
UNIVERSITÀ DEGLI STUDI DEL PIEMONTE ORIENTALE 

“AMEDEO AVOGADRO” 

FACOLTÀ DI SCIENZE M.F.N. 
 

 

 

 

 

 

 

 

 

 

 

 

DIPARTIMENTO DI SCIENZE E INNOVAZIONE 

TECNOLOGICA 
 

CORSO DI DOTTORATO DI RICERCA IN: 

 SCIENZE AMBIENTALI (Acque interne e agroecosistemi) 

 

CICLO XXVI 
 

 

ISOLATION, STRUCTURAL AND BIOCHEMICAL 

CHARACTERIZATION OF PLANT PSII-LHCII 

SUPERCOMPLEXES 
 

 

 

 

 

 

 

 

 

 

Candidato : Simone BARERA 

Responsabile scientifico: Prof. Roberto BARBATO 

Responsabile scientifico esterno: Dott.ssa Cristina PAGLIANO 

Coordinatore del corso: Prof. Giorgio MALACARNE 

Settore scientifico disciplinare: BIO 04 



2 
 

TABLE OF CONTENTS 

 
 

 
LIST OF ABBREVIATIONS…………………………………………………………..5 

 

ABSTRACT……………………………………………………………………………..6 

 

LIST OF THE ORIGINAL PUBLICATIONS………………………………………..7 

 

1. GENERAL INTRODUCTION……………………………………………………...8 

 

  1.1. Photosynthesis (Light reactions)…………………………………………………9 

 

    1.1.1. Thylakoids organization………………………………………………………...9 

    

    1.1.2. Linear electron transfer………………………………………………………..12 

    

    1.1.3. Cyclic electron transfer………………………………………………………12 

 

  1.2. PSII structure and functions……………………………………………………14 

 

    1.2.1. General overview……………………………………………………………14 

 

    1.2.2. PSII polypeptide composition and arrangement………………………………16 

 

    1.2.3. Light Harvesting Complex and PSII Ultrastructure (PSII-LHCII      

              supercomplex)……………………………………………………………….32 
 

  1.3. Detergents and thylakoids solubilization………………………………………35 

2. GENERAL MATERIALS AND METHODS……………………………………37 

  2.1. Plants growth…………………………………………………………………….38 

  2.2. Isolation of thylakoid membranes………………………………………………38 

  2.3. Thylakoids solubilization with -DM and-DM……………………………...38 

  2.4.  Isolation of PSII–LHCII supercomplexes…………………………………….39 



3 
 

   2.5. Spectroscopic measurement……………………………………………………39 

 

  2.6. Biochemical characterization of solubilized membranes and of isolated    

         supercomplexes…………………………………………………….……….........39  

  

   2.7. Mass spectrometry……………………………………………………………...40 

 

   2.8. Oxygen evolution measurements………………………………………………42 

 

   2.9. Transmission electron microscopy 2D and 3D single particle image 

           Analysis…………………………………………………………………………42 

 

3. RESULTS…………………………………………………………………………..44 
 

   3.1. Comparison of the  and  isomeric forms of the detergent n dodecyl-D-    

          maltoside for solubilizing photosynthetic complexes from pea thylakoid..45    

          

membranes……………………………………………………………………………45 

 

     3.1.1. Aim of the work………………………………………………………………45  

   

     3.1.2. Overview of the results………………………………………………………..45 

 

   3.2. Characterization of PSII-LHCII supercomplexes isolated from pea thylakoid       

          membranes by one-step treatment with α- and β-dodecyl-D-maltoside……48 

     3.2.1. Aim of the work…………………………………..…………………………..48 

 

     3.2.2. Overview of the results………………………………………………………48 

 

  3.3. Proteomic characterization and three dimensional electron microscopy study     

        of PSII-LHCII supercomplexes from higher plants……………………………52 

 

     3.3.1. Aim of the work………………………………………………………………52 

 

     3.3.2. Overview of the results………………………………………………………..52 

 

4. GENERAL DISCUSSION………………………………………………………...58 
    



4 
 

  4.1. Comparison of the  and isomeric forms of the detergent n-dodecyl-D-      

        maltoside for solubilizing photosynthetic complexes from pea                      

        thylakoid membranes……………………………………………………59 

  4.2.  Characterization of PSII-LHCII supercomplexes isolated from pea thylakoid    

         membranes by one-step treatment with α- and β-dodecyl-D     

         maltoside…………………………………………………………………………60 
 

  4.3.  Proteomic characterization and three dimensional electron microscopy study     

          of PSII-LHCII supercomplexes from higher plants…………………………61 

 

REFERENCES………………………………………………………………………63 

 

PUBLICATIONS IN ATTACHMENTS……………………………………………..81 

 

AKNOWLEDGMENTS………………………………………………………………82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

LIST OF ABBREVIATIONS 

 
 

 

 

 

APS    Ammonium persulphate 

ATP    Adenosine triphosphate 

BCIP   5-bromo-4- chloro-indolyl phosphate 

Chl    Chlorophyll 

Cyt                              Cytocrome 

DCBQ   2,6-dichloro benzoquinone 

DCMU  3-(3,4-dichlorophenyl)-1,1-dimethylurea 

DM                             dodecyl-D-maltoside 

DTT    Dithiothreitol 

EM                             Electron microscope 

ESI                             Electron Spray Ionization 

EDTA               Ethylenediaminetetraacid 

FeCN    Ferrycianide (K3Fe(CN)6) 

FNR                            Ferredoxin-NADP
+
-Reductase 

GTP    Guanosine triphosphate 

HEPES  N-2-hydrossiethilpiperazine N‟-2-etansulphonic  

LHCI-II              Light Harvesting Complex  I-II 

LMM                          Low Molecular Masses 

MALDI-TOF   Matrix-assisted laser desorption ionization/time of flight 

MES   2-[N-morpholino]ethanesulfonic 

NADP   Nicotinamide adenine dinucleotide 

NBT    Nitro blue tetrazolium 

OEC    Oxygen-evolving complex 

P680    Primary electron donor in PS II 

PC                              Plastocyanine 

PQ   Plastoquinone 

Pheo    Pheophytin, localized in D1 protein 

PSI    Photosystem I 

PSII   Photosystem II 

QA   The first quinone electron acceptor in PS 

QB    The second quinine electron acceptor in  

SDS-PAGE   Sodium dodecyl sulfate polyacrylamide  

Temed   N,N,N- tetramethylethylendiamine 

TMBZ   Tetramethyl benzidine 

Tricine   N-[2-hydroxy-1,1- bis(hydroxymethyl)  

Tris    Tris-[hydroxymethyl]amino-methane 

 

 



6 
 

ABSTRACT 

 

In the first part of this thesis work, they have been investigated the solubilizing properties of -DM and 

-DM on the isolation of photosynthetic complexes from pea thylakoids membranes maintaining their 

native architecture of stacked grana and stroma lamellae. Exposure of these stacked thylakoids to a 

single step treatment with increasing concentrations (5–100 mM) of -DM or -DM resulted in a quick 

partial or complete solubilization of the membranes. Regardless of the isomeric form used: 1) at the 

lowest DM concentrations only a partial solubilization of thylakoids was achieved, giving rise to the 

release of mainly small protein complexes mixed with membrane fragments enriched in PSI from 

stroma lamellae; 2) at concentrations above 30 mM a complete solubilization occurred with the further 

release of high molecular weight protein complexes identified as dimeric PSII, PSI-LHCI and PSII–

LHCII supercomplexes. It has been identified in 50 mM of both detrgents the minimal concentration 

that fully solubilized PSII-LHCII supercomplexes. In the second part of this work they have been 

characterized, in terms of polypeptide composition, purity and functionality by using biochemical 

techniques, two forms of PSII-LHCII supercomplexes isolated via sucrose gradient centrifugation from 

solubilized Pisum sativum thylakoid with 50 mM- and -n-dodecil maltoside. In according to the 

previous results, to isolate the supercomplexes they have been solubilized directly thylakoids instead of 

PSII membranes (BBYs), in order to minimize the possibility of detergent-induced artefacts and they 

have been used stacked membranes in order to avoid destabilization of the interaction of LHCII with 

the PSII core. The isolated supercomplexes haven‟t shown any ATP-ase and PSI contaminations. Both 

supercomplexes have shown an identical set of LMM subunits. The supercomplex isolated with -DM 

was larger and more intact, in terms of OEC and Lhcb subunits, than the supercomplex isolated with -

DM. The supercomplex isolated with -DM has shown an higher activity than of those isolated with -

DM. In the last part of the work they have been structurally characterized both isolated supercomplexes 

by using EM single particle analysis. The EM data have shown that the supercomplexes isolated with 

-DM was a C2S2M2 while those isolated with -DM was a C2S2 supercomplex. They have been 

obtained the 2D projection maps and the 3D reconstructions maps and angular reconstitution at 30 Å 

(for the C2S2M2) and at 28 Å (for the C2S2). 
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1. GENERAL INTRODUCTION:  

1.1 Photosynthesis (Light reactions):  
 

Photosynthesis is the process by which light energy is converted into chemical energy. The overall 

chemical reaction of oxygenic photosynthesis is the sunlight-driven, chlorophyll-sensitised 

transformation of water and atmospheric carbon dioxide to make energy-storing carbohydrates, and 

oxygen as a by-product. Photosynthetical reactions take place inside the thylakoid membranes and they 

are catalized by four multi-subunit membrane protein complexes (PSII, cytochrome b6f, PSI and ATP-

ase). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Cartoon model of the functional organization of photosynthetic thylakoid membranes 

in oxygenic organisms ( Copyright © Jon Nield, Queen Mary, University of London, UK). 

 

The most important reaction of photosynthesis is the water oxidation carried out by Oxygen Evolving 

Complex (OEC), the oxidizing side of PSII.  

 

1.1.1 Thylakoids organization: 

Thylakoid membranes are organized in two main regions: staked region (grana) and unstacked region 

(stroma lamellae). In higher plants grana are a well organized piles of stacked thylakoid membranes in 

wich are located PSII complexes (dimer and supercomplexes). Grana stacks are linked by stroma 

lamellae in wich are located mainly PSI and ATP-ase. The 3D architecture of the granum–stroma 
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assembly and the entire thylakoid membrane network is complicate and interesting, especially because 

of the ability of the membranes to undergo reversible changes in folding and organization under 

varying environmental conditions. Recently many efforts are aimed at determining of the 3D 

organization of the thylakoid membranes, in particular the capacity to form grana stacks. One of the 

main consequences of stacking is the physical separation of PSI and PSII. The chloroplast 

ultrastructure changes from shade to sun plants, in fact as an adaptation to low light conditions, some 

plants have evolved extensive granal stacking in order to maximize the thylakoidal area involved in 

capturing solar energy (Anderson et al. 1975). The sun plants instead, living under excess light, have 

less appressed thylakoid membranes (Boardman, 1977), which could be an adaptation to maximize the 

space for the enzymes that are required for carbon fixation reactions. The organization of the thylakoid 

membranes rapidly and reversibly responds to changes in light intensity and quality not only in palnts 

growth in different light conditions, but the changes are visible in the alternation from day to night. The 

dynamics in the lateral distribution of the photosynthetic protein complexes in the thylakoid membrane 

most probably have a vital role in regulation of the functions, maintenance, and efficiency of the 

photosynthetic apparatus. Recent studies (Danielsson et al, 2006) have demonstrated that PSII 

distribution is well defined and it is correlated to the chloroplast ultrastructure. In the grana core are 

located mainly PSII-LCHII supercomplexes, while from these region towards the lamellae region are 

located PSII dimer and PSII monomer. The regulation of the chloroplast ultrastructure and the 

disposition of the water-splitting cofactors of the PSII complex inside the thylakoid membranes are 

mechanisms finely regulated and are essential to limitate photodamage. When the excess of light 

damage PSII, the damaged protein migrates from grana to stroma membranes, where the non-

functional complexes are disassembled, damaged subunits are replaced with newly synthesized ones, 

and after reassembly the PSII complex finally migrates back to grana membranes. (Mulo et al. 2008). 

They have been proposed two models of the chloroplast ustrastructure the elical model and the  fork 

model rapresented in figure 1.2 A and B. 

The helical model was derived from EM studies of thin sections and serial sections of chemically fixed 

thylakoid membranes. As it is visible in figure 1.2, the stroma thylakoids are enfolded around the 

granal stacks in the form of multiple right-handed helices. The helical arrangement of the stroma 

thylakoids around grana was further supported by electron microscopy techniques including scanning 

electron microscopy and freeze-fracture EM (Staehelin et al. 1996). More recently tomography data 

revealed that there are fewer connections between one particular granum thylakoid and its surrounding 
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stroma thylakoids. Also the number of connected grana thylakoids in a stack by one spiral stromal 

thylakoid seems to be lower than previously thought.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 A. Two current models for the 3D organization of thylakoid membranes in plant 

chloroplasts. (A) The helical model (Mustàrday et al. 2003) (B) The fork model (Andersson and 

Anderson, 1980). 

 

Electron tomography studies have demonstrated that the dimensions of the connections between the 

stroma and grana thylakoids are more variable in size (Daum et al. 2010, Austin and Staehelin, 2011). 

