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Abstract: Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury,

extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity

and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult.

However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth

Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple

biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis,

inflammation, cancer development, and autoimmune disorders. In the present manuscript, we

review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system

in several human diseases, suggesting its likely contribution in SSc and highlighting areas where

further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed,

understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide

valuable insights for novel potential therapeutic targets.
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1. Introduction

Systemic sclerosis (SSc) is a rare chronic autoimmune disease preferentially affecting
females and subjects with a familiar history [1]. While the prevalence of systemic sclerosis is
relatively low, it is associated with higher mortality rates in comparison to other rheumatic
diseases [2,3]. SSc can manifest in various ways, and the severity and progression of its
symptoms can vary widely among patients [4]. SSc is distinguished by intricate and diverse
pathogenic pathways, including vasculopathy, aberrant immune activation leading to the
production of autoantibodies, and fibrosis [5]. A deeper understanding of the possible
actors contributing to the physiopathology of SSc and their role in this condition is crucial.

Historically, Growth Arrest-Specific 6 (Gas6) and its receptor family Tyro-3, Axl, and
MerTK (TAM) have been linked to homeostatic processes in the immune, reproductive,
hematopoietic, vascular, and nervous systems. Alongside with this, TAMs and their ligands
were shown to be essential to facilitate the phagocytosis of apoptotic cells in these tissues.
Specifically, studies regarding the innate immune system previously described TAMs as
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pleiotropic due to their multifaceted roles in regulating various physiological and patho-
logical processes [6,7]. Moreover, in vivo models in which all TAM receptors were knocked
out presented the development of a wide-spectrum autoimmunity [8]. Consequently, the
TAM receptor axis constitutes a promising biological system in the context of SSc.

Hitherto, a growing body of data is present in the literature regarding TAMs, their
signaling, and their involvement in numerous pathogenic processes across different con-
ditions. As a result, the inhibition of the TAM axis has been suggested as an encouraging
treatment approach in various diseases [9,10].

In this review, we aim to elucidate the pathogenesis of systemic sclerosis and the role
of the Gas6/TAM system, emphasizing why this system merits further investigation in
this field. We performed a literature search for reviews and original articles evaluating the
clinical features and pathogenesis of SSc, as well as the role of the Gas6/TAM system
in human diseases. Furthermore, we searched the PubMed, Medline, and Cochrane
libraries using the following strings: (Gas6 OR TAM receptors) AND (systemic sclerosis
OR scleroderma).

1.1. Clinical Manifestation of SSc

According to the pattern of skin involvement, SSc patients can be divided into two
phenotypes: diffuse cutaneous SSc (dcSSc) and limited cutaneous SSc (lcSSc). In the latter,
fibrosis is limited to the face and the distal areas of the limbs, while dcSSc involves a
larger skin area; however, both variants may affect internal organs (such as the lungs,
gastrointestinal tract, and kidneys), although this eventuality is more common in dcSSc,
which, indeed, is burdened by a worse prognosis [11]. The typical onset sign is Raynaud’s
phenomenon, which often precedes the diagnosis of SSc. Raynaud’s is related to a recurrent
and transient vasospasm of the small digital arteries, triggered by cold or emotional stress
and often accompanied by pain and numbness. Raynaud’s phenomenon is characterized by
a triphasic sequence of color change: (a) sudden skin pallor typically affecting the fingers,
either partial or total, due to vasoconstriction, (b) cyanotic skin changes, also known as a
blue attack, and (c) vascular reperfusion and consequent rewarming [12,13].

1.2. Complications of SSc

Cardiopulmonary involvement can significantly impact the prognosis of patients with
SSc. Pulmonary arterial hypertension (PAH) is a major complication resulting from the
progressive remodeling of the pulmonary vasculature. In particular, endothelial injury
and inflammation are identified as common precursors. The inflammation disrupts the
balance between vasoactive, proliferative mediators and antiproliferative vasodilators
within the endothelium, contributing to pulmonary artery vasoconstriction and cellular
proliferation [14]. Concomitantly, inflammatory cell infiltrates composed of macrophages,
dendritic cells, and T and B lymphocytes have been found in PAH, implicating the par-
ticipation of cytokines, including interleukin (IL)-1 and IL-6, and chemokines such as
C-X3-C motif chemokine ligand 1 (CX3CL1) in a dysregulated proliferation of pulmonary
artery smooth muscle cell (PASMC) and endothelial cell (EC) release of cytokines; the net
effect is an increase in pulmonary vascular resistance [15]. Another common manifestation
of SSc is interstitial lung disease (ILD); even if the pathophysiology is still unclear, it is
believed that the abnormal interplay among ECs, mononuclear cells, and fibroblasts stim-
ulates profibrotic cytokines release in the context of vascular hyperreactivity and tissue
hypoxia, eventually driving the aberrant deposition of the extracellular matrix (ECM) in
lung parenchyma [16]. In addition to this, gastrointestinal tract, central and peripheral
nervous system, musculoskeletal system, and kidney involvement contribute to the high
rate of mortality in SSc patients [17,18]. The current treatment options are mainly based
on immunosuppressive agents, although, recently, an antifibrotic drug (nintedanib) was
shown to be effective for the management of lung disease. A more intensive therapeutic op-
tion involves autologous hematopoietic stem cell transplantation for patients with rapidly
progressive dcSSc [19].
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1.3. Pathogenesis of SSc

