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This paper deals with the problem of capital allocation for a peculiar class of risk measures, namely 
the Haezendonck-Goovaerts (HG) ones (Bellini and Rosazza Gianin, 2008; Goovaerts et al., 2004). To 
this aim, we generalize the capital allocation rule (CAR) introduced by Xun et al. (2019) for Orlicz risk 
premia (Haezendonck and Goovaerts, 1982) as well as for HG risk measures, using an approach based on 
Orlicz quantiles (Bellini and Rosazza Gianin, 2012). We therefore study the properties of different CARs 
for HG risk measures in the quantile-based setting. Finally, we provide robust versions of the introduced 
CARs, considering ambiguity both over the probabilistic model and over the Young function, following 
the scheme of Bellini et al. (2018).

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we focus on the problem of capital allocation in 
the context of a well known class of risk measures, namely the 
Haezendonck-Goovaerts (HG) ones. Roughly speaking, a capital al-
location problem consists in, given a risk measure ρ and a set 
of financial positions X , finding a suitable way (that is, satisfying
some desirable properties) of sharing the risk capital ρ(X) (inter-
preted as a buffer against default) among the sub-units of X , for 
each X ∈X .

The capital allocation problem has been investigated for general 
risk measures with different approaches and broad scopes (see, 
among others, Denault, 2001; Kalkbrener, 2005; Delbaen, 2000; 
Dhaene et al., 2012; Centrone and Rosazza Gianin, 2018; Tsanakas, 
2009). Formally, following (Delbaen, 2000; Denault, 2001; Kalk-
brener, 2005), a capital allocation rule (CAR) for a risk measure 
ρ : L∞ →R is a map � : L∞ × L∞ →R such that �(X, X) = ρ(X)

for every X ∈ L∞ , where �(X, Y ) is interpreted as the risk contri-
bution of a sub-position X to the risk of the whole position Y .
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At the same time, Haezendonck-Goovaerts risk measures have 
been studied in the last decades both from a mathematical point 
of view and from an actuarial one (see, among others, Bellini et al., 
2018; Bellini and Rosazza Gianin, 2008, 2012; Bellini et al., 2014; 
Goovaerts et al., 2004; Haezendonck and Goovaerts, 1982). This 
class of risk measures, based on the so called Orlicz premium in-
troduced by Haezendonck and Goovaerts (1982), has become pop-
ular also because it generalizes the well-known Conditional Value 
at Risk (CVaR).

Among the different methods of capital allocations, the quantile-
based approach is the more natural when focusing on HG risk 
measures since this family of risk measures intrinsically depends 
on generalized quantiles. Many works on quantile-based capital al-
location are present in the literature and face the problem both 
from a theoretical and from an empirical standpoint. For instance, 
Kalkbrener (2005) and Tasche (2004) study and derive explicit for-
mulas, by using VaR and CVaR as underlying risk measures, for the 
popular gradient allocation. In this regard, the reader is also re-
ferred to the recent works of Asimit et al. (2019) and Gómez et al. 
(2021), among others.

A specific capital allocation method, which is “tailored” for Or-
licz premia and works beyond the special case of CVaR, has been 
recently introduced by Xun et al. (2019), generalizing the contri-
bution to shortfall, provided by Overbeck (2000) for CVaR. How-
ever, despite its desirable properties, the method works only for 
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X ∈ L∞+ and depends on the quantile (or VaR) of the aggregated 
risk Y ∈ L∞+ . Therefore, it is still somehow connected to CVaR 
and excludes the possibility of allocating capital to positions not 
representing just a loss, which is instead financially meaningful 
e. g. for internal purposes, when assessing the performances of var-
ious business lines.

Starting from the approach of Xun et al. (2019) and motivated 
by the fact that HG risk measures are meaningful beyond the case 
of non-negative random variables, our main goal is to introduce a 
capital allocation method for HG risk measures which is defined 
for any pair (X, Y ) ∈ L∞ × L∞ (not only positive) and overcomes 
the special case of CVaR, by maintaining some of the properties 
required for a significant capital allocation rule.

The aim of the paper is, therefore, to generalize the CAR pro-
posed by Xun et al. (2019) for Orlicz premia in two directions. 
First, inspired by Bellini and Rosazza Gianin (2012), we extend the 
work of Xun et al. (2019) by providing capital allocation rules both 
for Orlicz risk premia and for HG risk measures, not only in terms 
of VaR but also of Orlicz quantiles (defined in Bellini and Rosazza 
Gianin, 2012) that are more appropriate when the involved Young 
function is not necessarily linear. We show indeed that such CARs 
satisfy most of the usually required properties and are also reason-
able from a financial point of view. A comparison among the ap-
proaches here introduced and two popular capital allocation rules, 
that is, the gradient method and the Aumann-Shapley one (Cen-
trone and Rosazza Gianin, 2018; Kalkbrener, 2005), is also pro-
vided. Since a deep analysis on the gradient approach has been 
recently provided by Gómez et al. (2021) for higher moment risk 
measures, corresponding to HG risk measures for power Young 
functions, we also extend one of their results on Orlicz quantiles 
to the case of general Young functions.

Second, inspired by robust Orlicz premia and robust HG risk 
measures recently introduced by Bellini et al. (2018), we provide 
some extensions of the proposed methods of capital allocation to 
cover ambiguity over the probabilistic model and over the risk 
perception of the decision-maker. In particular, we first introduce 
robust Orlicz quantiles and study their properties, obtaining results 
similar to the non-robust case. By using robust Orlicz quantiles, we 
then provide robust versions of the presented methods to account 
for ambiguity over the probability measure and for ambiguity over 
the utility/loss function. We find out that the robust versions work 
well for the quantile-based methods, providing results very close 
to the non-robust case.

The paper is organized as follows: in Section 2 we briefly recall 
some known facts about HG risk measures and capital allocation 
rules; in Section 3 we present the capital allocation methods based 
on Orlicz quantiles and study their properties. Section 4 is instead 
devoted to the robust versions.

2. Preliminaries

In this section, we fix the notation used in the paper and recall 
some well-known definitions and results.

Let (�, F , P ) be a probability space, L∞ := L∞(�, F , P ) be the 
space of all P -essentially bounded random variables on (�, F , P )

and let L∞+ be the space of non-negative elements of L∞ . Equalities 
and inequalities must be understood to hold P -almost surely.

Let � : [0, +∞) → [0, +∞) be a normalized Young function, 
that is, a convex and strictly increasing function satisfying �(0) =
0 and �(1) = 1. It follows that � is continuous and satisfies 
limx→+∞ �(x) = +∞. Given a Young function �, the Orlicz space 
L� is defined as

L� :=
{

X ∈ L0
∣∣∣∣E[�( |X |)]

< +∞ for some a > 0

}
, (2.1)
a

2

where L0 := L0(�, F , P ) is the space of all random variables on 
(�, F , P ). For a detailed treatment on Orlicz spaces we refer to 
Rao and Ren (1991).

Throughout the work, we will adopt the actuarial notation 
about signs, that is, positive values have to be interpreted as losses 
while negative as gains. In this setting, the Value at Risk (VaR) of 
X at level α ∈ (0, 1) is defined by

VaRα(X) := inf {x ∈R | P (X ≤ x) > α } = q+
α (X),

where q+
α (X) denotes the upper α-quantile of X .

We remind that a risk measure ρ : L∞ → R is coherent when 
it satisfies monotonicity, cash-additivity, positive homogeneity and 
subadditivity (see Artzner et al., 1999 and Delbaen, 2002 for the 
precise definition and further details), where – for the sign con-
vention above – monotonicity means increasing monotonicity, i. e. 
Y ≥ X implies ρ(Y ) ≥ ρ(X), while cash-additivity corresponds to 
ρ(X + m) = ρ(X) + m for any m ∈R and X ∈ L∞ .

2.1. Orlicz premia and Haezendonck-Goovaerts risk measures

We recall now the definition and some basic results on Orlicz 
risk premia and Haezendonck-Goovaerts (HG) risk measures, well-
known in the actuarial theory. In particular, Orlicz risk premia can 
be interpreted as a multiplicative version of the certainty equiv-
alent. See, for further details, Haezendonck and Goovaerts (1982), 
Goovaerts et al. (2004) and Bellini and Rosazza Gianin (2008).

Definition 2.1 (see Haezendonck and Goovaerts, 1982). Let a Young 
function � be given and let α ∈ [0, 1) be fixed. The Orlicz risk pre-
mium of X ∈ L∞+ , with X �= 0, is the unique solution H�

α (X) of

E

[
�

(
X

H�
α (X)

)]
= 1 − α, (2.2)

while, by convention, for X = 0, H�
α (0) := 0.

For simplicity of notation, the dependence on � is usually 
omitted in H�

α (X), i.e. Hα := H�
α , and H(X) := H0(X).

Notice that a more general definition of Orlicz premia on Orlicz 
spaces L� has been given in Haezendonck and Goovaerts (1982)
by means of the Luxemburg norm ‖·‖� (see Rao and Ren, 1991 for 
more details on this norm), that is,

H(X) = ‖X‖� := inf

{
k > 0

∣∣∣∣E[�(
X

k

)]
≤ 1

}
. (2.3)

It is clear that Hα is simply given by (2.3) with �α := �
1−α instead 

of �.
Haezendonck and Goovaerts (1982) proved also that Hα(X) sat-

isfies the following properties:

Monotonicity: if X ≥ Y , X, Y ∈ L∞+ , then Hα(X) ≥ Hα(Y ).

Subadditivity: Hα(X + Y ) ≤ Hα(X) + Hα(Y ) for every X, Y ∈ L∞+ .

Positive homogeneity: Hα(λX) = λHα(X) for every X ∈ L∞+ , λ ≥ 0.

