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1 Introduction and summary of results

Since the first paper on the subject [1], the study of integrated correlators of primary operators
in four-dimensional superconformal gauge theories has gained an increasing attention as
an ideal playground to explore non-perturbative physics. On the one hand, integrated
correlators can be computed in an efficient way by exploiting supersymmetric localization and
matrix-model techniques [2]1 which, when the number of colors in the gauge theory is large,
often lead to exact results valid in all regimes. On the other hand, they can be studied with
standard conformal field theory methods and, through the AdS/CFT correspondence, can be
used to put constraints on the scattering amplitudes of string modes propagating in AdS [1].
In the last few years, many aspects of these integrated correlators have been explored in the
maximally supersymmetric context of N = 4 super Yang-Mills (SYM) theory [4–7] where
modular [8–12], weak-coupling [13] and non-planar [14] properties have been thoroughly
investigated. Further features of integrated correlators have been explored by introducing
general gauge groups [15, 16], by considering operator insertions with generic [17] or large
conformal dimensions [18–22], or by inserting a Wilson line [23–26].

More recently, integrated correlators have also been studied in theories with N = 2
supersymmetry [27–34]. In particular, in [29, 31, 32, 34] integrated correlators were used
to gain insight on the scattering amplitudes of gluons in an orientifold of Type II B string
theory that describes the near-horizon geometry of N D3-branes probing a D4-singularity
in F-theory [35, 36]. Through the AdS/CFT correspondence, this string theory is dual
to a four-dimensional N = 2 SYM theory with gauge group2 Sp(N), one anti-symmetric

1See also the collection [3] and references therein.
2In this paper we use the notation Sp(N) to indicate the symplectic group of rank N .
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hypermultiplet and four fundamental hypermultiplets with an SO(8) flavor symmetry [37].
In the large-N limit, this superconformal theory can be studied efficiently using localization
and matrix-model techniques [38, 39] which allow the free energy to be calculated also when
the hypermultiplets become massive. The mass-derivatives of the free energy turn out to be
particularly interesting quantities because, when the gauge theory is defined on a 4-sphere
(as required by the localization procedure) the hypermultiplet mass couples linearly to the
so-called moment-map operators. These are the top components of the flavor current multiplet
of the N = 2 superconformal algebra [40] and, according to the holographic dictionary, are
dual to the SO(8) gluons3 of string theory on AdS. Therefore, by computing the fourth
mass-derivative of the free energy of the Sp(N) gauge theory one obtains an integrated
4-point function of moment-map operators which, in the large-N limit, provides information
on the dual 4-gluon amplitude in AdS [29, 31]. In fact, the form of the latter is constrained
by analytic bootstrap [31, 34, 41] only up to numerical coefficients which are actually fixed
by comparing with the localization results.

In this paper, we study along these lines the matrix-model of a different theory, namely
the N = 2 SYM theory with gauge group SU(N), two hypermultiplets in the anti-symmetric
representation and four hypermultiplets in the fundamental representation, called D the-
ory [42]. With this matter content, the β-function vanishes and superconformal invariance is
present also at the quantum level. In Type II B string theory this model can be engineered
with N fractional D3-branes in a Z2-orbifold probing an O7-orientifold background [43, 44].
To cancel the Ramond-Ramond charge of the O7-plane and have a consistent configuration,
one has to introduce four D7-branes plus their four orientifold images. The massless excita-
tions of the open strings stretching between the D3-branes and the D7-branes give rise to four
hypermultiplets in the fundamental representation of SU(N), while the massless excitations
of the open strings on the D3 branes passing through the orientifold plane produce two
hypermultiplets in the anti-symmetric of SU(N). The four-dimensional world-volume theory
of the D3-branes has a global symmetry group given by

SU(2)R ×U(1)R × SU(2)L ×U(1)L ×U(4) (1.1)

where the first two factors correspond to the R-symmetry group of the N = 2 supercon-
formal theory while the second two factors correspond to the flavor symmetry of the two
anti-symmetric hypermultiplets. The last factor, U(4), is the flavor symmetry of the four
fundamental hypermultiplets and will play an important role in the sequel. From the point of
view of the D7-branes, it represents the gauge group of their world-volume theory and arises
by taking a Z2-orbifold projection of the initial SO(8) gauge group of the eight D7-branes
in the orientifold background. More precisely, let Λ be a hermitian anti-symmetric 8 × 8
Chan-Paton matrix in the so(8) algebra. Under the Z2-orbifold it transforms as [45]

Λ → γ Λ γ−1 with γ =
(

0 −i1
i1 0

)
, (1.2)

3The flavor symmetry of the 4-dimensional conformal field theory becomes a gauge symmetry in the
gravitational dual.
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where in bold-face we denote 4 × 4 blocks. Thus, Λ is invariant under the orbifold only
if it takes the form(

A iS
−iS A

)
with At = −A , A∗ = −A , St = S , S∗ = S . (1.3)

Matrices of this form represent the embedding into so(8) of a u(4) hermitian matrix A + S,
so that the Chan-Paton factors (1.3) actually describe a U(4) group.

This explicit open string construction is instrumental also to discuss the gravitational
dual of the D theory which, as discussed for example in [44], is Type II B string theory on
AdS5 × S5/Γ where Γ is a discrete group obtained by combining the orbifold and orientifold
Z2-projections. The gravitational dual theory contains three sectors: a bulk sector consisting
of closed string states that are invariant under the orbifold and orientifold parities and
propagate in AdS5 × S5/Γ, a twisted sector comprising closed string twisted states invariant
under the orientifold parity and localized at the Z2-orbifold fixed locus AdS5 ×S1, and finally
a “D7-sector” consisting of open string states invariant under the orbifold and propagating on
the world-volume of the eight D7-branes with the topology of AdS5 × S3. Among the states
in this last sector, there are the gluons of U(4). According to the holographic dictionary,
they are dual to operators of conformal dimension 2 made up with the scalars, q and q̃, of
the fundamental hypermultiplets of the D theory, namely

q̃ λAq and q†λA q̃ † . (1.4)

Here λA (A = 1, . . . , 16) are the generators of U(4) in the fundamental representation, and a
sum over the SU(N) indices has been understood. The two combinations (1.4) are moment-
map operators belonging to the N = 2 flavor current multiplet in the adjoint representation of
U(4). This multiplet contains also two scalars, ΣA and ΣA, of dimension 3 that are quadratic
in the fermionic partners of q and q̃, and a conserved vector current. When the hypermultiplets
become massive, the Lagrangian of the D theory on a 4-sphere gets modified by the term4

∫
d4x

√
g mA

( i
r

JA + KA
)

(1.5)

where JA = q̃ λAq + q†λA q̃ †, KA = ΣA + ΣA, r is the radius of the sphere and g the
determinant of its metric. This massive model will be called D∗ theory.

