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Computational methods for protein structure prediction have made significant strides forward, as evi-
denced by the last development of the neural network AlphaFold, which outperformed the CASP14 com-
petitors by consistently predicting the structure of target proteins. Here we show an integrated structural
investigation that combines the AlphaFold and crystal structures of human trans-3-Hydroxy-L-proline
dehydratase, an enzyme involved in hydroxyproline catabolism and whose structure had never been
reported before, identifying a structural element, absent in the AlphaFold model but present in the crystal
structure, that was subsequently proved to be functionally relevant. Although the AlphaFold model
lacked information on protein oligomerization, the native dimer was reconstructed using template-
based and ab initio computational approaches. Moreover, molecular phasing of the diffraction data using
the AlphaFold model resulted in dimer reconstruction and straightforward structure solution. Our work
adds to the integration of AlphaFold with experimental structural and functional data for protein analy-
sis, crystallographic phasing and structure solution.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Since 1994, the Critical Assessment of protein Structure Predic-
tion (CASP) [1] represents the biennial event in which worldwide
research groups showcase their protein structure prediction mas-
tery by competing for the solution of unsolved protein structures,
leading to the development of increasingly reliable computational
methods for structure prediction and validation. More recently, the
advent of artificial intelligence and the use of neural networks
allowed an unparalleled accuracy of the predicted structural
model, which saw its culmination in CASP14 [2], where Alpha-
Fold2, the latest version of the AlphaFold (AF) program [3], outper-
formed the competitors by accurately and regularly solving protein
structures, even in absence of a structural homolog [4,5]. This
remarkable achievement has impacted the scientific community
by predicting the structures of nearly 98.5 % of the human pro-
teome [4,6], with the ambition of tackling the proteomes of other
organisms in the future. Hence, the AF database provides a gold
mine of reliable, computationally predicted protein models await-
ing experimental structure solution, that still account for nearly
80 % of the human proteome [7].

One of the challenges in structural biology is the exploitation
and the harmonization of the plethora of data derived from com-
putational and multiple experimental sources, and the emerging
field of integrative structural biology aims at combining predictive
computational methods with still unresolved experimental struc-
tural data [8]. In this framework, we have focused our attention
on human trans-3-Hydroxy-L-proline dehydratase (hL3HYPDH),
an enzyme for which the reports concerning its function and struc-
ture are scant or absent, thus representing a suitable target for
integrating predictive and experimental data for advancing the
knowledge over its structure and function.

hL3HYPDH is involved in the metabolism of hydroxyproline
(Hyp), a non-standard amino acid present in the cell wall compo-
nents of plants [9] and in mammalian collagen [10,11] and deriving
from the post-translational modification of proteins by prolyl
hydroxylase enzymes [12]. Some plants and bacteria produce
Hyp, and the isomers trans-3-Hydroxy-L-proline (T3LHyp) and
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trans-4-Hydroxy-L-proline (T4LHyp) are major components of
mammalian collagen. While T4LHyp is metabolised following dis-
tinct degradative pathways in mammals and bacteria [13], the
T3LHyp metabolic pathway is conserved in bacteria, plants and
mammals, and involves a T3LHyp dehydratase (EC 4.2.1.77) which
removes the hydroxyl group of T3LHyp without the intervention of
a cofactor, leading to the formation of D2-pyrroline-2-carboxylate
(Fig. 1A). This reaction product spontaneously converts into D1-
pyrroline-2-carboxylate (Pyr2C) and is then transformed in L-
proline by a NAD(P)H-dependent Pyr2C reductase (EC 1.5.1.21)
[14] which removes the double bond from the pyrroline intermedi-
ate (Fig. 1A).

hL3HYPDH was first discovered by Visser and colleagues [15]
who identified, through sequence alignments between orthologs
of the proline racemases family, the human protein C14orf149
(named after its gene locus and later named hL3HYPDH) which
lacked racemase activity but exhibited instead proline dehydratase
activity, converting trans-3-hydroxy-L-proline (T3LHyp) into D1-
pyrroline-2-carboxylate (Pyr2C). Besides its role in the dietary
hydroxyproline metabolism, hL3HYPDH has been also identified
among the interferon-stimulated genes (ISGs) triggered by virus
infection and showing antiviral activities [16–18]. More recently,
hL3HYPDH has been associated with the genetic regulation of the
working memory [19] and has been also observed that the h-
L3HYPDH-coding gene is differentially methylated in the mito-
chondrial pathway involved in autism spectrum disorder
associated with Glutaryl-CoA degradation [20]. As of to date, no
structural data of hL3HYPDH have been reported, making it a suit-
able target for stressing the predictive power of AF in the de novo
structure solution.

