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We investigate here a generalized construction of spherical wavelets/needlets which admits extra-flexibility in the
harmonic space, i.e., it allows the corresponding support in multipole (frequency) space to vary in more general
forms than in the standard constructions. We study the analytic properties of this system and we investigate its
behaviour when applied to isotropic random fields: more precisely, we establish asymptotic localization and un-
correlation properties (in the high-frequency sense) under broader assumptions than typically considered in the
literature.
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1. Introduction and Statement of the Results
The statistical analysis of spherical random fields has become a rather important research topic in
the last 15 years. In particular, strong motivations have come from a variety of fields, most notably
Cosmology and Astrophysics, Geophysics, Climate Sciences: at the same time, it has become clear
that the analysis of spherical data can lead to a number of deep mathematical issues, which have
independent interest (see [19, 24, 31, 43] and the references therein). Among these issues, a very
important role has been played by the investigation of spherical wavelet systems, and the analysis of
their properties when applied to spherical random fields.

Among spherical wavelets, one of the most successful proposals is certainly the needlet system,
which was introduced by [32, 33] and then applied to random fields and cosmological data immediately
after by [3, 28, 36]; applications to spherical density estimation were considered in [4] (see also [5]),
whereas extensions to more general harmonic kernels were discussed by [17]. Needlets on one hand
represent a tight-frame system and hence satisfy classical requirements of approximation theory; on the
other hand under some regularity conditions needlet coefficients have been shown to enjoy asymptotic
uncorrelation properties (in the high-resolution sense) which makes their application to random fields
extremely powerful. Extensions of the needlet construction to more general manifolds were given for
instance by [23, 18, 12, 22, 11]. Statistical applications are currently too many to be recalled in any
reasonable completeness: we refer for instance to [20, 21] or more recently [7, 10, 13, 14, 25, 42, 44, 16,
26]. Applications in Cosmology and Astrophysics are discussed for instance in [9, 30, 35, 39, 45, 46]
and the references therein.

Our purpose in this paper is to generalize the needlet construction, allowing for a much more flexible
form of the kernel function in the harmonic space; we then proceed to investigate the properties of
these generalized needlet transforms when applied to isotropic spherical random fields. In particular,
we establish explicit bounds on the decay of the correlation function for needlet coefficients under
much broader conditions than given in the existing literature; these results make possible asymptotic
statistical inference in the high-frequency sense for a much greater family of random models. In order
to make these statements more precise, however, we need first to review some notation and background
results.
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1.1. Some Background Results and Notation

Let us recall first some standard background material on harmonic analysis on the sphere; we re-
fer for instance to [2, 29] for more discussion and details. We write as usual L2

(
Sd
)

to denote the

space of square-integrable functions on the sphere (with respect to Lebesgue measure), where Sd is the

d−dimensional sphere embedded in Rd+1; ωd = 2π
d+1

2

Γ( d+1
2 )

denotes the d-dimensional spherical surface

measure, with Γ(·) the usual Gamma function. The following decomposition holds:

L2
(
Sd
)

=

∞⊕
`=0

H`;d ,

where H`;d is the restriction to Sd of the space of harmonic and homogeneous polynomials of degree
` on Rd+1. The spacesH`;d have dimension

N`;d =
`+ ηd
ηd

(
`+ 2ηd − 1

`

)
=

2`d−1

(d− 1)!
(1 + o` (1)) , ηd =

(d− 1)

2
;

the elements
{
f` ∈H`;d

}
are the eigenfunctions of the Laplace-Beltrami operator

∆Sdf` =−`(`+ d− 1)f` , `= 0,1,2, ...

OnH`;d, we can choose a (real or complex-valued) orthonormal basis, which we write as{
Y`,m :m= 1, . . . ,N`;d

}
, omitting the dependence on the dimension d. More explicitly, this entails

that every function f ∈ L2
(
Sd
)

admits the L2 expansion

f (x) =
∑
`≥0

N`;d∑
m=1

a`,mY`,m (x) , (1.1)

where, for `≥ 0 and m= 1, . . . ,N`;d,

a`,m =

∫
Sd
Y `,m (x)f (x)dx ∈C ,

are the so-called spherical harmonic coefficients, whereas dx denotes the surface measure. For any
choice of an orthonormal basis, the following addition formula holds

Z`;d (x1, x2) =

N`,d∑
m=1

Y `,m (x1)Y`,m (x2)

=
`+ ηd
ηdωd

G
(ηd)
` (〈x1, x2〉) , for x1, x2 ∈ Sd,

where 〈·, ·〉 denotes the standard scalar product over Rd+1, G(ηd)
` is the Gegenbauer polynomial of

degree ` and parameter ηd (see [2], Chapter 2) defined by

G
(ηd)
` (x) =

(−1)`

2``!

Γ(ηd + 1
2 )Γ(`+ 2ηd)

Γ(2ηd)Γ(ηd + `+ 1
2 )

(1− x2)−ηd+1/2 d`

dx`
[(1− x2)`+ηd−1/2].
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With some abuse of notation, we shall write both Z`;d (x, y) or Z`;d (〈x, y〉), depending on the
context. For instance, for d= 2 we have

Z`;2 (x1, x2) =
2`+ 1

4π
P` (〈x1, x2〉) ,

where P0(t)≡ 1 and

P` (·) : [−1,1]→R , P` (t) :=
d`

dt`
(t2 − 1)` , `= 1,2, ...,

is the usual Legendre polynomial.
The following reproducing kernel property holds∫

Sd
Z`;d (〈x, y〉)P`′;d (〈y, z〉)dy = Z`;d (〈x, z〉) δ``′ , for all `, `′ ∈N ,

where δ·· is the Kronecker delta. Clearly for any f ∈ L2
(
Sd
)

its projection over the spaceH`;d is given
by

f` (x) = Z`;d [f ] (x) =

∫
Sd
Z`;d (〈x, y〉)f (y)dy =

N`,d∑
m=1

a`,mY`,m (x) .

The standard needlet kernel, as introduced by [32], can then be defined as follows; for any j = 1,2, ...

Ψj (x, y) =
∑
`≥0

b

(
`

Bj

)
Z`,d (〈x, y〉) ,

where B > 1 is a fixed (bandwidth) parameter, whereas b(·) : R→R is a weight function which satis-
fies three properties: a) it is compactly supported in [ 1

B ,B]; b) it is C∞; c) it satisfies the Partition of
Unity property, namely,

∑
j≥0 b

2( `
Bj

) = 1, for all ` ∈N.
Under these conditions, in [32] the following nearly-exponential localization property is established;

for all x, y ∈ S2 and for all integers M, there exists a constant cM (depending on b(·), but not on x, y
or j) such that ∣∣Ψj (x, y)

∣∣≤ cMB
dj[

1 +BjdS2(x, y)
]M , (1.2)

where dS2(x, y) := arccos(〈x, y〉) is the standard geodesic distance on the sphere. This key localization
property can then be exploited to derive a number of extremely important features of the needlet system;
indeed the needlet projectors are simply defined by

ψj,k (x) =
√
λj,k

∑
`≥0

b

(
`

Bj

)
Z`,d

(〈
x, ξj,k

〉)
, (1.3)

where
{
ξj,k : j ≥ 0, k = 1, . . . ,Kj

}
and

{
λj,k : j ∈N, k = 1, . . . ,Kj

}
are cubature points and weights

respectively, see also [32]. The corresponding needlet coefficients are defined as

βj,k = 〈f,ψj,k〉L2(Sd), j ≥ 0, k = 1, . . . ,Kj , (1.4)
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where f(·) denotes any (random or deterministic) function in L2
(
Sd
)
.