The fork or folded membrane model was proposed at the beginning of 80‟s to illustrate the lateral 

heterogeneity in the distribution of PSII and PSI in the thylakoid membrane (Andersson and  Anderson, 

1980). In this model, represented in figure 1.2 B, the stroma membranes bifurcate and make a fork, 

which connects two adjacent grana thylakoids within a stack. The fork model was proposed not based 

on direct structural data but the fork motif was observed in many micrographs, including those of thin 

serial sections (Mustàrdy et al. 2008). Strong evidences for the existence of the fork at the granum–

stroma assembly were provided by cryo tomography on cryo immobilized and freeze-substituted 

sections of intact leaves (Shimoni et al. 2005). 
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1.1.2 Linear electron transfer 

Each of the four complex embedded in the thylakoidal membranes plays a distinct role in the electron 

transfer chain (ETC). PSII cointains a special pair chl called P680 that generates strong oxidant able to 

extract electrons from water and split it in O2 and protons (H
+
) using Calcium-Manganese cluster 

(donor side). The electrons come from water are collected by plastoquinone pool. The plastoquinoles 

are then reoxidized by the Cyt b6f complex and the electrons are collected by plastocyanin. During 

electron transport, Cyt b6f releases H+ in the lumen generating a H+ electrochemical gradient across the 

thylakoidal membrane. This ΔH+ proton motive force (pmf) is dissipated by the ATP-ase to form ATP. 

The plastocyanin, reduced by Cyt b6f,  donates the electrons to the photo-oxidized P700 of the PSI 

which, on photon absorption, reduces ferredoxin. In conclusion ferredoxin is oxidized by FNR to 

obtain NADPH.  Linear electron transfer is described by the Z scheme, in wich it is possible, observing 

the redox potential, the relationships between the involved electron acceptors and donors (figure 1.3). 

 

 

 

 

 

 

 

 

 

Figure 1.3 Representation of the Z-scheme (Copyright © Govindje & Wilbert Veit 2010). 

 

1.1.3 Cyclic electron transfer 

During the light phase of the photosynthetical process not all the harvested light is adsorbed, a fraction 

is dissipated as fluorescence, the process by which chlorophylls release, with a longer wavelength, the 

energy derived from light absorption. Another fraction is dissipated as heat. The remaining portion is 

used for photochemical reactions. The percentage of not adsorbed light changes as a consequence of 
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light intensity and environmental conditions such as temperature, salt stress or drought. The excess of 

light absorption during the photosynthesis light reaction could lead to damage the photosynthetic 

apparatus via ROS generation, accordingly, it must be tuned and balanced. There are three mechanisms 

in the oxygenic photosynthetic organisms by which the excess of light is dissipated an the synthesis of 

ATP and NADPH is regulated: cyclic electon transfer (CET), state transition and water-water cycle. 

Cyclic electron transport  have been discovered fifty years ago, until now they have been characterized 

two redundant routes for electrons cycling around PSI: the first one involves an NAD(P)H 

dehydrogenase (NDH) encoded by chloroplast and the other one is dependent on the PGR proteins 

(DalCorso et al. 2008). The electrons derived from the PSI reducing side are transferred back to the 

plastoquinones pool in both cases. In this way the proton gradient across the thylakoid membrane is 

enhanced generating more ATP. 

With the first route mediating by NDH, called Chlororespiration, plants controls ATP/NADPH ratio in 

order to low the stromal over-reduction due to excessive light absorption with respect to the need of 

reducing equivalents (Shikanai, 2007). 

The second one (PGR mediated route), instead, is less characterized, but seems to be connected to the 

thermal dissipation mechanisms of excessive absorbed light called nonphotochemical quenching 

(NPQ). A major component of NPQ, measured as a quenching of fluorescence emission, is energy-

dependent thermal dissipation quencing (qE), which is related to the xanthophyll cycle. Thermal 

dissipation mechanisms involves, during the xanthophyll cycle, Violaxanthin deepoxidase (npq1) and 

protonation of PsbS, a subunit of PSII which is also known as npq4, and, as a consequence, this latter 

reaction is pH dependent (Li et al. 2000). In mediated PGR pathway PGR5, a membrane protein, is 

involved in the transfer of electrons from ferredoxin to plastoquinone. This alternative electron transfer 

pathway, whose molecular identity has long been unclear, is known to function in vivo in cyclic 

electron flow around photosystem I. It has been proposed (Shikanai, 2007) that the PGR5 pathway 

contributes to the generation of a ΔpH that induces thermal dissipation when Calvin cycle activity is 

reduced. Under these conditions, the PGR5 pathway also functions to limit the overreduction of the 

acceptor side of PSI, thus preventing photosystem I photoinhibition. This pathway is Antimicyn A-

sensitive, indicating a direct connection with the Q cycle of Cyt b6f in higher plants (Takahashi, 2009). 

The pgr5 mutant of Arabidopsis thaliana has been described as being deficient in cyclic electron flow 

around PSI, however, the precise role of the PGR5 protein remains unknown. Recently it has been 

examined PGR pathway by measurements of the kinetics of P700 oxidation in far red light and re-

reduction following oxidation in the presence of DCMU in intact leaves of pgr5 and wild type A. 
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thaliana. The measurements has demonstrated that the mutant is able to perform cyclic electron flow at 

a rate similar to the wild type. The PGR5 protein is therefore not essential for cyclic flow. However, 

cyclic flow is affected by the pgr5 mutation under conditions where this process is normally enhanced 

in wild type leaves, high light or low CO2 concentrations resulted in enhancement of cyclic electron 

flow. This suggests a different capacity to regulate cyclic flow in response to environmental stimulation  

in the mutant. The pgr5 mutant is inefficient in maintaining the right plastidial redox potential, in fact, 

the electron transport chain is reduced in most cases. In addition to the membrane protein PGR5, there 

is another transmembrane protein called PGRL1 present in thylakoids of Arabidopsis thaliana. It has 

been demonstrated that plants lacking PGRL1 shown a similar beahvior to PGR5-deficient plants. 

Recent studies confirm that PGRL1 and PGR5 interact physically and associate with PSI.  

 

1.2 PSII structure and functions: 

 

1.2.1 General overview: 

PSII is a membrane protein complex embedded in the thylakoid membrane, it is a water-plastoquinone 

oxido-reductase. The reaction catalized by this enzyme is the one of most important for the life on our 

planet. The release of dioxygen, during light phase of photosynthesis, created an oxygenic atmosphere 

allowing a widely diversified life, based on mitochondrial-oxidative phosphorylation. The great 

importance of PSII for the life on earth justifies the considerable efforts that have been made to obtain 

further details, using biochemical, biophysical and genetic approaches, about its structure and the 

oxygene evolution reaction.  

Recently, the attention of many researchers has been driven towards the possibility of mimic the water 

splitting activity. In order to reach this goal it is necessary a deep knowledge of the structure of the PSII 

catalytic site. In the past the first direct structural information about PSII was derived from electron 

microscopy (EM) via freeze fracture studies on thylakoid membranes (Staehelin et al. 2003), followed 

by the imaging isolated PSII particles (Hankamer et al. 1997). PSII dimeric structure, and its water-

splitting activity, are conserved among all the photosynthetic oxygenic organisms. Thus the sequences 

of the intrinsic PSII subunits are highly conserved in all oxygen evolving autotrophs, are encoded by 

plastidial genes in green algae and higher plants, whereas the extrinsic proteins are nuclear-encoded 

and show high variability among oxygenic photosynthetic organisms (Ishihara et al. 2007). The little 

variability between plant PSII and cyanobacteria PSII has allowed to complement the electron 
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crystallographic studies of the higher plant PSII core dimer with X-ray crystallographic data obtained 

from cyanobacterium PSII crystals. 

Several X-ray crystallographic structures are available for cyanobacterial PSII (Zouni et al. 2001; 

Jordan et al. 2001; Ferreira et al. 2004; Kamiya and Shen, 2003; Guskov et al. 2009;) and also the 

detailed structure of LHCII has been resolved (Liu et al. 2004; Standfuss et al. 2005; Yan et al. 2007). 

Actually, the crystal structure of PSII isolated from T. vulcanus has been refined to 1.9 Å giving more 

information about the positioning of the water molecules and giv further detail about the OEC (Umena 

et al. 2011).  

 

 

 

 

 

 

 

 

 

Figure 1.4. Crystal structure of PSII isolated from T. vulcanus at 1.9 Å (Umena et al. 2011).  

 

Unfortunaltely the complete structure of higher plant PSII hasn‟t been resolved. Therefore the 

combination of structural information about the cyanobacterial PSII core and higher plant LHCII with 

experimental biochemical data has made it possible to model the structure of the PSII-LHCII complex 

of higher plants (Nield and Barber, 2006). In general, solving of the structure of PSII at the highest 

resolution possible has become one of the most important goals of modern biology. Knowing the exact 

structure of the water-splitting apparatus of PSII would pave the way to development of photolytic bio-

mimicking devices to produce hydrogen or electricity from water and sunlight.  

Even if the high resolution 3D structure of cyanobacteria PSII dimer revealed all the positions of the 

atoms inside the oxygen evolving complex and the water molecules, the water splitting reaction carried 

out by manganese cluster, is still an unclear process and it needs further studies.   
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1.2.2 PSII polypeptide composition and arrangement 

It has been widely believed that the PSII complex normally functions as a dimer and the monomeric 

complex may be an intermediate form in the normal assembly pathway or in the damage-repair cycle 

(Barbato et al. 1992; Hankamer et al. 1997).  

PSII complex is composed by more than 20 subunits and many cofactors. PSII subunits can be divided 

in 3 groups: core complex proteins, low molecular mass subuinits, oxygen evolving extrinsic subunits.  

 

Core complex proteins:  

PSII reaction center (RC) is composed by two homologues  five- helix trans membrane proteins with 

molecular mass around 39 kDa D1 and D2 (encoded from psbA and psbD genes rispectively), it 

contains all the cofactors involved in the electron transfer chain, from water to plastoquinones. Proteins  

D1 and D2 are higly conserved in fact they are remarkably similar to the L and M subunits of the 

purple bacteria Rhodopseudomonas sphaeroides reaction center (Barber et al. 1987). They contain a 

pheophytin molecule, a  carotene molecule (Loll et al. 2005), three chlorophyll a molecules. Inside the 

loops between the IV and V helices on the stromal side of these proteins there are binding sites for a 

plastoquinone molecule. Protein D1 binds the majority of the cofactors involved in PSII electron 

transport chain: Y Z is Tyr161, P680 is Chl a molecule ligated by His198 (called PD1), Pheo D1 is 

molecule of pheophytin bounded by Tyr126 and Glu130 and a Q B site where plastoquinone molecules 

are bounded. D1 contains an other Chl molecule called Chl D1 and bind the manganese cluster in the 

C-terminal region. All of residues implicated in this bind, located close to the surface of the CD 

lumenal -helix of the D1 subunit, are nearly absolutely conserved with very little variation observed 

in dinoflagellates (Takishita and Uchida, 1999). Moreover D1 protein binds two chloride atoms near to 

the manganese cluster (Murray et al. 2008; Umena et al. 2011) and a non-haem Fe, normally redox 

inactive, which is positioned equal distance between Q A and Q B. 

Another important property of D1 is the rapidly assembly-disassembly in the thylakoid membrane. 

This is due to the fact that PSII is susceptible to photoinibition and to protect entire system, D1 is 

degradated in order to regulate the electron transport chain. The degradation, synthesis and reinsertion 

of this protein into the PSII in plants is finely regulated. During the turnover Met1 is cleaved and its N-

terminal Thr can be acetylated and reversibly phosphorylated. (Michel et al. 1988; Pursiheimo et al. 

1998; Vener et al. 2001; Turkina et al. 2006). 
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The D2 proteins conatins two Chl a molecules, P D2 and Chl D2 , which together with P D1 and Chl 

D1 form the cluster constituting P680  and the QA site. The D2 protein also contributes ligands for the 

non-haem Fe, and is involved in binding chloride through side chain.  

Similarly to D1, in higher plants and green algae (but not in cyanobacteria) the D2 undergoes reversible 

acetylation and phosphorylation of its N-terminal Thr residue (Michel et al. 1988; Pursiheimo et al. 

1998; Vener et al. 2001; Turkina et al. 2006). 

CP47 and CP43, products of the psbB and psbC genes, are the core complex antenna proteins, they 

transfer excitons derived by light absorption to P680 at two opposite sides of the RC. They are 

structurally homologous, having a molecular weight of ~ 56 and 50 kDa respectively, six helices 

each of them and sixteen and fourteen chlorophyll a molecules respectively. 

CP47 protein has 16 Chl a molecules and 5 -carotenes. It has a very large lumenal loop joining 

transmembrane between helices V and VI, consisting of 200 amino acids arranged in two long and four 

short helices as well three -sheets. The large loop indirectly takes part in the water oxidation reaction 

by interacting with the D2 protein, which is adjacent to it.  

CP43 (PsbC), after post-translational processing, contains 470 amino acids it is homologous to CP47 in 

that it has six transmembrane a-helices arranged in the same way but located on the D1-side of the RC. 

It also contains 13 Chl a molecules and binds 5 b-carotene molecules. It has a large lumenal loop like 

CP47 but slightly smaller. CP43 protein contains two long and three short helices one of which 

contains  the highly conserved motif which provides a ligand to the manganese cluster. Altough there 

are some differencese with CP47, the main function remains the same: CP43 acts as a light-harvesting 

system for PSII and its presence is also necessary for water-splitting activity.  

 

Low molecular mass subuinits:  

Inside the PSII core complex, apart from D1, D2, CP43 and CP47 there are many subunits called Low 

Molecular Mass (LMM) because of their molecular weight its from about 3 kDa to 12 kDa. Up to now 

the knowledge about their function is very low; it seems, however, that most of these LMM 

polypeptides are not involved in the electron transfer but, instead, are structural components.  

The first evidence for low molecular mass subunits associated with the PSII complex was presented by 

Ljungberg and his co-workers who isolated a hydrophilic 5-kDa protein (corresponding to PsbTn) from 

PSII and shown that the PSII complex contained several other small, unidentified subunits. This small 

polypeptides were named, according to their apparent molecular masses, the 10, 8, 7, 6.5, 5.5-, 5 and 4-
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kDa proteins. Recently they have been added 6.8, 3.7 and the 3.2 kDa proteins to the list of small 

subunits in PSII.  