By taking four mass-derivatives of the free energy of the D∗ theory and then setting
the masses to zero, one finds

−∂mA∂mB ∂mC ∂mDFD∗

∣∣∣
m=0

=
〈 ∫

d4x1
√

g

( i
r

JA + KA
)

. . .

∫
d4x4

√
g

( i
r

JD + KD
)〉

D
, (1.6)

namely an integrated correlator of 4 moment-map operators J and their descendants K in
the D theory. Since the flavor multiplet is half-BPS, by exploiting superconformal Ward

4Actually, the massive Lagrangian has also a term proportional to mAmA which however does not play any
role in what follows [1, 4–7]. See also the recent discussion of this point in [26].
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identities [46] we can express all correlators in the right-hand side of (1.6) only in terms of
4-point functions of the moment-map operators and get

−∂mA∂mB ∂mC ∂mDFD∗

∣∣∣
m=0

=
∫ 4∏

a=1
d4xa µ

(
{xa}

)〈
JA(x1)JB(x2)JC(x3)JD(x4)

〉
D (1.7)

where µ
(
{xa}

)
is a suitable integration measure which has been determined in [5, 27]. Through

the AdS/CFT correspondence, the 4-point correlators of moment-map operators are dual
to the 4-point scattering amplitudes of gluons in AdS, and thus from (1.7) we see that the
quartic mass-derivatives of the free-energy yield important information for the integrated
scattering amplitudes of gluons in AdS. The left-hand side of (1.7) can be explicitly evaluated
using a matrix model provided by supersymmetric localization. This is what we do in this
paper working order by order in the 1/N expansion.

1.1 Summary of results

Although they have similar features from the holographic point of view, the Sp(N) theory
considered in [29] and the D theory considered in this paper have different gauge groups,
matter contents and flavor groups, and therefore it is highly non-trivial to verify that the two
theories have similar strong-coupling behavior. The differences between the two theories are
evident also in the associated matrix models. In fact, the Sp(N) matrix model is a simple
deformation of the free Gaussian model produced by a series of single-trace interactions (see
for example [38, 39]), while the matrix model of the D theory, in addition to single-trace
terms, also contains a double-trace part. As we will explicitly show in section 2, this double-
trace part coincides with the interaction term of the matrix model associated to another
N = 2 superconformal gauge theory, called E theory, whose matter content consists of two
hypermultiplets, one in the symmetric and one in the anti-symmetric representation of SU(N).
The E theory and its quiver ancestor have been studied in detail in a series of papers [47–56]
where many exact results in the large-N limit have been obtained using the so-called full Lie
algebra approach originally introduced in [57]. Unlike the more standard eigenvalue approach,
the full Lie algebra approach, which is based on the use of recursive fusion/fission relations,
allows the double-trace interactions to be treated exactly. Relying on this method, we are
able to obtain explicit results also for the D theory matrix model. A key ingredient of our
analysis is the choice of a particular basis of operators that leads to a simple expression for
the interaction terms of the matrix model which is valid for all values of the coupling constant
and which allows one to compute correlation functions in an efficient and systematic way.

In section 3 we turn to the D∗ theory by giving a mass to the fundamental hypermultiplets,
derive the corresponding matrix model and calculate the quartic mass-derivatives of its free
energy. Using the special basis of operators previously introduced, we manage to obtain,
order by order in the large-N expansion, an explicit form of these mass-derivatives in terms
of integrals of Bessel functions. In this way we fill the gap of previous investigations which
never considered the D theory because of the complicated structure of its matrix model.

In section 4 we analyze the quartic mass-derivatives at strong coupling where they become
very similar (but not identical) to those of the Sp(N) theory. While perturbatively the D
theory and the Sp(N) theory are completely different, we find that the differences vanish at
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NF NS NA

Theory A (a.k.a. SQCD) 2N 0 0

Theory B N − 2 1 0

Theory C N + 2 0 1

Theory D 4 0 2

Theory E 0 1 1

Table 1. The five families of N = 2 superconformal theories with group SU(N).

strong coupling in the large-N limit, implying that the holographic dual of the two theories
be of the same type. Finally, in section 5 we present our conclusions and point out some
possible further developments, while in appendix A we collect some technical details on
the strong-coupling analysis and in appendix B we show that the full Lie algebra approach
can be also applied to the matrix model of the Sp(N) theory, allowing us to recover the
results of [29] in an alternative, simple way.5

2 The matrix-model description of N = 2 SYM theories

Let us consider a N = 2 SU(N) gauge theory with NF fundamental, NS symmetric and
NA anti-symmetric hypermultiplets. If

NF = N(2− NS − NA) + 2(NA − NS) , (2.1)

the β-function vanishes and the theory is superconformal. There are five families of solutions
to this requirement for generic N which are displayed in table 1.

Placing any of these theories on a 4-sphere and exploiting supersymmetric localization [2]
(see also [3] and references therein), we can write the partition function as an integral over
a Hermitian matrix a ∈ su(N) according to6

Z =
(
8π2N

λ

)N2−1
2 ∫

da e−
8π2N

λ
tr a2 |Z1−loop Zinst|2 (2.2)

where λ is the ’t Hooft coupling. In the large-N limit with λ fixed, the instanton contributions
are exponentially suppressed and one can set Zinst = 1. The 1-loop part Z1−loop depends on
the hypermultiplet content. For the theories in table 1 it is given by

∣∣∣Z1−loop
∣∣∣2 =

N∏
u<v

H2(iau − iav)

[ NF∏
i=1

N∏
u=1

H(iau)
] [ NS∏

i=1

N∏
u≤v

H(iau + iav)
] [ NA∏

i=1

N∏
u<v

H(iau + iav)
] (2.3)

5We observe that these techniques can be applied also to study the conformal theory with gauge group
Sp(N)×Sp(N), one bi-fundamental and four fundamental hypermultiplets, and flavor group SO(4)×SO(4) [44].
This model originates from a different orbifold projection of the Sp(N) theory, and is the only other theory that
describes scattering on D7-branes. Its associated matrix model is similar to that of the quiver theories studied
using the full Lie-algebra approach in [33, 51, 53, 54, 56] and thus it can be analyzed along the same lines.