As mentioned above, a key ingredient for the interest that needlet transforms have drawn when
applied to the analysis of spherical random fields are their asymptotic uncorrelation properties. We can
recall them briefly as follows.

Recall that a random field f on the unit sphere Sd is isotropic if its distribution law is invariant with
respect to the action of the group of rotations SO(d+1). Assume we have a zero-mean, finite variance,
isotropic random field on Sd; then the spectral representation (1.1) holds in the L2

(
Ω× Sd

)
sense,

where the family of zero-mean random coefficients
{
a`,m

}
`∈N,m=1,...,N`;d

satisfies

E
[
a`,ma`′,m′

]
= δ`

′
` δ

m′
m C` , `, `′ ∈N,m,m′ = 1, . . . ,N`;d.

The sequence {C`}`∈N is labelled the angular power spectrum of the random field. In [3] and many
subsequent papers (starting from [5, 27]), it is assumed that the angular power spectrum obeys some
regularity condition such as

C` = g(`)`−α, α > 2 (1.5)

for some positive g ∈ C∞ such that its r-derivative g(r)(u) =
drg(u)
dur = O(u−r), r ∈ N, , as u→∞

(for ` = 0 we allow C` = C0 to take any finite, nonnegative value). For instance, g(·) could be any
slowly-varying function, in the sense of [6]. Now write

βj(x) :=

∫
Sd
f(y)Ψj (x, y)dy ; (1.6)

up to a normalization, (1.6) can be simply interpreted as a continuous version of (1.4): note indeed
that βj,k = βj(ξj,k)

√
λj,k. Assuming that {f(·)} is an isotropic spherical random field whose angular

power spectrum satisfies (1.5), it was shown in [3] that for all positive integers N there exists cN > 0
such that

|Corr(βj(x), βj(y))| ≤ cN
(1 +BjdS2(x, y))N

for all j ∈N. (1.7)

In words, (1.7) is stating that for any two fixed points on the sphere, the correlation between the stan-
dard needlet transforms of order j at these two points is going to zero nearly-exponentially (i.e., faster
than any polynomials) as j diverges. This uncorrelation property is equivalent to high-frequency in-
dependence in the Gaussian case, and hence it makes possible the implementation of a number of
statistical procedures whose properties can be rigorously established, in the high-frequency regime.

Notation

From now on we will define θxy = θ := dSd(x, y), for x, y ∈ Sd and θ ∈ [0, π]. With some abuse of
notation we will write equivalently Ψj(x, y) and Ψj(cosθxy) = Ψj(cosθ). As usual, given f(x) a Cn

function, we will use f (n)(x) to denote its n−derivative, whereas c, ck will be used to denote positive
constants, whose values can change from line to line.

1.2. Main Results

As mentioned above, our plan in this paper is to introduce a further degree of flexibility in the needlet
construction, by allowing the scale width in the multipole space to cover a much broader spectrum
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of possibilities than in the existing literature. More precisely, as illustrated in the previous Section in
the standard needlet construction the j−order transform is supported in the harmonic space over the
interval (Bj−1,Bj+1).

There are several reasons, we believe, why it is of interest to consider needlet-like transforms with
more general support in the harmonic space. For instance, practitioners may be interested in multipoles
ranging over more general domains than ` ∈ (Bj−1,Bj+1) for physical reasons related to their model
of interests; otherwise, experimental settings may put specific constraints on the multipoles on which
needlet transforms can be computed. Indeed, the largest possible multipole for which data are available
is determined by experimental conditions; implementing needlets on a fixed bandwidth range with ex-
trema of the form ` ∈ (Bj−1,Bj+1) may entail either overcoming the limit on which multipoles are
actually available, or else dropping a subset of frequencies which have been actually observed. On
the other hand, it is also sometimes the case that the range of values (Bj−1,Bj+1) is considered to
grow too rapidly for large values of j, and data analysts/applied scientists therefore prefer to reduce
it to achieve better frequency-domain resolution in their analysis. Moreover, the range of multipoles
of interest may be dictated by physical considerations: for instance, in Cosmological experiments a
crucial issue is the determination of peaks in the angular power spectrum, and hence experimentalists
may wish to calibrate the needlet domain in harmonic space to make sure features of interest are cov-
ered. All these situations have actually taken place, for instance, in the analysis of Cosmic Microwave
Background data, and it has been common to implement needlets on varying multipole windows, with
no theoretical background to justify these choices, see e.g. [39] and the references therein.

Our plan is then to consider needlet projectors of the following form:

Ψj (x, y) =
∑
`≥0

bj (`)Z`,d (〈x, y〉) , (1.8)

where
{
bj (·)

}
j∈N is a sequence of weight functions which generalize the sequence

{
b
(
·
Bj

)}
j∈N

characterizing standard needlets. To make our statements more precise, we will need some more tools
and notation; in particular, we need to introduce a scale sequence

{
Sj
}
j∈N starting with S0 = 1, that is,

an increasing positive-valued sequence such that the support of bj(·) is included in Λj = [Sj−1, Sj+1]
for all j ∈ N. We are therefore implicitly maintaining the semi-orthogonality properties of standard
needlets, that is, the support of bj(·) and bj′(·) are disjoint whenever

∣∣j − j′∣∣ ≥ J, with J ≥ 2. For
notational simplicity, we shall always assume in the sequel that the sequence Sj − Sj−1 is increasing,
i.e.,

Sj − Sj−1 ≤ Sj+1 − Sj , for all j ∈N;

this will allow us to avoid some less elegant statement of results in terms of the largest between (Sj+1−
Sj) and (Sj − Sj−1) - the substance of the approach is clearly unaltered. The other key ingredient in
the construction is a sequence of kernel functions

{
bj(·)

}
j∈N on multipole space, depending on the

sequence
{
Sj
}
j∈N , for which we require the following conditions:

Assumption 1.1. The sequence of functions
{
bj(·)

}
is such that

1. for all n, j ∈N

|b(n)
j (u)| ≤K(n)

1

(Sj − Sj−1)n
,

where the constant K(n) does not depend on j;
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2. bj has a compact support in Λj =
[
Sj−1, Sj+1

]
, with

bj
(
Sj−1

)
= bj

(
Sj+1

)
= 0 , bj

(
Sj
)

= S0 = 1 .

