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Background: For a safe ‘in vivo’ biomedical utilization of nanoparticles, it is essential to assess 

not only biocompatibility, but also the potential to trigger unwanted side effects at both cellular 

and tissue levels. Mastocytes (cells having secretory granules containing cytokines, vasoactive 

amine, and proteases) play a pivotal role in the immune and inflammatory responses against 

exogenous toxins. Mastocytes are also recruited in the tumor stroma and are involved in tumor 

vascularization and growth.

Aim and methods: In this work, mastocyte-like rat basophilic leukemia (RBL) cells were 

used to investigate whether carboxyl-modified 30 nm polystyrene (PS) nanoparticles (NPs) and 

naked mesoporous silica (MPS) 10 nm NPs are able to label the secretory inflammatory granules, 

and possibly induce exocytosis of these granules. Uptake, cellular retention and localization of 

fluorescent NPs were analyzed by cytofluorometry and microscope imaging.

Results: Our findings were that: (1) secretory granules of mastocytes are accessible by NPs 

via endocytosis; (2) PS and MPS silica NPs label two distinct subpopulations of inflammatory 

granules in RBL mastocytes; and (3) PS NPs induce calcium-dependent exocytosis of inflam-

matory granules.

Conclusion: These findings highlight the value of NPs for live imaging of inflammatory pro-

cesses, and also have important implications for the clinical use of PS-based NPs, due to their 

potential to trigger the unwanted activation of mastocytes.
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Introduction
Nanoparticle labeling is a rapidly emerging area in the field of nanotheranostic  sciences, 

ie, the application of nanotechnology to the areas of medical therapy and diagnosis by 

creating powerful tools enabling the targeted delivery of drug therapies and imaging 

tracers.1–4 The in vivo biomedical application of such NPs however, raises several issues 

regarding their tolerability, intracellular effects, systemic reactions and overall toxicity. 

The extent of NP toxicity essentially depends on such variables as size, type of material, 

and surface charge, and is proportional to the dose and time of exposure, as well as the 

actual concentration of NPs within critical cellular compartments.5–7 At the  cellular 

level, the NPs’ toxicity may result from the generation of free radicals, or the  disruption 

of organelle integrity (eg, by inducing leakage of proapoptotic molecules from lyso-

somes or mitochondria), or by affecting the plasma membrane permeability (eg, by 

inducing calcium ion entry).8–11

At the tissue and organ levels, toxicity may arise following NP-induced stimulation 

of the immune and inflammatory cells.12–14 This tissue immune-inflammatory reaction 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1829

O R I G I N A L  R E S E A R C H

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S29034

mailto:isidoro@med.unipmn.it
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S29034


International Journal of Nanomedicine 2012:7

is orchestrated by resident mastocytes, through the release of 

vasoactive amines, cytokines, and proteolytic enzymes.15,16 

These substances are packaged within lysosome-like gran-

ules that translocate to the periphery of the mastocyte, and 

fuse with the plasma membrane upon stimulation of IgE 

receptors or other stimuli effectively inducing an influx of 

calcium ions.17

Mastocytes are involved not only in allergic and inflam-

matory diseases, but also play a pivotal role in tumor 

 vascularization and growth.18–20 NPs with the ability to label 

and trace the exocytosis of inflammatory secretory granules 

would therefore be useful to monitor mastocyte activation 

during an inflammatory response. In addition, given the 

desired utilization of NPs in the detection of cancer and 

its therapy, it is also prudent to explore the possibility of 

being able to detect and monitor the unwanted activation of 

mastocytes infiltrating the tumor stroma. In this work each 

of these issues was addressed.

As a ‘sensitive’ cell model we utilized mastocyte-like 

rat basophilic leukemic (RBL) cells, a widely used ‘in vitro’ 

cell model to study the inflammatory response to allergic  

stimuli.21 RBL cells possess two types of  inflammatory 

granules that share the same biogenetic  pathway with 

lysosomes.22,23 Upon stimulation, a rapid influx of  calcium 

ions enables the fusion of these organelles with the 

plasma membrane, and the release in the extracellular 

 environment of lysosomal proteases, vasoactive substances 

and  inflammatory cytokines.23,24 The RBL cell model has 

already been  successfully used in studies of endocytosis and 

 cellular labeling with NPs.25–27 RBL cells represent a valuable 

 cellular model system to address the two questions posed 

in the  present study: (1) do NPs trigger an inflammatory 

response, ie, the calcium-dependent secretion of mastocyte 

granules? And (2) can NPs be used to label, and possibly 

discriminate between different internal secretory, lysosome-

like  compartments of mastocytes?

