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It is argued that proper and improper quantum mixed states have no observable di®erences, and
hence should not be distinguished. This has implications for subjective approaches to quantum
mechanics, and invalidates one of the main motivations for relational interpretations.
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1. Introduction

Measurements by de¯nition presuppose a separation between the observed system S
and the observer O. This separation can be moved towards S or towards O, thus
rede¯ning S and O, as was realized from the early days of quantum mechanics
(the \Heisenberg cut"). Once the separation is decided, so that subsystems S and O
are precisely identi¯ed, the quantum mechanical rules provide statistical predictions
on the results of measurements performed by O on the system S.

Take for simplicity S to be a qubit, i.e. a two-dimensional quantum system, and
A to be an observable of S with orthonormal eigenvectors j0i and j1i. If S is in the
pure state j i ¼ !j0iþ "j1i, and O measures A without registering the result, the
pure state collapses into a mixture described by the density matrix

j ih j ! j!j2j0ih0jþ j"j2j1ih1j: ð1:1Þ

This statistical mixture indicates that S is in the state j0i with probability j!j2 and in

the state j1i with probability j"j2, and re°ects the ignorance of the measurement
result. The collapse (1.1) is the \ontic part" of the process, being independent of
the knowledge of the measurement result. The \epistemic part" is in the sharper
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description j0ih0j or j1ih1j, depending on this knowledge. Thus we can describe the
measurement as a two-step process, an \ontic" collapse followed by an \epistemic"
collapse:

ð!j0iþ "j1iÞðh0j!% þ h1j" %Þ&&&&&&&&&!\ontic" collapse j!j2j0ih0jþ j"j2j1ih1j; ð1:2Þ

j!j2j0ih0jþ j"j2j1ih1j&&&&&&&&&&&&&&&&!\epistemic" collapse
ðknows that result is 1Þ j1ih1j: ð1:3Þ

In what follows, our concern will be with the ontic part, since it is the genuinely
quantum mechanical part of the measurement process. The epistemic part is essen-
tially the same as in classical situations, for example when °ipping a coin and looking
or not looking at the result.

Here we assume that all physical systems, including observers, are described by
quantum mechanics, and that \classicality" arises as an emergent phenomenon. By
\observer" we mean a physical system (human or not) that can interact with S, and
due to this interaction becomes correlated with S. By \measurement" we mean this
interaction, occurring at a de¯nite time, and producing the ontic collapse.

We also assume that the state of a system is completely described by its density
matrix, as introduced in Ref. 1 (see also Ref. 2). In particular we consider the state of
a subsystem in a composite system to be completely described by its reduced density
matrix.

2. Measurement as Interaction

A central tenet of QM is the unitary evolution of an isolated system S, according to
the Schr€odinger equation. On the other hand, the measurement of an observable on S
implies an interaction with an external measuring apparatus O: the system S in this
case is not isolated, and its evolution during the measurement is described by a
(nonunitary) projection. The clash between unitary evolution (Process 2 in von
Neumann terminology1) and projection (Process 1) is at the core of the so called
\measurement problem" in quantum mechanics (see for e.g. Refs. 3, 4 and refs.
therein). We will argue that the problem disappears if we consider only the ontic part
of the collapse, as described by (1.2) in the previous section, where a pure state
collapses into a mixture. The epistemic part we consider irrelevant to the discussion,
since it is intrinsic to all statistical ensembles (not necessarily quantum).

More precisely, the problem seems to arise when we consider the (isolated) com-
posite system S+O and want to describe its evolution during the measurement. The
composite system, being isolated from external in°uences, must evolve unitarily. But
how can we describe unitarily a measurement that takes place inside S+O, involving
a nonunitary process on the subsystem S? The solution is provided by the reduced
density matrix formalism. Indeed the reduced density matrix for the subsystem S,
after the interaction with the measuring apparatus O, describes exactly the same
statistical mixture as in (1.1), with weights equal to the Born probabilities. This is a
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remarkable feat of the formalism of textbook QM, and allows the interpretation of S
as a \measured system" within a purely unitary evolution.

To be concrete, consider S and O to be two qubits, i.e. two-dimensional quantum
systems, each with orthonormal basis vectors j0i and j1i. Moreover de¯ne obser-
vables A on S and B on O, both with eigenvectors given by j0i and j1i. The unitary
evolution must entangle S with O, since states of S must be correlated with states of
the apparatus O. This can be realized with a CNOT gate, i.e. a unitary operation on
the composite system acting on the basis vectors as j0ij0i ! j0ij0i, j0ij1i ! j0ij1i,
j1ij0i ! j1ij1i, j1ij1i ! j1ij0i.