In the context of advancing structural biology by integrating the
AF structures with experimental data, here we show the first crys-
tal structure of hL3HYPDH and the comparative analysis with its AF
model [21], revealing conformational dynamics and an unprece-
dented regulatory catalytic mechanism involving a conserved
ligand-binding cysteine. We also show the use of the monomeric
AF model in template-based and ab initio computational oligomeri-
sation prediction and in the molecular phasing of the diffraction
data, leading to the reliable reconstruction of the native dimer
and to the straightforward solution of the native structure of
hL3HYPDH.
2. Results

2.1. Determination of the experimental structure of hL3HYPDH and
conformational analysis.

Crystal screening and optimization of recombinant hL3HYPDH
in absence and in presence of the substrate or the transition-
state analogue pyrrole-2-carboxylic acid (PYC) produced crystals
that best diffracted at 3.0 Å (Table 1). The final hL3HYPDH model
was reliably built between amino acids 10–354 (for chain A) and
4–354 (for chain B) except for residues 150–152 and 227–239 of
both chains due to the missing or poor-quality electron density.
The hL3HYPDH structure consists of an a/b dimeric protein reca-
pitulating the structure of the orthologs T. litoralis trans-3-
hydroxy-L-proline dehydratase (tlT3LHypD; PDB code: 6R76 and
6R77; 48 % identity) [22] and T. cruzi proline racemase (tcProR;
PDB codes: 1 W61 and 1 W62; 37 % identity) [23], with a root-
mean square deviation (RMSD) of 1.29 Å and 1.10 Å between
equivalent Ca, respectively. A dimerization domain (residues 10–
149) and a mobile, jaw-like domain (residues 153–332) topping
the previous complete the catalytic sites of the two hL3HYPDH
monomers (Fig. 1B).
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Although hL3HYPDH crystallized in presence of the substrate
T3LHyp or the transition state analogue PYC, examination of the
catalytic centres of the two monomers did not reveal electron den-
sity attributable to these molecules. Unlike the structures of
tlT3LHypD and of tcProR that both showed a closed conformation
for the ligand-complexed monomer and an open conformation of
the ligand-free monomer [22,23], both hL3HYPDH monomers
exhibited an open conformation, consistent with the absence of
ligands in both catalytic sites. Indeed, the structural and conforma-
tional match of the two open monomers of hL3HYPDH was con-
firmed by structural alignment and structure divergence plot
[Root-mean-square deviation (RMSD) of 0.239; Fig. 1C].

Comparative conformational analysis of hL3HYPDH with homo-
log structures showed that the conformation of the hL3HYPDH
mobile domain best matched that of the open monomer of tcProR
(RMSD = 1.095 Å; Fig. 1D), showing also a more restrained move-
ment compared to the ligand-free, open tlT3LHypD structure,
which presents a wider opening instead (Fig. 1E).

2.2. Comparative analysis of the experimental and AlphaFold
structures of hL3HYPDH.

The predicted AF model consists in a monomeric domain that
faithfully recapitulates the a/b folding and overall architecture of
the experimental hL3HYPDH structure. However, structural align-
ment between the predicted and experimental hL3HYPDH models
revealed a significant difference in the conformation of the mobile
domains, being the experimental and the predicted structure in the
open and closed conformation, respectively. Such difference is
emphasized by the distance difference matrix and by the structure
divergence plot (Fig. 1F and 1G and Supplementary Video 1 and 2)
which qualitatively and quantitatively show the conformational
differences between the open (experimental) and the closed (pre-
dicted) hL3HYPDH structures.

The predicted closed structure of hL3HYPDH was compared to
the closed monomers of tcProR (Fig. 1H) and tlT3LHypD (Fig. 1I),
revealing conformational similarities between the hL3HYPDH AF
model and the closed conformations of tcProR and tlT3LHypD,
the latter being the most conformationally related (RMSD = 2.02
Å and 1.10 Å, respectively).