1.3.1. Vascular Injury

Although the pathophysiology of SSc is not completely elucidated, it is known to be
characterized by microvascular injury, the production of autoantibodies, and fibroblast
dysfunction, which induces an increased deposition of ECM (Figure 1) [17,20]. Indeed,
vascular damage is an early event in SSc that leads to a cascade of processes contributing to
the disease development. Infectious agents, cytotoxic T cell nitric oxide (NO)-related free
radicals, and oxidative stress have been recognized as potential actors in EC damage, even
if the exact role of each of these stressors is not fully understood [21–23]. The damaged ECs
release endothelin-1 (ET-1) and von Willebrand factor (vWF); as a result, the homeostatic
balance between vasodilation and vasoconstriction is deranged, and the increase in vessel
tone contributes to tissue hypoxia [24–26]. In response to the vascular damage, ECs also
increase the expression of adhesion molecules (vascular cell adhesion molecule-1, VCAM-1;
intercellular cell adhesion molecule-1, ICAM-1; E-selectin) and chemokines (C-C motif
chemokine ligand (CCL) 2; CCL3; IL-8; CCL18) [27,28].

Figure 1. Pathogenetic mechanisms involved in SSc. Endothelial cells are activated upon vascular

damage with the consequent expression of adhesion molecules and production of vWF, ET-1, and

chemokines. The injured endothelium produces molecules capable of recruiting immune cells.

Inflammatory infiltrates composed of monocytes, macrophages, and T cells and B cells sustain the

release of proinflammatory and profibrotic cytokines. Resident fibroblasts undergo a phenotypic

conversion to myofibroblasts, the effector cells of fibrosis. Abbreviation: vascular cell adhesion

molecule-1, VCAM-1; intercellular cell adhesion molecule-1, ICAM-1; endothelin-1, ET-1; B cell

activating factor, BAFF; interleukin, IL; tumor necrosis factor, TNF; Transforming Growth Factor-β,

TGF-β; Von Willebrand factor, vWF; endothelial cell, ECs.
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1.3.2. Inflammation

Innate and adaptive immune cells, particularly monocytes, macrophages, dendritic
cells, and subsets of T cells and B cells, also contribute to the inflammation underlying
this condition [29,30]; indeed, the inflammatory infiltrates engage with resident fibroblasts,
releasing profibrotic and proinflammatory cytokines [20,31,32]. In addition, keratinocytes
and dermal fibroblasts reciprocally release signaling molecules or factors (IL-1 produced
by keratinocytes and keratinocyte growth factor by fibroblasts), contributing to the home-
ostasis [33]. In SSc, this crosslink is disrupted, and the final result is an upregulation of
Transforming Growth Factor-β (TGF-β) signaling and the release of peptides with Damage-
Associated Molecular Pattern (DAMP) properties, along with tumor necrosis factor (TNF),
which perpetuate the inflammation [34].

1.3.3. Activation of Fibroblasts

Ultimately, resident fibroblasts, stimulated by the profibrotic inflammatory environ-
ment, proliferate and differentiate into myofibroblasts, mainly responsible for the excessive
deposition of the extracellular matrix, which is mostly composed of highly crosslinked
type I collagen [35,36]. Myofibroblasts are specialized fibroblasts that display prominent
cytoplasmatic stress fibers, α-smooth muscle actin (α-SMA), and express receptors as-
sociated with profibrotic pathways, including TGF-β [37]. SSc fibroblasts also express
platelet-derived growth factor (PDGF) and its receptors; PDGF is a chemoattractant for
fibroblasts, forcing them to produce collagen and to secrete TGF-β1, IL-6, and monocyte
chemoattractant protein 1 (MCP-1), thus strengthening the development of fibrosis [38].
Fibrosis is a common response to chronic inflammation and injury; it is characterized by
the disruption of structure and function of the affected tissues. In fibrotic tissues, the excess
of EMC dominates the tissues, leading to a more acellular composition and tissue stiff-
ness that compromise the normal flexibility, collectively resulting in the loss of functional
integrity [39,40].