6In the full Lie algebra approach we integrate over all elements of a.
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where au are the eigenvalues of a (subject to the tracelessness condition
∑

u au = 0) and

H(x) = e(1+γ)x2
G(1 + x)G(1− x) (2.4)

with γ being the Euler-Mascheroni constant e G the Barnes G-function. Rescaling

a →

√
λ

8π2N
a (2.5)

and then expanding in λ using

logH(x) = −
∞∑

n=1

ζ2n+1
n + 1 x2n+2 (2.6)

where ζn is the Riemann ζ-value ζ(n), we can recast the partition function (2.2) in the form

Z =
∫

da e− tr a2 e−Sint (2.7)

with [47]

Sint =
NS + NA + 2

2

∞∑
k=1

k−1∑
ℓ=1

(−1)k
(

λ

8π2N

)k+1 (2k + 2
2ℓ + 1

)
ζ2k+1
k + 1 tr a2ℓ+1 tr a2k−2ℓ+1

+ NS + NA − 2
2

∞∑
k=1

k∑
ℓ=1

(−1)k
(

λ

8π2N

)k+1 (2k + 2
2ℓ

)
ζ2k+1
k + 1 tr a2ℓ tr a2k−2ℓ+2

+ 2(NS − NA)
∞∑

k=1
(−1)k

(
λ

8π2N

)k+1
(22k − 1) ζ2k+1

k + 1 tr a2k+2 . (2.8)

Of particular interest for us are the E and D theories. For the E theory we have
NS = NA = 1, NF = 0 and thus the interaction action (2.8) reduces to

SE = 2
∞∑

k=1

k−1∑
ℓ=1

(−1)k
(

λ

8π2N

)k+1 (2k + 2
2ℓ + 1

)
ζ2k+1
k + 1 tr a2ℓ+1 tr a2k−2ℓ+1 . (2.9)

This is a sum of double traces of only odd powers of a. For the D theory instead, we have
NS = 0, NA = 2 and NF = 4. This implies that the interaction action in this case is

SD = SE + Ss.t (2.10)

where Ss.t is the following single-trace term

Ss.t. = 4
∞∑

k=1
(−1)k+1

(
λ

8π2N

)k+1
(22k − 1) ζ2k+1

k + 1 tr a2k+2 . (2.11)

Given this structure, we can regard the matrix model of the E theory as a “perturbation” of
the free Gaussian model representing N = 4 SYM by means of SE, and in turn regard the
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matrix model of the D theory as a “perturbation” of the E theory by means of Ss.t.. In other
words, in the E theory we write the vacuum expectation value of any operator O as

〈
O
〉

E
=

〈
O e−SE

〉
0〈

e−SE
〉

0

(2.12)

where ⟨ ⟩0 denotes the vacuum expectation value in the free Gaussian model (i.e. N = 4
SYM), while in the D theory we have

〈
O
〉

D
=

〈
O e−Ss.t.

〉
E〈

e−Ss.t.
〉

E

. (2.13)

Thus, ultimately everything is reduced to the computation of correlators in the free Gaussian
matrix model. In [30, 49, 50, 52, 55] it was shown that in the E theory the interaction action
SE can be treated exactly order by order in the large-N expansion obtaining expressions
valid for all values of λ written in terms of convolutions of Bessel functions. Here we show
that this is possible also in the D theory since at any given order in the large-N expansion
only a finite number of insertions of Ss.t. are needed. This is the main reason while, despite
the complicated structure of the matrix model of the D theory, one can obtain exact results
in closed form in the large-N expansion.

Let us now give some details. The first step is to change basis and instead of using
tr ak we introduce a new set of operators Pk that are orthonormal in the planar limit of
the Gaussian model. They are defined as

Pk =
√

k

⌊ k−1
2 ⌋∑

ℓ=0
(−1)ℓ

(
N

2

)ℓ− k
2 (k − ℓ − 1)!

ℓ! (k − 2ℓ)!
(
tr ak−2ℓ −

〈
tr ak−2ℓ〉

0

)
. (2.14)

Up to an overall normalization, these operators are related to those proposed in [58] in terms
of the Chebyshev polynomials of the first kind Tk. Indeed, one can verify that

√
k

2 Pk = Tk

(
x√
2N

)
− Tk(0) (2.15)

where in the right hand side one has to make the replacement xℓ → tr aℓ − ⟨tr aℓ⟩0. By
inverting (2.14) we get

tr ak =
(

N

2

) k
2
⌊ k−1

2 ⌋∑
ℓ=0

√
k − 2ℓ

(
k

ℓ

)
Pk−2ℓ + ⟨trak⟩0 . (2.16)

Since ⟨tr a2k+1⟩0 = 0, the odd traces are linear combinations of odd P ’s without extra terms;
on the contrary the even traces are replaced by a linear combination of even P’s plus an
operator-independent term. Performing this change of basis, we can rewrite the interaction
action of the E theory as

SE = −1
2

∞∑
k,ℓ=1

P2k+1 Xk,ℓ P2ℓ+1 (2.17)

– 7 –
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where, as shown in [47, 50], the coefficients are given by the following convolution of
Bessel functions

Xk,ℓ = 8 (−1)k+ℓ+1
√
(2k + 1) (2ℓ + 1)

∫ ∞

0

dt

t

et

(et − 1)2 J2k+1

(
t
√

λ

2π

)
J2ℓ+1

(
t
√

λ

2π

)
. (2.18)

Notice that even if initially in (2.9) SE was given as a weak-coupling expansion in powers
of λ, the final expression (2.17) is exact in λ and thus it can be used also to study the
strong-coupling regime. This form of the interaction action is particularly useful to compute
the free energy of the E theory which turns out to be

FE = 1
2 Tr log

(
1− X

)
+ O

( 1
N2

)
. (2.19)

Also the single trace term Ss.t. in (2.11) can be conveniently written using the P
operators. Inserting (2.16), after simple algebra we get

Ss.t. = 2
∞∑

k=1

k∑
ℓ=0

(−1)k+1
(

λ

4π2

)k+1
(1− 2−2k) ζ2k+1

√
2k + 2− 2ℓ (2k + 1)!

ℓ!(2k + 2− ℓ)! P2k+2−2ℓ

+
∞∑

k=1
(−1)k+1

(
λ

2π2N

)k+1
(1− 2−2k) ζ2k+1

k + 1
〈
tr a2k+2〉

0 . (2.20)

The second line is a constant term which does not depend on the matrix operators and
contributes only to the overall normalization of the partition function of the D theory.
This constant is relevant to compute the free energy FD but cancels out in the expectation
values (2.13). Since our primary interest in this paper is on these expectation values, we will
drop this constant term and only consider the first line of (2.20). Exploiting the identity

(1− 2−2k) ζ2k+1 = η2k+1 = 1
(2k + 1)!