To monitor the active exocytosis of inflammatory 

granules in RBL cells, two types of fluorescent NPs were 

employed that differ in chemical composition, surface 

charge, and size: (1) mesoporous silica (MPS) material, of 

10 ± 5 nm in diameter, with no surface-charged functional 

group, and doped with IRIS-3 dye, emitting red fluorescence; 

and (2) polystyrene (PS) material, of 30 ± 10 nm in diam-

eter, carboxyl-modified with a negative surface charge, and 

embedded with the FITC dye, emitting green fluorescence. 

Mesoporous, silica-based NPs are emerging as valuable 

nanocarriers of therapeutic and diagnostic tracers due to 

their unique pore architecture, which enables them to host 

macromolecules such as complex dyes and pharmaceuti-

cals, with the added bonus that silica is considered to be 

nontoxic and biodegradable.28–31 The physical and chemical 

characteristics of the MPS NPs used in the present study 

have been previously described.27 PS NPs are also being 

evaluated for drug delivery and cellular imaging.32–34 The 

potential of MPS NPs to induce the release of inflammatory 

cytokines by macrophages has been recently investigated.30 

Similarly, in a recent study, amorphous silica NPs were 

shown to induce the release of inflammatory cytokines by 

endothelial cells.35

Whether and how MPS and PS NPs interact with and 

activate mastocytes is not known. We addressed these issues 

in cultured RBL mastocytes. The main findings here reported 

are: (1) MPS and PS NPs showed different efficiency of 

intracellular retention: while the former were well tolerated 

for long time, the latter were promptly expelled in a calcium-

dependent fashion; and (2) MPS and PS NPs engaged in 

different endocytic routes and finally accumulated in differ-

ent secretory compartments. These data present significant 

clinical applications, since they demonstrate a powerful abil-

ity of NPs to monitor the inflammatory process via imaging 

the degranulation of mastocytes. In addition, these data also 

have important clinical implications as they demonstrate 

the possibility of inducing the activation of an inflammatory 

reaction by NPs.

Materials and methods
Nanoparticles
Commercial carboxyl-functionalized, fluorescein  isothiocyanate 

(FITC)-conjugated PS NPs were purchased from Sigma (cod 

L5155; Sigma-Aldrich, St Louis, MO). Mesoporous silica 

(MPS) NPs engrafted with IRIS-3 were provided by Cyanine 

Technologies (IRIS3-Dots-Porous cod 3 WEL-06; Cyanine 

Technologies SpA, Turin, Italy). NPs were dissolved in culture 

medium after conglomerate disruption by sonication.27

Cell culture and treatments
Mastocyte-like RBL-2H3 cells (American Type Culture 

 Collection, Manassas, VA) were cultivated at 37°C in 5% CO
2
 

in Dulbecco’s modified Eagle’s minimum essential medium 

(cod D5671; Sigma-Aldrich) supplemented with 16% fetal 

bovine serum (FBS) (cod DE14-801F; Lonza Group Ltd, 

Basel, Switzerland) and 100 IU/mL penicillin–streptomycin 

(cod P0781; Sigma-Aldrich). Typically, the cells were plated 

on sterile cover-slips and left to adhere for 24 hours before 

use. Incubations were performed in fresh medium for the time 

indicated. NPs were dissolved directly in culture medium 
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at the desired final concentration. The calcium ionophore 

A23187 and the calcium-chelating ligand EGTA (both from 

Sigma Aldrich) were used at the concentration of 1 µM and 

5 mM, respectively. Methyl-β-cyclodextrin (MbCD) (cod 

C4805; Sigma-Aldrich) was used at 5 mM final concentration. 

Unless otherwise specified, all experiments were performed 

in the presence of FBS, a medium that closely resembles the 

physiological tissue environment.

Cellular viability assessment
Cell toxicity was evaluated by looking at the gross 

 morphology alterations of the nuclei typically associated 

with cell death (picnosis, chromatin condensation and 

 fragmentation), and at the metabolic activity of the cell. 

To this end, nuclei were stained with DAPI and cells were 

labeled with CellTracker™ (Invitrogen, Carlsbad, CA). The 

latter is a fluorescent dye that emits blue fluorescence of an 

intensity proportional to that of mitochondrial respiratory 

activity.46 Adherent cells prelabeled with DAPI (not shown) 

or CellTracker™ were each incubated with NPs for up to 

48 hours. It was assumed that, given the rapid  internalization 

of NPs, any toxic effect on cell metabolism would be evident 

by this time. As a  control for metabolic toxicity, the cells 

were incubated with 1%  dimethylsulfoxide (DMSO). Cell 

viability was  measured as the percentage of cells labeled 

with CellTracker™  irrespective of intensity, as determined 

with ImageJ software (US National Institutes of Health, 

Bethesda, MD).