Consider as initial state of S+O the product state ð!j0iþ "j1iÞj0i. Then
the CNOT gate transforms it, by linearity, into the entangled state !j0ij0iþ "j1ij1i,
cf. Fig. 1. Thus, results of measurements of A on S are correlated with those of B
on O.

Is this a good model for quantum measurements, if B is identi¯ed with the pointer
position of a measuring apparatus O? At ¯rst sight there seems to be a problem, since
the e®ect of a measurement on S should project it into one of the two base states

j0i; j1i, with probabilities j!j2 and j"j2, respectively. Here instead we have a ¯nal
entangled state for the composite system. How can we resolve this apparent dis-
agreement?

The answer is to focus on the state of the subsystem S. This state is completely

described by the reduced density matrix #S, obtained by tracing the density matrix of
S+O over system O. The partial trace yields

#S ¼ TrO½ð!j0ij0iþ "j1ij1iÞð!%h0jh0jþ "%h1jh1jÞ( ¼ j!j2j0ih0jþ j"j2j1ih1j ð2:1Þ

and describes the state of subsystem S after the CNOT interaction. Note that #S

describes a mixed state of S. Before the CNOT interaction, S was in the pure state
!j0iþ "j1i. Therefore the e®ect of the interaction on the subsystem S has been a
nonunitary transformation, even if S+O evolves unitarily.

The statistical mixture (2.1) coincides with (1.1). Thus the ontic part of the
measurement process can be described by a unitary evolution of S+O.

Note. The quantum circuit in Fig. 1 implements a measurement in the compu-
tational basis also on mixed states. Indeed we can replace the pure state j i (input
state for the ¯rst qubit) with an input density matrix #1, while keeping the state
of the second qubit equal to j0i. Take for example #1 ¼ pajaihajþ pbjbihbj
with pa þ pb ¼ 1, the generalization to an arbitrary ensemble being straightforward.

Fig. 1. Circuit modeling the measurement of an observable with eigenvectors j0i and j1i. Both the
measured system S and the observer (or apparatus) O are taken to be 1-qubit systems.

All quantum mixtures are proper

2350019-3



The pure states jai; jbi do not need to be orthogonal, and are expanded on the
computational basis as

jai ¼ !j0iþ "j1i; jbi ¼ $j0iþ %j1i: ð2:2Þ

Then the density matrix # for the 2-qubit system evolves as

# ¼ ðpajaihajþ pbjbihbjÞ ) j0ih0j ! # 0 ¼ CNOT # CNOT; ð2:3Þ

under the action of the circuit in Fig. 1. Recalling that CNOT= j0ih0j) I þ j1ih1j)X
whereX is the quantum NOT gate, i.e.Xj0i ¼ j1i;Xj1i ¼ j0i, it is an easy exercise to
¯nd # 0 as given by (2.3). Taking then its partial trace yields the reduced density matrix

# 0
1 for the ¯rst qubit:

# 0
1 ¼ Tr2ð# 0Þ ¼ ðpaj!j2 þ pbj$j2Þj0ih0jþ ðpaj"j2 þ pbj%j2Þj1ih1j: ð2:4Þ

This is exactly the same density matrix one obtains for the ¯rst qubit after measuring it
(and ignoring the result), using the textbook rule

# 0
1 ¼

X

m

Pm#1Pm; ð2:5Þ

Pm being the projectors j0ih0j and j1ih1j. The transformation #1 ! # 0
1 is in general not

unitary (quick proof: Tr ð# 0
1Þ2 in general di®ers fromTr ð#1Þ2), and represents the ontic

collapse of the density matrix under a measurement. Thus the ontic part of the mea-
surement is described by a unitary evolution of the S+O density matrix.

3. Objections

An often heard objection5,6 relies on the distinction between proper and improper
mixtures, a terminology introduced by D' Espagnat.5 A statistical mixture due to
ignorance is called proper, whereas the same mixture describing a subsystem of a
composite system in an entangled pure state is called improper. In the example of the
preceding section, the objection runs as follows. We cannot interpret the (improper)
statistical mixture (2.1) to describe a system which is in one of the two states j0i; j1i,
with probabilities j!j2 and j"j2, respectively: if this were the case, the total system

should ¯nd itself in one of the two states j0ij0i, j1ij1i with probabilities j!j2 and j"j2,
respectively, implying for its density matrix to be

j!j2j0ij0ih0jh0jþ j"j2j1ij1ih1jh1j; ð3:1Þ

in contradiction with the density matrix of S+O after the CNOT interaction

ð!j0ij0iþ "j1ij1iÞð!%h0jh0jþ "%h1jh1jÞ: ð3:2Þ

Another objection invokes \basis ambiguity", meaning that the same density
matrix # can correspond to di®erent statistical ensembles (for an exhaustive study see
Ref. 7). Therefore knowing # does not imply knowing which observable has been
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measured. For example in the case ! ¼ " ¼ 1=
ffiffiffi
2

p
, the reduced density matrix for S

in (2.1) becomes

1

2
ðj0ih0jþ j1ih1jÞ ¼ 1

2
ðjaihajþ jbihbjÞ; ð3:3Þ

for any orthonormal vectors jai; jbi connected to j0i; j1i by an orthogonal transfor-
mation. Thus the same reduced density matrix would describe the state of S after a
measurement, where the measured observable could be one of an in¯nite set of mu-
tually incompatible (noncommuting) observables.