∫ ∞

0

dt

t

et

(et + 1)2 t2k+2 , (2.21)

where ηn is the Dirichlet-η value η(n), we obtain

Ss.t. = 2
∞∑

k=1

k∑
ℓ=0

(−1)k+1
∫ ∞

0

dt

t

et

(et + 1)2

(√
λ t

2π

)2k+2 √
2k + 2− 2ℓ

ℓ!(2k + 2− ℓ)! P2k+2−2ℓ . (2.22)

This series can be resummed in terms of Bessel functions. Indeed, after renaming indices,
one finds

Ss.t. = −
∞∑

k=1
Y2k P2k (2.23)

where

Y2k = (−1)k+1 2
√
2k

∫ ∞

0

dt

t

et

(et + 1)2 J2k

(√
λ t

π

)
− δk,1

√
2 log 2
4π2 λ . (2.24)

In conclusion, the interaction action of the matrix model which is relevant for computing
expectation values in the D theory is simply

SD = −1
2

∞∑
k,ℓ=1

P2k+1 Xk,ℓ P2ℓ+1 −
∞∑

k=1
Y2k P2k (2.25)

where the N -independent coefficients Xk,ℓ and Y2k are explicitly known in terms of integrals
of Bessel functions for any value of λ.
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2.1 The correlators of the P operators

Now we have all the ingredients to explicitly compute the correlators of the P operators
introduced in (2.14). First we recall a few known facts about such correlators in the free
Gaussian matrix model (N = 4 SYM) and in the E theory (see for instance [30, 52, 57]).

In the large-N expansion, for both N = 4 SYM and the E theory, the n-point connected
correlator of the P operators has the following structure

〈
Pk1 · · · Pkn

〉(c) = f (LO)(k1, . . . , kn)
Nn−2 + f (NLO)(k1, . . . , kn)

Nn
+ O

( 1
Nn+2

)
(2.26)

where the coefficients f (LO), f (NLO), and the analogous ones at higher sub-leading orders in
the large-N expansion, always vanish unless k1 + . . . + kn is even. These coefficients are in
general functions of the ’t Hooft coupling and their explicit expression depends on the theory
considered. Let us now consider these correlators in more detail starting from N = 4 SYM.

N=4 SYM theory. In N = 4 SYM the 1-point function identically vanishes:〈
Pk

〉
0 = 0 . (2.27)

Thus, for any k we have f (LO)
0 (k) = f (NLO)

0 (k) = · · · = 0. For the 2-point correlators, instead,
one can show that7

f (LO)
0 (k1, k2) = δk1,k2 . (2.28)

Indeed, the P operators were defined to be orthonormal in the planar limit of the free Gaussian
model. The subleading coefficients can be worked out recursively using the fusion/fission
identities of SU(N) [57]. For example, at NLO one finds [33]

f (NLO)
0 (2k1,2k2)=

√
2k1

√
2k2 (k2

1+k2
2−1)(k2

1+k2
2−14)

24 , (2.29)

f (NLO)
0 (2k1+1,2k2+1)=

√
(2k1+1)

√
(2k2+1)(k2

1+k2
2+k1+k2)(k2

1+k2
2+k1+k2−14)

24 .

However, since in this paper we will work at order 1/N , we will not use these sub-leading
coefficients which indeed appear at order 1/N2. Also for the 3-point functions, which scale
as 1/N , the relevant coefficient is the leading one, given by

f (LO)
0 (k1, k2, k3) =

√
k1
√

k2
√

k3 . (2.30)

In a similar way one can compute the coefficients of the higher point correlators, which
however appear at higher orders in the large-N expansion and thus will not be needed.

E theory. In the E theory, P2k and P2k+1 behave differently since the interaction action of
the matrix model only contains odd operators. In [30] it was shown that the 1-point function
⟨P2k⟩E becomes non-trivial at NLO (i.e. at order 1/N):

f (LO)
E (2k) = 0 , f (NLO)

E (2k) = −
√
2k λ ∂λFE (2.31)

7Here and in the following we always understand that
∑

i
ki must be even.
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N = 4 SYM E theory〈
P2k

〉
0 = 0

〈
P2k

〉
E
= −

√
2k λ ∂λFE

N + O
(

1
N3

)
〈
P2k1P2k2

〉
0 = δk1,k2 + O

(
1

N2

) 〈
P2k1P2k2

〉c
E
= δk1,k2 + O

(
1

N2

)
〈
P2k1P2k2P2k3

〉
0 =

√
2k1

√
2k2

√
2k3

N + O
(

1
N3

) 〈
P2k1P2k2P2k3

〉c
E
=

√
2k1

√
2k2

√
2k3

N + O
(

1
N3

)
Table 2. The 1-, 2- and 3-point correlators of even P ’s in the free Gaussian matrix model corresponding
to N = 4 SYM and in the matrix model of the E theory up to order 1/N .

where FE is the free energy (2.19), while ⟨P2k+1⟩E remains identically zero: f (LO)
E (2k + 1) =

f (NLO)
E (2k + 1) = · · · = 0.

The 2-point correlators in the E theory were studied in detail in [50]. Translating these
results in the notation of (2.26), we have

f (LO)
E (2k1, 2k2) = δk1,k2 ,

f (LO)
E (2k1 + 1, 2k2 + 1) = Dk1,k2

(2.32)

where

Dk1,k2 =
( 1
1− X

)
k1,k2

(2.33)

with X being the matrix defined in (2.18). The 3-point correlators have been explicitly
computed in [52] where it was found that

f (LO)
E (2k1, 2k2, 2k3) =

√
2k1

√
2k2

√
2k3 ,

f (LO)
E (2k1, 2k2 + 1, 2k3 + 1) =

√
2k1 dk2 dk3

(2.34)

where dk =
∑

ℓ

√
2ℓ + 1Dℓ,k.

In table 2 we have collected the expressions of the 1-, 2- and 3-point correlators of the
even operators which will be used later on. We see that up to the order 1/N at which we
work, the difference between N = 4 SYM and the E theory is minimal.