Note that for j = 0, we set S−1 = 0 and Λ0 = [0,1];
3. the partition of unity property holds, that is,∑

j≥0

b2j (u) = 1, for all u≥ 1 .

In the case of standard needlets, the sequence
{
bj(·)

}
j∈N can be obtained by scaling a function b(·),

which is compactly supported in
[
B−1,B

]
for some B > 1 and with bounded derivatives of any order.

In particular, in the standard construction we have

bj(u) := b
( u

Bj

)
, Sj :=Bj ,

and hence

|b(n)
j (u)|= 1

Bnj

∣∣∣b(n)
( u

Bj

)∣∣∣≤ 1(
Bj −Bj−1

)n sup
u

∣∣∣b(n) (u)
∣∣∣ .

The following localization property is the first main result of this paper:

Theorem 1.2 (Localization property). As j→∞, for all θ ∈ [0, π] and M ∈ N, with M > d, there
exists a constant cM > 0 (i.e., θ−uniform and independent from j) such that

∣∣Ψj (cosθ)
∣∣≤ cM (Sdj+1 − S

d
j−1) max

{
1

(1 + Sj−1θ)2M
,

1(
1 +

(
Sj − Sj−1

)
θ
)2M

}
. (1.9)

It is important to note that in the standard case (i.e., for
{
Sj :=Bj

}
j∈N , some B > 1) the bound

(1.9) can be written as

∣∣Ψj (cosθ)
∣∣ ≤ cM (B(j+1)d −B(j−1)d) max

{
1

(1 +B(j−1)θ)2M
,

1

(1 +
(
Bj −Bj−1

)
θ)2M

}

≤ c′M (B − 1

B
)Bjdmax

{
B2M

(1 +Bjθ)2M
,
(B/(B − 1))2M

(1 +Bjθ)2M

}

= c
′′
M

Bjd

(1 +Bjθ)2M
,

so that Theorem 1.2 yields the estimate (1.2) which was established in the pioneering papers [32, 33].
The system of flexible-bandwidth needlets

{
ψj,k (·)

}
j,k

(or flexible needlets for short) can now be

defined, analogously to (1.3), as ψj,k (·) : Sd→R such that

ψj,k (·) =
√
λj,k

∑
`≥0

bj (`)Z`,d
(〈
·, ξj,k

〉)
, j ≥ 0, k = 1, . . . ,Kj ,
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ξj,k, λj,k

}
j∈N,k=1,...,Kj

representing as before sets of cubature points and weights such that

∫
S2
Y`,m(x)Y `′,m′(x)dx=

Kj∑
k=1

Y`,m(ξj,k)Y `′,m′(ξj,k)λj,k , for all `, `′ ≤ Sj+1 .

Starting from the seminal contribution [33], needlets have been very widely used to characterize
decomposition spaces (e.g., Besov and Triebel-Lizorkin). We do not address these issues in this pa-
per, but we focus instead on high-frequency uncorrelation of needlet coefficients evaluated on random
fields; more precisely, we investigate the corrrelation of the field (1.6), evaluated by means of (1.8).
Assumption (1.5) requires a form of scale invariance of the angular power spectrum at very large
multipoles/very small scales. In applications, it is often the case that power spectra may exhibit more
complex behaviour, for instance with sinusoidal oscillations as those which characterize the angular
power spectrum of Cosmic Microwave Background radiation (see [38]). In the present paper, we hence
extend and generalize the previous uncorrelation results (1.7) considering a much broader class of
angular power spectra for random fields in Sd; more precisely, we consider power spectra taking the
form

Assumption 1.3. The angular power spectrum satisfies C` = `−αg(`), where `≥ 1 and α > 2, and
the function g : R+→ R+ is such that

g1 ≤ g(u)≤ g2, for some g2 ≥ g1 > 0

and for some β ∈ [0,1) and r ∈N

g(r)(u) =Ou→∞(u−(1−β)r), g(r)(u) =
drg(u)

dur
.

For instance, Assumption 1.3 covers angular power of the form

C` =

P∑
p=1

cp

{
dp + sin(`βp/Mp)

}
`−α, dp > 1 , cp,Mp > 0 , 0< βp < 1 for p= 1, ..., P,

thus exhibiting much richer oscillations than allowed in (1.5).
We now investigate uncorrelation properties in this broader framework, and we establish our second

main result.

Theorem 1.4 (Uncorrelation property). Under Assumptions 1.1 and 1.3, there exists positive con-
stants cN (depending on α,d and g(·)), such that, as j→∞ we have

|Corr(βj(x), βj(y))| ≤ cN ×max

 1

(S
(1−β)
j−1 θ)2N

,
1

((Sj − Sj−1)θ)2N

 . (1.10)

As we discuss in the subsection below, this result generalizes uncorrelation properties in the literature
even in the standard needlet case Sj =Bj for j = 1,2, ..., and hence we believe it can have considerable
importance for applications. More precisely, the uncorrelation properties of standard needlets have been
used in the Cosmological literature to develop estimators of power asymmetries ([37]), local estimators
of nonGaussianity ([41]), estimators of geometric functionals to search for anisotropies ([39]), point-
source detection ([9]) and many other related issues. Our present results justify the applicability of
these techniques under much broader assumptions than so far considered.
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1.3. Discussion

Some remarks are in order:

• Given the localization result established in Theorem 1.2, and the details of the construction of the
needlet kernel, it can be easily verified that flexible needlets form a tight frame and they allow
for exact reconstruction formulae. More formally, for all f ∈ L2

(
Sd
)

it is standard to show that
the corresponding needlet coefficients satisfy

∑
j∈N

Kj∑
k=1

β2
j,k =

∑
j∈N

Kj∑
k=1

λj,k

∑
`∈Λj

bj(`)a`,mY`,m(ξj,k)

2

=
∑
j∈N

∑
`1,`2∈Λj

N`1;d∑
m1=1

N`2;d∑
m2=1

bj(`1)bj(`2)a`1,m1
a`2,m2

×
Kj∑
k=1

λj,kY`1,m1
(ξj,k)Y `2,m2

(ξj,k)

=
∑
j∈N

∑
`1,`2∈Λj

N`1;d∑
m1=1

N`2;d∑
m2=1

bj(`1)bj(`2)a`1,m1
a`2,m2

δ`2`1 δ
m2
m1

=
∑
`∈N

N`;d∑
m=1

∑
j∈N

b2j (`)
∣∣a`,m∣∣2 =

∑
`∈N

N`;d∑
m=1

∣∣a`,m∣∣2 = ‖f‖2
L2(Sd) ,

where the last equality is due to Parseval’s identity. Likewise, it can be shown that the following
reconstruction formula holds:

f(·) =
∑
j∈N

Kj∑
k=1

βj,kψj,k(·) in L2
(
Sd
)

.