Several of the low molecular mass subunits of PSII were sequenced and the first corresponding gene 

products, PsbK and PsbI  were identified. The protein nomenclature was correlated to the gene names 

to avoid the confusing names related to the apparent molecular masses of the proteins. Dramatic 

improvements and developments have been made in protein detection and identification techniques 

during the last decade. Highly sensitive fluorescence techniques combined with the latest 

improvements in ion mass spectrometric techniques, which allow the detection and identification of 

some femtomoles of proteins (roughly corresponding to 0.1 ng), now complement the traditional 

Coomassie brilliant blue staining. These new techniques have confirmed that PSII contains a large set 

of low molecular mass subunits. Molecular biological methods have also yielded new insights into this 

group of PSII subunits. The LMM proteins identified are encoded by the psbE, psbF, psbH, psbR, psbI, 

psbJ, psbK, psbL, psbM, psbN, psbT, psbX, psbW and psbZ genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5  Cartoon representation of the transmembrane elices of the LMM proteins (Shi and 

Schroeder, 2004). 

 

 

 

General Introduction 



19 
 

PsbE and PsbF 

The genes psbE and psbF encode for and subuinits of Cytochrome b 559 (Cyt b 559) with 

molecular masses of 9 and 4 kDa, respectively and each of these polypeptides has one transmembrane 

helix. The Cyt b 559 is closely associated with PSII in all oxygenic photosynthetic organisms. The 

and  subunits of the Cyt b 559 are components of the minimal PSII reaction center complex that is 

still capable of primary charge separation (Nanba et al. 1987).  Cyt b 559 is a b-type cytochrome, but it 

has a unique feature with respect to its midpoint reduction potential (Em). High-, low- and 

intermediate-potential forms of Cyt b 559 have been observed in intact chloroplasts, PSII membranes 

and isolated D1/D2/ Cyt b 559 complexes. The function of Cyt b 559 has been unknow for a long time, 

but structural details suggest that Cyt b 559 could participate in a secondary electron transfer pathway 

within PSII  (Heber et al. 1979). These observations and the results of other studies on Cyt b 559 

mutants indicate that Cyt b 559 is involved in protecting PSII from photoinhibition (Poulson et al. 

1995). In addition, evidence from  site-directed mutagenesis in Synechocystis 6803 suggests that Cyt b 

559 is required for the assembly of functional PSII complexes. (Morais et al. 1998). 

 

PsbH 

The PsbH protein was identified in higher plant chloroplasts and initially called 10- or 9-kDa 

phosphoprotein. It is encoded by the plastome in algae and higher plants and it is present also in 

cyanobacteria. The protein contains 63-90 amino acids, depending on the species, with molecular 

masses between 7.0 and 9.9 kDa. PsbH is an intrinsic membrane protein with a single transmembrane 

helix and its N-terminal region has been suggested to be exposed to the stromal side of the thylakoid 

membrane. In higher plants, the protein is located close to Cyt b 559 and PsbX (Buchel et al. 2001), its 

phosphorylation sites of PsbH are located at the N-terminus and this reversible phosphorylation is light-

dependent and redox-controlled (Michel et al. 1987). Recent studies on  PSII complexes isolated from 

spinach suggest that PsbH, together with other PSII phosphoproteins, may be required for D1 protein 

turnover by regulating dimeric and monomeric PSII transition through their phosphorylation and 

dephosphorylation. This has been further substantiated by the recent demonstration that PsbH is 

required for the rapid degradation of the photodamaged D1 protein and insertion of newly synthesized 

D1 into the thylakoid membrane. In summary, the PsbH protein is essential for PSII activity in 

eukaryotes. It may play a role in regulating PSII assembly/stability and may also be involved in repair 

of photodamaged PSII under high light.( Kruse et al. 1997, Bergantino et al. 2003). 
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PsbI 

The PsbI protein, called also 4.8-kDa protein, is encoded by the plastome. PsbI is highly conserved in 

higher plants and cyanobacteria. The protein contains at least 38 amino acids with molecular masses 

ranging between 4.1 and 4.5 kDa. Sequence analysis indicates that it has a single transmembrane span. 

The N-terminus of this protein is formyl-Met and is located on the stromal side of the thylakoid 

membrane and analysis of its cross-linked proteins indicates that the nearest neighbors of PsbI are D2 

and the a subunit of Cyt b 559 (Tomo et al. 1993). The function of PsbI has been investigated in 

Cyanobacteria. Inactivation of the psbI gene in Synechocystis 6803 and T. elongatus strain BP-1 

caused similar reductions in PSII activity. In the case of T. elongatus DpsbI mutant, no dimeric PSII 

could be isolated. It was suggested that while PsbI is not essential for PSII photochemistry in 

cyanobacteria, it may be involved in processes that help to optimize PSII function, such as the 

dimerization of PSII or stabilization of PSII dimers (Ikeuchi et al. 1995). 

 

PsbJ 

PsbJ is one of the most hydrophobic proteins in the thylakoid membrane, containing 39-42 amino acid 

residues, with a molecular mass between 4.0 and 4.4 kDa. Sequence analysis suggests that the protein 

has a single transmembrane helix with its N-terminus extending to the stromal side. The PsbJ function 

is controversial even if there are many evidence that the inactivation of the psbJ gene reveal phenotype 

with low PSII oxygen evolution caused by the reduced amount of functional PSII complexes. (Lind et 

al. 1993, Regel et al. 2001). 

 

PsbK 

The chloroplast PsbK protein has been found in PSII core complexes from the thermophilic 

cyanobacteria and higher plants. The PsbK precursor contains a hydrophobic presequence ranging from 

5 to 24 amino acids long, and some of the longer presequences have a putative transmembrane span 

that may play a role in the insertion of the protein in the thylakoid membrane. In all species examined 

so far mature PsbK protein contains 37 amino acids and has molecular masses between 4.1 and 4.3 

kDa. Accordingly, it is the most conserved small protein in PSII. The Arabidopsis PsbK shares 76% 

identity with the Synechocystis 6803 homolog. PsbK has been recently found to be tightly associated 

with CP43 (Sugimoto and Takahashi, 2003). Deletion of the psbK gene in Chlamydomonas 

destabilized the PSII complex, and the amount of PSII in the resulting mutants was less than 10% of 
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wild-type levels.The transformate bacteria were unable to grow photoautotrophically and no PSII 

activity was detected, suggesting that this protein is indispensable for PSII function in Chlamydomonas 

(Takahashi et al. 1994). Biochemical analysis of subcore complexes of PSII from spinach has shown 

that dimeric CP47-reaction center complexes contain the small proteins PsbK and PsbL, together with 

1-2 molecules of plastoquinone.The monomeric complexes instead do not contain PsbK.According to 

these results, it has been suggested that the PsbK protein is involved in binding plastoquinone and in 

maintaining the dimeric organization of PSII (Zheleva et al. 1998). 

 

PsbL 

PsbL protein is encoded by the plastome, it contains 37-39 amino acid residues with molecular masses 

between 4.3 and 4.5 kDa depending on the species. Primary sequence analysis suggests that PsbL has 

one transmembrane helix and it has also been suggested that the N-terminus of the protein is located at 

the stromal side of the thylakoid membrane. PsbL is present in both PSII core complexes of higher 

plants and cyanobacteria only in the dimeric form, indicating that the PsbL protein may have a role in 

maintaining PSII dimeric organization (Zheleva et al. 1998). The Synechocystis 6803 PsbL mutant 

shown the total loss of PSII-mediated oxygen evolution, and it appear to be unable to grow 

photoautotrophically. Interestingly, no binding of herbicides that normally bind D1/D2 proteins was 

detected in these mutants, despite immunological detection of D1 and D2 protein. This was suggested 

to be due to changes on the acceptor side of PSII (Anbudurai and Pakrasi 1993). Further studies of 

PsbL mutants from tobacco has showned that this plants are unable to grow photoautotrophically, and 

if sucrose was added they only grew slowly with pale green leaves: no photosynthetic activity was 

detected in them. According to these studies we can conclude that PsbL is essential for the normal 

function of PSII. Its deletion causes fatal damage to PSII in both cyanobacteria and tobacco plants, 

especially for donor side electron transfer, PSII core assembly and maintenance of the dimeric form of 

PSII. 

 

PsbM 

The PsbM (chloroplast encoded) contains 31-38 amino acid residues, with calculated molecular masses 

between 3.5 and 4.2 kDa. Sequence analysis suggests that the PsbM protein is one of the most 

hydrophobic proteins in the thylakoid membrane. The PsbM protein from Arabidopsis shares 54% 

identity to that from Synechocystis 6803. The PsbM protein has been detected in PSII complexes 

isolated from Cyanobacteria and higher plants in particular from pea using proteomic techniques. It is 
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located with PsbL and PsbTc at the monomer–monomer interface of the dimeric core complex and it 

contribute to the stabilization of PSII dimers (Ferreira et al. 2004). PsbM is not the only protein 

responsible for dimer stabilization in fact  knock-out of psbM in tobacco plants revealed that PsbM is 

not required for biogenesis of higher order PSII complexes in plants, but it alters the properties of the Q 

B site and the electron flow within PSII (Umate et al. 2007). 

 

PsbN 

The PsbN protein contains 43 amino acids and has a molecular mass of 4.5-5.0 kDa in most species. 

The effects of deleting both PsbN and PsbH on PSII activity in Synechocystis 6803 were the same as 

those of solely deleting the PsbH protein, indicating that PsbN is not essential for photoautotrophic 

growth and normal PSII function.  PsbN protein has not been detected directly in plant PSII, and it is 

not present in the crystal structures of PSII isolated from cyanobacteria. The only evidence of its 

presence in a PSII preparation from the cyanobacterium Synechococcus vulcanus (Ikeuchi et al. 1989a) 

was reexamined by Kashino and colleagues (Kashino et al. 2002), who revealed that the protein 

originally regarded as PsbN in that preparation was actually PsbTc. These results strongly suggest that 

PsbN is not a PSII protein.  

 

PsbR 

The PsbR protein also named the 10-kDa polypeptide (with a molecular mass of 10.3 kDa) contains 99 

amino acids. Studies have indicated that PsbR could not be removed from the membrane by treatment 

with high salt concentrations. Ou Infact  predictions indicate that it contains a transmembrane span 

close to its C-terminus and during purifications PsbR presents hydrophobic property (Ljungberg et al. 

1986; Lautner et al. 1988). Recent studies have shown that PsbR has a charged domain. These 

particular features suggest that PsbR is a docking protein, in particular it has been proposed that PsbR 

has a binding site for the extrinsic PsbP protein. Nevertheless, it has been also found that when PsbS 

and PsbR proteins were removed from PSII, the extrinsic PsbO, PsbP and PsbQ proteins were retained 

suggesting that not only PsbR is involved in the docking of the PsbP protein. Further studies on the 

function of  PsbR have demonstrade that the PsbR mRNA is accumulate upon light exposure and the 

PsbR protein was undetectable in etiolated spinach, in contrast to the expression patterns of the PsbO, 

PsbP and PsbQ extrinsic proteins (Lautner et al. 1988).  
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PsbS 

The PsbS protein is not part of LMM subunits in fact it has 205 amino acids and a molecular mass of 

22 kDa. This subunit is nuclear encoded and it has been predicted to have four transmembrane helices. 

PsbS protein has a high sequence homology with the light-harvesting proteins of the Lhc family (Funk 

et al. 1995), buti t has a transmembrane helix more and for its still controversial ability in the native 

form to bind Chl and carotenoid molecules (Funk et al. 1995; Dominici et al. 2002). Recent studies 

have shown that PsbS is able to bind exogenous zeaxanthin (Aspinall-O‟Dea et al. 2002). This binding 

may be associated with the formation of nonphotochemical quenching centres of Chl fluorescence (qE) 

functioning to dissipate excess light energy absorbed by PSII lightharvesting system, a phenomenon in 

which PsbS is known to play a crucial role (Li et al. 2000). Recently, an explanation for this role has 

been provided showing that PsbS controls the macro-organization of the grana membranes in higher 

plant chloroplasts. The regulation of PsbS interaction between the antennae and the PSII core in the 

thylakoid membranes of higher plants seems to be via pH induced conformational changes (Kiss et al. 

2008). As it was difficult to locate PsbS to any particular place in membrane fractionation studies, it 

was suggested that it is mobile in the thylakoid membrane (Teardo et al. 2007) and that its location can 

be determined by a reversible dimerization (Bergantino et al. 2003). 

 

PsbTc and PsbTn 

The psbTc gene is highly conserved among cyanobacteria, algae and higher plants. The lower case c in 

the name of this protein indicates that in higher plants and algae the protein is chloroplast-encoded. The 

product of this gene contains 31-38 amino acids with molecular masses ranging from 3.5 to 4.4 kDa. 

PsbTc is an intrinsic protein with a single transmembrane helix close to the N-terminus. PsbTc has 

been detected in C. reinhardtii and spinach. It has been proposed that the C-terminal tail of the protein 

is exposed to the stromal side of the thylakoid membrane. The predicted orientation of PsbTc, as well 

as PsbK, is similar to that of nuclear-encoded PsbW and PsbX, but opposite to that of other small, 

chloroplastencoded PSII proteins. PsbTc has been proposed to have an intimate association with the D1 

and D2 proteins (Zheleva et al. 1998). The function of this subunit has been studied in a deletion 

mutant from C. reinhardtii where the growth and PSII function were impaired under high light 

conditions. Therefore, it has been suggested that the protein is required for maintaining optimal PSII 

activity under adverse conditions, such as high light stress. Further studies revealed that this 

chloroplast-encoded protein undergoes degradation upon high light, but does not play a role in 

photoprotection. Instead, it is required for efficient recovery of photodamaged PSII. It has been 
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proposed that PsbTc in C. reinhardtii is involved in posttranslational events during photoinhibition. 

(Monod et al. 1994, Ohnishi and Takahashi 2001). 