D theory. Let us now consider the correlators in the D theory starting from the 1-point
function of the even operators P2n. Using the definition (2.13) with (2.20), this 1-point
function is

〈
P2n

〉
D
=

〈
P2n exp (

∑
k Y2k P2k)

〉
E〈

exp (
∑

k Y2k P2k)
〉

E

. (2.35)

Expanding in Y2k, we get

〈
P2n

〉
D
=
〈
P2n

〉
E
+

∞∑
k=1

Y2k

〈
P2n P2k⟩c

E + 1
2

∞∑
k,ℓ=1

Y2k Y2ℓ

〈
P2n P2k P2ℓ⟩c

E + · · · (2.36)
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Exploiting the results for the connected correlators in the E theory that we have recalled
above, we see that the first and third terms of (2.36) are of order 1/N , while the second
term is of order N0. The next terms with more factors of Y2k are even more sub-leading in
the large-N expansion: indeed a term with q such factors is associated to a (q + 1)-point
connected correlator which is of order 1/N q−1 (for q ≥ 2). This shows that only a finite
number of terms in (2.36) have to be considered up to a given order in the large-N expansion.
In particular, as already remarked, the terms explicitly exhibited in (2.36) are the relevant
ones to order 1/N . Thus, we have

〈
P2n

〉
D
= Y2n +

√
2n

2N

(
Y 2 − 2λ ∂λFE

)
+ O

( 1
N2

)
(2.37)

where we have used the E theory connected correlators of table 1 and defined8

Y ≡
∞∑

k=1

√
2k Y2k =

∫ ∞

0

dt

t

et

(et + 1)2

[√
λ t

π
J1

(√
λ t

π

)]
− log 2

2π2 λ . (2.39)

Proceeding in a similar way for the 2-point correlators, we find〈
P2nP2m

〉
D
=
〈
P2nP2m

〉c
E
+
〈
P2n

〉
E

〈
P2m

〉
E

+
∞∑

k=1
Y2k

[〈
P2nP2mP2k

〉c
E
+
〈
P2n

〉
E

〈
P2mP2k

〉c
E
+
〈
P2m

〉
E

〈
P2nP2k

〉c
E

]

+1
2

∞∑
k,ℓ=1

Y2k Y2ℓ

[〈
P2nP2mP2k P2ℓ

〉c
E
+
〈
P2n

〉
E

〈
P2mP2k P2ℓ

〉c
E

+
〈
P2m

〉
E

〈
P2nP2k P2ℓ

〉c
E
+2
〈
P2nP2k

〉c
E

〈
P2mP2ℓ

〉c
E

]
+1
6

∞∑
k,ℓ,p=1

Y2k Y2ℓ Y2p

[〈
P2nP2mP2k P2ℓ P2p

〉c
E
+
〈
P2n

〉
E

〈
P2mP2k P2ℓP2p

〉c
E

+
〈
P2m

〉
E

〈
P2nP2k P2ℓP2p

〉c
E
+3
〈
P2nP2k

〉c
E

〈
P2mP2ℓP2p

〉c
E

+3
〈
P2mP2k

〉c
E

〈
P2nP2ℓP2p

〉c
E

]
+· · · (2.40)

Inserting in the right-hand side the expressions of the connected correlators of the E theory
and keeping only terms up to order 1/N , we find

〈
P2n P2m

〉
D
= δn,m + Y2n Y2m + 1

N

[√
2n

√
2m Y

+ 1
2
(√

2n Y2m +
√
2m Y2n

) (
Y 2 − 2λ ∂λFE

)]
+ O

( 1
N2

)
. (2.41)

8The second step in (2.39) directly follows from the recursion relations of the Bessel functions which imply
∞∑

ℓ=1

(−1)ℓ(2ℓ) J2ℓ(x) = −x

2 J1(x) . (2.38)
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Thus, the connected 2-point function in the D theory is〈
P2n P2m

〉c
D
= δn,m +

√
2n

√
2m Y

N
+ O

( 1
N2

)
. (2.42)

We stress once again that this expression is exact in λ.
The 1-point correlator (2.37) and the connected 2-point correlator (2.42) are the needed

ingredients for the purposes of this paper, but of course the techniques we have described
can be used to compute higher point correlators, as well as terms of higher order in the
large-N expansion.

3 The matrix model for the D∗ theory

We now consider the D∗ theory, that is a mass deformation of the D theory in which the
fundamental hypermultiplets acquires a mass. As mentioned in the Introduction, the action
of the D∗ theory on a 4-sphere contains the term (1.5). Without loss of generality, we can
restrict the masses to be along the four Cartan directions of U(4) labeled by i = 1, . . . , 4, i.e.
we replace mA → mi. There are several combinations of these masses that can occur. To
find them, let us recall that the group U(4) arises from a Z2-orbifold projection of SO(8)
(see (1.2) and (1.3)), so that the four Cartan generators λi in the defining representation
of U(4) must be embedded into 8 × 8 matrices as(

0 iλi

−iλi 0

)
. (3.1)

We can then consider the following combination of these embedded Cartan generators

M =



0

im1 0 0 0
0 im2 0 0
0 0 im3 0
0 0 0 im4

−im1 0 0 0
0 −im2 0 0
0 0 −im3 0
0 0 0 −im4

0


, (3.2)

which satisfies

trM2k+1 = 0 , trM2k = 2
4∑

i=1
m2k

i , Pfaff(M) = m1 m2 m3 m4 . (3.3)

From this we see that at order 4 in the masses, there are three independent U(4)-invariant
structures, which we can take to be

4∑
i=1

m4
i = 1

2 trM4 , (3.4a)

4∑
i<j=1

m2
i m2

j = −1
4 trM4 + 1

8
(
trM2)2 , (3.4b)

m1 m2 m3 m4 = Pfaff(M) . (3.4c)
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Let us now turn to the matrix model of the D∗ theory. To obtain it we use the prescription
of [2] and make the following replacement in (2.3)

NF∏
i=1

N∏
u=1

H(iau) →
NF∏
i=1

N∏
u=1

H
1
2 (iau + imi)H

1
2 (iau − imi) . (3.5)

In the small-mass limit this amounts to consider a matrix model in which

∣∣∣Z1−loop
∣∣∣2 →

∣∣∣Z1−loop
∣∣∣2 e

−1
2

4∑
i=1

m2
i

N∑
u=1

∂2 logH(iau)−
1
24

4∑
i=1

m4
i

N∑
u=1

∂4 logH(iau)+O(m6)
.