The details here are identical to those in the seminal papers by [32, 33], and are therefore omitted
for brevity’s sake.

• In the standard needlet case and under (1.5), (1.10) leads to the following bound:

cN ×max

{
1

(B(j−1)(1−β)θ)2N
,

1

((Bj −Bj−1)θ)2N

}
≤ cN

(B(j−1)(1−β)θ)2N
.

As mentioned above, this result generalizes to all β ∈ [0,1) the uncorrelation bound for needlet
coefficients which was given for β = 0 by [3] and then exploited in a number of subsequent
papers to construct statistical procedures with an asymptotic justification, in the high-frequency
sense.

• In the general case, asymptotic uncorrelation can continue to hold for β > 0, but the upper bound
is less and less efficient as β grows; indeed assuming that S1−β

j−1 < (Sj −Sj−1), for all θ ∈ [0, π]
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we get

|Corr(βj(x), βj(y))| ≤max

1,
cN

(S1−β
j−1 θ)

2N

 .

It should be noted that in the discretized case the construction of cubature points is such that
their minimum distance decays as

dj := min
k,k′

dS2(ξjk, ξjk′)' S−1
j−1 , as j→∞ .

For β = 0, it then follows that needlet coefficients have correlations decaying to zero (as j →
∞) when evaluated on any pair of locations whose distance decays more slowly than dj . This
is no longer the case for less regular power spectra: indeed for β > 0 to ensure asymptotic
uncorrelation we must consider pair of coefficients whose distance is fixed or decays to zero
more slowly than d1−β

j .

1.4. Some Simple Applications

The uncorrelation properties of spherical needlets have allowed for an enormous amount of applications
in statistical inference in the last few years, among which we mention subsampling techniques in [5],
Whittle estimation of the model parameters in [15], point source detection in [10], testing for isotropy in
[39], and many others. For brevity’s sake we do not develop these applications in the broader framework
considered in this paper; we just include a simple examples on goodness of fit testing.

As it is often the case in the analysis (for instance) of CMB data, we assume a Gaussian isotropic
random field {f(.)} is observed on a region D ⊂ S2, and out of the observations in this region we need
to check goodness of fit for some given model for the angular power spectrum, {C` =C`(θ)}`∈N . For
any j ∈ N, let Ξj denote the grid of cubature points

{
ξj,k
}
k=1,...,Kj

. Consider the following testing
procedure:

a) take a needlet construction such that S1−β
j−1 < (Sj − Sj−1), for j = 1,2, . . . , so that we impose

a lower bound on the width of (Sj − Sj−1) (i.e., (Sj − Sj−1)/Sj−1 can shrink to zero, but {(Sj −
Sj−1)/S1−β

j−1 } cannot); compute the needlet coefficients
{
βj,k

}
k=1,...,Kj

b) choose a subsetDj of these coefficients such that, for k ∈Dj , ξj,k ∈ Ξj∩D, and for all k, k′ ∈Dj
one has dS2(ξj,k, ξj,k′) > δ/S1−β−ε

j−1 , for δ, ε > 0, and at the same time card
{
Dj
}
→∞ as j→∞

(the elements of Dj can be viewed as a subsampling of the cubature points in the grid Ξj with some
constraints on their distance). Note that for all M > 0, there exist cM such that

|Corr(βj,k, βj,k′)| ≤
cM

(S
1−β
j−1 dS2(ξj,k, ξj,k′))

M
≤ cM δ−MS−Mε

j−1 for all j ∈N,

hence in particular Corr(βj,k, βj,k′)→ 0 as j→∞ for all k, k′ ∈Dj , with k 6= k′.
c) now compute

Ij =
1√

2card
{
Dj
} ∑
k∈Dj

 β2
j,k

E
{
β2
j,k

} − 1

 , where E
{
β2
j,k

}
=
∑
`∈Λj

b2j (`)
2`+ 1

4π
C` .
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It is immediate to see that E
{
Ij
}

= 0 and

Var
{
Ij
}

=
1

2card
{
Dj
} ∑
k∈Dj

Var

 β2
j,k

E
{
β2
j,k

}


+
1

2card
{
Dj
} ∑
k,k′∈Dj ,k 6=k′

Cov

 β2
j,k

E
{
β2
j,k

} , β2
j,k′

E
{
β2
j,k′

}


= 1 +Aj

where, using the Diagram (Wick’s) Formula (see [34], p. 202)

Aj =
1

2card
{
Dj
} ∑
k,k′∈Dj ,k 6=k′

Cov

 β2
j,k

E
{
β2
j,k

} , β2
j,k′

E
{
β2
j,k′

}


=
1

card
{
Dj
} ∑
k,k′∈Dj ,k 6=k′

Corr2


βj,k√

E
{
β2
j,k

} , βj,k′√
E
{
β2
j,k′

}


≤ card
{
Dj
}
× c2M δ

−2MS−2Mε
j−1 → 0 , as j→∞ ,

by recalling card
{
Dj
}

=O(Sj) and choosing M such that Sj = o(S2Mε
j−1 ). We have thus shown that

limj→∞Var
(
Ij
)

= 1 .
d) finally, recalling that for a zero mean random variable X the fourth cumulant is defined by

Cum4(X) = E[X4]− 3E[X2]2, it is now a standard computation to show that

Cum4
{
Ij
}

=
1{

2card
{
Dj
}}2

Cum4

∑
k∈Dj

 β2
j,k

E
{
β2
j,k

} − 1




=
1{

2card
{
Dj
}}2

×O

 ∑
k1,k2,k3,k4∈Dj

Corr2

 β2
j,k1

E
{
β2
j,k1

} , β2
j,k2

E
{
β2
j,k3

}
 ...Corr2

 β2
j,k4

E
{
β2
j,k4

} , β2
j,k2

E
{
β2
j,k1

}



=O

(
1

card
{
Dj
}) .

It is then an immediate application of the Malliavin-Stein method (see [34] and the references therein)
to prove that a (quantitative) Central Limit Theorem holds for the sequence

{
Ij
}
j∈N , thus making

well-principled goodness of fit tests available.
In a similar manner, under these broader circumstances extensions can be implemented for needlet

based-procedures in a number of areas of theoretical and applied interest: we mention for instance
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high-frequency maximum likelihood estimates (as investigated by [15] in the standard needlet case),
polyspectra estimation (see e.g., [8]), isotropy testing (see [39]), power spectrum estimation (see [5,
38]), point source detection (see [9, 10]) and many others. For brevity’s sake, we do not discuss the
implementation details here. It should be noted that the uncorrelation properties that we established for
the needlet coefficients do not require by any means the Gaussianity assumption: they hold for general
isotropic random fields. However, we do need Gaussianity to apply the Diagram formula and the fourth
cumulant results in points c) and d) above; hence the non Gaussian framework is considerably more
challenging.