Cathepsin D fluorescent chimeras and 
plasmid transfection
The cDNA coding for human lysosomal cathepsin D,47 

devoid of the stop codon, was subcloned in the multiple clon-

ing site of the plasmids peGFP-N1 or pmCherry-N1 (both 

from Clontech Lab, Takara Bio Inc, Shiga Japan) in order 

to drive the synthesis of the fluorescent chimeras CD-GFP 

or CD-mCherry. Adherent RBL cells were transfected with 

the plasmid using the Lipofectamine 2000 Reagent™ (Life 

Technologies Ltd, Paisley, UK) method as suggested by the 

manufacturer’s instructions.

Briefly, cells were plated in a P35 petri dish at 15,000/cm2 

and left to adhere for 24 hours prior to the  transfection 

procedure. The DNA-Lipofectamine complexes were 

 prepared in 500 µL of Opti-MEM I reduced serum medium 

(Life Technologies Ltd) with 5 µg of plasmid and 10 µL of 

lipofectamine. After 6 hours of incubation, the transfection 

medium was removed and replaced with serum-containing 

culture medium (16% FBS-DMEM) and the cells  cultivated 

for 36 hours to allow for maximal protein expression. 

The cells were then incubated in fresh medium with either 

the LysoTracker™ (Invitrogen–Molecular Probes, Eugene, 

OR) or the NP for the time indicated.

Endocytosis and exocytosis studies
RBL cells were plated on sterile cover-slips and left to adhere 

for 24 hours, then the medium was replaced, and cells were 

incubated with the NPs for the time indicated. To trace the 

endocytic pathway, the cells were prelabeled for 10 minutes 

with LysoTracker™ Green or Red. Where indicated, 5 mM of 

MbCD was added for 1 hour prior to the incubation with NPs 

in order to extract cholesterol from the plasma  membrane. 

Exocytosis of inflammatory granules was induced by stimula-

tion of calcium entry by A23187 (1 µM for 5 or 60 minutes), 

and inhibition of exocytosis was attained by supplementing 

the medium with 5 mM EGTA.

Fluorescence microscope imaging
Samples were observed with the fluorescence microscope 

Leica DMI6000 (Leica Microsystems AG, Wetzlar, 

Germany).

Five to ten fields (for a minimum total of 50 cells) were ran-

domly imaged by two independent investigators (ME and AG), 

and representative images were chosen for display. Images 

were captured under the fluorescence microscope using the 

same color intensity threshold for all treatments. All images 

were compiled using Adobe® Photoshop® (Adobe Systems Inc, 

San Jose, CA), with the same contrast adjustment applied to all 

images. Quantification of fluorescent microscope images was 

performed using ImageJ software. This method enabled mea-

surement of the mean quantity of NPs which had accumulated 

in the cell as the mean fluorescence intensity per cell.

Flow cytometry
Flow cytometry was employed to assess the proportion of 

cells that had internalized the NPs. The cells were plated on 

petri dishes and left to adhere for 24 hours, then the NPs were 

added to fresh medium. At the end of the incubation period, 

the cells were washed three times with PBS to remove the 

excess NPs, and extracellular fluorescence was quenched 

with 0.4% (w/v) trypan blue in PBS. Cells were then har-

vested with trypsin, resuspended in PBS and the extent of 

NP internalization was then assessed using a FACScan flow 

cytometer (Becton, Dickinson and Company, Franklin Lakes, 

NJ). Cell-associated fluorescence (10,000 cells/sample) was 

analyzed with WinMDI software (version 2.9; Microsoft 

Corporation, Redmond, WA).
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Statistics
Each experiment was performed in triplicate and reproduced 

two or more times. Quantification data from ImageJ and 

cytofluorometry analyses were given as average ± standard 

deviation. The Student’s t-test with P , 0.05 for statistical 

significance was employed to compare the results from dif-

ferent treatments.

Results and discussion
Biocompatibility and dose/time-
dependent uptake of MPS and PS NPs
The uptake efficiency and intracellular end-point of NPs 

together with their effects on cellular metabolism, are greatly 

influenced by their physical-chemical characteristics.