1.3.4. Autoantibodies in SSc

The search for autoantibodies is particularly useful for both diagnosis and prognostic
stratification. Indeed, SSc-associated autoantibodies are clinically important for the diag-
nosis and the prediction of organ involvement, since they are disease-specific antibodies
that give indications on clinical features, severity, and prognosis [41]. SSc autoantibodies
are mutually exclusive, and recent evidence proposes that they could help guide treatment
strategies [42]. A wide range of autoantibodies is involved in SSc, and antinuclear anti-
bodies (ANA) are usually detected in more than 90% of patients [43]. The most common
antinuclear antibodies capable of defining well-described cardiopulmonary complications
are the anti-centromere antibodies (ACA), anti-DNA topoisomerase I antibodies (anti-
topo I), anti-RNA polymerase III antibodies (anti-RNA pol III), and anti-Th/To antibodies
(anti-Th/To) (Table 1) [44–47].

Other autoantibodies may be indicative of an overlap syndrome, as they are not specific
for systemic sclerosis, but rather, they are also found in other rheumatic diseases (e.g.,
Sjögren’s syndrome, systemic lupus erythematosus, rheumatoid arthritis, polymyositis,
and dermatomyositis) [48–50]. These non-specific autoantibodies include anti-U3-RNP
antibodies, anti-U1-RNP antibodies, anti-U11/U12-RNP antibodies, anti-Ku antibodies,
anti-PM–Scl antibodies, and anti-Ro antibodies [44,48].
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Table 1. Association between autoantibodies in SSc and clinical manifestations. Abbreviations: anti-

centromere antibodies, ACA; anti-DNA topoisomerase I antibodies, anti-topo I; anti-RNA polymerase

III antibodies, anti-RNA pol III; limited cutaneous systemic sclerosis, lcSSc; diffuse cutaneous systemic

sclerosis, dcSSc; pulmonary arterial hypertension, PAH; interstitial lung disease, ILD.

Autoantibodies Phenotypes Target Clinical Associations

ACA lcSSc

ACA are mainly directed
towards three centromere
proteins, namely CENP-A,

B, and C.

Cutaneous calcinosis,
dermal thickness of hands
and/or feet distally from

elbow and knee,
respectively, and PAH.

Anti-topo I dcSSc

Anti-topo I are directed
towards a nuclear protein

of 70–100 kD, clustered
with DNA molecules and
involved in altering DNA

chain conformation
during cellular replication.

Ischemic digital ulcers,
flexion contractures in

metacarpophalangeal and
proximal interphalangeal

joints, hand disability,
and progressive

pulmonary fibrosis.

Anti-RNA pol III dcSSc
Anti-RNA pol III

antibodies are reactive
with RNA polymerase III.

Joint contractures,
scleroderma renal crisis

Anti-Th/To lcSSc

Anti-Th/To are directed
towards protein

components of the RNase
MRP complex.

ILD and pericarditis.

2. Gas6/TAM System

2.1. Gas6/TAM System’s Functions

The Gas6/TAM system is a highly pleiotropic system, considered one of the main
actors in the context of inflammation, vascular integrity, and homeostasis. TAM is the
acronym of Tyro3, Axl, and MerTK, a group of tyrosine kinase receptors [6]. They are
structurally similar and include two extracellular fibronectin type III, two immunoglobulin
(Ig)-like domains, and one kinase domain, with a signature motif (KWIAIES) specific for
TAM receptors [51]. The main ligands for TAM receptors are vitamin K-dependent proteins,
namely Gas6 and Protein S (Pros1) [52–55]. Gas6 and Protein S share approximately 43%
amino acid sequence homology and have the same domain structure; unlike Gas6, Pros1 is
only able to bind Tyro-3 and MerTK but not Axl. Structurally, Gas6 and Pros1 comprehend
a γ-carboxyglutamate (Gla)-rich domain, four epidermal growth factor-like domains, and
one sex hormone-binding globulin (SHBG)-like domain that contains two laminin G-like
domains (Figure 2) [56]. Following the binding of the ligand, the receptor dimerizes,
allowing the trans-autophosphorylation of the intracellular tyrosine kinase domains and
downstream signal transmission, which generally follows the MEK/ERK, PI3K/AKT, and
JAK/STAT pathways [57,58]. Axl and MerTK receptors can also be cleaved by A Disintegrin
and metalloproteinase domain-containing protein 10 (ADAM10) and A Disintegrin and
metalloproteinase domain-containing protein 17 (ADAM17), and their soluble forms (sAxl
and sMer) are still able to bind Gas6 protein, thus regulating its function [59,60]. In spite
of the structural similarity, Pros 1 is primarily expressed in the liver and endothelial cells,
while Gas6 is widely expressed in vascular smooth muscle cells, kidneys, lungs, intestine,
heart, and monocytes [61].
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Figure 2. Structure of TAMs (A). TAMs consist of immunoglobulin-like (IgL) domains, two fibronectin