Since Orlicz risk premia are defined only for X ∈ L∞+ and fail, in 
general, to be cash-additive, Haezendonck-Goovaerts risk measures 
were introduced by Haezendonck and Goovaerts (1982) (see also 
Goovaerts et al., 2004, Bellini and Rosazza Gianin, 2008) to extend 
Orlicz risk premia so to obtain cash-additive risk measures defined 
on the whole L∞ .

Definition 2.2 (see Bellini and Rosazza Gianin, 2008). Let α ∈ [0, 1). 
The Haezendonck-Goovaerts risk measure of X ∈ L∞ is defined by
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πα(X) := inf
x∈R

πα(X, x) (2.4)

where

πα(X, x) := x + Hα

(
(X − x)+

)
. (2.5)

Bellini and Rosazza Gianin (2008) proved that πα defines a co-
herent risk measure in our setting. Moreover, the following result 
holds.

Proposition 2.1 (see Bellini and Rosazza Gianin, 2012). For any α ∈
(0, 1) and X ∈ L∞ , the infimum in (2.4) is attained at some x∗

X . More-
over, πα admits the following representation

πα(X) = max
Q∈Q

EQ[X],

where Q is a subset of D	 := {
η ∈ L	+

∣∣ E[η] = 1
}

and 	 is the convex 
conjugate of �, that is, 	(y) := supx≥0

{
xy − �(x)

}
for y ≥ 0.

If � is also differentiable and Hα

(
(X − ·)+) is differentiable at x∗

X , 
then

πα(X) = EQX [X] (2.6)

where

dQX

dP
=

�′
(

(X−x∗
X )+

‖(X−x∗
X )+‖�α

)
1{X>x∗

X }

E
[
�′
(

(X−x∗
X )+

‖(X−x∗
X )+‖�α

)
1{X>x∗

X }
] . (2.7)

2.2. Capital allocation

We conclude this section by recalling the notion of a capital 
allocation rule and some related properties (see Denault, 2001, 
Kalkbrener, 2005, Delbaen, 2000, Dhaene et al., 2012 and Centrone 
and Rosazza Gianin, 2018 for a detailed discussion).

Definition 2.3 (see Centrone and Rosazza Gianin, 2018; Denault, 2001; 
Dhaene et al., 2012; Kalkbrener, 2005). Given a risk measure ρ on 
a linear space X , a capital allocation rule (CAR)1 for ρ is a map 
� : X ×X →R such that

�(X, X) = ρ(X) for all X ∈ X . (2.8)

As pointed out by Brunnermeier and Cheridito (2019), equality 
in (2.8) might be not indispensable in some cases, for example 
when capital is collected for monitoring purpose. For that rea-
son, (2.8) can be replaced by �(X, X) ≤ ρ(X) for any X ∈ X (in 
that case, � will be called audacious CAR) or by �(X, X) ≥ ρ(X)

for any X ∈X (prudential CAR). See also Centrone and Rosazza Gi-
anin (2018) for a further discussion.

Given a non-empty set X of random variables, we say that X ∈
X is a sub-portfolio (or sub-unit) of Y ∈ X if there exists Z ∈ X
such that Y = X + Z . Note that, since X := L∞ throughout the 
work, every random variable is a sub-portfolio of any other.

In this framework, �(Y , Y ) defines the capital allocated to Y
considered as a stand-alone portfolio, that is, as a sub-portfolio 
of itself. Furthermore, �(X, Y ) defines the capital allocated to X
considered as a sub-portfolio of Y , which can be interpreted as 
the contribution of X to the aggregated risk capital ρ(Y ) of Y .

1 Notice that, throughout the work and with an abuse of notation, we still call 
CAR a map defined on a restricted domain D of L∞ × L∞ (e.g. on L∞+ × L∞) and 
satisfying (2.8) for the corresponding ρ restricted to D .
3

For a CAR to be economically sound, it is customary to require 
the following properties (see Denault, 2001; Kalkbrener, 2005; 
Dhaene et al., 2012 and the references therein for further details 
and interpretations):

No-undercut: �(X, Y ) ≤ ρ(X) for any X, Y ∈ L∞ .

Monotonicity: if X ≥ Z , X, Z ∈ L∞ , then �(X, Y ) ≥�(Z , Y ) for any 
Y ∈ L∞ .

Riskless: �(a, Y ) = a for any a ∈R, Y ∈ L∞ .

No-undercut is a well-known property in standard capital allo-
cation problems (see Centrone and Rosazza Gianin, 2018, Denault, 
2001, Kalkbrener, 2005), including game-theoretical features of sta-
bility as it implies that the sub-portfolio X has no incentive to 
be split from the whole portfolio Y , since staying alone would 
be more costly. Monotonicity (in the first variable) means that the 
capital allocated to a position with a higher loss has to be greater 
or equal than the capital allocated to another position with a lower 
loss. Riskless requires that the capital allocated to a fixed monetary 
amount is exactly such amount.

Another property often required for a CAR is:

Full allocation: if 
∑n

i=1 Xi = X , then 
∑n

i=1 �(Xi, X) = ρ(X);

meaning that when a portfolio X is decomposed into sub-units 
X1, X2, . . . , Xn such that 

∑n
i=1 Xi = X , then the whole capital 

should be shared among the different sub-units. Although full al-
location seems to be a desirable property, in a general framework 
and for general risk measures, it is not compatible with other 
properties (e.g. with no-undercut, as shown in Kalkbrener (2005)
– see also Canna et al. (2020a) for a further discussion). However, 
notice that it is always possible to modify a capital allocation rule 
so to guarantee the full allocation property (potentially by losing 
other properties), for instance, by normalizing the risk contribu-
tion of each Xi as

�̂(Xi, X) := ρ(X)∑n
j=1 �(X j, X)

�(Xi, X),

or by shifting by a suitable exogenous amount (see Brunnermeier 
and Cheridito, 2019; Dhaene et al., 2012; Kromer et al., 2016).

Some among the following further properties on � can be also 
required (see Canna et al., 2020a for details):

1-cash-additivity: �(X + c, Y ) = �(X, Y ) + c for any c ∈ R, X, Y ∈
L∞ .

1-law invariance: if X ∼ Z , X, Z ∈ L∞ , then �(X, Y ) = �(Z , Y ) for 
any Y ∈ L∞ .

1-positive homogeneity: �(λX, Y ) = λ�(X, Y ) for any λ ≥ 0, X, Y ∈
L∞ .

2-translation-invariance: �(X, Y + c) = �(X, Y ) for any c ∈ R, X,

Y ∈ L∞ .

1-cash-additivity requires that, whenever we add any cash 
amount to the sub-portfolio X , the capital allocated to such a 
pair is exactly that allocated to the pair (X, Y ) plus the cash 
amount; while 1-positive homogeneity imposes that the capital 
allocated to a pair of sub-portfolio and portfolio formed by λ

shares of X is exactly λ times the capital allocated to (X, Y ). 1-
law invariance requires that the capital allocated to any couple 
of sub-portfolios with the same distribution is equal. Finally, 2-
translation-invariance means that the capital allocated to the sub-
portfolios does not change if we add or remove any cash amount to 
the portfolio Y . Notice that 1-cash-additivity and 2-translation in-
variance imply cash-additivity, that is, �(X + c, Y + c) = �(X, Y ) +
c for any c ∈R, X, Y ∈ L∞ .
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We finally recall two well-known capital allocation methods, 
which we are going to use as a comparison with those proposed 
in the following. In particular, the first one is very popular in the 
literature for its natural interpretation as marginal contribution of 
each sub-unit to the overall risk and as it allows to get closed-form 
formulas for some of the most popular quantile-based risk mea-
sures (see, for example, Kalkbrener, 2005, Section 5.2 and Tasche, 
2004).

Given a coherent Gateaux differentiable risk measure ρ , the 
gradient (or Euler) allocation is given by

�
ρ
∇(X, Y ) := EQY [X], (2.9)

where dQY
dP is the gradient of ρ at Y (see Kalkbrener, 2005 for 

more details). The gradient allocation is linear (which implies full 
allocation) and satisfies no-undercut and riskless.

Based on the gradient approach, the Aumann-Shapley method 
has been proposed by Tsanakas (2009) and later extended by Cen-
trone and Rosazza Gianin (2018) to risk measures that are not 
necessarily differentiable. In particular, for a coherent risk measure 
ρ(Y ) = supQ∈QEQ[Y ] where the supremum is attained at some 
QY , the Aumann-Shapley CAR is defined as

�
ρ
AS(X, Y ) :=

1∫
0

EQγ Y [X]dγ . (2.10)

3. Capital allocation via Orlicz quantiles

Quite recently, Xun et al. (2019) introduced the following capi-
tal allocation rule for Orlicz risk premia. In particular, they defined 
the risk contribution HY ,α(X) of X as a sub-portfolio of Y as the 
solution of2

E

[
�

(
X1{Y >VaRα(Y )}

HY ,α(X)

)]
= 1 − α (3.1)

where α ∈ [0, 1). Such a definition reduces to the so-called “con-
tribution to shortfall”, proposed by Overbeck (2000) and given by

CSα(X, Y ) := E [X | Y > VaRα(Y ) ] , (3.2)

for �(x) = x and for continuous random variables Y .
The above capital allocation is appealing for different reasons: 

firstly, because – once normalized – it is a coherent allocation 
(that is, it satisfies suitable properties such as full allocation, no-
undercut and riskless, see Denault, 2001); secondly, because it is a 
generalization of the contribution to shortfall for nonlinear �; fi-
nally, because it is the first CAR defined specifically for the family 
of Orlicz premia.

In definition (3.1), the fact of considering the loss Y only in 
the event {Y > VaRα(Y )} is justified by the capital allocation ap-
proaches based on the insurer’s default option and it is motivated 
by the fact that the shareholders of a company have limited lia-
bility and therefore, in the event of default, they are not obliged 
to pay when the loss exceeds such fixed threshold; see, for more 
details, Dhaene et al. (2012), Myers and Read (2001).