Note that the same basis ambiguity holds for the state of the composite S+O

system after the CNOT interaction, when ! ¼ " ¼ 1=
ffiffiffi
2

p
. This is often referred to as

the \preferred-basis problem".

4. Counterobjections

Here we counter both objections, on logical and physical grounds. There have been
numerous rebuttals and counter-rebuttals over the years, see for e.g. Refs. 8–11, and

most of this section does not claim originality. If the density matrix #S gives a
complete description of the state of S, it makes no sense to distinguish states corre-

sponding to the same #S. If only S is accessible to observations, no experiment can
distinguish between a proper or an improper mixture. The fact that S is part of a
larger system S+O, and that this larger system is in a pure entangled state, can only
be revealed by measurements on the whole S+O. Only then one can discriminate
between the two states of the composite system S+O, given in (3.1) and in (3.2),
respectively, a pure entangled state and a statistical mixture. These two di®erent
states give rise to the same reduced density matrix for S, and this matrix de¯nes a
unique physical state, i.e. a statistical mixture, neither proper nor improper. All
measurements made on S are consistent with the ignorance interpretation, and

therefore #S in (2.1) has all the markings of a state of a measured system.
The second objection in the preceding section questions the interpretation of the

mixed state (3.3) as the state of a measured system, since it seems that in this case the
measured observable cannot be speci¯ed uniquely,a due to basis ambiguity. To this
we answer as follows:

(i) Basis ambiguity does not compromise in any way the interpretation of (3.3) as
the state of a measured system: it may very well be the state obtained after measuring
any of a whole family of possibly noncommuting observables. The fact that the
measurements of any of those observables lead to the same statistical mixture
does not mean that the mixture does not describe correctly the state after the
measurement.

(ii) We can assume that the observer knows which observable is being measured,
i.e. what particular interaction takes place between the apparatus and the system.

aMore precisely, its eigenvectors cannot be speci¯ed uniquely.
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In our simpli¯ed two-qubit example this interaction is given by a CNOT gate, and
models a measurement of an observable in the computational basis, i.e. of an ob-
servable with eigenvectors j0i and j1i. This removes the basis ambiguity: the basis, in
which the mixed state (2.1) is to be interpreted as a state of a measured system, is the
computational one. It is really the measuring apparatus, with its speci¯c interaction
with the system, that dictates the \interpretation basis". If the observer wants to

measure a di®erent observable, for example with eigenvectors jþi ¼ 1ffiffi
2

p ðj0iþ j1iÞ
and j&i ¼ 1ffiffi

2
p ðj0i& j1iÞ, then the circuit implementing the system-apparatus inter-

action must be modi¯ed as in Fig. 2.

In this case, with ! ¼ " ¼ 1=
ffiffiffi
2

p
, the reduced density matrix for the ¯rst

qubit, after the interaction, is #S ¼ 1=2ðjþihþjþ j&ih&jÞ, equal to the one

obtained in the circuit of Fig. 1, i.e. #S ¼ 1=2ðj0ih0jþ j1ih1jÞ. However the inter-
pretation basis is di®erent, and is given by the orthonormal couple jþi; j&i. Indeed
the new circuit in Fig. 2 correlates the states jþi, j&i of the system to the states jþi,
j&i of the apparatus, respectively, and thus models the measurement of an observ-
able with jþi and j&i eigenvectors. Thus the choice of an interpretation basis is
not ambiguous, and depends on the measuring apparatus. It could be considered
epistemic, since it relies on the observer's knowledge of which observable is being
measured.