domains, and a kinase domain. Structure of Gas6 (B). Gas6 consists of a gamma-carboxyglutamic

acid (Gla) domain, four epidermal growth factor (EGF)-like domains, and two laminin G (LG)-like

domains. Created with https://www.BioRender.com (accessed on 18 June 2024).

The Gas6/TAM system is involved in many biological processes, including cellular
homeostasis, vascular integrity, platelet function, regulation of inflammatory responses,
adhesion and migration, phagocytosis, and apoptosis regulation, as well as fibrotic evolu-
tion [62–67]. As a regulator of the inflammatory response, the TAM system works to obviate
the chronic activation of antigen-presenting cells (APCs) by attenuating the inflammatory
pathways. Indeed, innate immune cells, including macrophages and dendritic cells, recog-
nize pathogens through pattern recognition receptors (PRRs), such as Toll-like receptors
(TLRs). This triggers a huge release of cytokines and chemokines, contributing to local
inflammation [68,69]. TAM receptors are able to upregulate the suppressors of cytokine
secretion (SOCS) proteins, particularly SOCS1 and SOCS3. TAM receptor-dependent activa-
tion by Gas6 ends up in TLR2 and TLR6 inhibition and SOCS1 and SOCS3 induction, hence
dampening the inflammatory response [7,70]. In mouse macrophages, Gas6 and Pros1 have
been demonstrated to synergistically suppress both the basal and the TLR-triggered produc-
tion of inflammatory cytokines, including IL-6, TNF-α, and IL-1β, through the activation of
TAM receptors [71]. Moreover, the recognition of TAM receptors by Gas6 is fundamental for
the transition from inflammation to its resolution, with tissue repair and healing [72]. TAM
receptors and their ligands Gas6 and Pros1 are considered crucial regulators of efferocytosis,
acting as bridging molecules that facilitate the recognition and engulfment of apoptotic
cells by macrophages [73,74]. This process maintains tissue homeostasis and prevents the
development of chronic diseases and autoimmunity. Indeed, impairment of efferocytosis
with the defective removal of apoptotic bodies and the subsequent failure of inflammation
resolution result in the development of various chronic inflammatory and autoimmune
diseases [75–77].

Furthermore, the vasculature could represent a target for the Gas6/Axl axis, as both
Gas6 and Axl molecules are expressed by various cell types within blood vessels, including
ECs, pericytes, and smooth muscle cells [78–80]. After injury to the blood vessel wall,
VSMCs undergo proliferation and exhibit migratory behavior. This dynamic and highly
ordered program involves the expression of various molecules, including growth factors,
receptors, and intracellular mediators [81]. Following injury, overexpression of Axl has
been found in neointima VSMCs of rat carotid arteries, suggesting its role as a potential
contributor to VSMC proliferation, its expression regulated by angiotensin II [80]. Moreover,
Gas6/Axl interaction is able to activate downstream survival of the PI3K-Akt pathway,

https://www.BioRender.com
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acting as an antiapoptotic mechanism preventing VSMC apoptosis, in turn contributing
to the response to vascular injury [66]. In addition, an in vitro study on human umbilical
vein endothelial cells (HUVECs) demonstrated that recombinant human Gas6 is protective
against apoptotic stimuli, and Gas6-Axl activation fosters EC survival via Akt phosphory-
lation and NF-κB activation [82]. Moreover, the binding between TAM receptors and Gas6
amplifies EC activation, resulting in an enhanced expression of the adhesion molecules
VCAM-1 and ICAM-1 [83]. Mouse models of inflammation (e.g., heart transplantation,
endotoxemia, and vasculitis) have demonstrated that Gas6 contributes to leukocytes and
platelets sequestration on activated endothelium and supports leukocyte extravasation and
inflammation [83].