Nevertheless, while the use of VaRα in the CAR (3.1) can be 
justified for �(x) = x by the arguments above, this is no more the 
case for a general �. Roughly speaking, VaRα can be seen as the 
“right quantile” for �(x) = x while it is not for a general � where 
the use of Orlicz quantiles seems to be more appropriate. Moti-
vated by this, we aim at generalizing the definition above in two 

2 Differently from the present paper, in Xun et al. (2019) VaRα is defined as the 
lower α-quantile. This different definition, however, is irrelevant for the study.
4

directions: first, by replacing VaRα with an Orlicz quantile in (3.1); 
second, by defining a CAR for HG risk measures πα , starting from 
that for Orlicz risk premia Hα , so to obtain a CAR defined for any 
pair (X, Y ) ∈ L∞ × L∞ (and not only for X in L∞+ ). Hence, in this 
section, we are going to provide some capital allocation methods, 
both for the Orlicz risk premium and for the HG risk measure, by 
means of the so called Orlicz quantiles, introduced by Bellini and 
Rosazza Gianin (2008) (see also Bellini et al., 2014).

Before proceeding with the definition of our new CARs, a pre-
liminary discussion on the attainment of the infimum in (2.4) is 
in order. Indeed, by Proposition 2.1, for any α ∈ (0, 1) the infimum 
in (2.4) of πα is realized at some point x∗ (see Bellini and Rosazza 
Gianin, 2008). Thus, πα can be written as

πα(X) = x∗
α(X) + Hα

(
(X − x∗

α(X))+
)

(3.3)

where

x∗
α(X) ∈ arg min

x∈R
{

x + Hα

(
(X − x)+

)}
(3.4)

is called an Orlicz quantile (see Bellini and Rosazza Gianin, 2012
for details).

Furthermore, in Bellini and Rosazza Gianin (2012) the authors 
claimed the uniqueness of an Orlicz quantile under the hypothesis 
of � being strictly convex. Unfortunately, we have recently realized 
that such a result does not hold without some additional hypothe-
ses (see also the example below). Therefore, we correct and replace 
Proposition 3(c-d) of Bellini and Rosazza Gianin (2012) with Propo-
sition 3.1, whose proof is similar to those of (Bellini and Rosazza 
Gianin, 2012, Propp. 3, 11) and of (Bellini et al., 2014, Propp. 1, 5).

Example 3.1. Consider the Young function �(x) = x2, the probabil-
ity space 

(
�,F ,P

)
with � = {ω1, ω2}, F = P(�) and P ({ωi}) =

1
2 , i = 1, 2; and the random variable X =

{
4, on ω1

8, on ω2
. Hence,

πα(X, x) = x +
√
E[((X − x)+)2]

1 − α

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x +

√
(4−x)2+(8−x)2

2(1−α)
, if x ≤ 4,

x + 8−x√
2(1−α)

, if 4 < x ≤ 8,

x, if x > 8.

It follows that, in the interval (4, 8], πα(X, x) is linear (thus not 
strictly convex) and even constant for α = 1

2 . Furthermore, for α =
1
2 the minimizer is not unique but attained at any point of the 
interval [4, 8], where πα(X, x) ≡ 8.

Note that the non-uniqueness of the minimizers as well as 
their formulations is not surprising in view of the recent paper 
of Gómez et al. (2021). In their Lemma 2.1, indeed, the afore-
mentioned authors proved that, for power functions � and for a 
slightly different formulation of πα(X, x), the (upper) Orlicz quan-
tiles coincide with the ess sup(X) for some α and for X assuming 
ess sup(X) with positive probability (as in the present case).

The following result investigates the properties of Orlicz quan-
tiles in general (with no assumptions on the distribution of X and 
on α), in line with Proposition 3 of Bellini and Rosazza Gianin 
(2012) and using the following notations

x∗,−
α (X) := inf arg min

x∈R
πα(X, x),

x∗,+
α (X) := sup arg minπα(X, x).
x∈R
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Proposition 3.1. For any α ∈ (0, 1) and X ∈ L∞ , the set of minimizers 
is a closed interval, that is,

arg min
x∈R

πα(X, x) = [
x∗,−
α (X), x∗,+

α (X)
]
.

Moreover, it satisfies the following properties:

(a) Cash-additivity: for any h ∈R, X ∈ L∞[
x∗,−
α (X + h), x∗,+

α (X + h)
]= [

x∗,−
α (X) + h, x∗,+

α (X) + h
]
.

(b) Positive homogeneity: for any λ ≥ 0, X ∈ L∞ ,[
x∗,−
α (λX), x∗,+

α (λX)
]= [

λx∗,−
α (X), λx∗,+

α (X)
]
.

(c) Riskless: if X = a ∈R then x∗,−
α (X) = x∗,+

α (X) = a.
(d) Boundedness from above: x∗,+

α (X) ≤ ess sup(X) for any X ∈ L∞ .

Proof. Since, for any α ∈ (0, 1) and X ∈ L∞ , πα(X, x) is finite, 
convex and limx→±∞ πα(X, x) = +∞, from (Bellini and Rosazza 
Gianin, 2012, Prop. 3(a-b)) it follows that the set of minimizers 
is a closed interval.

(a) For any h ∈R and X ∈ L∞ it holds that[
x∗,−
α (X + h), x∗,+

α (X + h)
]= arg min

x∈R
πα(X + h, x)

= arg min
x∈R

{πα(X, x − h)}

= [
x∗,−
α (X) + h, x∗,+

α (X) + h
]
.

(b) The case λ = 0 follows by riskless (proved below). By positive 
homogeneity of Hα , for any λ > 0 and X ∈ L∞ it follows that[
x∗,−
α (λX), x∗,+

α (λX)
]= arg min

x∈R
πα(λX, x)

= arg min
x∈R

{
λπα

(
X,

x

λ

)}
= arg min

x∈R

{
πα

(
X,

x

λ

)}
= [

λx∗,−
α (X), λx∗,+

α (X)
]
.

(c) Since

πα(a) = inf
x∈R

{
x + Hα

(
(a − x)+

)}= inf
x∈R

{
x + (a − x)+

�−1(1 − α)

}
for any a ∈ R and �−1(1 − α) < 1 for any α �= 0, it follows that 
the unique minimizer is x∗

α(a) = a.

(d) Notice that Y := X − ess sup(X) ≤ 0, hence

0 ≥ πα(Y ) = x∗,+
α (Y ) + Hα

((
Y − x∗,+

α (Y )
)+)≥ x∗,+

α (Y ),

by monotonicity of πα . Therefore, x∗,+
α (X) ≤ ess sup(X) follows by 

cash-additivity. �
Notice that Orlicz quantiles fail to be monotone, as they fail to 

be bounded from below; furthermore, for �(x) = x, the upper Or-
licz quantile x∗,+

α is exactly the Value at Risk at level α (see Bellini 
and Rosazza Gianin, 2012 for details).

The following result better describes Orlicz quantiles under 
suitable assumptions on α and on the distribution of X , by extend-
ing Lemma 2.1 of Gómez et al. (2021) to general (not necessarily 
power) functions �. Differently from the aforementioned result, 
however, we are not able to cover the case of α belonging to the 
whole interval (0, 1) but only to a subset.
5

Proposition 3.2. Let � be a Young function and α ∈ (0, 1). Assume that 
X ∈ L∞ satisfies π̂X =P (X = ess sup(X)) < 1.

(i) If α ∈ (0, C) for some suitable C ∈ (0, 1 − π̂X ), then any x∗
α(X) <

ess sup(X) and πα(X) < ess sup(X).
(ii) If α ∈ (1 − �(π̂X ), 1), then x∗

α(X) ≡ ess sup(X) and πα(X) =
ess sup(X).

(iii) If α = 1 − �(π̂X ), then x∗
α(X) ∈ [x∗,−

α (X), ess sup(X)] and πα(X)

= ess sup(X).

Proof. From Bellini and Rosazza Gianin (2012) it follows that any 
x∗
α(X) ≤ ess sup(X) and that πα(X) ≤ ess sup(X).

(ii), (iii) For any x ≤ ess sup(X) it holds that

x + Hα

(
(X − x)+

)≥ x + E[(X − x)+]
�−1(1 − α)

= x + E
[
(X − x)+1{X=ess sup(X)} + (X − x)+1{X<ess sup(X)}

]
�−1(1 − α)

≥ x + (ess sup(X) − x)π̂X

�−1(1 − α)

= ess sup(X) + (ess sup(X) − x)

(
π̂X

�−1(1 − α)
− 1

)
≥ ess sup(X), (3.5)

where the first inequality is due to Goovaerts et al. (2004) and 
the last inequality to the hypothesis α > 1 − �(π̂X ). Moreover, the 
last inequality is strict for x < ess sup(X). It then follows that x∗

α =
ess sup(X) and πα(X) = ess sup(X).

If α = 1 − �(π̂X ), instead, the inequality (3.5) becomes an 
equality and x∗

α(X) ∈ [x∗,−
α (X), ess sup(X)].

(i) By definition of Hα , it follows that

1 − α = E

[
�

(
(X − x)+

Hα((X − x)+)

)]
≤ �

(
ess sup(X) − x

Hα((X − x)+)

)
P (X ≥ x)

for any x < ess sup(X). Hence, for any x < ess sup(X)

x + Hα

(
(X − x)+

)≤ x + ess sup(X) − x

�−1
(

1−α
P (X≥x)

) < ess sup(X)

if �−1
(

1−α
P (X≥x)

)
> 1 (or, equivalently, α < 1 − P (X ≥ x)). This 

implies that x∗
α(X) < ess sup(X) and πα(X) < ess sup(X) for α <

1 −P (X ≥ x∗
α) = C ≤ 1 − π̂X . �

From the previous result it follows that, for random variables X
that are not continuous and for suitable values of α, the (upper) 
Orlicz quantile reduces to ess sup(X).