Since NP toxicity is also cell-type specific, it was first 

necessary to establish that MPS and PS NPs do not exert 

any toxicity upon RBL cells. Biocompatibility was tested 

in RBL cultures exposed for up to 48 hours to either type 

of NP at the maximal concentration used in the present 

study (ie, 30 µg/mL and 75 µg/mL, respectively). Cell 

viability was assayed using a metabolic thiol-reactive probe 

 (CellTracker™) that produces a stable membrane-imperme-

able glutathione–fluorescent dye adduct in living cells. The 

images in Figure 1 demonstrate that both MPS and PS NPs 

were nontoxic to RBL cells, which is consistent with previous 

reports showing the biotolerability of MPS and of carboxy-

lated PS NPs in other cell types.9,27–29,33,36,37 From the fluores-

cent signal, it was established that MPS NPs  accumulated in 

large quantities in RBL cells, indicating their efficient uptake 

and intracellular retention throughout the incubation period. 

On the other hand, only a few RBL cells appeared to contain 

PS NPs, and then only in very small amounts (Figure 1). The 

latter finding could be explained by assuming that: (1) PS 

NPs hardly entered RBL cells (at the given concentration and 

time of  incubation); or (2) PS-associated fluorescence was 

rapidly and fully quenched within cellular compartments; or 

(3) PS NPs were expelled after their internalization.

Although the PS material can be considered to be chemi-

cally relatively inert, the presence of carboxyl functional 

groups on the surface confers a negative surface charge to 

the NP, which allows (reversible) electrostatic interactions 

with biological molecules that may impact on the uptake 

efficiency.33,38,39 A typical time- and concentration-dependent 

internalization experiment showed that the accumulation of 

PS NPs in RBL cells clearly increased with concentration, 

while increasing the time of incubation did not lead to a 

substantial increase of the number of labeled cells, or of NP 

per cell (Figure 2A and B).

On the other hand, MPS NPs were very rapidly taken up 

by RBL cells, and saturated intracellular compartments in 

a dose-dependent fashion (Figure 2C). The kinetics of the 

uptake of MPS and PS NPs were directly compared. Flow 

cytometry was used to determine the proportion of cells that 

had internalized the NPs at a given time. Prior to flow cytom-

etry analysis, at the end of each time-point incubation, the 

samples were extensively washed and quenched with trypan 
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Figure 1 Biotolerability of NPs. RBL cells (15,000/cm2) adherent on cover-slips were incubated with 30 µg of MPS or 75 µg of PS NPs in fresh medium for 48 hours, then 
the cells were washed and labeled with CellTracker™ (5 µM for 45 min in serum-free medium). After this, the cells were washed and incubated in regular complete medium 
for 30 minutes. Positive control of toxicity was performed incubating the cells with 1% DMSO. Cells were then washed and imaged under the fluorescence microscope. The 
proportion of viable (CellTracker™-stained) cells was determined with the aid of ImageJ software. Representative images (A) and quantification (B) of two independent 
experiments performed in triplicate are shown. Note that almost the whole cell population incubated with either MPS or PS NPs shows intense blue fluorescence, whereas 
in DMSO-treated culture, most of the monolayer has detached and, of the portion still adherent, approximately 25% of the cells appear faintly labeled with CellTracker™.
Abbreviations: DMSO, dimethyl sulfoxide; MPS, mesoporous silica; NPs, nanoparticles; RBL, rat basophilic leukemia; PS, polystyrene.
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Figure 2 Dose- and time-dependent cellular accumulation of NPs. RBL cells (30,000/cm2) adherent on cover-slips were exposed to different concentrations of NPs for two 
different incubation times (5 and 30 minutes). After this, the cells were washed, imaged under the fluorescence microscope and cell-associated fluorescence was quantified 
with ImageJ software. (A) Representative images of RBL cells exposed to PS NPs (concentration and time as indicated). (B) Quantification of total fluorescence (normalized 
per cell); data from two independent experiments in triplicate are shown. (C) Representative images of cells exposed to MPS NPs.
Abbreviations: MPS, mesoporous silica; NPs, nanoparticles; RBL, rat basophilic leukemia; PS, polystyrene.

blue to remove all non-internalized NPs material from the 

cell surface. An aliquot of washed cells was observed under 

the microscope to ascertain the absence of fluorescent NPs 

passively adsorbed on the cell surface. Flow cytometry data 

were expressed as a percentage of fluorescently-labeled 

cells. Both types of NPs were taken up by the cells, although 

at different rates. MPS NPs rapidly entered the cells and 

after 15 minutes, 100% of the cell population was intensely 

labeled, while by this time only 35% of the cell population 

had been labeled by PS NPs (Figure 3).