1.5. Plan of the Paper

The properties of flexible-bandwidth needlets in terms of localization in real space are discussed in
Section 2, while uncorrelation properties are investigated in Section 3; an explicit construction for the
sequence of kernels

{
bj(·)

}
j∈N is given in the Appendix (Section 4).

2. Localization Properties

In this section we will establish a localization property which generalizes analogous results for standard
needlets in [32], Mexican needlets in [14, 17] and scale-directional wavelets in [30]. Throughout this
section Sj ,Λj , bj are defined as in Section 1.

Let us first recall some useful notation. Consider a real-valued sequence {r` : `≥ 0} and let the
discrete difference operators ∆+, ∆− be defined by

∆+r` := r`+1 − r` , ∆−r` := r` − r`−1.

These operators can be viewed as discrete versions of derivation on sequences (see also [27, Definition
2.1]), and can be used to define

Υd (`) := υ1;d (`) ∆−∆+ + υ0;d (`) ∆+, d≥ 2 ,

where

υ1,d (`) :=
`

2 (`+ ηd)
=

`

2`+ d− 1
=

1

2
− d− 1

4`+ 2d− 2
,

υ0,d (`) :=
2ηd

2 (`+ ηd)
=

d− 1

2`+ d− 1
≤ d− 1

2`
.

Our main result is the following.

Proposition 2.1 (Localization). Let Ψj(·) be defined as

Ψj (cosθ) :=
∑
`∈Λj

bj (`)Z`;d (cosθ) , j ∈N,

where for all M > 0 there exists a positive constant cM > 0 such that

|
(
∆−
)M (

∆+)M bj (`) | ≤ cM
1(

Sj − Sj−1
)2M . (2.1)
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Then, it holds that∣∣∣(cosθ− 1)MΨj (cosθ)
∣∣∣≤ cM (Sdj+1 − S

d
j−1

)
max

{
1

S2M
j−1

,
1(

Sj − Sj−1
)2M

}

and hence, because θ2 =O(|cosθ− 1|) for θ ∈ (0, π)

∣∣Ψj (cosθ)
∣∣ ≤ cM (Sdj+1 − S

d
j−1) max

{
1

S2M
j−1θ

2M
,

1(
Sj − Sj−1

)2M
θ2M

}
.

Remark 2.2. The literature on localization properties for needlet-like constructions is now very rich.
To the best of our knowledge, the most general result is given in Theorem 3.1 by [23], in the framework
of Dirichlet spaces with a doubling measure and local scale-invariant Poincaré inequality, and hence
much broader circumstances than we consider here. However, in [23] needlets are implemented by
"dilating" a single function f(.) at various scales, i.e. by studying the kernel f(δ

√
L)(x, y), where

L is a differential operator, δ is a scaling parameter (which can be taken as δ = 2−j in the standard
needlet case) and the function f is the same for every value of δ. Our situation here is different because
of the varying bandwidth; in the notation of [23], our kernel should take a form such as fδ(δ

√
L),

that is fδ itself has to vary with the parameter δ (to ensure the partition of unity and reconstruction
properties). Most probably, our result could also be obtained as a consequence of Theorem 3.1 of [23],
by a construction of fδ(.) similar to the one we implemented and by establishing proper bounds (which
will depend on δ) on the derivatives of fδ(.); it can indeed be noted that in the case of the sphere and
for Sj = Bj , Theorem 3.1 in [23] and our result do yield the same bounds. Such a new construction
could even allow a generalization of flexible needlets to more general Dirichlet spaces; we leave this
as a topic for future research.

The proof of the previous results requires the following two lemmas, which are generalizations to
Sd of [27, Lemma 4.1], where S2 was considered.

Lemma 2.3. Let

q (cosθ) :=
∑
`≥0

r`
(`+ ηd)

ηdωd
G

(ηd)
` (cosθ) =

∑
`≥0

r`Z`;d (cosθ) ,

where {r` : `≥ 0} is a real-valued sequence. Then, for any N ∈N,

(cosθ− 1)N q (cosθ) =
∑
`∈N

r
[N ]
`;d Z`;d (cosθ) , (2.2)

where r[N ]
`;d := ΥN

d (`) r`.

Proof of Lemma 2.3. Recall first the identity, valid for x ∈ [−1,1], ` ∈N0

(x− 1)
[
2(`+ ηd)G

(ηd)
` (x)

]
= (`+ 1)G

(ηd)
`+1 (x)− 2 (`+ 2ηd)G

(ηd)
` (x) + (`+ 2ηd − 1)G

(ηd)
`−1 (x) ,



Flexible-bandwidth Needlets 13

see [1, Equation 22.7.3]. With the convention G(ηd)
−1 (x) = 0 for any x ∈ [−1,1], r−1 = 0, and writing

Z`;d(cosθ) = 2(`+ ηd)G
(ηd)
` (cosθ), we have∑

`≥0

r`
[
(x− 1)Z`;d (x)

]
=
∑
`≥0

r`

[
`+ 1

2 ((`+ 1) + ηd)
Z`+1;d (x)−Z`;d (x) +

`+ 2ηd − 1

2 ((`− 1) + ηd)
Z`−1;d (x)

]

=
∑
`≥1

r`−1
`

2 (`+ ηd)
Z`;d(x)−

∑
`≥0

r`Z`;d(x) +
∑
`≥−1

r`+1
`+ 2ηd

2 (`+ ηd)
Z`;d (x)

=
∑
`≥0

[
`

2 (`+ ηd)
r`−1 −

2 (`+ ηd)

2 (`+ ηd)
r` +

`+ 2ηd
2 (`+ ηd)

r`+1

]
Z`;d (x)

=
∑
`≥0

[
`

2 (`+ ηd)
(r`−1 − 2r` + r`+1) +

2ηd
2 (`+ ηd)

(r`+1 − r`)
]
Z`;d (x)

=
∑
`≥0

r
[1]
` Z`;d (x) .

Now, fixing x= cosθ and dividing by 2ηdωd, we obtain that

(cosθ− 1) q (cosθ) =
∑
`≥0

r
[1]
` Z`;d (cosθ) .

Iterating, we obtain (2.2).

Remark 2.4. Lemma 2.3 exploits the natural fact that if a function q (u) can be expanded into Gegen-
bauer polynomials with coefficients {r` : `≥ 0}, then also (u− 1)N q (u) can also be expanded with
coefficients which can explicitly computed by properly applying iteratively the difference operators to
the sequence {r` : `≥ 0}. In some sense, this can be viewed as an extension to the spherical domain of
the classical duality relationships between Fourier transforms and derivatives.

Let us prove now that bj(`) satisfies (2.1).