3.1. Capital allocation rules for Hα

With the previous section at hand, we now generalize the ap-
proach of Xun et al. (2019) at the level of Hα by means of Orlicz 
quantiles. The idea of defining the capital to be allocated to a 
sub-portfolio X of the whole portfolio Y by focusing only on the 
scenario where Y exceeds the threshold x∗

α(Y ) comes from similar 
arguments as for the contribution to shortfall (see also Section 2.2) 
and it is in line with the capital allocation approaches based on 
the insurer’s default option (see Dhaene et al., 2012; Myers and 
Read, 2001). In particular, such an approach is motivated by the 
fact that an insurer is mainly concerned about losses exceeding 
a fixed threshold, hence it seems reasonable to restrict ourselves 
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on that scenario also when computing �(X, Y ). The previous mo-
tivation is even more convincing once x∗

α(Y ) is interpreted as a 
deductible. In that case, indeed, for an insurer it is relevant to 
consider only the case where the losses of the whole portfolio Y
exceed the deductible and to evaluate the capital to be allocated 
to the sub-portfolio X accordingly.

Definition 3.1. Given the Orlicz risk premium Hα , we define the 
map �H : L∞+ × L∞ →R+ as

�H (X, Y ) := Hα

(
X1{Y ≥x∗

α(Y )
}) (3.6)

where x∗
α(Y ) is an Orlicz quantile at level α of Y .

As pointed out by a Referee, the definition above seems to be 
financially reasonable once �H is defined on L∞+ × L∞+ instead of 
L∞+ × L∞ . If all the sub-portfolios X are positive, indeed, it is rea-
sonable to assume that the whole portfolio is positive a fortiori. 
Nevertheless, we have chosen to define �H (X, Y ) for any Y ∈ L∞
in view of the definition of �π in (3.8) where Y is not necessar-
ily positive. The results below, however, hold as well also for the 
restriction of �H to L∞+ × L∞+ .

Notice that, for X �= 0 and P (Y ≥ x∗
α(Y )) > 0, �H (X, Y ) is the 

unique solution of

E

[
�

(
X1{Y ≥x∗

α(Y )
}

�H (X, Y )

)]
= 1 − α. (3.7)

Condition P (Y ≥ x∗
α(Y )) > 0 is quite commonly satisfied since, by 

the properties of Orlicz quantiles, x∗
α(Y ) ≤ ess sup(Y ) (see Proposi-

tion 3.1). When �(x) = x and Y is a continuous random variable, 
for instance, P (Y ≥ VaRα(Y )) > 0 is guaranteed by definition of 
VaRα .

It is worth mentioning that, differently from (3.1), in our def-
inition we consider the loss Y on the event 

{
Y ≥ x∗

α(Y )
}

(instead 
of {Y > VaRα(Y )}). In addition to the use of Orlicz quantiles in-
stead of VaRα , the choice of considering 

{
Y ≥ x∗

α(Y )
}

(instead 
of a strict inequality) has been done to avoid that, for constant 
Y , �H (X, Y ) = 0 for any X ∈ L∞+ . For �(x) = x and for Y with 
P (Y = x∗

α(Y )) = 0, however, �H reduces to the CAR proposed by 
Xun et al. (2019) since x∗

α = x∗,+
α = VaRα .

Moreover, we point out that the definition of �H depends on 
the choice of the Orlicz quantile, thus, roughly speaking, �H can 
be seen as a family of CARs “parameterized” by the Orlicz quan-
tile chosen. Thanks to Proposition 3.2, however, under suitable as-
sumptions on α and on the distribution of X , the Orlicz quantile is 
uniquely given by the essential supremum. In that case, therefore, 
�H is uniquely determined. In general, in order to define �H in a 
unique way, in the following x∗

α(Y ) (used in (3.6)) will be fixed as 
the upper Orlicz quantile; that is, we set x∗

α(Y ) := x∗,+
α (Y ). Similar 

arguments would hold if the lower Orlicz quantile was fixed.
Since, from Proposition 3.2, x∗,+

α (Y ) = ess sup(Y ) for α ∈ [1 −
�(π̂Y ), 1) with π̂Y = P (Y = ess sup(Y )) > 0, for non-continuous 
Y the definition of �H (X, Y ) would be more reasonable for α <

1 −�(π̂Y ) (or, possibly, with respect to lower Orlicz quantiles). On 
the contrary, indeed, it solves

E

[
�

(
X1{Y =ess sup(Y )}

�H (X, Y )

)]
= 1 − α,

meaning that it would depend on the scenario where Y has a max-
imal loss. For �(x) = x, for instance, �H (X, Y ) = π̂Y

1−αE[X | Y =
ess sup(Y )], corresponding, up to the factor π̂Y

1−α , to the contribu-
tion to shortfall of Overbeck (2000).

In the following result we list the main properties satisfied by 
�H .
6

Proposition 3.3. The map �H is an audacious CAR for Hα satisfying: 
no-undercut with respect to Hα (that is, �H (X, Y ) ≤ Hα(X) for any 
X ∈ L∞+ , Y ∈ L∞), monotonicity, 1-law invariance, 1-positive homo-
geneity and 2-translation-invariance. Moreover, the following holds:

�H (a, Y ) = a

(
�−1

(
1 − α

P
(
Y ≥ x∗

α(Y )
)))−1

for any a ≥ 0, Y ∈ L∞.

Proof. Audacious CAR, no-undercut and monotonicity follow eas-
ily by monotonicity of Hα , while 1-law invariance and 1-positive 
homogeneity follow from the corresponding properties of Hα .

2-translation-invariance follows because, by cash-additivity of 
the Orlicz quantile, 

{
Y + c ≥ x∗

α(Y + c)
}= {

Y ≥ x∗
α(Y )

}
for any c ∈

R.
As regards the last statement, notice that

�H (a, Y ) = Hα

(
a1{Y ≥x∗

α(Y )}
)

= aHα

(
1{Y ≥x∗

α(Y )}
)

holds for any a ≥ 0 and Y ∈ L∞ by positive homogeneity of Hα . By 
taking A := {

Y ≥ x∗
α(Y )

}
, it follows that

Hα(1A) = inf

{
k > 0

∣∣∣∣E[�(
1A

k

)]
≤ 1 − α

}
= inf

{
k > 0

∣∣∣∣E[�(
1

k

)
1A

]
≤ 1 − α

}
= inf

{
k > 0

∣∣∣∣ 1

k
≤ �−1

(
1 − α

P (A)

)}

=
(

�−1
(

1 − α

P (A)

))−1

,

where the second equality holds because � is a Young function 
while the third one by strict monotonicity of �. �
3.2. Different capital allocation rules for πα

So far, we have generalized the CAR given by Xun et al. (2019)
for Hα , by using Orlicz quantiles. The introduction of the CAR �H , 
besides having an independent economic meaning, will serve as 
a step for the construction of CARs with no restrictions on the 
sign of the involved portfolios and sub-portfolios. In fact, in the 
following, we will propose different CARs for HG risk measures πα

and not only for Orlicz risk premia Hα , again by means of Orlicz 
quantiles. A comparison among the different CARs here proposed 
and the classical ones will be also provided.

Starting from the CAR proposed for Hα in (3.6) and from (3.3), 
we introduce a CAR for πα whose construction is inspired by that 
of HG risk measures. In particular, πα(X) = minx∈R{x + Hα((X −
x)+)} can be interpreted in an insurance-reinsurance view (be-
cause it is the inf-convolution of two risk measures, see Bellini and 
Rosazza Gianin, 2008) and can be seen as the minimal riskiness of 
a position X in the presence of an insurance with franchise/de-
ductible and where minimality is with respect to the deductible 
x. Indeed, Hα((X − x)+) can be interpreted as the premium to be 
paid for an insurance with a deductible x (or as the riskiness of the 
corresponding position). The main idea is therefore to define a CAR 
�π by mimicking the behavior of πα with respect to Hα and by 
focusing only on the situation where Y exceeds a given threshold 
(or deductible). In other words, the CAR below will measure the 
risk contribution of X by taking into account both the threshold of 
the whole portfolio Y and the minimal deductible for X .
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Definition 3.2. Given πα , we define the map �π : L∞ × L∞ → R
as

�π(X, Y ) := x∗
α(X) + �H

((
X − x∗

α(X)
)+

, Y
)

= x∗
α(X) + Hα

((
X − x∗

α(X)
)+

1{Y ≥x∗
α(Y )}

)
(3.8)

where x∗
α(X) (resp. x∗

α(Y )) is an Orlicz quantile at level α of X
(resp. of Y ).

The above definition extends �H to the whole L∞ , similarly to 
πα which extends Hα . From an economic point of view, we as-
sume that each sub-portfolio has a different liability threshold and 
focus on allocating the risk capital over such threshold, taking into 
account that the aggregate loss also exceeds its liability threshold.

As for �H , the definition of �π also depends on the choice of 
the two Orlicz quantiles x∗

α(X) and x∗
α(Y ), hence �π can be seen 

as a family of CARs. Furthermore, by Proposition 3.2 it follows that 
Orlicz quantiles of X and Y may reduce to essential supremum of 
these random variables under suitable assumptions on α and on 
the distributions of X and Y .

In the following, we will again fix x∗
α (used in (3.8)) to be the 

upper Orlicz quantile. Similar arguments would hold if the lower 
Orlicz quantile was fixed.

Here below, we provide an example of �π and then we list its 
general properties.