2.3. Analysis of the molecular determinants of hL3HYPDH
conformational dynamics, catalysis, and regulation

The experimental open and the predicted closed structures of
hL3HYPDH allowed us to examine the molecular interactions stabi-
lizing the two conformations. A common feature observed in both
structures is the salt bridge between residues D74 and R270 that
varies in distance from an average of 3.1 Å in the experimental
open state to 2.7 Å in the computational closed conformation
(Fig. 2A and 2B). Notably, residues D74 and R270 are also con-
served in tcProR and tlT3LHypD (Fig. 4) and in the proline racemase
enzyme family [15], thus highlighting their importance in the sta-
bilization of the open and closed conformations. Moreover, a
hydrogen bond between Asp98 and Gln267 (3.4 Å) further stabi-
lizes the open conformation (Fig. 2A); however, this interaction is
lost in the closed state, as observed in the predicted structure,
where Tyr76 and Tyr241 engage in an H-bond (3.2 Å; Fig. 2B).
Hence, experimental and computational analysis suggest that the
Asp98-Gln267 and Tyr76-Tyr241 residue pairs play complimen-
tary roles in the stabilization of the open and closed conformations
of hL3HYPDH (see Supplementary Video 3).

The catalytic site of the predicted hL3HYPDH model (closed
conformation, Fig. 2C) retains the general arrangement of the
amino acids involved in ligand binding as in the ortholog protein
tlT3LHypD, with residues Tyr192, Ser275, and Met103 of



Fig. 1. Reaction scheme of trans-3-Hydroxy-L-proline (T3LHyp) metabolism in humans and conformational analysis of predicted and experimental hL3HYPDH structures with
protein homologs. A) Collagen and dietary T3LHyp is degraded by collagenases and prolidases forming free T3LHyp, which is then processed by T3LHyp dehydratase to form
D1-pyrroline-2-carboxylate (Pyr2C). The last metabolic step involves the NAD(P)H-dependent Pyr2C reductase which converts Pyr2C into L-proline. B) Experimental structure
of hL3HYPDH: chains A and B are shown in green and cyan, respectively, and the non-crystallographic twofold vertical axis relating the two chains is shown as a dotted line.
C) Superposition of experimental hL3HYPDH chain B over chain A and 90� anticlockwise rotation. D) Superposition of tcProR open monomer (in yellow) over chain A of
experimental hL3HYPDH (in green); E) Superposition of tlT3LHypD open monomer (in magenta) over chain A of experimental hL3HYPDH (in green). F) Distance-difference
matrix between equivalent Ca atoms of the experimental and predicted hL3HYPDH models. Blue-green colouring indicates changes in the Ca distances, with blue colour
indicating the most distant, and the green colour indicating the closest. Below, per-residue confidence score (pLDDT) of predicted hL3HYPDH as calculated by AF. G)
Superposition of the experimental open and the AF closed structures of hL3HYPDH (in green and in blue, respectively); H) Structural alignment between tcProR in the closed
conformation (in yellow) and the AF closed hL3HYPDH structure (in blue); I) Superposition of tlT3LHypD in the closed conformation (in magenta) over the AF closed
hL3HYPDH structure (in blue). Conformational analysis was carried out superimposing the homolog structures against the dimerization domain of hL3HYPDH structures
(residues 10–149), thus excluding the mobile domains from the structural alignment and highlighting their conformational differences. Structure divergence plots were
calculated using the PyMod 3 suite [24]. Blue-line graphs represent the structure divergence plots between the corresponding aligned chains, indicating on the abscissa the
residues numbers and on the ordinate the Ca distances expressed in Å. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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hL3HYPDH matching the tlT3LHypD catalytic triad composed by
Tyr188, the conservatively mutated Thr270, and Met103 (Fig. 2D
and Fig. 4). In hL3HYPDH, residues Met103 and Ser275 play a sta-
bilizing role of the open conformation through hydrogen bonding
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of the hydroxy group of Ser275 and the sulphur of Met103
(3.0 Å), locking Met103 in an extended conformation and protrud-
ing it toward the free substrate-binding site (Fig. 2C and Supple-
mentary Fig. 1 and Supplementary Video 4). Moreover, a distinct



Table 1
Data collection and refinement statistics.

Wavelength (Å) 0.9686

Resolution range (Å) 44.98–3.0 (3.1–3.0)
Space group P 21 21 2
Unit cell parameters a = 114.05b = 122.92c = 73.16
a, b, c (Å) a, b, c (�) a = 90.0� b = 90� c = 90.0�
Total reflections 39,669 (3930)
Unique reflections 20,658 (2049)
Multiplicity 1.9 (1.9)
Completeness (%) 96.90 (98.89)
Mean I/sigma(I) 5.57 (1.56)
Wilson B-factor (Å2) 76.83
R-merge 0.08158 (0.4657)
R-meas 0.1154 (0.6586)
R-work 0.22 (0.32)
R-free 0.25 (0.35)
RMS (bonds) (Å) 0.011
RMS (angles) (�) 1.30
Ramachandran favoured (%) 96.3
Ramachandran allowed (%) 3.67
Ramachandran outliers (%) 0.00
Rotamer outliers (%) 0.00
Clash score 5.78
Average B-factor (Å2) 76.8

Statistics for the highest-resolution shell are shown in parentheses.