Carboxylated PS NPs trigger their 
calcium-dependent expulsion
Internalization of NPs is influenced by ionic interactions 

between the negative membrane potential of the cell, and 

the surface net charge of NPs.38 In addition, negatively-

charged 20 nm PS NPs were shown to stimulate the calcium-

 dependent secretion of chloride and bicarbonate anions in 

airway epithelial cells.40

A possibility existed that the PS–plasma membrane 

interaction could affect the calcium-dependent recycling of 

endocytic vesicles, thus leading to a dynamic endocytosis–

exocytosis process that could account for the low intracel-

lular retention of carboxylated PS NPs. RBL cells were 

allowed to internalize PS NPs, then the cells were washed 

and incubated for increasing time of chase. In parallel cul-

tures, the extracellular calcium chelator EGTA was present 

throughout the uptake and chase incubation. The extent of 

cell labeling was assessed by fluorescence microscopy and 
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Figure 3 Kinetics of MPS and PS NPs internalization. RBL cells (80,000/well) 
adherent on 12-well petri dishes were incubated in fresh medium with 10 µg of MPS 
or 75 µg of PS NPs for the time indicated. At each time point, the cells were washed, 
harvested and cell-associated fluorescence quantified by flow cytometry. 
Note: Data from two independent experiments each performed in triplicate are 
shown.
Abbreviations: MPS, mesoporous silica; NPs, nanoparticles; RBL, rat basophilic 
leukemia; PS, polystyrene.
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cytofluorometry. Data shown in Figure 4 demonstrate that 

EGTA contrasted the time-dependent loss of intracellular 

labeling, suggesting a role for calcium influx in the rapid 

expulsion of PS NPs.

MPS and PS NPs label calcium-
regulated secretory compartments 
in RBL cells
In most cell types studied thus far, endocytosed material 

is first delivered to early endosomes, and is then further 

transported downstream to endocytic compartments 

toward late endosomes and lysosomes.41 RBL mastocytes 

have been shown to possess two distinct subpopulations 

of secretory lysosome-like compartments.22,23 It is not yet 

known whether these compartments interconnect the endo-

cytic pathway, and if so, how. To address this, calcium-

dependent  degranulation of RBL cells previously loaded 

with NPs was induced. Degranulation was instigated by 

imposing the influx of extracellular calcium with the cal-

cium ionophore A23817, and parallel coincubation with 
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Figure 4 PS NPs induce calcium-regulated exocytosis of PS-containing vesicles. RBL cells (30,000/cm2) adherent on cover-slips were exposed to 75 µg of PS NPs for 
15 minutes. Where indicated, the cells were preincubated for 30 minutes with 5 mM EGTA. After this, the cells were washed, imaged under the fluorescence microscope 
and cell-associated fluorescence was quantified with ImageJ software. (A) Representative images of RBL cells exposed to PS NPs in the presence or absence of EGTA. (B) 
Quantification of total fluorescence (normalized per cell). 
Note: Data from two independent experiments in triplicate are shown.
Abbreviations: EGTA, ethyleneglycoltetraacetic acid; NPs, nanoparticles; RBL, rat basophilic leukemia; PS, polystyrene.

the extracellular calcium-chelating ligand EGTA serving 

as the control.23

RBL cells were preloaded for 15 minutes with PS NPs, 

then washed and incubated for 5 or 60 minutes, with or 

without A23187 or EGTA, or both. The images in Figure 5A 

show that PS NPs are still visible in RBL cells at 5 minutes, 

but are no longer visible at 60 minutes (which confirms 

the data in Figure 4), and demonstrate that NPs are rapidly 

exocytosed upon induction of calcium influx. Note that in 

the majority of the cells cotreated with A23187 and EGTA, 

the NPs are retained within the cells, and have accumulated 

at the periphery of the cells. An analogous experiment was 

performed in cells preloaded with MPS NPs. In this case, 

A23187 also triggered the rapid calcium-dependent expul-

sion of the NPs, (only the 5 minute chase incubation is 

shown) (Figure 5B).

It is worth noting that in the presence of EGTA, MPS-

positive vesicles do not change their position. Flow cytometry 

quantification of this experiment showed that in 5 minutes, 

some 80% of the cell-associated MPS signal was lost upon 
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Figure 5 MPS and PS NPs gain access to calcium-regulated secretory compartments. RBL cells (30,000/cm2) adherent on cover-slips were pulse-labeled for 15 minutes with 
10 µg of MPS or 75 µg of PS NPs, then cells were washed and incubated for the indicated time in the absence or presence of 1 µM A23187 or 5 mM EGTA, or both. After this, 
cells were imaged and cell-associated fluorescence quantified with ImageJ software. (A) Representative images of RBL cells incubated with PS NPs and treated as indicated. 
(B) Representative images of RBL cells incubated with MPS NPs and treated as indicated. (C) Quantification of total fluorescence (normalized per cell). 
Note: Data from three independent experiments in triplicate (*P , 0.001) are shown.
Abbreviations: EGTA, ethyleneglycoltetraacetic acid; MPS, mesoporous silica; NPs, nanoparticles; RBL, rat basophilic leukemia; PS, polystyrene.