Example 3.2. Consider the case where �(x) = x. Then �π reduces 
to

�π(X, Y ) = q+
α (X) +

E
[(

X − q+
α (X)

)+
1{Y ≥q+

α (Y )}
]

1 − α

= q+
α (X) + P (A X,Y )

1 − α
E
[

X − q+
α (X) | A X,Y

]
where A X,Y := {X ≥ q+

α (X), Y ≥ q+
α (Y )}. For continuous X and Y , 

�π becomes

�π(X, Y )

= VaRα(X) + P (A X,Y )

1 − α
E
[

X − VaRα(X) | A X,Y
]

=
(

1 − P (A X,Y )

1 − α

)
VaRα(X) + P (A X,Y )

1 − α
E
[

X
∣∣ A X,Y

]
= (1 − β)VaRα(X) + β E [X | X ≥ VaRα(X), Y ≥ VaRα(Y ) ]

where β = βX,Y ,α := P (A X,Y )

1−α ∈ [0, 1]. In other words, �π is a con-
vex combination of VaRα(X) and of a term that is somehow re-
lated to the contribution to shortfall (3.2) but taking into account 
also VaRα(X).

Proposition 3.4. The map �π is a CAR for πα satisfying: no-undercut, 
riskless, 1-cash-additivity, 1-law invariance, 1-positive homogeneity, 2-
translation-invariance and cash-additivity.

Proof. It is easy to check that �π is a CAR with respect to πα .
No-undercut: by monotonicity of Hα , it follows that for any X, Y ∈
L∞

�π(X, Y ) = x∗
α(X) + Hα

((
X − x∗

α(X)
)+

1{Y ≥x∗
α(Y )}

)
≤ x∗

α(X) + Hα

((
X − x∗

α(X)
)+)

= πα(X).
7

Riskless follows immediately by riskless of Orlicz quantiles, while 
1-law invariance follows from the law invariance of the Orlicz quan-
tile and of Hα .

1-cash-additivity and 2-translation invariance: by cash-additivity of 
Orlicz quantiles, it holds that for any c ∈R and X, Y ∈ L∞

�π(X + c, Y )

= x∗
α(X + c) + Hα

((
X + c − x∗

α(X + c)
)+

1{Y ≥x∗
α(Y )}

)
= x∗

α(X) + c + Hα

((
X − x∗

α(X)
)+

1{Y ≥x∗
α(Y )}

)
= �π(X, Y ) + c

and

�π(X, Y + c) = x∗
α(X) + Hα

((
X − x∗

α(X)
)+

1{Y +c≥x∗
α(Y +c)}

)
= x∗

α(X) + Hα

((
X − x∗

α(X)
)+

1{Y ≥x∗
α(Y )}

)
= �π(X, Y ).

1-positive homogeneity: by positive homogeneity of Orlicz quantiles 
and of Hα , it follows that, for any λ ≥ 0 and any X, Y ∈ L∞ ,

�π(λX, Y ) = x∗
α(λX) + Hα

((
λX − x∗

α(λX)
)+

1{Y ≥x∗
α(Y )}

)
= λ

(
x∗
α(X) + Hα

((
X − x∗

α(X)
)+

1{Y ≥x∗
α(Y )}

))
= λ�π(X, Y ).

Cash-additivity follows by 2-translation-invariance and 1-cash-
additivity. �

Notice that �π fails to be monotone, as a consequence of the 
same failure of the Orlicz quantiles.

To remain in streamline of the definition of πα as an infi-
mum, here below we propose an alternative capital allocation rule, 
roughly speaking, on a “common quantile” whenever the infimum 
is attained. Thus, we consider a common liability threshold both 
for the sub-portfolio and for the aggregated loss Y , focusing on 
allocating the risk capital over such threshold, as in the previous 
definitions. The main reason is to investigate what happens when 
a threshold is not fixed a priori for X and Y but it is chosen so to 
minimize the capital to be allocated. As pointed out by an anony-
mous Referee, it could seem not reasonable to consider the same 
level both for X and for Y since they may have a different scale. 
Nevertheless, although X and Y are absolutely arbitrary in general, 
one should take into account their financial interpretation where 
X is a sub-unit (that is, roughly speaking, an “ingredient”) of the 
global position Y . Therefore, in our opinion it seems financially 
justifiable the idea of choosing a common level (to be minimized) 
for the deductible of X and for the threshold of Y .

Definition 3.3. Given the Orlicz risk premium Hα , we define the 
map �̄π : L∞ × L∞ →R as

�̄π (X, Y ) := inf
x∈R

{
x + Hα

(
(X − x)+ 1{Y ≥x}

)}
. (3.9)

We first establish some properties satisfied by �̄π , then inves-
tigate whether the infimum in (3.9) is attained or not.

Proposition 3.5. The map �̄π is a CAR with respect to πα satisfying: no-
undercut, monotonicity, 1-law invariance, cash-additivity and positive 
homogeneity.
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Proof. It is immediate to check that �̄π is a CAR with respect to 
πα . No-undercut and monotonicity follow easily by monotonicity 
of Hα , while 1-law invariance is a straightforward consequence of 
law invariance of Hα .

Cash-additivity: for any c ∈R and X, Y ∈ L∞ it holds that

�̄π (X + c, Y + c) = inf
x∈R

{
x + Hα

(
(X + c − x)+ 1{Y +c≥x}

)}
= inf

y∈R
{

y + c + Hα

(
(X − y)+ 1{Y ≥y}

)}
= �̄π (X, Y ) + c,

hence cash-additivity.

Positive homogeneity: the case of λ = 0 is immediate. For any λ > 0
and X, Y ∈ L∞ , instead,

�̄π (λX, λY ) = inf
x∈R

{
x + Hα

(
(λX − x)+ 1{λY ≥x}

)}
= inf

x∈R

{
x + Hα

(
λ
(

X − x

λ

)+
1{Y ≥ x

λ

})}
= inf

y∈R
{
λy + λHα

(
(X − y)+ 1{Y ≥y}

)}
= λ�̄π (X, Y )

where the third equality holds by positive homogeneity of Hα . �
Notice that the infimum is clearly attained in (3.9) whenever 

X ≤ Y because in such case �̄π coincides with πα . As shown in 
the following example, however, the infimum in (3.9) may be not 
attained in general.

To simplify the notation, for �(x) = x, we set

L X,Y (x) := x + E
[
(X − x)+1{Y ≥x}

]
1 − α

. (3.10)

Hence (3.9) becomes

�̄π (X, Y ) = inf
x∈R

{
x + E[(X − x)+1{Y ≥x}]

1 − α

}
= inf

x∈R
L X,Y (x).

Example 3.3. Take �(x) = x and two random variables X, Y with 
the following joint distribution P (X = k, Y = j) = 1

9 for any k, j =
−1, 0, 1.

It is easy to check that

L X,Y (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−x α
1−α , x ≤ −1,

x
(

1 − 4
9(1−α)

)
+ 2

9(1−α)
, −1 < x ≤ 0,

x
(

1 − 1
9(1−α)

)
+ 1

9(1−α)
, 0 < x ≤ 1,

x, x > 1.

For α = 1
9 , it can be easily seen that L X,Y is not convex in x and 

that infx∈R L X,Y (x) = − 1
4 is not attained. A similar result holds also 

for α = 5
9 , corresponding to P (X ≥ 0, Y ≥ 0) = 1 − α = 4

9 , that is, 
“more or less” the α-quantile of min{X, Y }.

For α = 8
9 or, equivalently, 1 −α = 1

9 =P (X ≥ 1, Y ≥ 1), it holds 
instead that infx∈R L X,Y (x) = 1 is attained at any point of the in-
terval (0, 1] but L X,Y is still not convex in x.

Also, due to non-convexity of L X,Y in x, it is quite hard to ob-
tain a general result for the existence of a minimum. However, as 
shown in the following result, the existence is guaranteed (at least) 
for continuous X and Y .
8

Proposition 3.6. If X, Y ∈ L∞ are two continuous random variables in 
L∞ and �(x) = x, then the infimum in (3.9) is attained at some x∗ ∈
[ess inf(min{X, Y }), ess sup(max{X, Y })].

Proof. Assume that X and Y have joint density function f X,Y and 
that �(x) = x. Then, it is immediate to check that L X,Y is continu-
ous in x ∈R and

L X,Y (x) = x + E[X − x]
1 − α

= − α

1 − α
x + E[X]

1 − α
, for x ≤ ess inf(min{X, Y })

while L X,Y (x) = x for x > ess sup(max{X, Y }). Hence L X,Y is de-
creasing on (−∞, ess inf(min{X, Y })) and increasing on
(ess sup(max{X, Y }), +∞). By continuity of L X,Y in x, it follows 
that there exists (at least) a minimum point belonging to the in-
terval [ess inf(min{X, Y }), ess sup(max{X, Y })]. �

Remember now that, in the literature, a very popular approach 
to capital allocation is the one based on the sub-differential of a 
risk measure ρ (see Delbaen, 2000); namely, in this case, the CAR 
is defined by �∂(X, Y ) =EQY [X] with QY being an optimal sce-
nario3 in the dual representation of ρ . By analogy, when dealing 
with capital allocation in the context of HG measures, it is mean-
ingful to replace, in the formulation of πα(X), the Orlicz quantile 
x∗
α(Y ) realizing the infimum in the definition of πα(Y ). This gives 

rise to a new CAR where the liability threshold is the same for 
each sub-portfolio and it is given by the Orlicz quantile of the ag-
gregated loss Y . As in the case of the sub-differential approach, 
also in this case there can be different optimal scenarios among 
which to choose, according to different financial criteria.

Definition 3.4. Given πα as in Definition 2.2, we define the map 
�̃π : L∞ × L∞ →R as

�̃π (X, Y ) := x∗
α(Y ) + Hα

((
X − x∗

α(Y )
)+)

where x∗
α(Y ) is an Orlicz quantile at level α of Y .

In the following, we fix x∗
α to be the upper Orlicz quantile. As 

previously, similar results would hold if the lower Orlicz quantiles 
were considered.