Fig. 2. Molecular determinants of domain mobility and catalysis. A) Molecular interacti
experimental open hL3HYPDH structure. B) Molecular interactions stabilizing the hL3
computational hL3HYPDH closed structure; in magenta sticks and ribbons and in italics,
in grey. C) Superposition of the catalytic sites of the experimental open hL3HYPDH struc
structure (closed conformation; in blue sticks and ribbons). The intramolecular disulp
structure is shown. This interaction is lost in the predicted hL3HYPDH structure. D)
conformation; blue sticks and ribbons and in bold letters) with the tlT3LHypD structure
italics). (For interpretation of the references to colour in this figure legend, the reader is
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feature present in the experimental hL3HYPDH structure and
absent in other homologous structures is observed for Cys104
which, together with Thr273, engages in substrate binding. In the
experimental open structure, Cys104 is involved in an unprece-
dented intramolecular disulphide bond with the neighbouring
Cys137 (Fig. 2C). This interaction, validated by crystallographic
and mass spectrometry analysis (see Supplementary Figures 2-6
in Supplementary Material), suggested a sequestering mechanism
and a catalytic regulatory role of Cys104. We investigated its cat-
alytic role by measuring the hL3HYPDH activity under oxidizing
and reducing conditions, i.e. in absence and presence of the reduc-
ing agent DTT, respectively. Experiments showed that the addition
of 1 mM DTT reduced the KM to 247.0 lM compared to the KM of
416.7 lM measured without DTT, while maintaining substantially
unaltered the Vmax (Fig. 3). Hence, these findings point to a cat-
alytic regulatory role for the intramolecular disulphide involving
Cys104 and Cys137. Moreover, the kinetic data deviate from a
canonical Michaelis-Menten curve, indicating substrate inhibition.

2.4. Analysis and oligomeric prediction of experimental and
computational hL3HYPDH structures

Computational analysis of the dimer interface of the experi-
mental hL3HYPDH structure showed a dimerization surface with
ons stabilizing the hL3HYPDH open conformations. In green sticks and ribbons, the
HYPDH closed conformation (in blue sticks and ribbons and in bold letters, the
the closed structure of tlT3LHypD; PDB code: 6R77). The substrate T3LHyp is shown
ture (in green sticks and ribbons and in bold letters) with the predicted hL3HYPDH
hide bond occurring between Cys104 and Cys137 in the experimental hL3HYPDH
Superposition of the catalytic sites of the predicted hL3HYPDH structure (closed
in the closed conformation (PDB code: 6R77; in magenta sticks and ribbons and in
referred to the web version of this article.)



Fig. 3. hL3HYPDH catalytic parameters under oxidizing and reducing conditions. Michaelis-Menten curves of hL3HYPDH measured in absence (left) and presence (right) of
1 mM DTT. The table below reports the Michaelis-Menten parameters measured under oxidizing and reducing condition.
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a total interface area of 1914.3 Å2, more extended compared to the
interface area of tcProR (1471.4 Å2), but less extended to that of the
thermophile tlT3LHypD (2640.1 Å2; Table 2). Although the experi-
mental structures of hL3HYPDH and of its homologs show their
dimeric nature, the predicted hL3HYPDHmodel lacked information
regarding protein oligomerization.

In general, the oligomeric state of a protein is determined by
experimental data analysis and/or by literature survey. Due to
the absence of a quaternary structure in the predicted hL3HYPDH
model and assuming any previous information concerning its
native oligomeric state, we wondered whether computational tools
alone might have helped the prediction of the native hL3HYPDH
oligomerization state. For this, we used GalaxyHomomer [27], a
program also used in CASP14 and part of the GalaxyWEB web ser-
ver [28] that performs automated template-based modelling and
ab initio docking for protein oligomerization prediction based on
sequences coevolution criteria and conformational space annealing
[29]. Template-based prediction using GalaxyHomomer performed
on the predicted monomeric hL3HYPDH structure led to the gener-
ation of two dimeric models using the structures of tlT3LHypDH
(PDB code: 6R77; 41.8 % identity) and of a proline racemase-like
protein from T. litoralis (PDB code: 6J7C; 33.9 % identity) as tem-
plates. The template-based prediction correctly produced the
experimentally observed dimer (Models No. 1 and No. 2 of Table 2)
with a calculated interface of 2124.8 Å2 and 2050.3 Å2 for each
template, corresponding to 3993.6 Å2 and 4100.6 Å2 of buried area,
respectively, in close agreement with the calculated interface and
buried area of the experimental hL3HYPDH structure (1914,2 Å2

and 3828.5 Å2) and with favourable RMSD values (2.4 Å and
2.8 Å for Model No. 1 and Model No. 2, respectively).