PsbTn (nuclear encoded protein) has been purified and partially sequenced from PSII core complexes 

of spinach and wheat, it is a hydrophilic protein with an apparent molecular mass of 5.0 kDa according 

to polyacrylamide gel analyses, and was previously named the 5.0-kDa. After the maturation process , 

the protein has only 28 amino acids and a molecular mass of 3.2 kDa in Arabidopsis, making it the 

smallest known polypeptide in the PSII complex to date. The function of PsbTn protein is unknown but 

there is a bipartite presequence in its amino acid sequence characteristic of the lumenal proteins, so it 

has been suggested that the protein could be an extrinsic protein. 

 

PsbW 

The nuclear psbW gene is present in green algae and in higher plants. This gene encodes a protein 

(PsbW) with a long transit peptide (59-83) amino acid residues in length depending on species) .The 

mature PsbW protein, previously known as the 6.1-kDa protein, is composed of 54 amino acid residues 

in spinach and Arabidopsis. The PsbW protein has one transmembrane span and the N-terminus of the 

protein was demonstrated to be located on the lumenal side and the C-terminus on the stromal side of 

the thylakoid membrane. The PsbW protein is tightly associated with the PSII reaction very close to the 

large subunit of Cyt b 559. Expression of the PsbW gene is light-regulated at both mRNA and protein 

levels in Arabidopsis, in fact study on photoinhibition demonstrated that the repair of photoinhibitory 

damaged PSII involves the rapid turnover of the PsbW  protein. Recent studies have showned that in 

knock-out Arabidopsis mutants the supramolecular organization of PSII–LHCII supercomplexes is 

widely compromise, suggesting a more peripheral positioning close to the minor antenna complexes in 

PSII (García-Cerdán et al. 2011). 

 

PsbX 

The PsbX protein is nuclear-encoded in higher plants and in some algae where it is located in the 

chloroplast or cyanelle. PsbX precursor from Arabidopsis has a bipartite presequence of 74 amino acid 

residues, which is absent in its plastid-encoded counterpart in algae. This evidence could suggests that 

the gene has been transferred from the plastid to the nucleus and acquired the transit peptide (Kim et al. 

1996). The mature PsbX protein contains 38-42 amino acid residues with a calculated molecular mass 

of 4.0-4.2 kDa, depending on the organism. Predictions according to its primary sequence indicate that 

PsbX has a single transmembrane span and that the N-terminus is located at the lumenal side of the 
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membrane.  The higher plant PsbX is located within the PSII core, but it was undetectable in either 

PSIIRC or LHCII preparations. Recent studies has been swooned that the expression of the psbX gene 

is light-regulated at both the mRNA and protein levels in Arabidopsis. The regulation of psbX mRNA 

in Synechocystis 6803 instead, under normal light conditions has been found to be independent of light, 

although it is expressed strongly during high light treatment. Inactivation of the psbX gene in 

Synechocystis 6803 caused a reduction in the amount of PSII and a slight uncoupling of the antenna. In 

the psbX deletion mutant the donor and acceptor sides of PSII functioned properly under normal and 

stress conditions (such as high light, and salt stress) but the decrease of the PSII amount might suggest 

that the PsbX protein are directly or indirectly involved in regulation of the amount of PSII (Shi et al. 

1999, Funk 2000). 

 

PsbY 

The psbY gene in higher plant encodes a much larger polypeptide precursor (19.5 kDa in Arabidopsis 

and 20.7 kDa in spinach). The precursor is synthesized in the cytosol, imported into the chloroplast, 

then subjected to several steps of processing and maturation to generate two thylakoid membrane 

proteins, PsbY-1 and PsbY-2 with molecular masses of 4.7 and 4.9 kDa respectively. In Arabidopsis, 

both PsbY proteins have been predicted to have one transmembrane span with the N-terminus at the 

lumenal side of the thylakoid membrane. The twin PsbY proteins have been isolated from spinach PSII 

membrane fractions (BBY particles). Further studies have reported that the PsbY protein have catalase-

like manganese-dependent activity and an L-arginine metabolizing activity that converts L-arginine 

into ornithine and urea (Gau et al. 1998). 

PsbY mRNA was found in leaves, but not roots, stems or etiolated materials. The amount of mRNA 

increased during the first couple of hours of illumination, and then decreased. 

Deletion mutagenesis in Synechocystis 6803 has showned that the psbY mutant cells have normal 

photosynthetic activity and that PsbY protein does not play an essential role in the photosynthetic water 

oxidation process, in accordance with its localization in the periphery of PSII, far from the OEC 

(Meetam et al. 1999). A discrete function for this subunit is still unknown, and a higher plant psbY 

knockout mutant is needed. 

 

PsbZ 

The PsbZ protein is encoded by a chloroplast gene, psbZ, highly conserved among organisms, contains 

62 amino acid residues and its theoretical molecular mass, in Arabidopsis is 6.6 kDa. PsbZ has been co-
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purified with LHCII complexes from tobacco plants. Thus, it has been suggested that the location of 

this protein seems to be at the interface of PSII and LHCII complexes. Recent studies have pointed out 

in evidence that psbZ knockout tobacco plants developed pale leaves under standard heterotrophic 

growth conditions due to a reduction in chlorophyll content; the plants also have shown a dwarf 

phenotype in low light conditions. Moreover the level of the antenna proteins CP26 and CP29 were 

found to be markedly reduced in psbZ knockout plants. The lack of the PsbZ protein and the 

consequently decrease of the amounts of CP26 and CP29 caused structural changes in PSII that 

prevented the isolation or detection of PSII–LHCII supercomplexes in electron microscopy studies. 

(Swiatek et al. 2001). 

However, as the loss of PsbZ leads to reduced amounts of CP26, these effects may be secondary. To 

summarize, PsbZ is likely to be a structural factor that stabilizes PSII–LHCII supercomplexes. It may 

also be involved in photoprotective processes under suboptimal growth conditions. In cyanobacteria, 

where the light-harvesting system is completely different from higher plants, a role for PsbZ in the 

regulation of electron transfer activity through the two photosystems with implication in 

photoprotection has been suggested (Bishop et al. 2007). 

 

Oxygen evolving extrinsic subunits: 

The catalythic site of higher plants PSII, which is also known as OEC, is composed by a Ca-Mn cluster 

and three extrinsic subunits namely PsbO, PsbP and PsbQ.  

The OEC proteins are nuclear-encoded but PsbP and PsbQ are present only in higher plants and in 

green algae. In cyanobacteria and in red algae they are substituted by PsbU and PsbV although there 

are some differences in the function and binding properties. Concidering recently study, wich have 

been found in the cyanobacterial PsbQ and PsbP homologues, it has been proposed that the ancestor of 

the oxygenic photosynthetic organism had all the extrinsic proteins (Roose et al. 2007; Enami et al. 

2005; Ishihara et al. 2007). At the present state, after several years of evolution, Enami and their 

coworkers, individuate three evolutionary branch: and green algae and higher plants, which have PsbO, 

PsbP and PsbQ; Red algae and Diatoms, which have PsbO, PsbQ homologous (in stoichiometric 

amount) PsbU and PsbV and Cyanobacteria, which have PsbO, PsbU and PsbV. 

This phylogenetic division reflect their adaptation to different ecological niches, in fact type and Chl 

content changes through these three groups. Another evidence of the evolution of PsbP from the 

ancestor to primitive green algae and higher plants it has been found in two PsbP-like proteins (PPL1 

and PPL2) in the lumen of Arabidopsis (Ishihara et al. 2007). As it has been said before, all these 
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proteins in eukaryotes have their coding region in the nuclear genome, Ishihara and their co-workers 

claim that probably the gene transfer from the chloroplast genome to the nuclear in order to allow a 

greater diversification of the gene product structures and functions.  

The expression of the OEC genes is finely regulated and in fact, it has been found that, in the extreme 

halophyte Salicornia veneta, the psbQ and psbP genes are strongly underexpressed (Pagliano et al. 

2009). Thus, some PSII subunits, like OEC proteins, could be involved in an evolutional adaptation to 

an extreme ecological niche. 

 

PsbO 

PsbO protein also called 33 kDa Manganese Stabilizing Protein is a component of the PSII OEC in 

every type of oxygenic photosynthetic organism. Biochemical and genetic studies have shown that the 

PsbO protein play a crucial structural and functional role in many different types of OECs. The most 

important functions carried out by PsbO are: stabilize the manganese cluster and modulate the Ca
2+

 and 

Cl
- 
requirements for oxygen evolution (Bricker, 1992). 

This extrinsic subunit is conserved from cyanobacteria to higher plants, where it is nuclear-encoded. 

PsbO protein is often referred to as the 33 kDa protein, but after processing it has a calculated 

molecular mass of 26.5 kDa and its sequences is composed by 240-257 residues, depending on species. 

The crystal structure of this protein shows an elongated shape with two main domains: a -barrel 

structure composed of eight antiparallel -strands and an other domain, formed by a loop joining -

strands 5 and 6. The -barrel plays an important role in stabilizing the manganese cluster and in 

maintaining an optimal environment for water oxidation (De Las Rivas and Barber, 2004). Other 

studies have been shown that PsbO mantain the optimal Ca
2+ 

and Cl
-
 levels at the catalytic site, but it 

does not bind Mn directly.(Briker et al. 2008). The loop  binds to the lumenal surfaces of the D1, D2, 

CP43 and CP47 proteins. The deletion of the psbO gene in cyanobacteria did not prevent water 

oxidation, although increased susceptibility to photoinhibition was observed (Philbrick et al. 1991; 

Mayes et al. 1991). In Arabidopsis there are two PsbO proteins called PsbO1 and PsbO2. They differ 

only by 10 amino acids in their mature form and also for their expression, in fact PsbO1 isoform is 

four- to fivefold more abundant than PsbO2 (Murakami et al. 2002). An Arabidopsis mutant with an 

impaired psbO1 gene shown retarded growth, although the level of the PsbO2 protein was significantly 

increased (Murakami et al. 2002, 2005). Two T-DNA insertion mutant lines of Arabidopsis deficient in 

either the PsbO1 or the PsbO2 protein has helped to understand the different functions of the two 
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isoforms: PsbO1 seems to mainly support PSII activity, whereas the interaction of PsbO2 with PSII 

regulates the turnover of the D1 protein, increasing its accessibility to the phosphatases and proteases 

involved in its degradation, a mechanism possibly mediated by its GTP hydrolytic activity (Lundin et 

al. 2007, 2008). 

The absence of the PsbO protein has varying effects on PSII depending on the organism. For example, 

plants, not in alla cases, and the green alga Chlamydomonas reinhardtii are not capable of 

photoautotrophic growth without PsbO (Mayfield et al. 1987; Yi et al. 2005). Cyanobacterial PsbO 

mutants can grow photoautotrophically, although at lower levels relative to wild type (Philbrick et al. 

1991).  One of the major controversy associated with PsbO, involves its stoichiometry within the PSII 

complex. Structural analyses of cyanobacterial PSII indicate one PsbO per PSII monomer (Kamiya and 

Shen 2003; Ferreira et al. 2004; Loll et al. 2005), but reconstitution studies in plants indicate the molar 

ratio of PsbO in PSII is two (Bricker, 1992; Popelkova et al. 2002b). This data can be reconciled by the 

recent observation that plant PsbO contains two sequence motifs at its N-terminus which determine 

binding stoichiometry, while cyanobacterial PsbO has only one such sequence (Popelkova et al. 

2002a). However, structural studies of plant PSII show there is not sufficient electron density to 

accommodate two copies of the PsbO protein (Nield et al. 2002; Nield and Barber, 2006). 

 

PsbP 

The PsbP protein (also called 23 or 24 kDa protein) was first determined to be a component of PSII in 

plants, but psbP  gene can even be found in the primitive cyanobacterium Gloeobacter violaceus which 

lacks thylakoids, suggesting an ancient role for this protein in PSII. Arabidopsis has 10 copies of the 

psbP gene in its genome and eight of these were found to be expressed proteins in the thylakoid lumen 

(Schubert et al. 2002). PsbP was first identified during release–reconstitution experiments in higher 

plants. The PsbP and PsbQ proteins are removed by 1 M NaCl treatment with a concomitant decrease 

in oxygen evolution. Addition of Ca
2+

 and Cl
–
 to the assay medium  restores PSII activity without the 

addition of these proteins (Ghanotakis et al. 1984; Miyao and Murata, 1985). Specifically, PsbP was 

found to modulate the Ca
2+

 requirement for PSII activity and has been hypothesized to act as a Ca
2+

 

concentrator and prevent release of Ca
2+

 during turnover of PSII (Miyao and Murata, 1984). Multiple 

studies have shown that PsbP has implicated, with PsbQ, also in the regulation of the Cl
–
 requirement. 

Clearly the PsbP protein functions to modulate the ionic requirements for oxygen evolution, but it also 

plays a structural role to protect the manganese cluster from attack by exogenous reductants 

(Ghanotakis et al. 1984). Altought PsbP and PsbQ proteins are extremely important in the ionic 

General Introduction 



29 
 

recruitment, recent studies have shown that in the extreme halophyte Salicornia veneta the psbQ and 

psbP genes are strongly underexpressed but the oxygen evolving activity is not compromised (Pagliano 

et al. 2009).  

In mutagenesis studies, plants  lacks the PsbP protein, accumulates PSII centers, high concentrations of 

Cl
–
 were necessary to promote oxygen evolution and there were significant defects in the light-driven 

assembly of the manganese cluster . This inefficient photoactivation process and decreased Cl
–
 affinity 

resulted in a substantial amount of competing donor side damage. These data suggest a specific role for 

PsbP in the functional assembly of the manganese cluster and stability of PSII.  

The PsbP knock-down plants exhibited a reduced variable fluorescence yield, lower oxygen evolution 

and decreased amounts of PsbQ, which has been shown to require PsbP for binding to PSII in plants. 