Proposition 3.7. The map �̃π is a CAR with respect to πα satisfy-
ing monotonicity, 1-law invariance and undercut (that is, �̃π(X, Y ) ≥
�̃π (X, X) = πα(X) for any X, Y ∈ L∞). Furthermore,

�̃π (a, Y ) = x∗
α(Y ) + (a − x∗

α(Y ))+

�−1(1 − α)
for any a ∈R, Y ∈ L∞.

(3.11)

Proof. By definition of x∗
α(X), it is straightforward to check that 

�̃π is a CAR with respect to πα . Furthermore, monotonicity and 
1-law invariance of �̃π follow by monotonicity and law invariance 
of Hα , while (3.11) by riskless of Hα .
Undercut: for any X, Y ∈ L∞

πα(X) = x∗
α(X) + Hα

((
X − x∗

α(X)
)+)

≤ x∗
α(Y ) + Hα

((
X − x∗

α(Y )
)+)

= �̃π (X, Y )

3 Notice that the sub-differential approach coincides with the gradient CAR when-
ever there is a unique optimal scenario.
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where the inequality holds by x∗
α(X) ∈ arg minx∈R{x + Hα((X −

x)+)}. �
Remark 3.1. In this section, we have introduced a generalization 
of the work of Xun et al. (2019) which shares with it the idea of 
linking X and Y in the argument of the Orlicz risk premium Hα , 
with a specific functional form.

This approach can be further generalized by considering a gen-
eral function f : L∞+ × L∞ → L∞+ “linking” the sub-portfolio X and 
the portfolio Y to yield the aggregated position f (X, Y ) ∈ L∞+ . 
Thus, the latter goes beyond the above allocation methods which 
necessarily focus on default events, allowing us to aggregate X
and Y by means of a general function. The particular case of 
f (X, Y ) := X1{Y >VaRα(Y )} corresponds then to the approach in Xun 
et al. (2019).

A CAR for the Orlicz risk premium and its extension for the 
HG risk measure can be provided by using the same procedure 
as for the corresponding πα and Hα . We refer to the working 
paper (Canna et al., 2020b) for a full treatment. A key role will 
play the assumptions on f , with special attention to the hypothe-
sis f (X, X) = X (called linking in Canna et al., 2020b). It becomes 
therefore evident that the risk contribution defined by Xun et al. 
(2019) is not a capital allocation rule with respect to the Orlicz 
risk premium because the function f (X, Y ) = X1{Y >VaRα(Y )} is not 
linking.

3.3. Comparison among different approaches and full allocation

A comparison among the three approaches introduced above 
and some well known capital allocation rules will be provided here 
below.

Proposition 3.8. The following relations hold for any X, Y ∈ L∞:

�̃π (X, Y ) ≥ πα(X) ≥ �π(X, Y ) and �̃π (X, Y ) ≥ �̄π (X, Y ).

Proof. First of all, for any X, Y ∈ L∞ , �̃π (X, Y ) ≥ πα(X) follows by 
undercut of �̃π (or by definition of x∗

α ) while πα(X) ≥ �π(X, Y )

by no-undercut of �π . Concerning the last inequality, instead, it 
holds that

�̃π (X, Y ) ≥ x∗
α(Y ) + Hα

((
X − x∗

α(Y )
)+

1{Y ≥x∗
α(Y )}

)
≥ inf

x∈R
{x + Hα

(
(X − x))+ 1{Y ≥x}

)= �̄π (X, Y ). �

As could be expected, �̃π dominates both �π and �̄π : indeed, 
�̃π depends only on the Orlicz quantile of Y , while �π depends 
on both the Orlicz quantiles of X and Y , and �̄π on a common 
quantile. So, in a certain sense, �̃π does not take into account the 
possibility that the risks of X and Y can compensate each other 
and hence assigns to X a higher “cost”.

Notice that, by Proposition 2.1 (see also Bellini and Rosazza 
Gianin, 2008), for HG risk measures the gradient capital alloca-
tion (2.9) becomes

�π
∇(X, Y ) = EQY [X]

= E

⎡⎣ �′
(

(Y −x∗
α(Y ))+

‖(Y −x∗
α(Y ))+‖�α

)
1{Y >x∗

α(Y )}

E
[
�′
(

(Y −x∗
α(Y ))+

‖(Y −x∗
α(Y ))+‖�α

)
1{Y >x∗

α(Y )}
] X

⎤⎦ (3.12)

since

dQY

dP
=

�′
(

(Y −x∗
α(Y ))+

‖(Y −x∗
α(Y ))+‖�α

)
1{Y >x∗

α(Y )}

E
[
�′
(

(Y −x∗
α(Y ))+

∗ +
)

1{Y >x∗
α(Y )}

] . (3.13)
‖(Y −xα(Y )) ‖�α

9

This allows us to compare �π and �̃π with the gradient approach 
and with the Aumann-Shapley method.

Proposition 3.9. (a) For any X, Y ∈ L∞ it holds that

�π(X, Y ) ≥E

[
X

1{Y ≥x∗
α(Y )}

�−1(1 − α)

]
+ x∗

α(X)

(
1 − P (Y ≥ x∗

α(Y ))

�−1(1 − α)

)
.

(3.14)

Moreover, if �(x) = x and Y is a continuous random variable, then
�π(X, Y ) ≥ �π∇(X, Y ) and �π(X, Y ) ≥ �π

AS(X, Y ) for any X ∈
L∞ .

(b) ̃�π ≥ �π∇ and ̃�π ≥ �π
AS .

Proof. (a) For any X, Y ∈ L∞ it holds that

�π(X, Y ) = x∗
α(X) + Hα

(
(X − x∗

α(X))+1{Y ≥x∗
α(Y )}

)
≥ x∗

α(X) + E
[
(X − x∗

α(X))+1{Y ≥x∗
α(Y )}

]
�−1(1 − α)

≥E

[
X

1{Y ≥x∗
α(Y )}

�−1(1 − α)

]
+ x∗

α(X)

(
1 − P (Y ≥ x∗

α(Y ))

�−1(1 − α)

)
,

(3.15)

where the first inequality is due to Hα (Z) ≥ E[Z ]
�−1(1−α)

for Z ∈ L∞+
(see Haezendonck and Goovaerts, 1982 and Goovaerts et al., 2004).

Since, for �(x) = x and for a continuous Y , (3.13) becomes

dQY

dP
= 1{Y >q+

α (Y )}
P (Y > q+

α (Y ))
= 1{Y ≥x∗

α(Y )}
1 − α

,

(3.15) implies �π(X, Y ) ≥ �π∇(X, Y ) and, for any γ ∈ (0, 1),

�π(X, Y ) ≥
E
[

X1{Y >q+
α (Y )}

]
P (Y > q+

α (Y ))

=
E
[

X1{γ Y >q+
α (γ Y )}

]
P (γ Y > q+

α (γ Y ))
= EQγ Y [X],

where the first equality holds by positive homogeneity of the 
quantile. Thus

�π(X, Y ) =
1∫

0

�π(X, Y )dγ ≥
1∫

0

EQγ Y [X]dγ = �π
AS(X, Y ).

(b) From Proposition 3.8 it follows that for any X, Y ∈ L∞

�̃π (X, Y ) ≥ πα(X) = EQX [X] ≥EQY [X] = �π
∇(X, Y )

where the second inequality is due to the fact that QX is the max-
imizer for X . By similar arguments it follows that

�̃π (X, Y ) =
1∫

0

�̃π (X, Y )dγ ≥
1∫

0

EQX [X]dγ

≥
1∫

0

EQγ Y [X]dγ = �π
AS(X, Y )

holds for any X, Y ∈ L∞ . �
To conclude with the properties satisfied by the different CARs, 

it is also easy to see that none of the proposed methods satisfies 
full allocation, even when the allocation maps are CARs (�(X, X) =
ρ(X)), as they are not linear in the first variable. However, one can 
always modify such CARs in order to get the desired property, as 
discussed in Section 2.2.
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4. Robust versions

So far, no ambiguity on the choice of the probability measure P or 
on the choice of the Young function � has been considered. Fol-
lowing the approach of Bellini et al. (2018), who introduced robust 
Orlicz premia and robust HG risk measures, in this section we pro-
vide extensions and robust versions of the approaches presented in 
the paper, to deal with ambiguity with respect to the probabilistic 
model P as well as to the choice of the Young function �.

4.1. Ambiguity over P

Ambiguity over the probabilistic model has been largely consid-
ered in decision theory, when facing the problem of maximizing 
the expected utility. This idea is commonly expressed by consid-
ering a set of probability measures, instead of assuming a single 
one. For a detailed treatment of the argument see, among oth-
ers, Cerreia-Vioglio et al. (2011), Gilboa and Schmeidler (1989), and 
Maccheroni et al. (2006).

Quite recently, Bellini et al. (2018) have introduced robust ver-
sions of Orlicz risk premia for α = 0. In particular, they con-
sider the multiple priors, the variational preferences and the ho-
mothetic preferences approaches (see Cerreia-Vioglio et al., 2011; 
Chateauneuf and Faro, 2010; Gilboa and Schmeidler, 1989; Mac-
cheroni et al., 2006 for details on robust versions of expected 
utility) and show that these three different approaches can be for-
mulated in a unified way.

Since our aim is to generalize the capital allocations for Orlicz 
premia and HG risk measures introduced in Section 3, by taking 
into account ambiguity over P , we need to consider robust Orlicz 
premia and robust HG risk measures for a general α ∈ [0, 1) so to 
be able to introduce “robust” Orlicz quantiles. We focus here on 
the “variational preferences” approach in the general case where 
α ∈ [0, 1) (referring to Bellini et al., 2018 for α = 0) and where Q
is the set of all probability measures absolutely continuous with 
respect to P over which there is ambiguity.

4.1.1. Robust Orlicz premia and robust HG risk measures for α ∈ [0, 1)

In this section, we generalize and study robust Orlicz risk pre-
mia and robust HG risk measures (introduced in Bellini et al., 2018
for α = 0) to the general case of α ∈ [0, 1).