Consistently with the template-based prediction, the ab initio
approach likewise produced dimeric models, with Models No. 3
and No. 4 having the highest docking scores and with favourable
RMSD values (2.5 Å and 6.8 Å respectively; Table 2). The Model
No.5 however reported the lowest docking score and the highest
RMSD value (25.1 Å), consistent with an implausible dimeric
assembly and dimer interface (Table 2 and Supplementary
Table 1).

Further, we reasoned whether the native hL3HYPDH dimer
could be correctly built using the hL3HYPDH AF structure as the
search model in molecular replacement (MR), a computational
method largely used in macromolecular crystallography for phase
calculation, that aims at correctly positioning and orienting the
(homologous) protein models in the unit cell [31]. We speculated
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whether the rotation and the translation of the monomeric compu-
tational model in the unit cell could recapitulate the native, exper-
imental dimer, thus automatically assigning the correct symmetry
and stoichiometry to the final protein model. For this, MR was per-
formed using the monomeric AF model assigning two molecules
per asymmetric unit, as suggested by the Matthews coefficient cal-
culation. The MR performed with the program PHASER produced
two solutions, one with a translation function Z-score (TFZ) of
8.5 and the number of packing clashes (PAK) of 4, and the other
with a more favourable TFZ of 11.3 and a PAK value of 1. Direct
refinement using the model of the second solution produced
decreasing error factors, and inspection of the output model
showed the monomers matching the crystallographic dimeric
structure (RMSD = 2,57 Å). Automatic model building performed
using AUTOBUILD [32] from PHENIX [33] covered 95 % of the final
model with favourable refinement statistics (R/Rfree = 0.24/0.28),
eventually settling to R/Rfree values of 0.22/0.25 after manual
model building and refinement of the complete structure.
3. Discussion

The latest development of AF [5] and its remarkable accuracy in
predicting protein structures [2] caused a surge in excitement
about the potential and future implications of such ground-
breaking milestone in the field of computational protein structure
prediction. Although the number of deposited structures in the
PDB is steadily increasing [34], the structural characterisation of
the entire human proteome is still a long way off. Worldwide
structural genomics efforts helped to accelerate the structural elu-
cidation of the human proteome; however, AF demonstrated that
the experimental approach for solving protein structures could
be, at least up to a certain extent, reliably substituted by neuronal
networks and artificial intelligence algorithms.

Following the release of the AF Protein Structure Database [6],
here we have shown the integration of the AF model of hL3HYPDH
with its first crystal structure, highlighting their conformational
differences and the unprecedented role of a disulphide bond
involving a ligand-binding cysteine, that we demonstrated having
a catalytic regulatory role. Overall, the computational and experi-
mental structures presented here provide snapshots of the transi-
tion from the ligand-free to the substrate-bound states, as
already observed in experimental structures of ortholog proteins
[22].



Fig. 4. Sequence alignments of human hL3HYPDH with homolog proteins. Sequence alignments of human hL3HYPDH with T. litoralis T3LHypD (tlT3LHypD; 48% identity) and
T. cruzi ProR proline racemase (tcProR; 37% identity). Spirals and arrows indicate a-helices and b-strands of hL3HYPDH, respectively. Red boxes with white characters indicate
residue identity; red characters indicate residue similarity; blue-framed characters indicate similarities between groups of residues. All interacting amino acids described in
the text and stabilizing the open and closed conformations of hL3HYPDH are boxed in black with white letters: Asp74 and Arg270 involved in the salt bridge in the closed
conformation are labelled with a black triangle; Tyr76 and Tyr 241 engaged in hydrogen bonding in the closed conformation are labelled with a black oval. Asp98 and Asn267
forming a salt bridge in the open conformation are labelled with hollow circles. Cys104 and Cys137 forming the intramolecular disulphide bond in the experimental
hL3HYPDH structure are labelled with a black star. Sequence alignments and editing was performed using Clustal Omega [25] and ESPript [26]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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It has been previously observed that AF favours the prediction
of the ligand-bound rather than the ligand-free protein conforma-
tions [35]. In general, AF predicts protein structures by performing
3879
multiple sequence alignments and coevolutionary analysis aimed
at iteratively examining the evolutionary trajectories and the rela-
tive distances of the residues that are progressively interacting