Lemma 2.5. For any N ∈N

|ΥN
d (`) bj(`)| ≤

1

2N
(2N)!|max

u
{b(2N)
j (u)}|+

2N−1∑
i=0

C(i)

`2N−i
|max
u
{b(i)j (u)}|.

Proof. Let us consider first N = 1. Then we have

Υd (`) bj(`) =
(
υ1;d (`) ∆−∆+ + υ0;d (`) ∆+) bj(`)

= υ1;d (`) ∆−
(
bj(`+ 1)− bj(`)

)
+ υ0;d (`)

(
bj(`+ 1)− bj(`)

)
=

`

2(`+ ηd)

(
bj(`+ 1)− bj(`)− (bj(`)− bj(`− 1))

)
+

2ηd
2(`+ ηd)

(
bj(`+ 1)− bj(`)

)
.
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The Mean Value Theorem implies that there exists u1 ∈ (`, `+ 1) and u2 ∈ (`− 1, `) such that

Υd (`) bj(`) =
`

2(`+ ηd)

(
b
(1)
j (u1)− b(1)

j (u2)
)

+
2ηd

2(`+ ηd)
b
(1)
j (u1). (2.3)

Applying once more the Mean Value Theorem we have that there exists a1 ∈ (u2, u1) such that

Υd (`) bj(`) =
`

2(`+ ηd)

(
b
(2)
j (a1)(u1 − u2)

)
+

2ηd
2(`+ ηd)

b
(1)
j (u1).

Hence

|Υd (`) bj(`)| ≤
2`

2(`+ ηd)
max

∣∣∣b(2)
j (u)

∣∣∣+ 2ηd
2(`+ ηd)

max
∣∣∣b(1)
j (u)

∣∣∣ .
Our assumptions on bj(`) and its derivatives allow to complete the proof for N = 1. The general case
follows applying ΥN−1

d on (2.3) and using induction, for N ∈N.

Remark 2.6. Observe that

2`

2(`+ ηd)
max

∣∣∣b(2)
j (u)

∣∣∣≤ 2`

2(`+ ηd)

1

(Sj − Sj−1)2
≤ cd

(Sj − Sj−1)2

2ηd
2(`+ ηd)

max
∣∣∣b(1)
j (u)

∣∣∣≤ 2ηd
2(`+ ηd)

1

(Sj − Sj−1)
≤

c′d
`(Sj − Sj−1)

,

where cd, c′d > 0 depend only on d. Then

|Υd (`) bj(`)| ≤ cmax

{
1

S2
j−1

,
1

(Sj − Sj−1)2

}
.

More generally,

|ΥN
d (`) bj(`)| ≤ c(2N) max

{
1

S2N
j−1

,
1

(Sj − Sj−1)2N

}
. (2.4)

Remark 2.7. It is immediate to see that, as j→∞,∑
`∈Λj

`d−1 =
1

d
(Sdj+1 − S

d
j−1) +O(Sd−1

j+1 ) =O(Sdj+1 − S
d
j−1) .

Proof of Proposition 2.1. For any j ∈N0, it suffices to note that applying Lemma 2.3 yields

∣∣∣(cosθ− 1)N Ψj (cosθ)
∣∣∣ =

∣∣∣∣∣∣
∑
`≥0

bj(`)
[N ]Z`,d(cosθ)

∣∣∣∣∣∣ .
Lemma 2.5, (2.4) and the conditions on bj(·) imply that for all M > 0
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∣∣∣(cosθ− 1)M Ψj (cosθ)
∣∣∣

≤ cM max

{
1

S2M
j−1

,
1(

Sj − Sj−1
)2M

} ∑
`∈Λj

`+ ηd
ηdωd

∣∣∣G(ηd)
` (cosθ)

∣∣∣ .
In view of Remark 2.7, because θ2 =O(|cosθ− 1|), we have

∣∣Ψj (cosθ)
∣∣≤ c′M max

{
1

(Sj−1)2M
,

1

(Sj − Sj−1)2M

}
(Sdj+1 − S

d
j−1)

θ2M

as claimed.

3. Uncorrelation Properties

Our last step consists in showing that kernels of the type

Φj (cosθ) =
∑
`∈Λj

b2j (`)C`Z`;d (cosθ) ,

satisfy a localization property under the conditions on the power spectrum C` specified in Assumption
1.3. This result will allow us to show that needlet coefficients are asymptotically uncorrelated for
j→∞.

Recall first that, for all d= 1,2, ...

∣∣Z`;d (cosθ)
∣∣ ≤ 2`+ d− 1

(d− 1)

(
`+ d− 2

`

)
≤ cd × `d−1,

where the constant cd depends only on d. Now note that

dN

duN
(bj(u)2u−αg(u)) =

N∑
k=0

(
N

k

)
dk

duk
bj(u)2 dN−k

duN−k
(u−αg(u))

=

N∑
k=0

(
N

k

)
dk

duk
(aj+1(u)− aj(u))

N−k∑
i=0

(
N − k
i

)
di

dui
u−α

dN−k−i

duN−k−i
g(u)

=

N∑
k=0

(
N

k

)
dk

duk
(aj+1(u)− aj(u))

N−k∑
i=0

(
N − k
i

)
[−α]iu

−α−i d
N−k−i

duN−k−i
g(u),

where

[−α]i :=−α(−α− 1)...(−α− i+ 1) .

It follows that, for all ` such that Sj−1 ≤ `≤ Sj+1, we have
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∣∣∣∣∣ dNduN (bj(u)2u−αg(u))

∣∣∣∣∣
u=`

≤ cN,α
N∑
k=0

1

(Sj − Sj−1)k

N−k∑
i=0

`−α−i`−(N−k−i)(1−β)

≤ cN,α`−α`−N(1−β)
N∑
k=0

`k(1−β)

(Sj − Sj−1)k

=

N∑
k=0

cN,α`
−α

(Sj − Sj−1)k`(N−k)(1−β)
.

Note that for (Sj − Sj−1)≥ S(1−β)
j−1 the denominator is bounded below by SN(1−β)

j−1 , whereas for

(Sj − Sj−1) < S
(1−β)
j−1 we have the smaller bound (Sj − Sj−1)N < S

−N(1−β)
j−1 . The bottom line is

hence

∣∣∣∣∣ dNduN (bj(u)2u−αg(u))

∣∣∣∣∣
u=`

≤ cN,α × `−α ×max

 1

S
N(1−β)
j−1

,
1

(Sj − Sj−1)N

 ,

where cN,α > 0.
Now consider the correlation function

Φ(cosθ) =
∑
`∈Λj

bj(`)
2`−αg(`)Z`,d(cosθ) ;

we have the bound

| cosθ− 1|NΦ(cosθ) =
∑

`∈(Sj−1,Sj+1)

{
ΥN
d (`) bj(`)

2`−αg(`)
}
Z`,d(cosθ)

≤ C ×max

 1

S
2N(1−β)
j−1

,
1

(Sj − Sj−1)2N

 ∑
`∈(Sj−1,Sj+1)

`−αZ`,d(cosθ)

≤ C ×max

 1

S
2N(1−β)
j−1

,
1

(Sj − Sj−1)2N


×min

{
(Sj+1 − Sj−1)Sd−α−1

j−1 , Sd−αj−1

}
,

where C > 0. It is easy to check that the denominator (i.e., the variance of the field βj(·)) is given by∑
`∈Λj

bj(`)
2`−αg(`)

`+ ηd
ηdωd

G
(ηd)
` (1).