Definition 4.1. Let a Young function � be given and let α ∈ [0, 1)

be fixed. The robust Orlicz risk premium of X ∈ L∞+ is defined as

Hc,α(X)

:= inf

{
k > 0

∣∣∣∣∣ sup
Q∈Q

{
EQ

[
�

(
X

k

)]
− c(Q)

}
≤ 1 − α

}
(4.1)

where c : Q → [0, +∞] is convex and lower semi-continuous, sat-
isfying

infQ∈Q c(Q) = 0; while the robust Haezendonck-Goovaerts risk 
measure of X ∈ L∞ is defined as

πc,α(X) := inf
x∈R

{
x + Hc,α

(
(X − x)+

)}
. (4.2)

For α = 0, Hc := Hc,0 and πc := πc,0 correspond, respectively, 
to the robust Orlic premia and to the robust HG risk measure stud-
ied by Bellini et al. (2018). When c : Q → [0, +∞] is given by

c(Q) =
{

0, if Q ∈ S,

+∞, if Q /∈ S,

for S ⊆ Q, Hc,α reduces to the particular case of multiple priors, 
given by
10
HS,α(X) := inf

{
k > 0

∣∣∣∣∣ sup
Q∈S

EQ

[
�

(
X

k

)]
≤ 1 − α

}
, (4.3)

while

πS,α(X) := inf
x∈R

{
x + HS,α

(
(X − x)+

)}
. (4.4)

We now slightly generalize the results of Bellini et al. (2018)
concerning the properties of robust Orlicz premia and the coher-
ence of robust HG risk measures to the general case of α ∈ [0, 1). 
The proof is omitted since it follows the same scheme of (Bellini et 
al., 2018, Lm 5, Thm 3) and of (Bellini and Rosazza Gianin, 2008, 
Prop. 12).

Proposition 4.1. (a) For any X ∈ L∞+ with X �= 0, Hc,α(X) is the unique 
solution of

sup
Q∈Q

{
EQ

[
�

(
X

Hc,α(X)

)]
− c(Q)

}
= 1 − α. (4.5)

Moreover, Hc,α is monotone, subadditive, positively homogeneous and 
satisfies Hc,α(b) = b

�−1(1−α)
, for any b ≥ 0.

(b) For any α ∈ [0, 1), πc,α is a coherent risk measure.

Our aim is now to generalize the approaches based on Orlicz 
quantiles of Section 3 to provide a robust version of CARs. In or-
der to do so, we first need to go back to the definition of Orlicz 
quantiles and notice that it depends on the particular choice of 
the probability measure P . Therefore, a robust version of Orlicz 
quantiles is needed for our purpose. We firstly have to establish 
whether the infimum of (4.2) is attained or not. In such a case, 
then, we will focus on the minimizers.

4.1.2. Existence of the minimum
To simplify the notation, for X ∈ L∞ and x ∈R we set

πc,α(X, x) := x + Hc,α
(
(X − x)+

)
, (4.6)

so that πc,α(X) = infx∈R πc,α(X, x). We also set πc(X, x) :=
πc,0(X, x).

We now summarize those properties of πc,α(X, x) which will 
be useful in the following. The proof follows easily from the prop-
erties of Hc,α .

Proposition 4.2. Let X ∈ L∞ , α ∈ [0, 1) and πc,α(X, x) be given 
by (4.6).

(a) πc,α(X, x) is convex in x ∈R.
(b) πc,α(X + b, x) = πc,α(X, x − b) + b, for any x, b ∈R.
(c) πc,α(λX, x) = λπc,α

(
X, x

λ

)
, for any λ > 0.

Similarly to the non-robust case, also in the robust case the 
infimum in (4.2) is always attained for any α �= 0.

Proposition 4.3. If α �= 0 then the infimum in the definition of πc,α , 
given by (4.2), is always attained.

Proof. The proof follows the scheme of (Bellini and Rosazza Gi-
anin, 2008, Prop. 16).

Take X ∈ L∞ , α ∈ (0, 1) and πc,α(X, x) as in (4.6). Since 
πc,α(X, x) is convex in x (see Proposition 4.2) and πc,α(X, x) = x, 
for x ≥ ess sup(X), it is enough to show that πc,α(X, x) is decreas-
ing on some interval, to prove the thesis. Take then x < ess inf(X); 
we are going to show that there exists a b0 ∈ R such that 
πc,α(X, x − b) − πc,α(X, x) > 0 for any b > b0.
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First, we notice that, for x < ess inf(X) and b > 0, we have

πc,α(X, x − b) − πc,α(X, x)

= Hc,α(X − x + b) − Hc,α(X − x) − b.

It remains to compare Hc,α(X − x + b) and Hc,α(X − x) + b.
On the one hand, for b > 0

f (b) := sup
Q∈Q

{
EQ

[
�

(
X − x + b

Hc,α(X − x) + b

)]
− c(Q)

}
≥ sup

Q∈Q

{
EQ

[
�

(
ess inf(X) − x + b

Hc,α(ess sup(X) − x) + b

)]
− c(Q)

}

= �

⎛⎝ess inf(X) − x + b
ess sup(X)−x
�−1(1−α)

+ b

⎞⎠−−−−→
b→+∞

�(1) = 1,

since infQ∈Q c(Q) = 0, both Hc,α and � are monotone and � is 
continuous. On the other hand, it follows similarly that

f (b) ≤ sup
Q∈Q

{
EQ

[
�

(
ess sup(X) − x + b

Hc,α(ess inf(X) − x) + b

)]
− c(Q)

}

= �

⎛⎝ess sup(X) − x + b
ess inf(X)−x
�−1(1−α)

+ b

⎞⎠−−−−→
b→+∞

�(1) = 1.

Therefore,

lim
b→+∞

f (b) = 1 > 1 − α

= sup
Q∈Q

{
EQ

[
�

(
X − x + b

Hc,α
(

X − x + b
))]− c(Q)

}

holds because α ∈ (0, 1). Hence, since EQ
[
�
( X

h

)]
is decreasing in 

h > 0 for any Q ∈Q, it follows that there exists a b0 ∈R such that 
Hc,α(X − x + b) > Hc,α(X − x) + b for any b > b0. The thesis then 
follows. �

The result above shows that the infimum of πc,α is always 
attained for α �= 0, similarly to the non-robust case. We now con-
sider the case α = 0, starting from the following.

Proposition 4.4. If α = 0 then, for any X ∈ L∞ , πc(X, x) is increasing 
in x ∈R.

Proof. Let X ∈ L∞ be fixed. For any x ≥ ess sup(X) it holds that 
πc(X, x) = x. For any x < ess sup(X) and for any b > 0

πc(X, x − b) − πc(X, x)

≤ Hc
(
(X − x)+ + b

)− Hc
(
(X − x)+

)− b

≤ Hc
(
(X − x)+

)+ b − Hc
(
(X − x)+

)− b = 0

because of Hc(b) = b and of subadditivity of the positive part and 
of Hc . �

It follows from the proposition above that, for α = 0, either the 
infimum in (4.2) is not attained or it is attained at any point of 
(−∞, x0] for some x0 ≤ ess sup(X). The following result investi-
gates the existence of the minimum for α = 0 when �(x) = x, in 
terms of conditions on the penalty function c.

Proposition 4.5. Let �(x) = x and let X ∈ L∞ be non-constant.
If infQ∈Q c(Q)

> 0, then the infimum in πc(X) is not attained.
1+c(Q)
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Proof. If �(x) = x, then Hc(X) = supQ∈Q
EQ[X]
1+c(Q)

for any X ∈ L∞+ . 
By Proposition 4.4, πc(X, x) is increasing in x ∈R.

For any X ∈ L∞ , it is therefore enough to consider x ≤
ess inf(X). Then for any b > 0 we have

πc(X, x − b) − πc(X, x)

= Hc(X − x + b) − Hc(X − x) − b

= sup
Q∈Q

EQ [X − x + b]

1 + c(Q)
− sup

Q∈Q
EQ [X − x]

1 + c(Q)
− b

≤ sup
Q∈Q

b

1 + c(Q)
− b

= −b inf
Q∈Q

c(Q)

1 + c(Q)
< 0,

where the last inequality holds by hypothesis. So, πc(X, x) is 
strictly increasing in (−∞, ess inf(X)). The thesis then follows. �

Whenever infQ∈Q c(Q)
1+c(Q)

= 0, it can be easily checked that the 
infimum in πc(X) may be attained or not.

4.1.3. Robust Orlicz quantiles
Before introducing the notion of robust Orlicz quantiles we 

present an illustrative and motivating example.

Example 4.1. Given a probability space (�, F , P ), with � =
{ω1, ω2, ω3} and P (ωi) > 0 for any i = 1, 2, 3, we consider the 
random variable

X =

⎧⎪⎨⎪⎩
−4, on ω1,

4, on ω2,

8, on ω3;
and the set S = {Q1, Q2} of probability measures with Q1(ω1) =
Q1(ω2) = 1

4 , Q1(ω3) = 1
2 and Q2(ω1) = 1

8 , Q2(ω2) = 1
2 , Q2(ω3)

= 3
8 .
For �(x) = x, it follows that (see Bellini et al., 2018)

πS,α(X) = inf
x∈R

{
x + sup

Q∈S
EQ[(X − x)+]

1 − α

}
.

For α = 1
4 , it can be easily checked that πS,α(X) = 20

3 and the 
infimum in (4.4) is attained at any point of the interval [0, 4]. For 
α = 1

2 , instead, πS,α(X) = 8 and the infimum in (4.4) is attained 
at any point of the interval [4, 8]. Therefore, the infimum is not 
unique in such cases.

Something similar can be found also for the strictly convex 
�(x) = x2.