RNAi studies shown that all of the isoforms are required for optimal activity, but generally PSII 

activity was correlated with the total amount of PsbP protein. Therefore the PsbP protein is essential for 

normal in vivo PSII activity in plants because it is critical for OEC stabilization. (Ishihara et al. 2005). 

The essential role of PsbP for normal thylakoid architecture was further emphasized in Arabidopsis 

mutants, where dramatic alterations in thylakoid structure were found in plants expressing low and 

intermediate amounts of the PsbP protein under normal growth light conditions (Yi et al. 2009). Similar 

results were obtained in tobacco mutants, where the knockdown of PsbP impaired also the 

accumulation of PSII supercomplexes (Ido et al. 2009). 

Thornton and his co-workers have determined amount of PsbP by using quantitative immunoblot 

comparisons of the proteins relative to antigen standards and it seems to be approximately 3% of that of 

CP47 in the thylakoid membranes. In plants, binding of the PsbP protein requires PsbO and is 

hypothesized to be a largely electrostatic interaction (reviewed in Seidler, 1996). In contrast, PsbP from 

green algae has been shown to bind independently of the other extrinsic proteins (Suzuki et al. 2003). 

These variations in the binding properties of PsbP highlight structural adaptations for associating with 

distinct combinations of proteins in the OECs of different organisms. Refer to the sections for the 

organismspecific OECs for further discussion. Currently, a high resolution (1.6 Å) crystal structure of 

PsbP from Nicotiana is available (Ifuku et al. 2004). The crystal structure of PsbP has revealed that the 

core is an anti-parallel -sheet with -helices on either side (Figure 1.5).The electron densities of the 

N-terminal 15 residues, and two loop regions were not resolved. 
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Figure 1.5. PsbP crystal structure at 1.6 Å (Ifuku et. al 2004). 

 

This result may indicate possible stabilizing conformational changes in PsbP upon binding. Further 

studies on PsbP N-terminus indicate that this portion of the protein is critical for ion retention in PSII 

(Ifuku and Sato 2001), but it hasn‟t been reported any mechanism for its function. PsbP structure 

suggest a non-conventional role of the protein in plant PSII; in fact PsbP is very similar to that of 

Mog1p, a regulatory protein for a Ran GTPase suggesting it may be a possible GTP/GDPsensitive 

regulator (Ifuku et al. 2004; De Las Rivas and Roman, 2005).  

 

PsbQ 

The psbQ genes have been identified in a number of different photosynthetic organisms. Arabidopsis 

contains multiple copies of psbQ  genes, four of which have been identified as expressed proteins in the 

thylakoid lumen (Peltier et al. 2002; Schubert et al. 2002). Arabidopsis contains two expressed PsbQ 

proteins (Peltier et al. 2000; Schubert et al. 2002), encoded by two genes, psbQ-1 and psbQ-2.  

The protein PsbQ (known also as 16-18 kDa protein), in its mature form, contains 149 amino acids and 

has a molecular mass of  16.5 kDa. Like PsbP, it is located close to PsbO and the Mn4CaO5 cluster of 

the OEC in higher plants and green algae, where it is nuclearencoded. Its gene has been found in a 

number of different photosynthetic organisms including cyanobacteria, where this subunit (known as 

PsbQ-like protein) can be stoichiometric with PSII (Thornton et al. 2004) and isolated as such (Roose 

et al. 2007b). 

High-resolution crystal structures of isolated spinach PsbQ protein (Calderone et al. 2003; Balsera et al. 

2005) have revealed that the PsbQ protein can be divided into two structural domains: a C-terminal 

four-helix bundle with an asymmetric charge distribution and a flexible N-terminus. The PsbQ N-
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terminal region include two short b-strands surrounding a large flexible loop region (residues 14-33) 

and a polyproline type II motif (Balsera et al. 2005), which may obtain a more rigid conformation upon 

binding PSII.   

 

 

 

 

 

 

 

 

Figure 1.6.  PsbQ crystal structure at 1.95 Å (Calderone et al. 2003). 

 

The crystal structures of PsbQ show two bound Zn
2+

 atoms, where the coordinating residues of one 

atom are entirely conserved in the plant PsbQ proteins (Calderone et al. 2003; Balsera et al. 2005). 

While Zn
2+

 was specifically required for crystal growth, the biological significance of this result has yet 

to be determined. 

 

 

 

 

 

 

 

 

 

Figure 1.7. Zn
2+

  binding domain of the PsbQ crystal structure (Balsera et al. 2005). 

 

The cumulative data on PsbQ indicate it is a key structural component of OECs from a number of 

different organisms, but many questions remain regarding its function and its mode of association with 

PSII. High-resolution structures of PSII complexes containing PsbQ are necessary to provide insights 
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into its role in the ionic requirement for oxygen evolution and its location relative to the other protein 

components of the OEC.  

In higher plants, the binding of PsbQ to PSII requires the presence of PsbO and PsbP (reviewed in 

Enami et al. 2008). Biochemical in vitro studies have shown that PsbQ, like PsbO and PsbP, is 

involved in modulating the Ca
2+

 and Cl
-
 level for optimal oxygen evolution activity (reviewed in 

Seidler 1996; Roose et al. 2007a; Bricker et al. 2012). In particular, PsbQ, in concert with PsbP, 

functions to lower the Cl- requirement for optimal activity. (Ghanotakis et al. 1984; Miyao and Murata, 

1985). This finding fits well with the evidence that in some halophytic plants, growing in extremely 

salty environments, the presence of PsbQ is dispensable (Pagliano et al. 2009; Trotta et al. 2012).  

 

1.2.3 Light Harvesting Complex and PSII Ultrastructure (PSII-LHCII supercomplex) 
 

 

Light harvesting complex II 

In photosynthetic organisms PSII core dimer is serviced by a number of extra chlorophyll binding 

proteins which transfer the excitation energy to CP43 and CP47. The number and type of this 

supplementary antennae complexes vary among the different types of oxygenic photosynthetic 

organisms. To efficiently harvest the available spectrum of light energy that drives photosynthesis, 

different photosynthetic organisms use diverse proteins, each one binding specific pigment molecules. 

In cyanobacteria and eukaryotic red algae, light harvesting for PSII is carried out primarily by a group 

of pigmented proteins, called phycobiliproteins, encoded by apc and cpc genes that become 

constituents of the extrinsic macromolecular complex called phycobilisome (PBS).  

In higher plants the polypeptides which bind the pigments are called Chl a/b binding proteins (also 

known as Cab or Lhcb proteins). They are part of the Lhc gene super family which consists of the lhcb1, 

lhcb2, lhcb3, lhcb4 (CP29), lhcb5 (CP26) and lhcb6 (CP24) genes products are collectively called 

LHCII (Jansson, 1999; Dekker and Boekema, 2005). Lhcb1, Lhcb2, and Lhcb3 are associated with 

various combinations in order to form trimeric structures, while CP29, CP26 and CP24 are monomers 

which are closely associated with PSII. The number of associated Lhcb trimers differs as a 

consequence of the light growing conditions and among the different species (Jackowski et al. 2003). 

They have been resolved the crystal structure of the LHCII trimer at 2.7 Å (Liu et al. 2004) and the 

monomeric Lhcb protein CP29 at 2.8 Å (Pan et al. 2011). These crystal structures have revealed that all 

the Lhcb polypeptides span the membrane by means of three highly conserved  helices. Furthermore, 

they bind various chlorophyll b molecules, besides chlorophyll a molecules and xanthophylls and  
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carotene. It has been calculated that 200-300 pigment molecules are associated with LHCII along with 

CP43 and CP47 per PSII monomer (Barber, 2006). The LHCII proteins are important not only for the 

light harvesting activity, but also for the protective role under high light intensity too. The core 

complex has to be protected from excess light. This is mainly achieved by the harmless dissipation of 

the excitation energy into heat by a process that is known as high- energy quenching (qE), a component 

of the NPQ. The process is triggered by acidification of the thylakoid lumen, which activates 

violaxanthin de-epoxidase (VDE), which, in turn, converts violaxanthin into zeaxanthin; PsbS is also 

involved in this process. It is worth noting that the Lhcb proteins bind 78% of the total violoxanthin 

associated with the PSII antenna system. The trimeric LHCII complexes are present also in the green 

alga C. reinhardtii, where the polypeptide components are encoded by 9 lhcbm genes (Lhcbm1-6, 

Lhcbm8, Lhcbm9 and Lhcbm11). In addition, green algae contain also the monomeric polypeptides 

Lhcb4 and Lhcb5, but not Lhcb6.  

 

PSII-LHCII supercomplexes 

In higher plants, in stacked grana region, PSII is organized in PSII-LHCII Supercomplex which are 

composed  by a dimeric core complex of PSII (C2), which is associated with two copies of each minor 

light-harvesting protein CP26 and CP29, strongly bound two LHCII trimers called trimer S. (Boekema 

et al. 2000; Yakushevska et al. 2001; Dekker and Boekema, 2005). This PSII-LHCI supercomplex 

called C2S2 contains almost all PSII core proteins but the peripheral antenna the Lhcb3 and CP24 

proteins appear to be absent. A threedimensional structure of this supercomplex from spinach was 

constructed using a low-resolution 3D electron density map obtained by single particle cryo electron 

microscopy  (Nield and Barber et al. 2006). They have been found larger PSII-LHCII supercomplexes, 

containing two extra copies of the monomeric Lhcb6 with two additional LHCII trimers (M-trimer) 

moderately bound to the C2 via Lhcb4 and Lhcb6, are known as C2S2M2. Occasionally, they have been 

also observed in isolated spinach thylakoids fragments, supercomplexes with one or two additional 

LHCII trimers (L-trimer) loosely bound to the dimeric PSII core dimer. These supercomplexes have 

been called C2S2M2L1-2 (Boekema et al. 1999). PSII-LHCII supercomplexes have been isolated with -

DM and -DM mild treatment, from thylakoids or PSII membranes (BBY). They have been 

isolateddirectly from thylakoids, a variety of different-sized PSII-LHCII structures, including the 

C2S2M2 and C2S2 supercomplexes. (Bumba et al. 2004 and Eshaghi et al. 1999). Recently, by using -

DM to solubilize BBY preparations from wild-type and LHC mutants of Arabidopsis they have been 

General Introduction 



34 
 

obtained a wide range of PSII–LHCII supercomplexes separated by sucrose density centrifugation. 

C2S2M2 supercomplex of Arabidopsis thaliana and shows details at 12 Å resolution (Caffarri et al. 

2009), permitting a more accurate fitting of the peripheral antenna proteins, based on the known LHCII 

structure. The combination of high-resolution structures of components with the low-resolution 

provided by electron microscopy is useful because the precision of fitting an X-ray structure into an 

EM density map is much better than the resolution of the EM data (Rossmann et al. 2000).The model 

proposed shows how within the PSII–LHCII supercomplex the innermost LHCII S-trimer is attached to 

a dimeric PSII via CP29, binding to one PSII core monomer and CP26 to the other. 

PSII–LHCII supercomplexes with empty Lhcb4 binding sites could be found  and this suggests that 

CP29 occupies a unique position in the PSII macrostructure and that in contrast to CP26 its presence is 

essential for the formation of PSII–LHCII supercomplexes. Both the CP29 and CP26 antisense mutants 

shown a rather normal photosynthetic performance, although the mutants shown slightly different 

fluorescence characteristics and an increased number of PSII centers (Andersson et al 2001).  As 

mentioned before, CP24 is necessary for binding the M-trimer in fact Arabidopsis plants  and the green 

alga Chlamydomonas reinhardtii depleted of CP24 do not form C2S2M2 supercomplexes (Kovacs et al. 

2006). Recent studies conducted on supercomplexes isolated from Arabidopsis plants expressing an 

antisense construct to Lhcb2 have revealed that  the expression of the antisense Lhcb2 construct 

resulted in strongly increased levels of CP26 and Lhcb3, and that supercomplexes were formed with 

trimers consisting of Lhcb5 and Lhcb3 at the S- and M-binding positions (Ruban et al. 2003). 

PSII-LHCII supercomplexes are localized in stacked grana membranes and their distribution is 

different. Most grana membranes show a rather random organization, but in some conditions, which are 

still not exactly understood, large parts of the membranes occur in semi-crystalline domains and row-

like associations. The formation of semi-crystalline domains in the membrane requires a physical 

separation of PSII supercomplexes from the other membrane proteins. Crystalline 2D arrays of dimeric 

PSII have been observed decades ago after freeze-etching and freeze-breaking of green plant 

photosynthetic membranes There is quite some variation in these crystalline arrays, which depends on 

factors like temperature and biochemical composition of the grana membranes. At least three types of 

supercomplexes can form the crystals C2S2, C2S2M and C2S2M2 moreover, these different types of 

particles can arrange in several different types of packing, which means that the interaction with 

neighbors is different (Kirchhoff et al.  2007). 
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1.3 Detergents and thylakoids solubilization. 

The use of detergents to solubilize thylakoid membrane it is the first step in the isolation of the 

membrane protein complexes membranes to study their native structural and functional properties. For 

an efficient solubilization, it is necessary to study first the membrane characteristics, the nature of the 

proteins and also the chemical properties of the detergent used. Thylakoid membranes show a unique 

lypidic composition compared with other biological membranes. There is a high proportions of the 

glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and 

sulfoquinovosyldiacylglycerol (SQDG). The protein complexes embedded in the thylakoid membranes, 

described above, have a complex pattern of hydrophobic interactions with the membranes lipid bilayer. 