Gas6 has also been demonstrated to participate in wound repair through its signaling
pathways involving Mer, RhoA, and downstream effectors. In particular, it stimulates
the production of epithelial growth factor hepatic growth factor (HGF) in macrophages
(RAW 264.7 cells), which, in turn, boosts the proliferation of epithelial cells, promoting
wound repair. More specifically, the activation of the Gas6/MerTK downstream signaling
pathway composed of RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP)
kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and
Jun NH2-terminal kinase, results in the upregulation of HGF at both the mRNA and
protein levels [84]. It has also been demonstrated that the Gas6/Axl or MerTK signaling
pathway could prevent the TGF-β1-induced epithelial to mesenchymal transition (EMT)
and exert an inhibitory effect on the migration and invasion in alveolar type II (ATII) ECs.
Gas6 can block non-Smad TGF-β1 signaling and downregulates the mRNA expression
of the transcription factors associated with EMT. Moreover, in vitro, Gas6 stimulation
enhances COX-2 expression and the subsequent secretion of prostaglandin E2 (PGE2)
and prostaglandin D2 (PGD2), mediating anti-EMT effects in an autocrine/paracrine
manner [85].

Ultimately, Gas6 appears to have a dual role in tissues, wherein its protective effect on
inflammation is juxtaposed with profibrotic properties [86]. Indeed, while TAM receptors
can have anti-inflammatory effects in certain contexts, persistent activation may lead to a
chronic inflammatory state, contributing to the perpetuation of fibrosis [87–91]. Activation
of these receptors by Gas6 can trigger signaling pathways that influence fibrogenesis [92,93].
A recent study demonstrated that Gas6 is able to upregulate TGF-β, which is also a central
regulator of fibrosis that promotes the synthesis of extracellular matrix components, such
as collagen, leading to tissue fibrosis [94,95].

2.2. Gas6/TAM System in Human Diseases

2.2.1. Gas6/TAM in Cancer

The Gas6/TAM system has been widely studied in different human conditions, with
a particular focus on cancer [9,96–102]. The tumor microenvironment is rich in phos-
phatidylserine (PtdSer), provided from several sources (e.g., intra-tumoral apoptotic cells
and tumor-derived exosomes) and exposed on the membranes by viable cancer cells. The
interaction between TAMs on APCs and PtdSer on cancer cells through either Gas6 or Pros1
attenuates the immune response, leading to survival signals and favoring an immuno-
suppressive and anti-inflammatory microenvironment [103–105]. Apart from PtdSer, the
Gas6/TAM system has been associated with prolonged survival and increased proliferation
of cancer cells, as well as with the regulation of cancer cells migration and invasion [106,107].
In particular, the overactivation of TAMs on tumor cells results in the activation of vari-
ous downstream oncogenic pathways, including MEK/ERK, PI3K/AKT, JAK/STAT, and
p38, promoting cell growth and proliferation. The TAM system regulates migration and
invasion through RHO, matrix metalloproteinase 9 (MMP9), and focal adhesion kinase 1
(FAK1), promoting metastasis formation [108,109]. The overexpression of TAMs, particu-
larly Axl, is involved in various solid and hematological tumors, and generally results in
higher metastatic risk and worse prognosis [110,111]. Targeting Gas6 or TAM receptors
has emerged as a potential therapeutic strategy in cancer treatment; indeed, inhibiting the
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Gas6/TAM axis could potentially disrupt the pro-tumorigenic signaling pathways and
enhance the effectiveness of anticancer therapies [112–115]. In the context of targeting
the Gas6/TAM axis, some studies have focused on developing inhibitors that target the
TAM receptors rather than Gas6 itself [107]. Therapies targeting MerTK, including small
molecule inhibitors and blocking antibodies, have demonstrated the efficacy of MerTK
inhibitors in specific MerTK-sensitive tumors. Small molecule inhibitors with specificity
for MerTK/FLT3, such as MRX2843 and UNC1666, have shown a substantial impact on
cell growth in acute myeloid leukemia (AML); acute lymphoblastic leukemia (ALL); and
melanoma in various experimental settings, including cell lines, murine models, and
primary patient tumor samples [116,117]. Regarding Axl-targeted drugs, monoclonal anti-
bodies specific to Axl, such as YW327.6S2 and 20G7-D9, have demonstrated their ability to
inhibit the growth of cancer cells [118]. Many clinical trials focus on targeting Axl with small
molecule selective inhibitors (BGB324 and TP-0903), antibody–drug conjugates (BA3011),
anti-Axl Fc fusion protein AVB-S6-500, and multitargeted inhibitors (ONO-7475, Merestinib
and Sitravatinib). These compounds were employed either alone or in combination with
other drugs and showed significant therapeutic effects [119,120].