The example above justifies the extension of the definition of 
Orlicz quantiles (depending on the probability P given a priori) 
to the present setting dealing with ambiguity on the choice of P . 
Differently from the non-robust case, where for �(x) = x the min-
imizers x∗

α reduce to classical quantiles with respect to P , in the 
present setting (corresponding to ambiguity and to multiple pri-
ors – penalized by c or not) the minimizers take into account 
all the multiple priors, hence they can be interpreted as “ro-
bust quantiles”. Referring to the previous example, indeed, while 
qQ1,α = [−4, 4] and qQ2,α = {4} for α = 1

4 , qQ1,α = [4, 8] and 
qQ2,α = {4} for α = 1

2 (where qQ,α denotes the set of α-quantiles 
with respect to Q), in the robust case qS,α = [0, 4] for α = 1

4 and 
qS,α = [4, 8] for α = 1

2 (where qS,α denotes the set of minimizers 
in the multiple prior case, later called robust α-quantiles).
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Motivated by the previous example and by Proposition 4.3, 
guaranteeing that the infimum in πc,α is always attained for α �= 0, 
it looks then natural to follow the same scheme of the non-robust 
case and call any

x∗
c,α(X) ∈ arg min

x∈R
πc,α(X, x)

a robust Orlicz quantile at level α of X . In analogy with the non-
robust case, we use the notations:

x∗,−
c,α (X) := inf arg min

x∈R
πc,α(X, x),

x∗,+
c,α (X) := sup arg min

x∈R
πc,α(X, x).

Proposition 4.6. For any α ∈ (0, 1) and X ∈ L∞ , the set of robust Orlicz 
quantiles is a closed interval satisfying: cash-additivity, positive homo-
geneity and riskless. Moreover, robust Orlicz quantiles are bounded from 
above, i.e. x∗,+

c,α (X) ≤ ess sup(X) for any X ∈ L∞ .

Proof. The proof follows from Propositions 4.2 and 4.3, similarly 
to the non-robust case. �

Since robust Orlicz quantiles satisfy most of the properties of 
the non-robust ones, we extend now the definitions of CARs given 
in Section 3 to the robust case. The following definitions have a 
similar motivation and interpretation of the non-robust case where 
we focus on allocating the risk capital to the sub-portfolios when 
their losses exceed their liability threshold and the aggregate loss 
also exceeds its liability threshold. Differently from the non-robust 
case, here we use robust Orlicz quantiles, that is, we assume that 
each sub-portfolio faces ambiguity over the probabilistic model P
in the variational preferences approach.

Definition 4.2. Given the robust Orlicz risk premium Hc,α and the 
robust HG risk measure πc,α , we define �H

c : L∞+ × L∞ →R+ as

�H
c (X, Y ) := Hc,α

(
X1{Y ≥x∗

c,α(Y )
})

and the map �π
c : L∞ × L∞ →R as

�π
c (X, Y ) := x∗

c,α(X) + �H
((

X − x∗
c,α(X)

)+
, Y
)

= x∗
c,α(X) + Hc,α

((
X − x∗

c,α(X)
)+

1{Y ≥x∗
c,α(Y )}

)
(4.7)

where x∗
c,α(X) is a robust Orlicz quantile at level α of X .

As already remarked for Definition 3.1, if all the sub-portfolios 
X are positive, then it is reasonable to assume that the whole 
portfolio Y is positive a fortiori, so �H

c could be defined only on 
L∞+ × L∞+ . Nevertheless, we have decided to define �H (X, Y ) for 
any Y ∈ L∞ in view of (4.7) where Y is not necessarily positive. 
The result below, however, holds as well also for the restriction of 
�H

c to L∞+ × L∞+ . As previously, in the following we fix x∗
c,α(X) to 

be the upper robust Orlicz quantile at level α of X .
As shown in the following result, �H

c and �π
c have similar 

properties to the non-robust case. The proof is omitted because 
similar to the non-robust case.

Proposition 4.7. The map �H
c is an audacious CAR for Hc,α satisfying: 

no-undercut, monotonicity, 1-positive homogeneity and 2-translation-
invariance, while �π

c is a CAR for πc,α satisfying no-undercut, riskless, 
1-cash-additivity, 1-positive homogeneity, 2-translation-invariance and 
cash-additivity.

Similarly to the non-robust case, it is possible to extend also 
�̄π of Definition 3.3 and �̃π of Definition 3.4 to the robust case.
12
4.2. The case of multiple �

In this section, we consider the situation where the decision-
maker is uncertain about the Young function to be used, while we 
assume there is only one P . As before, we follow the scheme of 
Bellini et al. (2018) and take a worst-case approach for the multi-
plicity of possible Young functions.

We begin by clarifying which set P of Young functions is suit-
able for the purpose. The choice below guarantees that supP still 
remains a Young function.

Definition 4.3. A non-empty set P of Young functions, equipped 
with the pointwise order (i.e. 	 ≥ � :⇐⇒ 	(x) ≥ �(x), ∀x > 0), is 
said to be proper if (supP)(x) = sup�∈P �(x) < +∞ for all x > 0.

Here below, we generalize to α ∈ [0, 1) the definitions intro-
duced by Bellini et al. (2018) for α = 0.

Definition 4.4. Let P be a proper set of Young functions and let 
α ∈ [0, 1) be fixed. The �-robust Orlicz risk premium of X ∈ L∞+ is 
defined as

HP,α(X) := inf

{
k > 0

∣∣∣∣ sup
�∈P

E

[
�

(
X

k

)]
≤ 1 − α

}
, (4.8)

while the �-robust Haezendonck-Goovaerts risk measure of X ∈ L∞
as

πP,α(X) := inf
x∈R

{
x + HP,α

(
(X − x)+

)}
. (4.9)

It then follows that HP (0) = 0 and that, for α = 0, HP := HP,0
reduces to that of Bellini et al. (2018).

The key result is contained in the next proposition, where we 
will use – and so in the following – the notation H�

α (X) = Hα(X)

of Definition 2.1 to emphasize the dependence on �.

Proposition 4.8. Let P be a proper set of Young functions. Then, for any 
X ∈ L∞+ , we have

HP,α(X) = HsupP
α (X).

Proof. Take X ∈ L∞+ . By Proposition 25(b) in Bellini et al. (2018), 
HP (X) = sup�∈P H�(X) holds. Since the same argument remains 
valid for α �= 0, we assume such a result here too. Therefore, we 
only need to prove that sup�∈P H�

α (X) = HsupP
α (X). To this end, 

since P is proper, it is enough to prove that H�
α is monotone in-

creasing in �. Take any 	, � ∈P , with 	 ≥ �, then

E

[
�

(
X

H	
α (X)

)]
≤E

[
	

(
X

H	
α (X)

)]
= 1 − α = E

[
�

(
X

H�
α (X)

)]
that implies H	

α (X) ≥ H�
α (X), since E 

[
�
( X

h

)]
is decreasing in h >

0. �
The properties of HP,α and of πP,α then follow from Proposi-

tion 4.8.

Proposition 4.9. Let P be a proper set of Young functions and α ∈ [0, 1). 
Then HP,α is monotone, subadditive and positively homogeneous and 
πP,α is a law invariant coherent risk measure.
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Proof. By Proposition 4.8, we have HP,α = HsupP
α , where supP

is a Young function, since P is proper. The thesis then follows by 
Propositions 2 and 12 of Bellini and Rosazza Gianin (2008), since 
they hold for any Young function. �

As in the case of ambiguity about the probabilistic model, to 
pursue our purpose we need to establish if the infimum of πP,α is 
attained or not. However, in this case, it is clear that the infimum 
is always attained for α �= 0, since πP,α is simply πα with supP
as Young function.

We define, indeed, a �-robust Orlicz quantile at level α of X as 
any

x∗
P,α(X) ∈ arg min

x∈R
πP,α(X, x).

It is clear that �-robust Orlicz quantiles satisfy the same prop-
erties of non-robust ones, as in Proposition 3.1. By means of �-
robust Orlicz quantiles, we therefore introduce the following defi-
nitions of �-robust CARs with similar motivations and interpreta-
tions of the non-robust �H and �π . In the present case, however, 
HP,α takes into account ambiguity over �.

Definition 4.5. Given the �-robust Orlicz risk premium HP,α and 
the �-robust HG risk measure πP,α , we define �H

P : L∞+ × L∞ →
R+ as

�H
P (X, Y ) := HP,α

(
X1{

Y ≥x∗
P,α

(Y )
})

and �π
P : L∞ × L∞ →R as

�π
P (X, Y )

:= x∗
P,α(X) + �H

((
X − x∗

P,α(X)
)+

, Y
)

= x∗
P,α(X) + HP,α

((
X − x∗

P,α(X)
)+

1{Y ≥x∗
P,α

(Y )}
) (4.10)

where x∗
P,α(X) a �-robust Orlicz quantile at level α of X .

Thus, according to the above definition, the liability threshold 
of each sub-portfolio and of the aggregated loss Y is given by 
their corresponding �-robust Orlicz quantiles. As previously, we 
fix x∗

P,α(X) to be the upper �-robust Orlicz quantile at level α of 
X .

The main properties of the �-robust CARs above are provided 
in the following result that can be proved similarly to the non-
robust case.

Proposition 4.10. �H
P is an audacious CAR for HP,α which satisfies no-

undercut, monotonicity, 1-law invariance, 1-positive homogeneity and 
2-translation-invariance, while �π

P is a CAR for πP,α satisfying no-
undercut, riskless, 1-cash-additivity, 1-law invariance, 1-positive homo-
geneity, 2-translation-invariance and cash-additivity.

As previously, it is possible to extend also �̄π of Definition 3.3
and �̃π of Definition 3.4 to the �-robust case. Furthermore, sim-
ilarly to the non-robust case, it is also possible to define robust 
versions of the linking-based approach. We refer the interested 
reader to Canna et al. (2020b) for a full treatment.
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