fields appearing in the SYM action (3.11) are hermitian, while the hatted fields we

are now considering are anti-hermitian; the precise relation between the two is given by ϕ̂AB = −iϕAB and

similarly for the other components of the supermultiplet.
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• the ordinary 3-gluon vertex of YM theory

V cde
µνλ(p, q, k) = i εcde

[
(q − k)µ δνλ + (p− q)λ δµν + (k − p)ν δλµ

]
(C.1)

where all momenta are incoming, and

• the source subdiagram representing the leading order expression of the gauge field in

momentum space given in (4.4), namely

Acµ(p; ρ)
(1) = iρ2 η̄cνµ p

ν e−ip·x0 . (C.2)

The amplitude in figure 4 is then obtained by sewing two first-order diagrams to a 3-gluon

vertex and reversing the sign of the momentum of the free gluon line to describe an outgoing

field. Taking into account a simmetry factor of 1/2, we have

Acµ(p; ρ)
(2) =

1

2

∫
d4q

(2π)2

[
V cde
µνλ(−p, q, p− q)

1

q2
Adν(q; ρ)

(1) 1

(p− q)2A
e
λ(p− q; ρ)(1)

]

=
i

2
ρ4εcdeη̄dσν η̄

e
τλe

−ip·x0

∫
d4q

(2π)2
1

q2(p− q)2 q
σ (p− q)τ × (C.3)

×
[
(p− 2q)µδνλ + (q + p)λδµν + (q − 2p)νδλµ

]

where the momentum integral can be computed in dimensional regularization. To obtain

the space-time profile, we take the Fourier transform of Ac
µ(p; ρ)

(2) multiplied by 1/p2, and

after some standard manipulations we find

(Acµ(x))
(2) ≡ lim

d→4

∫
ddp

(2π)d/2
(Acµ(p; ρ))

(2) 1

p2
eip·x = −2ρ4η̄cµν

(x− x0)ν
(x− x0)6

, (C.4)

which is exactly the second order term in eq. (4.12). The higher order terms in the large

distance expansion can in principle be computed in a similar manner and thus the full

instanton solution can eventually be reconstructed.
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