2.2.2. Gas6/TAM System in Liver Diseases

Besides cancer, Gas6/TAMs are also involved in liver diseases [86,121–124]. The
Gas6/TAM axis might be beneficial in acute liver injury modulating immune responses and
promoting tissue repair but does potential harm in chronic liver diseases [125]. Considering
the current literature, Gas6 has been reported to have a hepatoprotective role in certain
liver pathologies, mainly by dampening inflammatory processes. Indeed, by suppressing
the production of proinflammatory cytokines and mediating efferocytosis and APC activity,
Gas6 can limit excessive inflammation. Specifically in ischemia/reperfusion-induced
damage in mice, Gas6 was demonstrated to protect mouse hepatocytes from hypoxia
and reduce the production of inflammatory cytokines [126]. Regarding a wound healing
response to liver injury, Gas6 knockout mice showed a delayed resolution of liver necrotic
areas, suggesting that Gas6/Axl signaling is essential for regulating the liver inflammation
necessary for normal wound healing [127]. On the contrary, this system behaves differently
in chronic conditions. The Gas6/MerTK signaling pathway appears to promote fibrosis
in vitro through hepatic stellate cell (HSC) activation and the consequent upregulation of
several genes involved in fibrosis. Blocking this binding through MerTK inhibitors (e.g.,
UNC569), MerTK gene silencing, or inhibiting Gas6/TAM activation by RU-301 resulted
in decreased fibrosis in in vitro models [90,128,129]. Similarly, Axl knockout mice and Axl
pharmacological inhibition via Bemcentinib in mice have been demonstrated to ameliorate
liver fibrosis induced by chronic administration of carbon tetrachloride (CCl4) [88]. In
humans, Axl upregulation stimulates tumor progression in hepatocellular carcinoma (HCC)
by influencing cancer cell plasticity and the tumor microenvironment [130].

2.2.3. Gas6/TAM System in Lung Diseases

Furthermore, the Gas6/TAM system contributes to both inflammation and fibrosis,
two key events involved in ILD. In patients with Idiopathic Pulmonary Fibrosis (IPF), Gas6,
Axl, and Tyro3 were elevated compared to the healthy control, and phosphorylated Axl
was higher in rapid progressors versus slow progressors [131]. Moreover, the activation
of Axl was observed in the epithelial remodeling of lung fibrosis, possibly resulting in
the loss of the epithelial barrier [132]. On the contrary, Gas6/Axl signaling regulates
alveolar inflammation in ischemia–reperfusion-induced acute lung injury (IR-ALI) through
the upregulation of SOCS3 and downstream pathways, attenuating the injury and the
inflammation [133]. Moreover, Gas6/TAM signaling can activate pulmonary fibroblasts,
and small molecule inhibitors, such as the Axl inhibitor BGB324, show promise in inhibiting
fibroblast activation compared to specific antibodies directed to Gas6 or Axl [131].



Curr. Issues Mol. Biol. 2024, 46 7494

2.2.4. Gas6/TAM System in Infectious Diseases

More recently, this system has also been shown to support the immune response
in COVID-19 and post-COVID-19 sequelae [62,67]. Indeed, in COVID-19 patients, Gas6
levels increase progressively with the severity of the disease and predict adverse out-
comes [134,135]; a derangement of this system has also been associated with hair loss one
year after hospital discharge due to COVID-19 [136]. Moreover, Axl has been proposed as
a candidate receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
in view of its role in promoting the viral infection of pulmonary and bronchial epithelial
cells. Axl has been identified to specifically interact with the spike protein of SARS-CoV-2,
the N-terminal domain. Overexpression of Axl and angiotensin-converting enzyme 2
(ACE2) receptor, known as the primary cellular receptor for SARS-CoV-2, in HEK293T
cells has been demonstrated to be equally efficient in promoting viral entry. Axl deficiency
significantly reduced the viral infection in H1299 pulmonary cells and human primary lung
epithelial cells [137]. Axl inhibition has been also proposed as a potential alternative for
COVID-19 treatment due to its reported antiviral activities in preclinical studies [138,139].

Apart from SARS-CoV-2, Ebola and Vaccinia viruses can manipulate host cells to aid
cell entry and enhance infection through TAM receptors. Specifically, Gas6, by binding to
PtdSer on the surface of the virion, links the virus to the membrane of macrophages and
other phagocytes through interactions with TAM receptors, thus facilitating viral internal-
ization [140–142]. Concerning ZIKA virus (ZIKV), the interaction among ZIKV-Gas6-Axl
leads to the downregulation of various interferons and proinflammatory cytokines, thereby
suppressing innate immune and inflammatory responses [143].