(3.6)

Notice that since only
∑

i m2
i and

∑
i m4

i appear in this expression, the resulting partition
function will contain, at quartic order, only the two invariant combinations (3.4a) and (3.4b).9

Performing the rescaling (2.5) and then expanding for small λ, we can write the partition
function of the D∗ matrix model in the following form

ZD∗ =
∫

da e− tr a2 e−SD−
∑

i
m2

i S2−
∑

i
m4

i S4+O(m6) (3.7)

where

S2 =
∞∑

k=1
(−1)k (2k + 1) ζ2k+1

(
λ

8π2N

)k

tr a2k , (3.8)

S4 = 1
6

∞∑
k=1

(−1)k k (4k2 − 1) ζ2k+1

(
λ

8π2N

)k−1
tr a2k−2 . (3.9)

From this we deduce that the free energy of the D∗ theory is

FD∗ =− logZD∗ =FD+
4∑

i=1
m2

i

〈
S2
〉

D
+

4∑
i=1

m4
i

〈
S4
〉

D
− 1
2

( 4∑
i=1

m2
i

)2(〈
S 2

2
〉

D
−
〈
S2
〉2

D

)
+O(m6)

(3.10)

and that

−∂4
mi

FD∗

∣∣∣
m=0

= −24
〈
S4
〉

D
+ 12

〈
S 2

2
〉

D
− 12

〈
S2
〉2

D
(i = 1, . . . , 4) , (3.11a)

−∂2
mi

∂2
mj

FD∗

∣∣∣
m=0

= 4
〈
S 2

2
〉

D
− 4

〈
S2
〉2

D
(i ̸= j = 1, . . . , 4) . (3.11b)

As already observed, the fourth-order mass derivative corresponding to the third U(4)
invariant (3.4c) which does not appear in the matrix model, vanishes:

−∂m1∂m2∂m3∂m4FD∗

∣∣∣
m=0

= 0 . (3.12)

To compute the right-hand sides of (3.11), we rewrite S4 and S2 in terms of the P operators
introduced in the previous section. Using (2.16) we have

S4 = S
(1)
4 + S

(0)
4 and S2 = S

(1)
2 + S

(0)
2 (3.13)

9This is no longer true when non-perturbative instanton contributions are taken into account.
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where the superscripts (1) and (0) denote, respectively, the part which is linear in the
P operators and the part arising from the vacuum expectation values ⟨tr a2k⟩0 which is
independent of them. Explicitly we have

S
(1)
4 = 1

12

∞∑
k=2

k−2∑
ℓ=0

(−1)k (2k + 1)! ζ2k+1

√
2k − 2− 2ℓ

ℓ! (2k − 2− ℓ)!

(
λ

16π2

)k−1
P2k−2−2ℓ , (3.14)

S
(0)
4 = 1

6

∞∑
k=1

(−1)k k (4k2 − 1) ζ2k+1

(
λ

8π2N

)k−1 〈
tr a2k−2〉

0 , (3.15)

S
(1)
2 =

∞∑
k=1

k−1∑
ℓ=0

(−1)k (2k + 1)! ζ2k+1

√
2k − 2ℓ

ℓ! (2k − ℓ)!

(
λ

16π2

)k

P2k−2ℓ . (3.16)

We have not written the P-independent term S
(0)
2 since in (3.11a) and (3.11b) only the

connected combination ⟨S 2
2 ⟩D − ⟨S2⟩2

D appears and in this combination S
(0)
2 cancels out.

We notice that S
(1)
4 and S

(1)
2 have very similar expansions, which actually can be

resummed in terms of Bessel functions. Indeed, using the identity

(2n + 1)! ζ2n+1 =
∫ ∞

0

dt

t

et

(et − 1)2 t2n+2 , (3.17)

and defining

Z(p)
n =

∫ ∞

0

dt

t

et t p

(et − 1)2 Jn

(√
λ t

2π

)
(3.18)

for n ≥ 1 and p > 1, one can check that (3.14) and (3.16) become

S
(1)
4 = − 1

12

∞∑
k=1

(−1)k
√
2k Z(4)

2k P2k , (3.19)

S
(1)
2 =

∞∑
k=1

(−1)k
√
2k Z(2)

2k P2k . (3.20)

Notice that, even if started from weak-coupling expansions, the final formulas (3.19) and (3.20)
contain the full dependence on the ’t Hooft coupling and thus are valid for any value of λ.

Also for S
(0)
4 one can find an exact expression order by order in the large-N expan-

sion. Using10

〈
tr a2n〉

0 = Nn+1

2n

(2n)!
n! (n + 1)! −

Nn−1

2n+1
(2n)!

n! (n − 1)!

(
1− n − 1

6

)
+ O

(
Nn−3

)
, (3.21)

one has

S
(0)
4 = N

12

∞∑
k=1

(−1)k (2k + 1)! ζ2k+1
1

k! (k − 1)!

(
λ

16π2

)k−1
(3.22)

− 1
144N

∞∑
k=1

(−1)k (2k + 1)! ζ2k+1
8− k

(k − 1)! (k − 2)!

(
λ

16π2

)k−1
+ O

( 1
N3

)
.

10This formula as well as its higher non-planar corrections can be easily derived using the fusion/fission
identities of the SU(N) traces [57].
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Once again, after using the identity (3.17) one can resum the above expansions in terms
of Bessel functions and show that

S
(0)
4 = −N

12
4π√

λ
Z(3)

1 − 1
24N

[√
λ

4π
Z(5)

1 + 1
6

( √
λ

4π

)2

Z(6)
2

]
+ O

( 1
N3

)
. (3.23)

With these ingredients we can write the quantities in the right-hand side of (3.11a)
and (3.11b) in closed form. Explicitly, from (3.19) and (3.23) we have

〈
S4
〉

D
=−N

12
4π√

λ
Z(3)

1 − 1
12

∞∑
k=1

(−1)k
√
2k Z(4)

2k

〈
P2k

〉
D
− 1
24N

[√
λ

4π
Z(5)

1 +1
6

(√
λ

4π

)2

Z(6)
2

]
+O

( 1
N3

)

=−N

12
4π√

λ
Z(3)

1 − 1
12

∞∑
k=1

(−1)k
√
2k Z(4)

2k Y2k

− 1
24N

[√
λ

4π
Z(5)

1 +1
6

(√
λ

4π

)2

Z(6)
2 −

√
λ

4π
Z(5)

1

(
Y2−2λ∂λFE

)]
+O

( 1
N2

)
(3.24)

where in the first step we have inserted the 1-point correlator (2.37) and in the last term
we have exploited the identity

∞∑
k=1

(−1)k (2k)Z(p)
2k = −

√
λ

4π
Z(p+1)

1 (3.25)

for p = 4, which follows from the sum rule (2.38). In a similar way using (3.20) and the
connected 2-point correlator (2.42), we find

〈
S 2

2
〉

D
−
〈
S2
〉2

D
=

∞∑
k,ℓ=1

(−1)k+ℓ
√
2k

√
2ℓ Z(2)

2k Z(2)
2ℓ

〈
P2k P2ℓ

〉c
D

=
∞∑

k=1
2k
(
Z(2)

2k

)2 + 1
N

(√
λ

4π
Z(3)

1

)2

Y + O

( 1
N2

)
. (3.26)

Both (3.24) and (3.26) are examples of large-N expansions in which, order by order in 1/N ,
the dependence on λ is exact and given through integrals of Bessel functions. It is worth
underlining that the procedure we have described can be used also to derive further sub-leading
contributions. Even if the calculations soon become quite challenging, in principle there are
no obstacles to extend our results to higher orders in 1/N since everything is purely algebraic.