Because b(1)
j ≤K/(Sj−Sj−1) and bj(`) = 1 for some ` ∈Λj , by a simple first-order Taylor expansion

it is readily seen that there exist S′j−1, S
′
j+1 which satisfy the following conditions:
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Sj−1 < S′j−1 <S′j+1 <Sj+1 ,

(S′j+1 − S
′
j−1) > c1(Sj+1 − Sj−1) , some c1 > 0 ,

bj(`) > c2 > 0 for all ` ∈ (S′j−1, S
′
j+1) ,

where the constants c1, c2 are uniform (they do not depend on j). Hence we have the lower bound∑
`∈Λj

bj(`)
2`−αg(`)

`+ ηd
ηdωd

G
(ηd)
` (1) ≥ c22

∑
`∈(S′j−1,S

′
j+1)

`−αg(`)
`+ ηd
ηdωd

G
(ηd)
`

≥ C ×min
{

(Sj+1 − Sj−1)Sd−α−1
j−1 , Sd−αj−1

}
,

where C > 0. Then, we have

|Corr(βj(x), βj(y))|

≤ C ×max

 1

S
2N(1−β)
j−1

,
1

(Sj − Sj−1)2N

 1

| cosθ− 1|N

≤ C ′ ×max

 1

(S
(1−β)
j−1 θ)2N

,
1

((Sj − Sj−1)θ)2N

 ,

with C,C ′ > 0, as claimed.

4. Appendix : an Explicit Construction for {bj(·)}j∈N
In this Appendix, we will provide an explicit construction of

{
bj(·)

}
j∈N. Most of the steps are a

generalization under the more general circumstances considered in this paper of the procedure which
was suggested in [3] for the standard needlet case.

Let us define a non-decreasing sequence of functions aj : R+→ [0,1] such that

aj ∈C∞
(
R+) , aj (u) = 1 for |u| ≤ Sj−1 for j ≥ 1,

(so that aj (0) = 1, for every j ∈N), and

0< aj (u)≤ 1 for u ∈
[
Sj−1, Sj

]
.

The support of aj(·) is contained in [0, Sj ]. We introduce now a sequence of window functions{
bj : j ∈N

}
given by

bj (u) :=
√
aj+1 (u)− aj (u). (4.1)

Observe that

bj(u) =


√

1− aj(u) Sj−1 < u≤ Sj√
aj+1(u) Sj < u< Sj+1

0 otherwise
. (4.2)
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Lemma 4.1. For any j ∈N, it holds that bj ∈C∞.

Proof. For any j ∈N, it follows from Equation (4.2) that bj(u) ∈C∞ in (0, Sj−1) ∪ (Sj−1, Sj+1) ∪
(Sj+1,∞). Indeed note that in Sj the function bj(u) is continuous (since aj+1(Sj) = 1 and aj(Sj) =
0). To establish the smoothness of bj(·) we need to study the behaviour of aj (and, consequently, bj) in
Sj−1 and Sj+1. In order to do so we prove that left and right derivatives coincide in these two points.
Let us start by proving that bj(·) is C∞ in Sj+1.

The Taylor series of aj+1 centered at Sj+1 can be written as

aj+1(u) = aj+1(Sj+1) + · · ·+
a

(n)
j+1(Sj+1)

n!
(u− Sj+1)n + o((u− Sj+1)n) as u→ Sj+1

for all n. Since aj(u) ∈C∞ and a(k)
j+1(S+

j+1) = 0 we get that a(k)
j+1(Sj+1) = 0 for all k = 0, . . . , n and

then

aj+1(u) = o((u− Sj+1)n)

for all n, as u→ Sj+1.
Moreover, we note that bj(u) =

√
aj+1(u) for all u < Sj+1 and then since aj(S

−
j+1) = 0, we get

that

bj(u)− bj(Sj+1)

u− Sj+1
=

√
aj+1(u)− 0

u− Sj+1
=
o(u− Sj+1)

u− Sj+1
= o(1)

and then bj ∈C1 in Sj+1.
A similar argument can be implemented for u= Sj−1. Indeed, we note that aj(Sj−1) = 1 and since

aj(u) is C∞ and it is zero on S−j−1, we have that a(k)
j (Sj−1) = 0 for all k = 1, . . . , n. Then a Taylor

series expansion leads to

aj(u) = 1 + o((u− Sj−1)n)

for all n. Moreover, since aj is continuous and it is equal to 1 in S−j−1 we have that aj(S
+
j−1) = 1 and

also aj+1(Sj−1) = 1. Hence in a neighborhood of Sj−1 we have that bj(u) =
√

1− aj(u) so that the
quotient derivative of bj(·) from the right is√

1− aj(u)− 0

u− Sj−1
=
o(u− Sj−1)

u− Sj−1
= o(1).

Then bj ∈ C1 in Sj−1 which implies bj ∈ C1 in [0,∞); iterating the procedure proves that bj ∈
C∞.

We propose here a numerical recipe for bj(·), which is largely analogous to the proposal developed
in [3] for the standard needlet construction. First introduce the function φ ∈C∞c , given by

φ(t) =

{
exp

(
− 1

1−t2
)

for t ∈ [−1,1]

0 otherwise .
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Consider now

Φ (u) =


0 u≤−1∫ u
−1 φ(t)dt

cΦ
u ∈ (−1,1)

1 u≥ 1

,

where

cΦ =

∫ 1

−1
φ (t)dt=

∫ 1

−1
exp

(
− 1

1− t2

)
dt' 0.444.

Also, for any j ∈N, define

aj(u) =


1 for u ∈

[
0, Sj−1

]
Φ
(
Sj+Sj−1−2u
Sj−Sj−1

)
for u ∈

(
Sj−1, Sj

]
0 for u ∈

[
Sj ,∞

) . (4.3)

Note that in [Sj−1, Sj ]

aj(u) = Φ(τj(u))

where τj : [Sj−1, Sj+1]→ [−1,1] is a linear transformation defined by

τj(u) =mju+ qj

with

mj =− 2

Sj − Sj−1
; qj =

Sj + Sj−1

Sj − Sj−1
.