A23187-induced exocytosis, and that this loss was fully 

inhibited by EGTA (Figure 5C).

MPS and PS NPs label distinct 
cellular organelles and only MPS 
NPs accumulate in true cathepsin 
D-containing lysosomes
To see whether endocytosed MPS and PS NPs both converged 

to the same intracellular secretory compartments, the RBL 

cells were coincubated with these NPs, and their intracellular 

traffic and localization was followed with increasing chasing 

times. MPS NPs stably localized at the periphery of the cell, 

whereas PS NPs initially localized in perinuclear vesicles, 

and with time moved toward the periphery, though never 

merging with MPS-labeled vesicles (Figure 6A). In addition, 

by 60 minutes, the PS NPs were only faintly detectable in 

the cell, confirming their continuous expulsion.

It has previously been shown that RBL secretory  granules 

contain cathepsin D, among other lysosome-resident 

 hydrolases.23 To assess the nature of the organelle labeled by 

MPS and PS NPs, the secretory organelles were marked by 

transgenic expression of a fluorescent cathepsin D chimeric 

 protein. We engineered the peGFP- and pmCherry- plasmids 

placing in front the cDNA coding for Cathepsin D and trans-

fected RBL cells with these plasmids to induce the synthesis of 

the fluorescent chimeric protein CD-GFP or CD-mCherry.

First, it was ascertained whether the transgenically-

 expressed fluorescent chimeric cathepsin D protein had 

indeed reached the acidic compartments. To this end, the lat-

ter were labeled with the fluorescent marker LysoTracker™, 

which is known to trace the vesicles of the endocytic pathway, 
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and to accumulate in acidic lysosomes. Both chimeric CD-

GFP (Figure 7B) and CD-mCherry (not shown) proteins 

largely colocalized with the LysoTracker™ (on average, 69% 

of the fluorescent signals overlapped in a vast majority of 

transfected cells), indicating the convergence of both  tracers 

at lysosome level. Vesicles labeled with LysoTracker™ only 

likely represent the endocytic compartments upstream of 

lysosomes, and vesicles labeled with CD-GFP only likely rep-

resent the biogenetic compartments upstream of  lysosomes. 

In CD-GFP-expressing cells, MPS NPs were found to have 

localized into the majority (.90%) of CD-GFP-labeled 

vesicles, though additional CD-GFP-negative vesicles also 

were labeled  (Figure 6B). On average, up to 75% of MPS 

NPs appeared not to have localized with CD-GFP in the vast 

majority of transfected cells. However, when interpreting 

the absence of colocalization of vesicular tracers with GFP 

chimeric proteins, it should be taken into account that GFP 

fluorescence is rapidly and quantitatively quenched in acidic 

compartments.

Next, we incubated CD-mCherry transfected RBL cells 

with PS NPs. The image in Figure 6B shows no  convergence 

of PS NPs in vesicles labeled by CD-GFP,  suggesting that 

these NPs were not delivered to true  lysosomes. Taken 

together with data in Figure 5, the present data indicate that 

MPS and PS NPs each label distinct secretory compartments 

in RBL cells.

MPS and PS NPs take different 
endocytic routes and localize 
to different intracellular 
compartments
The above data suggest that MPS and PS NPs are differently 

trafficked after endocytosis in RBL cells. To characterize the 

endocytic routes of MPS and PS NPs, a kinetic study was 

performed on the concomitant uptake of both NPs along 

with the endocytic pathway tracer LysoTracker™. To enable 

an objective evaluation of the labeled vesicles, the two fluo-

rescent signals were quantified as individual or merged spots 

using ImageJ software. Preliminary experiments indicated 

that endocytosis and intracellular vesicular redistribution of 

NPs occurred very rapidly. The cells were preloaded with 

LysoTracker™ for 10 minutes, to allow the complete label-

ing of vesicles along the endocytic pathway down to the 

lysosomes. Cells were then washed and incubated with NPs 

for increasing labeling time.