4 Strong coupling limit

The results of the previous section allow us to study the mass-derivatives (3.11) as functions
of the ’t Hooft coupling. When λ is small, we can Taylor-expand the Bessel functions inside
the various integrals and obtain the following weak-coupling expansions

−∂4
mi

FD∗

∣∣∣
m=0

∼
λ→0

N
(
12ζ3−60ζ5 λ̂+210ζ7 λ̂2−630ζ9 λ̂3+· · ·

)
+
(
54ζ2

3 λ̂2+360ζ3 ζ5 λ̂3−4725ζ3 ζ7 λ̂4−3825ζ2
5 λ̂4+· · ·

)
+ 1

N

(
60ζ5 λ̂−525ζ7 λ̂2+2520ζ9 λ̂3+· · ·

)
+O

( 1
N2

)
, (4.1a)
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−∂2
mi

∂2
mj

FD∗

∣∣∣
m=0

∼
λ→0

(
18ζ2

3 λ̂2−120ζ3 ζ5 λ̂3+· · ·
)

+ 1
N

(
−648ζ3

3 λ̂4+11880ζ2
3 ζ5 λ̂5+· · ·

)
+O

( 1
N2

)
(4.1b)

where we have defined λ̂ = λ/(8π2) for ease of notation. The perturbative series in round
brackets can be computed to very high order with a limited computational effort and can
be shown to have a finite radius of convergence (|λ| ≤ π2). By using standard resummation
methods one can extend them beyond this limit and explore the strong-coupling regime.
Actually, since we have derived explicit expressions in terms of integrals of Bessel functions
that are valid for any λ, we do not have to follow this path and we can simply exploit the
asymptotic behavior of the Bessel functions combined with the Mellin-Barnes method to
obtain the asymptotic expansions for large values of λ. This procedure is described in detail
in appendix A and here we just report the results that are needed to evaluate the right-hand
sides of (3.11a) and (3.11b). More specifically, from (A.5) and (A.6) we read that

Z(3)
1 ∼

λ→∞

2π√
λ
+ O

(
e−λ) , Z(5)

1 ∼
λ→∞

0 + O
(
e−λ) , Z(6)

2 ∼
λ→∞

0 + O
(
e−λ) , (4.2)

from (A.9) that

Y ∼
λ→∞

− log 2
2π2 λ + 1

4 + O
(
e−λ) , (4.3)

from (A.18) that
∞∑

k=1
2k
(
Z(2)

2k

)2 ∼
λ→∞

1
4 log λ + 1

2 γ − 1
2 log(4π)− 1

2 ζ3 +
11
12 + O

(
e−λ) , (4.4)

and finally from (A.28) that
∞∑

k=1
(−1)k

√
2k Z(4)

2k Y2k ∼
λ→∞

3
2 ζ3 + O

(
e−λ) . (4.5)

Notice that in all cases, apart from the non-perturbative exponentially suppressed terms, the
asymptotic series contain only a finite number of terms and in some cases, like for example in
Z(5)

1 , none. This is a known phenomenon which occurs when some parameters take special
values, typically integers, at which the usual asymptotic expansion terminates or even disap-
pears. In these cases the tail of non-perturbative exponentially small corrections is obtained
using the so-called Cheshire cat resurgence (see for instance [59] and references therein).

The fact that the Z(5)
1 asymptotically vanishes causes a big simplification since the

only term at order 1/N in (3.24) that depends on the free energy of the E theory which
has a strong-coupling expansion with infinite terms [49, 55], drops out being multiplied by
Z(5)

1 . Because of this fact, at each order in the 1/N expansion, only a finite number of
λ-dependent terms appear at strong coupling. Indeed, inserting in (3.11a) and (3.11b) the
results (4.2)–(4.5), after simple algebra we find

−∂4
mi

FD∗

∣∣∣
m=0

∼
λ→∞

16π2

λ
N + 3 log λ + 6γ − 6 log(4π)− 3 ζ3 + 11

+ 3
4N

(
1− 2 log 2

π2 λ

)
+ O

( 1
N2

)
, (4.6a)
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−∂2
mi

∂2
mj

FD∗

∣∣∣
m=0

∼
λ→∞

log λ + 2γ − 2 log(4π)− 2 ζ3 +
11
3

+ 1
4N

(
1− 2 log 2

π2 λ

)
+ O

( 1
N2

)
. (4.6b)

The log 2 terms in the round brackets of the above formulas can be removed by introducing
a shifted ’t Hooft coupling defined according to

1
λ′ =

1
λ
+ log 2

2π2N
. (4.7)

In terms of λ′ we have

−∂4
mi

FD∗

∣∣∣
m=0

∼
λ′→∞

16π2

λ′ N + 3 log λ′ + 3f(N)− 8 log 2 + 3 ζ3 , (4.8a)

−∂2
mi

∂2
mj

FD∗

∣∣∣
m=0

∼
λ′→∞

log λ′ + f(N) (4.8b)

where

f(N) = 2γ − 2 log(4π)− 2 ζ3 +
11
3 + 1

4N
+ O

( 1
N2

)
. (4.9)

The strong-coupling formulas (4.8a) and (4.8b) are one of our main results. They are very
similar (but not identical) to the findings of [29] where the N = 2 Sp(N) SYM theory
with one anti-symmetric and four fundamental hypermultiplets has been analyzed. In this
theory the flavor group of the fundamental matter is SO(8), instead of U(4), but the quartic
invariants

∑
i m4

i ,
∑

i<j m2
i m2

j and (m1 m2 m3 m4) are the same, and thus the corresponding
quartic derivatives of the partition function can be compared in the two theories. Confronting
eq. (3.13) of [29] with our equations (4.8) and (3.12), we obtain

−∂4
mi

FD∗

∣∣∣
m=0

= 1
2

[
− ∂4

mi
FSp∗

∣∣∣
m=0

]
+ 3 ζ3 −

3
4N

+ O

( 1
N2

)
, (4.10a)

−∂2
mi

∂2
mj

FD∗

∣∣∣
m=0

= 1
2

[
− ∂2

mi
∂2

mj
FSp∗

∣∣∣
m=0

]
− 1

4N
+ O

( 1
N2

)
(4.10b)