2.2.5. Gas6/TAM System in Cardiovascular Diseases

Emerging evidence indicates that the Gas6/TAM system may be involved in heart
failure (HF), with elevated levels of Axl observed in both myocardial expression and serum
concentration among HF patients compared to control groups [144]. Moreover, increased
plasma Gas6 levels were linked to a higher risk of both all-cause and cardiovascular mortal-
ity in patients with acute heart failure (AHF) [145]. A notable decrease in long non-coding
RNA GAS6-AS1 expression was noted in the plasma of patients with acute myocardial in-
farction (AMI) compared to individuals without heart conditions [146]. Regarding MerTK,
upon analyzing sections of carotid artery endarterectomy samples, a positive correlation
between sMer and the percentage of necrosis has been observed. Notably, sMer was not
detected in nonatherosclerotic human arteries. Furthermore, plaques from symptomatic
patients displayed increased levels of sMer compared to those from asymptomatic pa-
tients [147]. Enhancing MerTK function or preventing its cleavage could be promising
therapeutic approaches for cardiovascular disease. Concerning Tyro3, it could have a
protective role by suppressing type 2 immune responses that promote cardiac fibrosis, but
further investigation could reveal potential for Tyro3 as a therapeutic target to prevent
fibrosis post-cardiac injury [148].

2.2.6. Gas6/TAM System in Rheumatic Diseases

In the context of rheumatic and autoimmune diseases, the serum levels of sTyro3 are
increased in patients with rheumatoid arthritis (RA) and correlate directly with disease
activity and bone destruction [149]. Gas6 has been reported to be present in the synovial
tissue of patients with RA, with lower levels observed in erosive RA compared to non-
erosive RA [150]. More recently, AXL and MERTK RNA expression levels were measured in
RA patients from the R4RA clinical trial and treated with a second-line biologic agent, either
rituximab or tocilizumab [151]. Upon blocking the IL-6 pathway downstream of treatment
with the IL-6 receptor inhibitor tocilizumab, the Axl synovial transcript levels were found
significantly upregulated, possibly indicating that modulation of the IL-6 pathway can
influence Axl expression [152].
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In osteoarthritis, the interaction of Gas6 with the Axl receptor exhibits anti-inflammatory
effects associated with the upregulation of SOCS1/3 in fibroblast-like synoviocyte and
biopsies from the joints of patients [153]. Moreover, the overexpression of Pros1 or Gas6
genes successfully reduced arthritis pathology in a murine model of collagen-induced
arthritis [154].

In patients with primary Sjögren’s syndrome (pSS), plasma levels of sMer were ele-
vated and associated with disease activity and inflammatory response [155]. In systemic
lupus erythematosus (SLE) patients, a derangement of the Gas6/TAM system with in-
creased Gas6, sAxl, and sMer plasma concentrations has been correlated with disease
activity [156,157] and with the parameters of renal involvement in SLE patients with lupus
nephritis (LN) [158].

2.3. Gas6/TAM System in Systemic Sclerosis

Given the above, it is reasonable to postulate that the Gas6/TAM system could also be
involved in the pathogenesis of SSc. The rationale for implicating the Gas6/TAM axis in
SSc derives from the proven involvement of the system in vascular integrity and its overex-
pression in vascular injury, the role of Gas6/TAMs in efferocytosis, which is a fundamental
mechanism for the prevention of autoimmunity, and the interplay of Gas6/TAMs in inflam-
mation and fibrosis. Indeed, this biological system, as previously described, dampens the
inflammatory response, driving towards the profibrogenic route. As detailed above, these
are all well-known events implicated in the pathogenesis of SSc.

To date, however, papers assessing the potential diagnostic and pathogenetic roles
of Gas6 and TAMs in SSc are lacking. Our group evaluated a cohort of 125 SSc (or SSc
overlap) patients; out of them, 19 (15%) were affected by pulmonary hypertension (PH),
while 39 (31%) had a certain degree of ILD, which was characterized by a severe functional
impairment in 6 (5%) of them. We assessed whether the circulating levels of Gas6, sAxl, and
sMer marked the presence of cardiopulmonary involvement. Interestingly, we reported
that the sMer plasma concentration was significantly higher in the 14 patients with PAH
associated with connective tissue disorders (CTD-PAH) compared to those measured in the
patients without PAH or affected by PH not related to CTD. In this context, a sMer increase
may result from a combination of a dysfunctional endothelium and an impairment of the
mechanisms that dampen inflammation in the pulmonary artery vessel wall [159].

In addition to this, the circulating Gas6 and sAxl plasma levels were slightly increased
in mild ILD patients compared to patients without ILD, possibly reflecting this system
as either a marker of progression to fibrosis or an indicator of a dysregulated control of
inflammation [159]. This finding is particularly interesting since, as previously described,
the system has been claimed as a promising target in the management of IPF. IPF shares
similarities with CTD-ILD and, recently, an antifibrotic agent, namely nintedanib, was
shown to be effective both in IPF and progressive CTD-ILD. Therefore, it is reasonable that
targeting fibrosis through Axl inhibition might be equally effective in both conditions.