A

B

0 min 15 min

Phase contrast/MPS/PS

Phase contrast/
LysoTrackerTM/CD-GFP

Phase contrast/
MPS/CD-GFP

Phase contrast/
PS/CD-mCherry

60 min

Figure 6 MPS and PS NPs localize to distinct intracellular compartments. (A) RBL cells (30,000/cm2) adherent on cover-slips were co-incubated for 5 minutes with 
30 µg of MPS and 75 µg of PS NPs, then cells were washed and imaged at 0, 15, and 60 minutes of chase. Representative images of two experiments in triplicate 
are shown. (B) RBL cells (10,000/cm2) adherent on cover-slips were transfected (for 6 hours with lipofectamine in Optimem medium) with the plasmid coding 
for the chimeric fluorescent protein cathepsin D-GFP or cathepsin D-mCherry as indicated. At 36 hours post-transfection, the cells were incubated for 5 minutes 
with 50 nM LysoTracker™ Red or with 15 µg of MPS or 75 µg of PS NPs, as indicated. Representative images of three independent experiments are shown. 
Abbreviations: MPS, mesoporous silica; NPs, nanoparticles; RBL, rat basophilic leukemia; PS, polystyrene.
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Figure 7 MPS and PS NPs take different endocytic routes. RBL cells (30,000/cm2) adherent on cover-slips were preincubated for 10 minutes with LysoTracker™ (Green or 
Red), then cells were washed and incubated with NPs and imaged at 1, 5, and 30 minutes. Cell-associated fluorescence was quantified with ImageJ software. Total fluorescence 
(normalized per cell) was given as a percentage of the individual or mixed color. Representative images of RBL cells incubated with LysoTracker™ green (100 nM) and 10 µg of 
MPS NPs or with LysoTracker™ Red (50 nM) and 75 µg of PS NPs are shown in (A) and (B), respectively. The intensity of single or mixed fluorescence spots measured in the 
above samples is shown in (C). 
Notes: Data is given as a percentage of the total. Average ± SD of 100 cells randomly chosen. Data from two independent experiments in triplicate are shown.
Abbreviations: MPS, mesoporous silica; NPs, nanoparticles; RBL, rat basophilic leukemia; PS, polystyrene; SD, standard deviation.

At a designated time-point the cells were washed and 

rapidly observed under the microscope (note that a lag time 

of approximately 60–90 seconds elapsed before capturing the 

images). Five to ten randomly selected fields were imaged for 

each sample at 1, 5, and 30 minutes of chase. Representative 

images are shown in Figure 7A (for MPS NPs) and Figure 7C 

(for PS NPs). Digitalized images were then analyzed for 

quantification with the ImageJ software.

It is readily apparent from these images that MPS and 

LysoTracker™ demonstrated almost complete colocalization 

at 1 and 5 minutes of labeling, and became partially separated 

by 30 minutes. In particular, it was noted by this time that 

both the vesicles traversed by newly entered MPS and the 

vesicles labeled by pre-existing MPS no longer contained 

LysoTracker™ fluorescence. Quantification of cell-associated 

fluorescence showed that .70% of the MPS signal had merged 

with the LysoTracker™ signal at 1 and 5 minutes of incubation, 

while by 30 minutes only 20% of MPS fluorescence remained 

merged with the LysoTracker™. This apparent decrease of 

colocalization could reflect a physical separation, or, more 

probably, the loss of signal of one of the two tracers. Indeed, 

the overall fluorescence emission of the LysoTracker™ greatly 

diminished over the time of incubation (see also Figure 7C). 

Strikingly, PS NPs colocalized with LysoTracker™ at any time 

(Figure 7C and D). Together with the above data, it can be con-

cluded that MPS and PS NPs enter the cells through different 

endocytic routes and reach different final compartments.

MPS and PS NPs exploit different 
endocytic mechanisms
The observed differences in the internalization and reten-

tion rates of MPS and PS NPs may reflect differences in 
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the uptake mechanisms dictated by the specific physical–

chemical properties of the NPs. For instance, the cellular 

uptake of negatively-charged silica NPs was shown to occur 

through nonspecific adsorptive endocytosis, while that of 

COOH-functionalized PS NPs in macrophages was shown 

to be clathrin-dependent and in HeLa cells, the uptake of PS 

NPs was shown to occur via clathrin-dependent or clathrin/

caveolae-independent mechanisms, depending on the NP 

size.32,33,42 Plasma membrane cholesterol has been shown to 

be involved in various cellular uptake mechanisms, including 

those mediated by clathrin, caveolae, and lipid rafts.43 These 

endocytic pathways can be disrupted by the selective extrac-

tion of cholesterol from the plasma membrane, imparted 

by methyl-β-cyclodextran (MbCD).44 We sought to define 

whether MPS and PS NPs exploited the same mechanism 

of cellular entry.

RBL cells were preincubated (or not) for 60 minutes in 

serum-free medium containing 5 mM MbCD, a condition 

sufficient to deplete the plasma membrane of cholesterol. 