5. Re¯nements

With the same logic, we can describe a measurement on a spatially extended 2-

qubit system S in the entangled state 1ffiffi
2

p ðj0ij0iþ j1ij1iÞ, where now the observer

(call her Alice) has access only to the ¯rst qubit. Standard quantum mechanics tells
us that Alice has a probability 1=2 to obtain 0 or 1, and that the measurement
produces a corresponding collapse of S into one of the states j0ij0i or j1ij1i. Again
we can describe the ontic part of this measuring process by a speci¯c
interaction between Alice and her qubit, the only accessible (to Alice) part of S.
Modeling Alice as a single qubit, the interaction is given by the same CNOT gate
used in Sec. 2

The state of Alice is initialized to j0i (the \ready state"). The output is the
maximally entangled 3-qubit state given in Fig. 3. To ¯nd the state of the subsystem
S after the interaction one must trace over A the total density matrix, which yields

Fig. 2. Circuit modeling the measurement of an observable with eigenvectors jþi, j&i. The gate H is the
Hadamard gate, de¯ned by Hj0i ¼ jþi, Hj1i ¼ j&i.
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the reduced density matrix for S:

#S ¼ TrAð#SAÞ ¼ 1

2
TrAðj000iþ j111iÞðh000jþ h111jÞ

¼ 1

2
j00ih00jþ 1

2
j11ih11j: ð5:1Þ

This reduced matrix describes system S as a system that has collapsed to the state
j00i or j11i with probability 1=2: this is the ontic collapse, and occurs precisely at the
time of the interaction. If Alice \looks" at the result after the measurement, she will
know whether the system S is in the state j00i or in the state j11i, thus producing the
epistemic collapse. This part of the collapse occurs instantaneously on the whole
extended system S, without any paradox since it is related to a \state of knowledge"
of Alice.

We can adapt this discussion to a Schr€odinger's cat situation, imagining that the
entangled initial state of S has been produced by an interaction between a decaying
atom and the cat. Then Alice \measures the cat", in the sense that her state becomes
entangled with the cat state (jalivei or jdeadi). This ontic measurement produces the
¯nal state in Fig. 3. Tracing over Alice's degrees of freedom yields a mixed state for
the subsystem cat + atom. This mixed state is a measured state, not a superposition
state: the cat is either alive or dead, with probabilities depending on the particular
interaction between the cat and the atom (in Fig. 3 these probabilities are equal).
Thus no superposition of jalivei and jdeadi states is left, and the \paradox" dis-
appears.

6. A Critique of State Subjectivism

In most subjectivist or relational interpretations of QM (see for e.g. Refs. 12–15) the
alleged observer dependence of quantum states is claimed to be a consequence of the
usual quantum mechanical rules, when these are applied to \third person" situations,
as in Wigner's friend thought experiment 16. This involves an isolated lab L, where an
observer F (the \friend") measures a system S, and an external observer W
(\Wigner") outside of L. It is claimed that F and W give di®erent descriptions of the
state of S after a measurement by F, essentially because for F the system S has
collapsed into a projected state (eigenvector of the measured observable) whereas for

Fig. 3. Circuit modeling the measurement by Alice on an entangled state of system S, where she has
access only to the ¯rst qubit. She interacts with the ¯rst qubit via a CNOT gate.
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W the whole system in L, being isolated, must evolve unitarily. Again the contra-
diction is only apparent, since W and F should compare their descriptions of the same
system S: if they do so, they will both agree that S, after the measurement, is in a
mixed state, for the same reason discussed in Sec. 2. Modeling S and F as one-qubit
systems, and (the ontic part of) the measurement as a CNOT gate, the reduced
density matrix for S describes its state as the same mixture for any observer. If, in
addition, F also knows the result of the measurement, he will be able to describe the
state of S as a particular state of the mixture. This further sharpening, due to
additional knowledge of F (W has no access to the inner contents of L), is what
produces the epistemic collapse, common to all situations (classical or quantum)
where one has incomplete information on the state of a system, and encodes this
ignorance in a statistical ensemble.

To defend their thesis, supporters of the nonobjectivity of quantum states often
insist on the distinction between proper and improper mixtures, and on the claim
that only proper mixtures can describe the state of a measured system (with igno-
rance of the result). One can understand why this is a very sensitive point in any
discussion regarding the \objectivity of the wave function". In Sec. 4, we have argued
that the proper/improper distinction is unphysical, i.e. not detectable by any ex-
periment on S. Therefore we conclude that Wigner's friend experiment cannot be
taken as cornerstone of a relational interpretation of QM, as done for example in
Ref. 15.

7. Conclusions

We have presented a case for the objectivity of quantum states, further elaborating
and developing some arguments discussed in Ref. 17. For this we have recalled the
description of a measured system as a mixture, coinciding with the one obtained by
tracing over the observer's degrees of freedom. The only epistemic (subjective) in-
gredient of a quantum mixture is due to the incomplete information, encoded in the
statistical ensemble of the mixture. This ingredient is intrinsic to the very de¯nition
of a statistical ensemble, and is not a characteristic of the quantum world. For the
whole argument we used the standard rules of QM: in particular the reduced density
matrix formalism allows to describe measurement as an unitary process, i.e. an in-
teraction between observer and system. In our opinion many of the \paradoxes" or
interpretative problems of QM are resolved by making use of the full power of its
formalism.
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