However, following the scarcity of research papers dealing with this topic, the interpre-
tation of these findings is merely speculative; we believe that this promising basis should
support further investigation about the role of Gas6/TAMs in the pathogenesis of SSc.

3. Treatment of SSc

Although direct effects on TAM receptors are not well documented, the broad immuno-
suppressive properties of drugs used to treat SSc might indirectly impact TAM receptor
signaling by modulating the immune environment.

Regarding biologic disease-modifying antirheumatic drugs (bDMARDs), IL-6 inhi-
bition by tocilizumab resulted in an increased expression of Axl and MerTK in the RA
synovial tissue. This modulation was associated with a reduction in synovial inflammation,
suggesting that IL-6 inhibition may exert anti-inflammatory effects partly through the
upregulation of TAM receptors. The same trend was not observed after the depletion of B
cells in the rituximab-treated RA patient group [152].
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Commonly used for autoimmune diseases, glucocorticoids can induce ProS-dependent
phagocytosis of apoptotic cells by macrophages through the upregulation of MerTK expres-
sion [160,161], thus implicating its potential role in TAM receptor signaling.

Nintedanib is a tyrosine kinase inhibitor that has been recently approved as an an-
tifibrotic agent for the treatment of SSc-ILD [162], and considering that TAM receptors
belong to the tyrosine kinase family, it is plausible that they could play a role in the
pathophysiology of SSc and its treatment.

As with all other treatments used in SSc, there is no direct evidence of the involvement
of the Gas6/TAM system.

While direct evidence of the effects of these treatments on the Gas6/TAM system
is sparse, its role in reducing inflammation and cytokine levels suggests that they may
indirectly modulate this system (Table 2).

Table 2. This table provides an overview of the effects of various treatments on the Gas6/TAM

system, highlighting their mechanisms of action, evidence of involvement, or potential impacts on

TAM receptor activity not experimentally proven yet. Abbreviations: tocilizumab, TOC; rituximab,

RTX; biologic disease-modifying antirheumatic drugs, bDMARDs.

Treatments Effects
Involvement

in Other
Conditions

Possible
Involvement of
Gas6/TAM Axis

References

TOC and RTX,
bDMARDs

TOC: Inhibition of
the IL-6-mediated

signaling pathways,
leading to a
reduction in

inflammation and
immune response
modulation.RTX:

Depletion of B cells.

Proven.

Increased expression
of Axl and MerTK in

the RA synovial
tissue, suggesting

that IL-6 inhibition
may exert part of its
anti-inflammatory

effects through
upregulation of
TAM receptors.

[152]

Prednisolone,
glucocorticoids

Anti-inflammatory
and immunosup-

pressive properties.
Proven.

Glucocorticoids can
upregulate the

expression of MerTK
enhancing the
clearance of

apoptotic cells and
promoting

anti-inflammatory
pathway.

[160,161]

Nintedanib,
tyrosine kinase

inhibitor

It targets multiple
tyrosine kinases
involved in the

processes of fibrosis,
inflammation, and

vascular
remodeling.

Proven.

Gas6/TAM receptor
activity contributes
to the activation of

pulmonary
fibroblasts in IPF
and targeting of
TAM receptors

alleviates fibrotic
mechanisms.

[131]
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4. Conclusions

Despite advances in understanding the underlying mechanisms and clinical manifes-
tations of SSc, there are aspects that have not been adequately explored. The discovery
of new therapeutic targets and specific diagnostic and prognostic markers is crucial for
optimizing the management of systemic sclerosis and its life-threatening complications.
Regardless of the limited data on the Gas6/TAM system in the context of SSc, this review
presents possible contributions of this system to the pathogenesis of the condition. Indeed,
the Gas6/TAM system has been implicated in maintaining vascular integrity, being overex-
pressed in vascular damage. It also plays a role in efferocytosis, a crucial mechanism for
preventing autoimmunity, and it mitigates the inflammatory response, guiding toward a
profibrogenic pathway. So far, these aspects, although characterized in other conditions,
have not been investigated in SSc. To this day SSc treatment is confined to immune modu-
lation and antifibrotic therapy, making the discovering of new targets and the exploration
of new therapeutic approaches vital, as they would fill a huge unmet need.

Targeting of TAM receptors has recently been further explored spanning numerous
diseases and constitutes a promising field of translational research. A deep understanding
of TAM involvement in SSc could pave the way for unveiling their potential as therapeutic
targets in this condition. To conclude, it would be worthwhile to explore this system deeper,
as it may provide valuable insights into the pathogenesis of systemic sclerosis.
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