Table 2
Comparative interface area analysis of experimental hL3HYPDH and computational oligomeric state predictions of the AF structure. The top table reports the interface and buried
area analysis of the experimental dimeric structures of hL3HYPDH, tcProR and tlT3LHypD. The analysis was performed using the COCOMAPS server [30]. Below are reported the
template-based and ab initio oligomer predictions using GalaxyHomomer [27]. Outputs of the template-based (structure-based) oligomer modelling and of the ab initio docking
results are reported, respectively, as Model No. 1 and 2, and Models No. 3, 4 and 5, along with the prediction confidence scores (TM-scores for template-based modelling; docking
scores for the ab initio docking), the interface and buried areas calculations and the predicted dimer assemblies (in green: the experimental hL3HYPDH native dimer; in dark grey:
the predicted dimer assemblies, structurally aligned to the native hL3HYPDH). The similarity between the predicted and the experimental dimeric assemblies were calculated by
measuring the RMSD between the Ca of the atomic coordinates after optimal rigid body superposition. Model No. 5 reports an incorrect ab initio dimeric assembly prediction,
consistent with the lowest docking score and unfavourable RMSD.

hL3HYPDH tcProR
(PDB: 1 W61)

tlT3LHypD
(PDB: 6R76)

Interface area (Å2) 1914.3 1471.4 2640.1
Buried area (Å2) 3828.5 2942.8 5280.2
Buried area (%) 12.76 9.99 16.20

Template-based oligomer modelling

Model
No.

Oligomer
template

Interface area
(Å2)

Buried area upon complex
formation (Å2)

Structural similarity (TM-
score)

RMSD
(Å)

Predicted dimer assembly

1 6R77 2124.8 3993.6 0.9255 2.4

2 6J7C 2050.3 4100.6 0.8902 2.8

Ab initio docking

Model
No.

Number of
subunits

Interface area
(Å2)

Buried area upon complex
formation (Å2)

Docking score RMSD
(Å)

Predicted dimer assembly

3 2-mer 2068.2 4136.4 1769.3 2.5

4 2-mer 1577.7 3155.4 1321.0 6.8

5 2-mer 1696.7 3393.4 1047.4 25.1
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during structure prediction iterations. Importantly, AF does not
perform energy minimizations calculations, but rather relies on a
training set for deriving the structural and coevolutionary
instances that associate a structure to a given sequence. This con-
sidering, it is logical to ascribe the general bias of AF for the ligand-
bound conformations to having trained the algorithm on the Pro-
tein Data Bank (PDB), a database in which the number of protein
structures solved by crystallographic methods largely outnumbers
those solved by other techniques. Hence, AF is trained in predicting
the protein structures as they would have been crystallized and as
they would appear in the PDB, irrespective of energy minimization
criteria. Given that the vast majority of the protein structures
deposited in the PDB derive from crystallization experiments (a
process that is generally favoured by the presence of protein stabi-
lizing factors such as ligands or cofactors), it is conceivable the
preference of AF for those conformations that best represent the
ligand-stabilized (and more prone to crystallize) structures. Hence,
AF preferentially arranges the binding site conformations as if the
ligand(s) was present in the model [5], thus rationalizing, in case of
the predicted hL3HYPDH structure, the preference of AF for the
closed conformation, even in absence of the substrate.
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The faithful structural arrangement of the residues of the cat-
alytic site in the predicted hL3HYPDH closed structure compared
to the corresponding residues of the ligand-bound homolog
tlT3LHypD reflects the general ability of AF to reliably predict the
ligand-bound arrangements of the side chains of the interacting
residues, even in absence of substrate or ligands [5]. However, the
comparison of the experimental open with the predicted closed
structures of hL3HYPDH suggested a sequestering mechanism of
the ligand binding Cys104 via an intramolecular disulphide bond
formation with Cys137, leading to speculations on the catalytic
and regulatory role of Cys104 as well as the reversibility of the
disulphide bond under favourable conditions. Previous experi-
ments already showed that hL3HYPDH is active in absence of reduc-
ing agents [15], a condition that, as observed in the experimental
hL3HYPDH structure, promotes the formation of the disulphide
bond by making unavailable the Cys104 for ligand binding. Con-
versely, the reducing environment favours the reduction of the
disulphide bond and the flipping of Cys104 toward the catalytic
centre, as suggested by the computational model. Thus, assuming
the closed state as the only active conformation of hL3HYPDH irre-
spective of the redox environment, the oxidizing condition favours
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the widening of the catalytic pocket by positioning the Cys104
away from the catalytic site and promoting the formation of the
disulphide bond, thus decreasing the enzyme interacting capacity
with the substrate and enhancing its catalytic rate. On the contrary,
the reducing condition reverses this situation by favouring the flip-
ping of Cys104 toward the catalytic site, thus increasing the enzyme
interacting capacity with the substrate. Since the KM can be loosely
interpreted as a descriptor of the affinity between an enzyme and
its substrate, such redox-dependent interacting capacity between
the enzyme and the substrate is reflected by the shifting of the
KM to higher values (i.e. lower affinity) when measured under oxi-
dizing conditions, and to lower values (i.e. higher affinity) when
under reducing conditions. This enzyme behaviour is also mirrored
by the kcat/KM ratios, which indicate a higher catalytic efficiency of
the enzyme under reducing conditions compared to the oxidizing
conditions. Moreover, our data shows that substrate inhibition is
only observed under reducing conditions, further evidencing the
increased interacting capacity of the enzyme with the substrate
due to the flipping of the substrate-interacting Cys104.