The cells were then pulsed for 5 minutes with the NPs, 

either individually or together, and (after extensive wash) 

were rapidly observed and imaged under the fluorescence 

microscope. In the control, serum-containing medium, 

uptake and internal localization of both NPs resembled the 

previous findings (Figure 8). It is of particular note that the 

incubation in serum-deprived medium greatly stimulated 

the uptake of both NPs, whether incubated individually or 

together (Figure 8). In the latter case, it was apparent that a 

limited colocalization of the two types of NPs had occurred 

in a small fraction of organelles.

These data indicate that: (1) serum proteins can trap 

NPs in the medium and greatly reduce their uptake by the 

cells; (2) serum factors may interfere with the preferential 

endocytic mechanism and trafficking route of NPs. This 

second indication is indeed intriguing and deserves further 

ad hoc investigation. NP opsonization by serum proteins is 
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tr
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Phase contrast/PS Phase contrast/MPS/PS

Figure 8 Membrane cholesterol depletion differentially affects endocytosis of MPS and PS NPs. RBL cells (30,000/cm2) adherent on cover-slips were pulse-labeled for 
5 minutes with 10 µg of MPS or 75 µg of PS NPs or both in complete or serum-free medium as indicated. Parallel cultures were preincubated for 1 hour, with 5 mM MbCD 
in serum-free medium used to assess the involvement of cholesterol-dependent mechanisms in the uptake of NPs. After this, cells were washed and imaged under the 
fluorescence microscope. Representative images of two independent experiments in triplicate are shown.
Abbreviations: MbCD, methyl-β-cyclodextrin; MPS, mesoporous silica; NPs, nanoparticles; RBL, rat basophilic leukemia; PS, polystyrene.
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known to generate the so-called “protein corona”45 and to 

influence their internalization;33 and (3) most importantly, 

under membrane cholesterol-depleted conditions, the uptake 

of MPS NPs was almost completely precluded, while that of 

PS NPs proceeded normally (Figure 8). This is compatible 

with the two different types of NP engaging different endo-

cytic mechanisms. It should be noted, however, that when 

the two NPs were incubated together under such membrane 

cholesterol-depleted conditions, an apparently limited stimu-

lation of MPS NPs occurred, and even more interestingly, 

a partial colocalization of the two NPs was observed.

These findings consistently suggest that the two NPs 

engage different endocytic mechanisms and routes which 

lead them to distinct subcellular compartments. In addition, 

when the cholesterol-dependent endocytic mechanism is 

disrupted, the uptake of PS NPs is unaffected, while the 

uptake of MPS is largely prevented, and only partially occurs 

via the same cholesterol-independent mechanism exploited 

by PS NPs. A possible explanation is that disruption of the 

cholesterol-dependent (clathrin- and caveolae-mediated) 

endocytic pathway results in stimulation of macropinocyto-

sis, which is preferentially exploited by PS NPs.

On the other hand, MPS NPs appear to be preferentially 

taken up via a clathrin- or caveolae-dependent mechanism. 

A comparative study in cells that do (or do not) express 

caveolin-1 or clathrin heavy-chain (for instance through 

small interference RNA knock-down) may help to clarify the 

involvement of caveolae or clathrin in the differential uptake 

of NPs of different material, charge and size.

Conclusion
In this work, it was sought to determine whether MPS and PS 

NPs could label the inflammatory granules and/or stimulate 

the rapid exocytosis of these granules in RBL mastocytes,  

an ‘in vitro’ cell model used to study the inflammation pro-

cess. It was found that naked MPS and PS-COOH NPs were 

endocytosed and retained within RBL cells with different 

levels of efficiency. Both types of NPs gained access to the 

calcium-regulated secretory compartments of RBL cells. This 

finding constitutes a proof-of-principle: that it is possible to 

monitor the inflammation process through the imaging of 

secretory granules in inflammatory cells ‘in vivo’.

The two types of NPs entered via different endocytic 

mechanisms, and reached distinct subpopulations of secretory 

compartments, never showing an overlap of the endocytic 

routes. While MPS NPs accumulated in acid compartments 

labeled by LysoTracker™ and containing cathepsin D, PS 

NPs transitorily accumulated in calcium-regulated recycling 

compartments not labeled by LysoTracker™ and not 

containing cathepsin D. Intracellular retention greatly differed 

between the two types of NPs, with PS-COOH being largely 

and rapidly expelled in a calcium-dependent fashion.

To the best of our knowledge, this is the first report show-

ing the exocytosis of NPs. The observation that PS-COOH 

NPs trigger the calcium-dependent recycling of secretory 

organelles raises concerns about the clinical utilization of 

this material, because of the potential activation of tissue 

mastocytes.
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