The amount of detergent must to be higher than the critical micelle concentration (CMC) to induce the 

solubilization. In fact, when the concentration of detergent achieve the CMC, the detergent molecules 

self associate in micelles and the solubilization begins. It has been shown that the activity/intactness of 

solubilized protein complexes is dependent on the co-extraction of lipids with the proteins therefore it 

is important not to over solubilize the thylakoid membranes in order to maintain the protein structure 

bintact (De Grip et al. 1982). Detergents have been classiefied in four different groups; they are: the 

ionic detergents, the non-ionic detergents, bile acid salts, and zwitterionic detergents. The most 

commonly used in the solubilization of thylakoid membranes are the non-ionic surfactants such as the 

alkylglucosides. Of this, there are the so called “mild” detergents that mainly break lipid–lipid and 

lipid–protein interactions leaving the structure of the isolated protein intact. In the table 1 are reported 

the most common mild detergents. Detergents with longer alkyl chain are generally milder than the 

ones with short alkyl chains and also, the larger the head group the milder the detergent (Deisenhofer et 

al. 1985, Sardet et al. 1976). However, short chain (C7-C10 ) nonionic detergents, such as n-octyl-h-d-

glucopyranoside (OG), can often lead to deactivation of the protein, unlike their corresponding 

intermediate (C12 –C14) chain derivatives (Lund et al 1989). One of the most important mild detergent 

is Dodecylmaltoside (DM). DM have an extremely large and rather stiff hydrophilic head group made 

up of two sugar rings (maltose) and a noncharged alkyl glycoside chain (C12). There are two isomers 

of this molecule: -DM and-DM, which have significant differences in molecular architecture, 

because the alkyl chain is in axial orientation in -DM while in -DM is in equatorial orientation 

respect to the headgroup. These different molecular architecture has a strong impact on the chemical 

properties of both isomers as you can see in figure the CMC is higher in -DM than in -DM, the 

micellar shape is spherical in -DM and oblate ellipsoid in -DM and the micellar radius value and the 
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aggregation number is higher in -DM than -DM (Cecutti et al. 1991; Bäverbäck et al. 2009). Both 

DM isomers have been widely used in thylakoid solubilization in particular -DM is used in: isolation 

from higher plants thylakoids of integral multi-subunits photosynthetic complexes, and in 

crystallization procedures. -DM, instead, it has been used to solubilize plant thylakoid membranes in 

a single step treatment, obtaining intact grana or fully solubilized PSI and PSII complexes. 

 

 

 

 

 

 

 

 

 

 
Table 1.1 Most common mild detergents (Jones, 1999). 
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2. GENERAL MATERIALS AND METHODS: 

 
2.1 Plants growth  
 

Before sowing, pea (Pisum sativum L., var. Palladio nano) seeds were treated as described in (Pagliano 

et al. 2006). Germinated seedlings were transferred to pots and grown hydroponically in Long Ashton 

nutrient solution in a growth chamber with 8 h daylight, 20 °C, 60% humidity and 150 µmol m-2 s-1 

photons. Leaves from plants grown for 3 weeks were harvested and used for experiments. 

 

2.2. Isolation of thylakoid membranes 

Thylakoid membranes were isolated with divalent cations Mg
2+ 

 in order to mantain the appressed 

grana region. Briefly, pea leaves were disrupted by grinding with a blender in 50 mM HEPES pH 7.5, 

300 mM sucrose and 5 mM MgCl2 . The suspension was passed through a filter and the filtrate was 

centrifuged at 1500×g for 10 min. The pellet was washed once by centrifugation in the same buffer and 

then homogenized in 5 mM MgCl2 and diluted 1:1 with 50 mM MES pH 6.0, 400 mM sucrose, 15 mM 

NaCl and 5 mM MgCl2 followed by 10 min centrifugation at 3000 ×g. The resulting pellet of thylakoid 

membranes was washed once by centrifugation in 25 mM MES pH 6.0, 10 mM NaCl and 5 mM 

MgCl2. Thylakoid membranes were suspended and stored in 25 mM MES pH 6.0, 10 mM NaCl, 5 mM 

MgCl2 and 2 M  glycine betaine (MNM buffer).  

 

2.3. Thylakoids solubilization with -DM and-DM 

Equal amounts of stacked thylakoid membranes were suspended in MNMbuffer and solubilized at a 

Chl concentration of 1 mg/ ml with different concentrations (ranging from 5 to 100 mM) of -DM or 

-DM in the dark on ice for 1 min. Non-solubilized material was then removed by double 

centrifugation at 21,000 ×g for 10 min at 4° C. For each concentration of detergent, membrane pellets 

were resuspended in MNMbuffer and, together with their corresponding supernatants, quantified on a 

Chl basis. Finally the percentage of solubilization for each detergent treatment was calculated as the 

ratio between the amount of Chl in the supernatant over the total amount of Chl of thylakoids treated 

with the detergent. 
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2.4  Isolation of PSII–LHCII supercomplexes 

Thylakoid membranes having a Chl concentration of 1 mg ml in MNMbuffer were treated with 50 

mM -DM or -DM for 1 min at 4°C in the dark. Phenylmethylsulphonylfluoride (500 mM) was 

present during the solubilization to inhibit protease activity. After a short centrifugation at 21 000g for 

10 min at 4° C, 700 ml of the supernatants was added to the top of linear sucrose gradients, prepared by 

freezing and thawing ultracentrifuge tubes filled with a buffer made of 0.65 M sucrose, 25 mM MES 

pH 5.7, 10 mM NaCl, 5 mM CaCl2 and 0.03% -DM or -DM. Centrifugation was carried out at 100 

000g for 12 h at 4° C (Surespin 630 rotor, Thermo Scientific). Sucrose bands, containing PSII- LHCII 

particles, were carefully removed using a syringe and, if necessary, concentrated by membrane 

filtration with Amicon Ultra 100 kDa cut-off devices (Millipore) and then stored at -80° C. 

 

2.5. Spectroscopic measurement  

Absorption spectra for solubilized thylakoids and for both isolated supercomplexes were recorded 

using a Lambda25 spectrophotometer Perkin Elmer. The Chl a and b content of solubilized thylakoids 

were measured after extraction in 80% acetone using extinction coefficients given by Arnon et al. 1949. 

The supercomplexes Low temperature (77° K) fluorescence emission spectra were registered by a 

FL55 spectrofluorometer (Perkin Elmer), equipped with a red sensitive photomultiplier and a low 

temperature cuvette holder. Samples were excited at 436 nm. The spectral bandwidth was 7.5 nm 

(excitation) and 5.5 nm (emission). The Chl concentration was approximately 0.5 mg ml in 90% (v/v) 

glycerol/sucrose gradient buffers. 

 

2.6 Biochemical characterization of solubilized membranes and of isolated 

supercomplexes. 

The protein composition of supernatants obtained after the solubilization treatments and the 

supercomplexes isolated by ultracentrifugation were investigated by native and non-denaturing 

analyses (BN-PAGE and size-exclusion chromatography) and by electrophoresis under denaturing 

conditions (SDS-PAGE). Protein complexes from solubilized thylakoids and the isolated PSII-LHCII 

supercomplexes were separated by BN-PAGE  (Schagger and von Jagow, 1991) using a linear gradient 

gel (3–12% acrylamide). For molecular mass markers, a mixture of lyophilized standard proteins 

(Amersham, high molecular weight, GE Healthcare) was used. For the second dimension, the BN-

PAGE lanes were cut out and denatured in a buffer made of 66 mM Na2CO3, 2% (w/v) SDS and 0.66% 
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(v/v) 2-mercaptoethanol at 25 °C for 30 min and subjected to SDS-PAGE on 15% polyacrylamide gel 

containing 6 M urea (Laemmli et al. 1970). The same electrophoretic system was used for mono-

dimensional SDS-PAGE also for isolated PSII-LHCII supercomplexes with the only modification 

being the lowering of polyacrylamide to 12.5%. Pre-stained protein size markers (Bio-Rad, Precision 

Plus) were used for estimation of apparent size of components.  

The separated proteins were visualized by Coomassie brilliant blue R-250 or silver staining. The same 

supernatants used for electrophoresis and the sucrose gradient bands corresponding to PSII-LHCII 

supercomplexes were subjected to size-exclusion chromatography on a Jasco HPLC system with a 

BioSep-SEC-S 3000 (Phenomenex) column. The 20 µl samples injected contained 6 µg Chl and the 

profiles were monitored at 400 nm. The mobile phase consisting of 20 mM MES pH 6.5, 10 mM 

MgCl2 , 30 mM CaCl2 , 0.5 M mannitol and 0.59 mM -DM or -DM passed through the column at a 

flow rate of 0.5 ml/min. To collect peaks of the thylakoid supernatants, the flow rate of the mobile 

phase through the column was reduced to 0.2 ml/min, and after the appearance of the first green 

material, fractions of 0.4 ml each were collected. Fractions containing peaks were kept on ice and 

analyzed within 1 h by absorption spectroscopy and loaded on SDS-PAGE.  

PSII-LHCII supercomplexes were subjected also to SDS-PAGE Tris–Tricine system (Danielsson et al. 

2006) with a 16% acrylamide resolving gel containing 6 M urea. Pre-stained protein size markers 

(Precision plus, Bio-Rad) were used for the estimation of apparent size of PSII–LHCII components. 

Moreover both PSII-LCII supercomplexes were subjected to mono-dimensional SDS-PAGE performed 

on a linear gradient gel (18-22% acrylamide) containing 6 M urea (Kashino et al. 2001) to improve the 

resolution of LMM subunits. The separated  proteins were either stained by Coomassie brilliant blue R-

250 or transferred onto nitro-cellulose membrane and immuno-detected with specific antisera against 

LHCII subunits and PsbO, PsbP, PsbR, PsbW and PsbS polypeptides, by using the alkaline 

phosphatase conjugate method, with 5-bromo-4- chloro-3-indolyl phosphate/nitro blue tetrazolium as 

chromogenic substrates (Sigma). 

 

 

2.7 Mass spectrometry 

For liquid nano chromatography electrospray ionization tandem mass spectrometry (nanoLC-ESI-

MS/MS) analysis, spots from the 2D SDS-PAGE and bands from  the 1D SDS-PAGE were cut out and 

proteins were digested in-gel with trypsin (Roche) as in Hellmann et al. 1995. NanoLC-ESI-MS/MS 
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data from each protein sample were obtained by using a Q-star XL (AB SCIEX) as in Pagliano et al. 

2011. Mascot.dll v 1.4804.0.22 (Matrix Science/AB SCIEX) was used to generate Mascot (.mgf) files 

with peak lists from the Analyst QS 2.0 (.wiff) files. The MS/MS spectra, that were obtained using 

digested samples, were analyzed as Mascot generic files against all entries in the public NCBInr 

database using the online Mascot server (Matrix Science: http://www.matrixscience.com/) without a 

taxonomy filter. 

The principal parameter settings for the Mascot search were as follows: database NCBInr (version 

2012.02.26; containing 17406376 sequence entries); enzyme trypsin; allow up to one missed cleavage; 

possible variable modifications carbamidomethylation of cysteine (C), oxidation of methionine (M), 

deamidation of asparagine and glutamine (NQ); precursor ion mass and fragment masses tolerance 

respectively of 60 ppm and 0.3 Da; instrument ESI-QUAD-TOF; default charge state set to 2+, 3+, and 

4+. Widely accepted procedures for positive identifications of proteins by MS/MS analysis require a 

minimum of two unique peptides with at least one peptide having a significant ion score (p=0.05). 

Considering that the genome of Pisum sativum is not fully sequenced, and that only some protein 

sequences of Pisum sativum are present in the database, we also accepted, as confident assignments, 

hits identified by at least one peptide with a significant ion score according to the MASCOT MS/MS 

ion search algorithm. For matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and 

matrix-assisted laser desorption/ionization-time of flight/time of flight (MALDI-TOF/TOF) MS 

analyses, the isolated PSII-LHCII supercomplexes were initially dialyzed for 18 h against 5% (v/v) 

acetic acid, using a 12-14 kDa cut-off membrane (Spectra/Por, SpectrumLabs), and further 

concentrated to 1/10 of the initial volume by membrane filtration with Amicon Ultra 100 kDa cut-off 

devices (Millipore). 1 µl of each concentrated sample was mixed with 9 µl of saturated matrix (sinapic 

acid, Laser Biolabs) solution which consists of 60% (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic 

acid. After drying droplets of sample onto a target plate, MALDI-TOF and MALDI-TOF/TOF MS 

analyses were performed using respectively the mass spectrometers Voyager-DE PRO MALDI-TOF 

(AB SCIEX) and MALDI-TOF/TOF TM 800 System (AB SCIEX). 

The MALDI-TOF mass spectrometer was operated in linear mode at 25 keV accelerating voltage, grid 

96.5%, guide wire 0.05% and 800 ns ion extraction delay; the nitrogen laser working at 337 nm and 3 

Hz. Two hundred laser shots were accumulated per spectrum over a m/z range of 3,500–10,000. 

Internal calibration was performed on the samples premixed with Calibration mixture 2 of the Peptide 

Mass Standards Kit for Calibration of AB SCIEX MALDI-TOF Instruments. MALDI TOF-TOF 

spectra were acquired using the AB SCIEX TOF/TOF TM 5800 system operated with positive 
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ionization either in linear mode, to determine the average molecular mass, or in reflector mode, to 

analyze the fragments. An internal calibration was performed on the samples premixed with 

polyethylene glycol (PEG4000). MS/MS was carried out on the top precursors. Between twenty 

thousand and two hundred thousand shots were accumulated to get the best S/N, with laser frequency 

of 1 kHz, acceleration voltage of 2 keV and using air as collision gas. The MS/MS spectra, obtained 

from the main proteins peaks in MS, were analyzed in Mascot Distiller (ver. 2.3.2.0) by the de novo 

sequencing function coupled with MS-Blast (http://dove.embl.de/Blast2/msblast.html) search at EMBL 

http://www.embl.de/ using default parameter values. 