The experimentally determined hL3HYPDH structure allowed
the identification of a specific structural element (i.e. the Cys104-
Cys137 disulphide bond) that was absent in the predicted model
and that our data demonstrated its functional role, thus highlight-
ing the complementarity of the experimental and computational
protein solution and prediction for protein functional and struc-
tural analysis. Hence, by combining the experimental and the AF
structures of hL3HYPDH and interpreting them in light of the cat-
alytic data, meaningful assumptions could be inferred regarding
the enzyme catalysis and regulation.

One of the applications of the AF models is their use in MR for
structure solution of structurally unknown proteins or for proteins
for which the molecular replacement is hampered by the poor
homology or the inadequacy of the search model. We used the
unmodified, monomeric AF model for MR, structure solution and
model building, leading to the automatic completion of nearly
95 % of the dimeric enzyme. Hence, our case shows that the com-
putational hL3HYPDH AF structure streamlined the at times labori-
ous selection and/or modification of the search model for MR,
resulting in the correct arrangement of the MR output model in
the native dimeric form, an information that was missing in the
predicted structure and that publicly available servers providing
template-based and ab initio computational methods for oligomer
prediction were able to recover, as reported above.

While AF offers to the scientific community the most reliable
algorithm to date for predicting protein structures, the predicted
models are generally biased towards those conformations that
are more prone to crystallization, a direct consequence of having
selected the PDB as the training set, a database where the crystal
structures account for more than 87 % of the total deposited coor-
dinates [36]. However, this could come at hand (also retrospec-
tively) for rescuing and reprocessing those crystallographic data
that failed during MR and for which the AF structures could consti-
tute valid search models [37].

In perspective, it can be envisaged that the increasing number of
Cryo-EMstructuresdeposited in thePDBcould skewthecurrentbias
of AF toward less crystal-oriented structures to a more conforma-
tionally varied models. Regardless, feeding the AF models in auto-
matic structure solution pipelines could significantly enhance
structural and functional analysis of structurally unsolved proteins,
thus advancing thedevelopingfield of integrative structural biology.
4. Methods

Protein Expression and Purification. The human trans-3-hydroxy-

L-proline dehydratase gene (Uniprot ID: Q96EM0) was cloned in
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pET28b vector and expressed in E. coli BL21(DE3) cells. Bacteria
were grown on agar plate, precultured overnight and then diluted
in 1 L of 2xTY medium. The optical density was constantly moni-
tored until it reached 0.6 when the temperature was then shifted
to 20 �C, and protein expression was induced overnight by the
addition of 0.5 mM isopropyl 1-thio-b-D-galactopyranoside. The
cells were then pelleted and resuspended in 30 ml of 1xPBS buffer
at pH 7.4 and lysed following 8 cycles of sonication. Pellet and
supernatant were separated by centrifugation, and the supernatant
was applied to a preequilibrated His-TrapTM column (Cytiva) and
eluted with a linear gradient of imidazole. The protein was then
loaded on a Superdex 200 Increase 10/300 GL equilibrated with
50 mM Tris pH = 8, 50 mM NaCl for the final purification step.
The purified protein solution was aliquoted and frozen at �80 �C
until further use.