Remark 4.2. It follows that, for any r ∈N,

a
(r)
j (u) =

dr

dur
aj(u) = τ

(r)
j (u)Φ(r) (τj(u)

)
=

(−2)r(
Sj − Sj−1

)r φ(r−1)
(
τj(u)

)
cΦ

. (4.4)

Finally, according to (4.1), we can define a sequence of window functions
{
bj : j ∈N

}
, where bj :

R+→ [0,1] is such that

bj (u) :=
√
aj+1 (u)− aj (u). (4.5)

Proposition 4.3. For any aj(·) defined as in 4.3 and n≥ 1

|a(n)
j (u)| ≤ k(n− 1)2n

1

(Sj − Sj−1)n

where k(n− 1) does not depend on j.
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Proof. Let us rewrite (4.4) as

a
(r)
j (u) =

(−2)r

(Sj − Sj−1)r
φ(r−1)(τj(u))

cΦ
. (4.6)

In order to study the behavior of φ(r−1)(τj(u)), let us start focusing on theC∞ (R) function s : R→R
given by

s(t) =

{
e−

1
t if t > 0

0 otherwise.

We can explicitly compute its derivatives for any n ∈N as

s(n)(t) =

{
Qn(t)
t2n

s(t) if t > 0

0 otherwise
,

where Qn is a polynomial of degree n− 1 defined recursively by the following formula

Q1(t) = 1

Qn+1(t) = t2Q′n(t)− (2nt− 1)Qn(t).

Since

φ(τj(u)) =

{
exp

(
− 1

1−τj(u)2

)
if τj(u) ∈ [−1,1]

0 otherwise
,

we can rewrite

φ(τj(u)) = s(g(τj(u))) with g(y) = 1− y2.

Applying the chain rule for high order derivatives for composite functions, the so-called Faà di Bruno’s
formula (see paragraph 4.3, [40]) yields for τj(u) ∈ [−1,1],

dn

dun
φ(τj(u)) = n!

n∑
ν=1

s(ν)(g(τj(u)))

ν!

∑
h1+···+hν=n

(1− τj(u)2)(h1)

h1!
. . .

(1− τj(u)2)(hν)

hν !

= n!

n∑
ν=1

Qn(g(τj(u)))

g(τj(u))2ν

s(g(τj(u)))

ν!

∑
h1+···+hν=n

(1− τj(u)2)(h1)

h1!
. . .

(1− τj(u)2)(hν)

hν !

= n!

n∑
ν=1

Qn(1− τj(u)2)

(1− τj(u)2)2ν

e
− 1

1−τj(u)2

ν!

∑
h1+···+hν=n

(1− τj(u)2)(h1)

h1!
. . .

(1− τj(u)2)(hν)

hν !

where hi ≥ 1.

Before we proceed further, we need to recall a couple of immediate facts. First note that if Qn is a
polynomial of degree n, then since |τj(u)| ≤ 1∣∣∣Qn(1− τj(u)2)

∣∣∣≤C(n).
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Also, it holds that

∑
h1+···+hν=n

(1− τj(u)2)(h1)

h1!
. . .

(1− τj(u)2)(hν)

hν !
≤
(
n+ ν − 1

n

)
(2)ν(τj(u))ν .

Indeed inside the sum we have the first and second derivatives of (1− τj(u)2) and hence we are sum-
ming terms of the form 2α(2τj(u))β with α+ β = ν. The binomial coefficient counts all the possible
combinations such that h1 + · · ·+ hν = n.

Thus we have that

φ(n)(τj(u))≤ n!C(n) exp

(
− 1

1− τj(u)2

) n∑
ν=1

τj(u)ν

(1− τj(u)2)2ν

2ν

ν!

(
n+ ν − 1

n

)
.

Now, considering that

τj(u)ν

(1− τj(u)2)2ν
≤ 1

(1− τj(u)2)2n
,

n∑
ν=1

(2)ν

ν!

(
n+ ν − 1

n

)
=

2nn
(2n
n

)
n+ 1

;

it follows that

φ(n)(τj(u))≤ n!
2nn

(2n
n

)
n+ 1

C(n) exp

(
− 1

1− τj(u)2

)
1

(1− τj(u)2)2n
.

Finally, observe that

∣∣∣∣exp

(
− 1

1− τj(u)2

)
1

(1− τj(u)2)2n

∣∣∣∣≤max

{
exp

(
− 1

1− τj(u)2

)
1

(1− τj(u)2)2n

}
=
k(n)

e2n

for τj(u) ∈ [−1,1], leading to ∣∣∣φ(n)(τj(u))
∣∣∣≤ k(n)

where k(n) does not depend on j. Substituting in (4.6) the proof of the proposition is completed.

The next result is similar.

Lemma 4.4. For any bj(·) defined as in 4.5 and n= 1,2, ...., we have that

|b(n)
j (u)| ≤K(n)

1

(Sj − Sj−1)n
,

where K(n) does not depend on j.
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Proof. We study bj(u) =
√
aj+1(u)− aj(u) in the interval u ∈ [Sj−1, Sj+1]. Recalling (4.2),

we focus first on [Sj−1, Sj ]. Again, Faà di Bruno’s formula (see paragraph 4.3 [40]) implies

b
(n)
j (u) = n!

n∑
ν=1

(
√

1− aj(u))(ν)

ν!

∑
h1+···+hν=n

a
(h1)
j (u)

h1!
. . .

a
(hν)
j (u)

hν !

From Proposition 4.3 it follows that

|b(n)
j (u)| ≤

n!

n∑
ν=1

∣∣∣∣∣ (
√

1− aj(u))(ν)

ν!

∣∣∣∣∣ ∑
h1+···+hν=n

C(h1)

h1!

(
2

Sj − Sj−1

)h1
(

1

1− τj(u)2

)2h1

· · ·×

×C(hν)

hν !

(
2

Sj − Sj−1

)hν ( 2

1− τj(u)2

)2hν

exp

(
− 2

1− τj(u)2

)ν

≤ n!C(n)

(
2

Sj − Sj−1

)n n∑
ν=1

(
n+ ν − 1

n

)∣∣∣∣∣ (
√

1− aj(u))(ν)

ν!

∣∣∣∣∣ exp

(
− 1

1− τj(u)2
ν

)(
1

1− τj(u)2

)2n

= n!C(n)

(
2

Sj − Sj−1

)n n∑
ν=1

(
n+ ν − 1

n

)∣∣∣∣∣ 1

ν!

1

(1− aj(u))ν−1/2

∣∣∣∣∣ exp

(
− 1

1− τj(u)2
ν

)(
1

1− τj(u)2

)2n

.

Now we have that ∣∣∣∣∣∣
exp

(
− 1

1−τj(u)2

)
1− exp

(
− 1

1−τj(u)2

)
∣∣∣∣∣∣≤ 1

e− 1
,

∣∣∣∣∣∣
exp

(
− 1

1−τj(u)2

)
(1− τj(u)2)2n

∣∣∣∣∣∣≤ k(n)

e2n
.

Proceeding similarly in [Sj , Sj+1], the thesis follows.
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