 

2.8  Oxygen evolution measurements 

The oxygen evolution was measured at 20° C using a Clark-type oxygen electrode (Hansatech) under 

saturating light intensity (~1000 and 5000 µmol m
-2 

s
-1 

photons, respectively, for thylakoids and PSII-

LHCII particles). Chl of thylakoids (10 µg) and 25 or 20 µg Chl of PSII-LHCII particles isolated, 

respectively, with -DM or -DM were added to 1 ml of a medium made of 25 mM MES pH 6.5, 2 M 

glycine betaine, 10 mM NaHCO3, 10 mM NaCl, in the presence or absence of 25 mM CaCl2. A 

mixture of 1 mM K3Fe(CN)6 and 200 mM DCBQ or 500 mM DCBQ alone were used as electron 

acceptors for thylakoids and PSII–LHCII particles, respectively. 

 

2.9 Transmission electron microscopy 2D and 3D single particle image analysis 

Samples from sucrose gradient bands were diluted 10-fold in a buffer composed of 10 mM HEPES pH 

7.5 and stained with 2 % uranyl acetate on glow discharged carbon-coated copper grids. EM was 

performed with a Phillips CM200FEG electron microscope operated at 200 kV. The images were 

recorded at 50 000 on a TVIPS F415 4Kx4K CCD camera leading to a final pixel size of 1.76 Å at 

specimen level. A dataset of 15,563 negatively stained single particle images were obtained by picking 

all discernible single particles present. Several sub-populations of particles, differing in size and shape, 

were identified. The two largest sub-populations, corresponding to the C2S2M2 and the C2S2 PSII-

LHCII supercomplexes, were in turn analysed as separate datasets, with the reference free alignment 

giving the initial class averages necessary for multi-reference alignment. Single particle analysis was 

performed using EMAN2 (Tang et al. 2006) and IMAGIC softwares, including initial reference-free 

alignment, followed by multireference alignment and multivariate statistical analysis and classification. 

(van Heel et al. 2011). 
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The modelling studies of the two-dimensional projection maps were conducted with X-ray structures of 

the PSII core of cyanobacteria at 1.9Å (Umena et al. 2011) the LHCII complex of pea at 2.5 Å 

(Standfuss et al. 2005) and  the CP29 of spinach at 2.8 Å (Pan et al. 2011) using UCSF Chimera 

(Pettersen et al. 2004). 

Relative orientations were determined for the class averages by the angular reconstitution technique 

(van Heel, 1987) and initial 3D reconstructions gained from implementation of the exact back 

projection technique (Radermacher, 1988). Reprojections were taken from each 3D model and used to 

identify additional atypical views and further refine the class averages within each sub- population 

dataset. Through iterative refinement the data converged to give the best 3D reconstructions shown. 

Resolution was determined by calculating the Fourier shell correlation (FSC) at the 3scriterion between 

two independent 3D reconstructions (van Heel and Schatz, 2005). Relevant crystallographic co-

ordinate atom data were modelled into molecular maps derived from the sub-populations using PyMOL 

(The PyMOL Molecular Graphics System, Version 1.1r1, Schrödinger, LLC) and UCSF Chimera 

modelling software. Surface rendered views were calculated at a threshold of 2.5 s. 
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3. RESULTS 

 

3.1 Comparison of the  and  isomeric forms of the detergent n 

dodecyl-D-maltoside for solubilizing photosynthetic complexes from 

pea thylakoid membranes. 
 

3.1.1 Aim of the work  

In order to compare the two isomeric forms of DM, identify the optimal concentrations and to isolate 

PSII-LHCII supercomplexes, we have carried out an analysis of the action of the - and -DM on 

thylakoid membranes of the higher plant Pisum sativum. The supernatants obtained by solubilization 

have been analyzed with biochemical techniques as: spectrophotometric analysis, BN-PAGE to 

preserve their native organization and denaturing SDS-PAGE to determine their polypeptide 

compositions.  

3.1.2 Overview of the results 

First of all, it has been carried out the solubilization at 1 mg/ml of Pisum sativum stacked thylakoid 

with increasing concentrations of both detergents from 5 mM to 100 mM.  The obtained supernatants 

have been analyzed with spectrophotometric techniques.  

 

 

 

 

 
 
 

 

 

Figure 3.1.1. A. Degree of thylakoids solubilization with increasing concentrations of -DM and 

-DM. B. Chl a/b ratios of thylakoids solubilized with different concentrations of -DM and -

DM, where Chl a/b ratio of starting thylakoids is 3.15 ± 0.03. Chlorophyll concentrations and Chl 

a/b ratios were determined in 80% acetone using the extinction coefficients reported by D. J. 

Arnon, 1949. Each value is the average of at least ten independent determinations. 
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The data obtained by spectrophotometric analysis show that the complete solubilization is achived, for 

both detergents, from 30 to 100 mM (figure 3.1.1, A) and the Chl a/b ratios values of each supernatants 

are the highest at low concentrations of both detergents (figure 3.1.1 B). The supernatants have been 

loaded on to BN-PAGE in order to separate the membrane complexes in their native form. In both BN-

PAGE (figure 3.1.2. A and B),  from 5 to 20 mM, it is clearly visible that some solubilized materials 

haven‟t been entered in the resolving gel, in correspondence of the wells.  

   

 

 

 

 

 

 

 

 

 

Figure 3.1.2. A–B. BN-PAGEs of pea thylakoids solubilized with increasing concentrations of -

DM (A) and -DM (B). Lane 1, native high molecular weight marker (GE Healthcare); lanes 2–8, 

pea thylakoids (20 µg Chl) solubilized with increasing concentrations of detergent. Isolated 

complexes and subcomplexes were indexed as follows: supercomplexes (SC), PSI (I), PSII (II), 

LHCI (LI), LHCII (LII), ATP-ase (IV), Cyt b6f complex (V). Arabic numbers were added in 

brackets to indicate the oligomeric status of the protein complex as, trimeric (3), dimeric (2) and 

monomeric (1). 

 

It is likely that the thylakoids at these concentrations haven‟t been fully solubilized. From 30 to 100 

mM, both detergents instead, are able to solubilized all the protein complexes embedded in the 

thylakod membranes. In particular from 50 mM to 100 Mm in gel A are visible three bands and in gel 

B two bands above 669 kDa. In  order to determine the polypeptide composition of each separated 

complexes we have cut the lanes corresponding to 70 mM of both gels and loaded them on 2D (Figure 

3.1.3). 

So they have been identified three different PSII-LHCII supercomplexes for A gel and two for B gel; 

ATP- ase, PSII dimer, and PSI-LHCI ; Cyt b6f complex and PSII monomer; LHCII trimers and LHCII 

monomers. 
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Figure 3.1.3. Second dimension SDS-PAGEs. The BN-PAGEs of stacked thylakoids solubilized 

with 70 mM -DM (A) and 70 mM -DM (B) were subjected to SDS-PAGE. The second 

dimensions were silver stained. Labels on the left of the SDS-PAGEs indicate the molecular 

weight positions, symbols above indicate the correspondence between thylakoids protein 

complexes (indexed as in 3.1.2) in the first dimension and their polypeptide composition in the 

second dimension. 
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3.2 Characterization of PSII-LHCII supercomplexes isolated from 

pea thylakoid membranes by one-step treatment with α- and β-

dodecyl-D-maltoside. 

 

 

3.2.1 Aim of the work:  

In this second work, taking into account the preavious thylakoid membranes solublization results, they 

have been characterized two forms of PSII-LHCII supercomplexes isolated with 50 mM and -n-

dodecil maltoside from the same thylakoid membanes. In the first step they have been characterized 

them by using biochemical techniques such as spectrophotometric analysis, SDS-PAGE, immuno 

blotting, HPLC-size exclusion and 77 K fluorescence. Moreover they have been carried out oxygen 

evolution measurements in order to verify the functionality of both isolated supercomplexes. In the 

second step they have been obtained 2D projection maps by using EM single particle analysis of both 

supercomplexes. 

3.2.2 Overview of the results:  

First of all, they have been fractionated the solubilized thylakoids at 50mM of both detergents on linear 

sucrose gradient. In figures 3.2.1 are represented alfa and beta gradients. Both gradients presents three 

intense bands in the same position and two faint bands differently localized. Thye have been named 

and collected each bands for the biochemical characterization. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1. Separation of pigment-binding complexes by sucrose gradient ultracentrifugation of 

thylakoids solubilized with (a) -DM and (b) -DM 
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Each collected bands were loaded on to SDS-PAGE in order to determine their polypeptide 

composition (figure 3.2.2.). 

 

 

 

 

 

 

 

 

 

Figure 3.2.2. Protein composition of sucrose gradient bands a1–a5 isolated from thylakoids 

solubilized with -DM, of bands b1–b5 isolated from thylakoids solubilized with -DM and of 

thylakoid membranes (lane T). Chl (4 mg) was loaded on each lane. On the left-hand side, pre-

stained protein markers with indicated apparent molecular weight (kDa). 

 

The gels represented in figure 3.2.2 show that in the alfa gradient they have been separated from the top 

of the tube: LHCII trimers (lane ), PSI plus ATP-ase  and  subunit (lane ), and three PSII-

LHCII supercomplexes (lane , 4 and 5). In the beta gradient, instead, they have been separated: 

LHCII monomers (lane 1), LHCII trimers (lane ), PSI plus ATP-ase a and b subunit (lane a 

mixture of PSI plus ATP-ase  and  subunit and PSII core subunits (lane 4) and PSII-LHCII 

supercomplex (lane 5).We have focused our attention on the intense green bands named  and  

contains PSII-LHCII supercomplexes hereafter that will be call them -supercomplex and 

supercomplex. 

They have been subjected -supercomplex and supercomplex to tricine SDS-PAGE (according to 

Schagger and von Jagow, 1991) and immunoblotting. 
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Figure 3.2.3. Protein composition of -supercomplex (a) and -supercomplex (b) and of pea 

thylakoids (lane T). Chl (8 mg) was loaded on each lane. Lane M, pre-stained protein markers 

with their apparent molecular weight (kDa) indicated. (b) Western blot with antibodies against 

antenna polypeptides Lhcb1-6, OEC subunits PsbO, PsbP, PsbQ and PsbR and PsbW of -

supercomplex (a) and -supercomplex (b) and of pea thylakoids (lane T). Chl (1 mg) was loaded 

on each lane. 

 

The tricine gel show that -supercomplex contains more subunits than supercomplex (figure 3.2.3 

panel (a)). With immunoblotting they have been identified these subunits, in fact, unlike the 

supercomplex, the -supercomplex contains also Lhcb3 and Lhcb6, PsbP, PsbQ and PsbR (figure 

3.2.3 panel (b)). It seems that the -supercomplex is the most intact. In order to understand better how 

these supercomplexes are made, in particular their differences in antennae size, we have carried out the 

structural analys by using EM negative stain and single particle analisys method.  

The bands corresponding to -supercomplex and -supercomplex were deconcentrated and negative 

stained with uranyl acetate and observed with TEM. They have been taken more than 600 micrographs 

for both supercomplexes. We have focused our attention on the ~6000 top-views  for -supercomplex 

and ~7000 for the supercomplex. The two datasets obtained were separately processed. The final 

results have shown that the collected particles in the -supercomplex sample were C2S2M2 
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supercomplexes, and in -supercomplex sample were of C2S2 supercomplexes. The homogenous top-

views projection of both supercomplexes have been summed in order to obtain the final projection 

maps represented in figure 3.2.4. 

 

 

 

 

 

 

 

 

Figure 3.2.4. Final projection maps of the C2S2M2 supercomplex isolated with -DM and (b) the 

C2S2 supercomplex isolated with -DM. The scale bar equals 150 A. 
 

In order to assign the name of all the subunits they have been superimposed on the final projection 

maps of the C2S2M2 and the C2S2 (in figure3.2.5 panel c and in panel d respectively) the high resolution 

structures of the PSII core and the LHCII proteins.  

 

 

 

 

 

 

 

 

 
 

Figure 3.2.5. Assignment of the subunits in the C2S2M2 and (d) C2S2 supercomplexes by fitting the 

high-resolution structures of the PSII core (Umena et al. 2011) (subunits D1, D2, CP47, CP43 and 

PsbO are in yellow, orange, red, sandy brown and blue, respectively), the LHCII (Standfuss et al. 

2005) (S-trimer is in dark green and M-trimer in light green) and the monomeric Lhcb (Pan et al. 

2011) (CP29, CP26 and CP24 are in steel blue, turquoise and dark blue, respectively). 
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3.3 Proteomic characterization and three dimensional electron 

microscopy study of PSII-LHCII supercomplexes from higher 

plants. 

 

 
3.3.1 Aim of the work:  

In this third work we analyzed the protein composition, by applying mass spectrometry, of C2S2 and 

C2S2M2 supercomplexes isolated preaviously. In this way, we have revealed the presence of the 

antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, PsbQ and PsbR exclusively 

in the C2S2M2 supercomplex. Other proteins of the PSII core complex, common to the C2S2M2 and 

C2S2 supercomplexes, including the low molecular mass subunits, were also detected and 

characterized. To complement the proteomic study with structural information, we performed negative 

stain transmission electron microscopy and single particle analysis to calculated 3D electron density 

maps for the C2S2M2 and C2S2 supercomplexes, approaching respectively 30 and 28 Å resolution. 