Protein Crystallization and Structure Solution. For initial crystal
screening, purified hL3HYPDHwas concentrated to 14 mg/ml using
Vivaspin concentrators (Sartorius AG) with a molecular mass cut-
off of 50 kDa. Crystallization screens were performed using an
Oryx4 Protein Crystallization Robot (Douglas Instruments ltd.)
and the Classics Suite I (Qiagen AG) and the Structure Screen and
the Morpheus Screen (Molecular Dimensions U.K. ltd.), with and
without the substrate or the proline racemase inhibitor pyrrole-
2-carboxylic acid (PYC) [23], both at 1 mM concentration. Initial
crystals grew in a solution containing 0.1 M MES pH = 6.5 and
12 % (w/v) PEG 20000, and manual crystal optimisation was per-
formed varying the pH (6.1–6.7), the concentration of PEG 20,000
(6 %-20 %) and the protein concentration (8 mg/ml and 14 mg/
ml). Optimized crystals grew after one-month incubation at
20 �C temperature and were cryoprotected with 12 % glycerol
and flash frozen in liquid nitrogen for diffraction experiments. Best
crystals diffracted at 3.0 Å resolution at beamline ID30B at the
Electro Synchrotron Research Facility (ESRF; Grenoble) [38]. Data
were processed using XDS [39] and scaled using SCALA [40], and
automated search model generation and molecular replacement
(MR) were automatically performed using, respectively, MrBUMP
[41] and PHASER [42] of the CCP4 web application [43], identifying
the structure of T. litoralis trans-3-Hydroxy-L-proline dehydratase
as the best search model (Protein Data Bank ID code: 6R77). For
MR, the hL3HYPDH AF structure [21] was also used as the search
model, as described in the paper. Automatic model building was
performed using AUTOBUILD [32] of the PHENIX [33] suite. The
final structure was manually built using COOT [44], refined by
REFMAC [45], and validated using MOLPROBITY [46]. All molecular
graphics images were produced using PyMOL [47]. Structure and
sequence alignments were performed using Clustal Omega [25]
and edited with ESPript [26].

Enzyme activity assay. hL3HYPDH activity was measured using a
coupled-enzyme assay using hydroxyproline as the substrate and
the NAD-dependent T. litoralis Pyr2C reductase (tlPyr2C) [14] as
the secondary enzyme. The standard assay solution contained
10 lg of hL3HYPDH and 10 lg of tlPyr2C diluted in 1xPBS in
200 ll final volume, and reducing conditions were produced by
adding 1 mM of dithiothreitol (DTT) to the reaction mixture. The
addition of DTT had no effect on tlPyr2C activity (data not shown).
NADH oxidation was monitored at 340 nm wavelength using a
TECAN Sunrise Microplate Reader (Tecan Trading AG, Switzerland).
Since the Michaelis-Menten curve measured in reducing condition
showed substrate inhibition at the highest substrate concentration,
all points were interpolated using the substrate inhibition kinetics
of GraphPad Prism [48].

Bioinformatic analysis. Computational protein oligomerization
predictions were performed using GalaxyHomomer [27] of the
GalaxyWEB platform [28], and the buried area interfaces were
measured using the COCOMAPS server [30]. Distance-difference
matrix was produced using PHENIX [33]. Protein structure and
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interaction network analysis were performed both manually and
using the ProteinTools server [49].

Protein sulfhydryls blocking. N-ethylmaleimide (NEM) at a final
concentration of 20 mM was dissolved in 50 mM phosphate buffer
containing 6 M guanidinium chloride, reaching a final pH of 7.3.
For the blocking reaction of the free cysteines, an equivalent vol-
ume of the solution containing NEM and urea was added to the
protein solution and incubated for 10 min at room temperature.
The reaction was quenched adding trifluoroacetic acid to a final
concentration of 0.3 %.

Mass spectrometry analysis. Protein masses were determined by
LCMS using an Aquity UPLC system (Waters) linked to a Q-Exactive
Plus mass spectrometer. A BioResolve RP mAB Polyphenyl Column
(2.1x50 mm) was developed with a gradient comprising 0.1 % for-
mic acid (FA) (Buffer A) and 0.5 % FA in acetonitrile (Buffer B) at a
flow of 0.4 ml/min and using the following gradient: 5 % Buffer B,
0.5 min; 15 % Buffer B, 9 min; 60 % Buffer B, 10 min; 80 % Buffer B,
11 min; 5 % Buffer B. The mass spectrometer was operated in pos-
itive mode with resolution set to 280,000 and m/z range from 800
to 6000. Automatic Gain Control (AGC) and maximum injection
time were set to 3x106 and 200 msec, respectively. Raw data were
processed with BioPharma Finder Software (Thermo Fisher), using
the Xtract option with sliding window.

PDB Deposition. The coordinates and the structure factors were
deposited in the Protein Data Bank under ID code 7QPO.
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