 
3.3.2 Overview of the results:  

 

We have subjected both supercomplexes, isolated as in Barera et al. 2012, to further electrophoretic 

analysis such as BN-PAGE and the 2D SDS-PAGE in order to obtain informations about the size and 

the polypeptidic composition of both supercomplexes. The BN-PAGE confirmed the C2S2M2 has a 

higher molecular mass than C2S2 and pointed out that some of the C2S2M2 population loss LHCII 

trimers (visble in the bottom of the gel in figure 3.3.1 A). Consequently, below the band of C2S2M2 is 

present a faint band of small supercomplex with molecular mass similar to the C2S2. It is likely that the 

LHCII trimer in the bottom of the gel is a proportion of M trimers lost by C2S2M2 supercomplex during 

the electrophoretic run. We have carried out the also the 2D SDS-PAGE with loaded both the lanes of 

the BN-PAGE (figure 3.3.1 B). 
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Figure 3.3.1. BN/2D SDS-PAGE profiles of PSII-LHCII supercomplexes isolated from pea 

thylakoid membranes. A. BN-PAGE of C2S2M2 supercomplex (lane 1) and C2S2 supercomplex 

lane 2) (6 µg Chl per lane). Protein marker (Native high molecular mass, GE Healthcare) 

positions indicated on the right. B. 2D SDS-PAGE separation of C2S2M2 and C2S2 

supercomplexes, after Coomassie staining. Protein marker (Precision plus, Bio-Rad) positions 

indicated on the right. 

 

In order to analyze the LMM component and obtain a better resolution of all subunits of both 

supercomplexes we have carried out another high resolution gel according to Kashino et al. 2001 

method. (figure 3.3.2). 

We have cut and digested with trypsin the C2S2M2 spots from the 2D SDS-PAGE and from the Kashino 

gel and carried out LC ESI MS/MS spectrometry.  

We have identified with high score in C2S2M2 : CP47, CP43, D1, D2, all the Lhcb proteins, the OEC 

proteins PsbO, PsbP and PsbQ, the protein PsbR and only 2 low molecular masses ubunits PsbE and 

PsbH. The mass spectrometry results have been reported in table 3.1. 
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Figure 3.3.2 Profiles of protein composition of C2S2M2 and C2S2 supercomplexes (10 µg Chl per 

lane) resolved by 1D SDS-PAGE according to (Kahino et al. 2001). Protein standards (Precision 

plus, Bio-Rad) are loaded on lane M. 
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Table 3.1. List of PSII RC core subunits, extrinsic polypeptides, LMM subunits and LHCII 

proteins identified by nanoLC- ESI-MS/MS present in the isolated C2S2M2 and C2S2 PSII-LHCII 

supercomplexes. The table reports: sequences of peptides obtained by nanoLC-ESI-MS/MS 

(third column) with their corresponding precursor ion mass (second column); for each identified 

protein (first column), the calculated molecular mass (Mr, fourth column), the accession number 

and the database in which the protein was found (fifth column), and the percentage of residue 

identities with Pisum sativum, when available, or the homolog Arabidopsis thaliana (sixth 

column). Underlined amino acid residues (third column) indicate modifications such as 

carbamidomethylation of cysteine (C), oxidation of methionine (M), deamidation of asparagine 

and glutamine (N, Q). 

 

We have carried out also MALDI/TOF and TOF/TOF analysis in order to obtain further informations 

about the LMM component. In figure 3.3.3 are represented the MALDI/TOF spectra of both 

Supercomplex. Both spectra have the same profile and we identify four subunits (in orange) by using a 

putative assignment from data present in literature. The other proteins, in blue, have been identified by 

using de novo sequencing assignment with MALDI TOF/TOF analysis. 
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Figure 3.3.3. MALDI-TOF mass spectra of PSII-LHCII supercomplexes of type C2S2M2 (green 

line) and C2S2 (red line) isolated from pea thylakoid membranes. A. Peaks with m/z values 

between 3,500-5,000. B. Peaks with m/z values between 5,000-10,000.  

 

In addition to the proteomic characterization of both supercomplexes we have carried out negative stain 

transmission electron microscopy and single particle analysis to calculated 3D electron density maps 

for the C2S2M2 and C2S2 supercomplexes.  In the current study, the preavious dataset (Barera et al. 

2012) was re-subjected to more intensive computer-based purification analyses, so that more rigorously 

defined sub-populations of particles might be identified prior to the application of the 3D 

reconstruction technique of angular reconstitution. In so doing, sub-populations of 4,760 and 1,868 

particles were identified relating to the largest complexes, in terms of surface area with two-fold 

symmetry.  

Following de novo reference-free alignments, the relative angular orientations of the particles observed 

within each sub-population were strongly biased towards top and side views; however, subsequent 

iterative refinements were able to identify a small amount of slightly tilted views which aided in the 

calculation of the final 3D electron density maps. 

The C2S2M2 map has maximum dimensions of 375 Å length by 210 Å width by 105 Å height and an 

approximate resolution of 30 Å. The C2S2 map is also shown with two-fold imposed symmetry, having 

dimensions of 340 Å length by 200 Å width by 105 Å height with a resolution of ~28 Å.  

To interpret these 3D electron density maps, we compared their internal density distribution with 

surface-rendered X-ray structures (Figure 3.3.4 B C and D) of the PSII dimeric core of cyanobacteria at 

1.9 Å (Umena et al. 2011) the LHCII trimeric complex of pea at 2.5 Å  (Standfuss et al. 2005) and the 

monomeric Lhcb4 of spinach at 2.8 Å (Pan et al. 2011). 
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Figure 3.3.4 Top lumenal views of 3D reconstructions of the C2S2M2and C2S2 supercomplexes, 

with modelled high-resolution X-ray structures of the PSII dimeric core from cyanobacteria 

(subunits D1, D2, CP47, CP43 and PsbO are in yellow, orange, red, sandy brown and purple, 

other subunits in grey, respectively), the LHCII trimer (in blue) and Lhcb4 (in pale green) A. 

Top lumenal view of the C2S2M2 3D electron density map (green mesh), with the C2S2 3D electron 

density map, inset, surface-rendered in light blue. B. As per panel A, highlighting lumenal 

surface differences, together with LHCII trimer and monomeric Lhcb atomic co-ordinates shown 

as surface- rendered spheres (coloured as described above). C. The modelling environment, cut 

away by 65 Å, to reveal its lower half, also 65 Å thick, thus emphasising the position of the X-ray 

co-ordinates (surface-rendered and coloured as described above). D. The C2S2M2 3D cut away 

map (as in C) on its own with modelled subunits labelled (surface-rendered and coloured as 

described above), its membrane domain also shown as a 65 Å thick slab from the lumenal top 

view. The Lhcb5 and Lhcb6 atomic co-ordinates, whose structures have not yet been solved, are 

assumed to be similar to that of Lhcb4. A delineating boundary (yellow line) represents the -

DM detergent shell, approximately 10 Å within the outer edge of the C2S2M three-dimensional 

mesh. 
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4. GENERAL DISCUSSION 
 

4.1 Comparison of the  and isomeric forms of the detergent 

n-dodecyl-D-maltoside for solubilizing photosynthetic complexes 

from pea thylakoid membranes.  

In this first work we have compared the action of the two isomeric forms of n-dodecyl-D-maltoside  

and by solubilizing at increasing concentrations identical stacked thylakoids (same lipid/Chl and 

protein/Chl ratios)  with the aim to establish the best conditions to isolate fully solubilized PSII-LHCII 

supercomplexes and the other protein complexes in their native form.  The differences obtained from 

thylakoid solubilization with either isomers, are discussed taking in to account the amount of detergent 

used in relationship with the different distribution of the protein complexes in the thylakoid 

membranes.  

At 5 and 10 mM of both DM isomers  we have obtained only a partial solubilization of thylakoids 

(30% of the initial membranes). The supernatant mainly consist of: small membrane fragments (the 

material that did‟nt enter in the BN-PAGE represented in figure 3.1.2 A and B). The 5 and 10 mM 

supernatants Chl a/b ratio is higher than the other supernatants, suggesting that these supernatants are 

enriched in PSI. It is likely that proteins mainly localized in the stromal lamellae were subjected to the 

action of the detergent while grana were spun down in the pellet. This is consistent with the lateral 

heterogeneity model for the distribution of pigment-protein complexes of the thylakoid membranes 

proposed to isolate intact grana (Anderson and Andersson, 1980 and Morosinotto et al. 2010). At 20 

mM with both DM isomers we have obtained  80% of thylakoid solubilization. The supernatant 

contained: a lower amount of small membrane fragments (more protein complexes entering the native 

gels), and also medium sized complexes fully solubilized as PSII dimers and PSI–LHCI sup 

ercomplexes they have been identified in the BN-PAGE. At this concentration we suggest that 

complexes localized in the stroma lamellae and also grana margins/margin ends were subjected to the 

detergent action, in accordance with findings obtained by van Roon and his co-workers (van Roon et al. 

2000). 

With a concentration of 30 mM or above with both DM isomers, brought about the total solubilization 

of thylakoids (also PSII dimers, PSI–LHCI and PSII–LHCII supercomplexes were isolated). We 

suggest that both detergents, at this concentration, have access the grana regions and solubilize large 

pigment-protein complexes. This conclusion is consistent with previous results where -DM was used 
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at a Chl/DM ratio of 1:40 to isolate PSII–LHCII supercomplexes directly from spinach thylakoids 

(Eshaghi et al. 1999). In summary, our study has revealed that, it is possible to isolate in different 

amounts fully solubilized ATP-ase, Cyt b6/f, PSI and PSII complexes either in protomeric or different 

self-associated states depending on the type of detergent used (-DM or -DM) and its concentration 

(between 5 and 100 mM). This experimental evidence corroborates the idea that different 

interaction/penetration into the membranes of the two DM isomers, due to the their different chemical 

properties of both isomers, have a drastical effects on the thylakoids solubilization. We have 

demonstrated infact, that the two isomeric forms of DM, when compared at the same thylakoids 

Chl/DM ratio, -DM is a milder detergent than -DM, preserving the integrity even of the largest 

pigment-protein supercomplexes embedded into the thylakoids membranes. Moreover we have 

identified in 50 mM the minimal concentration that fully solubilize PSII-LHCII supercomplexes. 

 

 

 

4.2 Characterization of PSII-LHCII supercomplexes isolated 

from pea thylakoid membranes by one-step treatment with 

α- and β-dodecyl-D-maltoside. 
 

In this second work we have optimized the conditions to obtain homogeneous preparations, by using as 

detergents the two DM isomers and , of the C2S2 and C2S2M2 PSII-LHCII  supercomplexes and 

biochemically and structurally characterized them in agreement with the preavious results obtained by 

Boekema and his co-workers (Boekema et al. 1999a). 

We have found that unlike C2S2, the C2S2M2 supercomplex contained both the Lhcb3 and Lhcb6 

antennae subunits, crucial polypeptides for the assembly and the macro organization of this 

supercomplex in the thylakoid membrane of higher plants (Caffarri et al. 2009). Both supercomplexes 

isolated contain the intrinsic protein PsbW and the extrinsic protein PsbO but only the C2S2M2 contains 

also detectable levels of PsbP, PsbQ and PsbR. Our analyses of a and b particles by negative stain EM 

and interpretation of density within the top-view projections using currently available X-ray data 

confirmed the protein compositions suggested previously of both supercomplexes (Dekker and 

Boekema, 2005). We have identified infact density for two types of LHCII trimers designated as S and 

M, where S, common to both supercomplexes, consists of Lhcb1 and Lhcb2 proteins, whereas M, 

exclusive to the  particle, is a LHCII trimer containing the Lhcb3 protein. These results are in 
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accordance with previous findings suggesting that Lhcb3 is a subunit of the M-trimer (Boekema et al. 

1999b) 

We have carried out the same fitting of the crystal structures into the electron density as proposed in 

Caffarri et al. 2009 except for small rotational adjustments of CP24 and CP26, although the reliability 

of the fitting must be treated with caution. In modelling the organization of the subunits within the 

supercomplex, we used the latest X-ray data for the PSII dimeric core (Umena et al. 2011), LHCII 

trimer (Standfuss et al. 2005) and CP29 (Pan et al. 2011).We conclude, that Lhcb4 is likely to be 

located close to the M-trimer in C2S2M2 and linked to it via Lhcb6.  

 

 

4.3   Proteomic characterization and three dimensional electron 

microscopy study of PSII-LHCII supercomplexes from higher 

plants. 
 
 

In this third work we have conducted an in-depth polypeptide composition characterization of PSII-

LHCII supercomplexes C2S2M2 and C2S2 preaviously characterized. Moreover we have obtained the 

first 3D map of C2S2M2.  

The biochemical results shown that both supercomplexes have an identical set of LMM subunits. Thus, 

we conclude that among the identified LMM subunits none is specifically required for the binding of 

the additional LHCII M-trimers to the basic C2S2 unit. In contrast to the LMM subunits, the two 

isolated supercomplexes revealed basic differences in their Lhcb antennae polypeptides: Lhcb1, Lhcb2, 

Lhcb4 and Lhcb5 were found in both the C2S2M2 and C2S2 supercomplexes, whereas Lhcb3 and Lhcb6 

were present only in the largest supercomplex, suggesting that Lhcb3 is exclusively located in the 

LHCII M-trimer and Lhcb6 functions as a linker for this LHCII trimer to the C2S2.  

The proteomic data indicate that, in addition to the PsbO subunit, which is stably bound to the PSII RC 

core in both types of supercomplexes, the C2S2M2 supercomplex retains partially the PsbP, PsbQ and 

PsbR subunits. 

The EM analysis have allowed to obtained the first 3D structural model of an isolated C2S2M2 

supercomplex with a resolution of approximately 30 Å according to the 3sFSC criterion. Our model  

confirms the central positioning of the C2S2 supercomplex within the volume of the C2S2M2 molecular 

envelope and the relative positioning of various major subunits. The modeling in our corresponding 3D 
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electron density map is very similar to that proposed by Caffarri et al. 2009. Unfortunately the dataset 

which we have used was poor of tilted view particles and it hasn‟t allowed to resolve the density for the 

OEC proteins. So it is difficult to suggest the location of the PsbP, PsbQ and PsbR subunits. An 

improved dataset, ideally derived from cryo-TEM, will be required to resolve and assign the OEC 

proteins to gain fine details of the overall structure of the C2S2M2 supercomplex. 
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