−∂m1∂m2∂m3∂m4FD∗

∣∣∣
m=0

= 1
2

[
− ∂m1∂m2∂m3∂m4FSp∗

∣∣∣
m=0

]
+ O

( 1
N2

)
(4.10c)

where we have denoted by FSp∗ the free energy of the Sp(N) theory in which the fundamental
hypermultiplets are massive. These relations show that the D and the Sp(N) theories
are planar equivalent at strong coupling (up to a trivial overall factor of 1/2) but differ
at the non-planar level by a function which, up to the order 1/N2, depends only on N .
This fact provides strong evidence that the same thing happens also to higher orders in
the 1/N -expansion, suggesting that in the strong-coupling regime the dependence on the
’t Hooft coupling is the same in the two theories, apart from an overall factor. In other
words, this argument supports that (4.8) capture the full dependence on λ′ at strong coupling
and large N , with f(N) remaining a function only of N also at higher orders, in complete
analogy with the Sp(N) theory [29].
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We finally observe that more than a redefinition of the ’t Hooft coupling, the shift (4.7)
is actually a redefinition of the Yang-Mills coupling which can be written as

8π2

g′ 2
= 8π2

g2 + 4 log 2 , (4.11)

or, introducing the complex combination

τ = θ

2π
+ i 4π

g2 ≡ τ1 + i τ2 (4.12)

where θ is the vacuum θ-angle, as

q = 16 q′ (4.13)

with q = e2πiτ and11

q′ = eiπτ ′
, τ ′ = θ′

π
+ i 8π

g′ 2
. (4.14)

It is interesting to observe that this is the same as the UV/IR relation of SQCD with gauge
group SU(2).12 More precisely, in this case one has [61] (see also [62] and references therein)

q = θ2(q′)4

θ3(q′)4 (4.15)

where θ2 and θ3 are Jacobi θ-functions. Expanding the right-hand side in powers of q′,
at the leading order one recovers precisely the relation (4.13), with the sub-leading terms
representing non-perturbative instanton corrections. This fact suggests that the D theory at
large N might share the same non-perturbative and modular structure as the SU(2) theory.
Note that this is strictly analogous to the situation that occurs in the N = 2 superconformal
Sp(1) theory with four fundamental hypermultiplets for which it has been established [63] that

q2 = 16 θ2(q′ 2)4

θ3(q′ 2)4 . (4.16)

Again neglecting instantons, this leads to the same relation (4.13) and hence to (4.7) and (4.11).
In [39] this relation has been observed also in the superconformal Sp(N) theory in the large-N
limit at strong coupling, and in [29] it has been promoted at the full non-perturbative
level, thus extending the Sp(1) formula (4.16) to the Sp(N) theory at large N . It would
be very interesting to check whether or not this non-perturbative completion occurs also
in our D theory.

Finally, we observe that the simple relationship between the strong-coupling behavior of
the mass-derivatives in the Sp(N) and D theories shown in (4.10) suggests that the same
calculations performed in [31, 32, 34] to fix the coefficients of the AdS scattering amplitude
of four SO(8) gluons from localization can also be repeated for the scattering of U(4) gluons,
leading to the same results. Our matrix-model findings in the D theory are therefore useful
for constraining the dual gluon amplitudes in AdS.13

11We follow the standard normalizations and conventions of the literature for the IR complex coupling τ ′;
see for example [60].

12Notice that for SU(2) the anti-symmetric hypermultiplet is a singlet, which decouples, and only the four
fundamental hypermultiplets remain. Thus, for SU(2) the D theory effectively coincides with SQCD.

13We thank Tobias Hansen for correspondence on this point.
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5 Conclusions and outlook

Using the full Lie algebra approach to matrix models we have studied in detail the derivatives
of the free energy of the D∗ theory order by order in the large-N expansion, obtaining exact
expressions that are valid for all values of the ’t Hooft coupling. In our analysis we have
worked up to the first three non-trivial orders in the 1/N expansion (i.e. up to order 1/N)
but in principle there are no obstacles to going further. It would be interesting to explore the
possibility of finding a systematic way to compute and organize these higher order corrections,
similarly to what happens for the matrix model of the Sp(N). Here one can exploit a Toda
lattice equation [38, 39] and establish recursive relations among theories with N and N ± 1,
which then allow obtaining formulas that are exact in N . To the best of our knowledge,
however, this Toda lattice equation cannot be applied to matrix models with double-trace
interactions like that of the D theory; so this remains an open problem.

In this paper we have considered a deformation of the D theory in which the four
fundamental hypermultiplets acquire a mass. One could have given a mass also to the two
anti-symmetric hypermultiplets, and then consider mixed quartic derivatives with respect
to the two types of masses. Such derivatives would correspond to integrated correlators
of four moment map operators, two of which are dual to gluons and two to closed string
excitations of the bulk sectors. Thus, at strong coupling in the large-N limit these mixed
quartic derivatives could provide information about mixed open/closed string amplitudes
in AdS. As far as we know, this line of investigation has not yet been pursued so far and
it would be interesting to begin exploring it.

As we have emphasized several times, the matrix model approach we have described yields,
order by order in the 1/N expansion, explicit formulas that are written in terms of integrals of
Bessel functions and are valid for all values of the coupling constant. Exploiting the asymptotic
properties of the Bessel functions, we have studied the behavior at large values of the ’t Hooft
coupling finding in all cases examined that the asymptotic expansion actually ends after a finite
number of terms or even does not exist. It would therefore be interesting to apply the Cheshire
cat resurgence methods [59] to determine the non-perturbative exponentially suppressed
corrections O(e−

√
λ) and investigate their interpretation in the holographic dual theory.

Finally, it would be important to study the large-N limit at fixed Yang-Mills coupling.
In this regime the instanton corrections cannot be neglected and produce non-perturbative
terms proportional to powers of q′ and q′ which must be added to the perturbative results
we have derived in this paper. It would be very interesting to compute these terms and
check whether, as expected, they provide the completion of the present results into modular
functions. This analysis would therefore shed light on the modular properties of the D theory
in the large N regime. Work along these lines is in progress.
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A Details on the strong coupling expansion

In this appendix we provide some technical details on the derivation of the strong-coupling
expansion of the quantities considered in the main text. We analyse them one by one.

Strong coupling behavior of Z(p)
n . Z(p)

n is defined in (3.18) which we rewrite here for
convenience:

Z(p)
n =

∫ ∞

0

dt

t

et t p

(et − 1)2 Jn

(√
λ t

2π

)
(A.1)

for n ≥ 1 and p > 1. In order to study its strong-coupling expansion, we use the Mellin-
Barnes integral representation of the Bessel function

Jn(x) =
∫ +i∞

−i∞

ds

2πi
Γ(−s)

Γ(s + n + 1)

(
x

2

)2s+n

, (A.2)

and obtain

Z(p)
n =

∫ ∞

0

dt

t

et t p

(et − 1)2

∫ +i∞

−i∞

ds

2πi
Γ(−s)

Γ(s + n + 1)

(√
λ t

4π

)2s+n

. (A.3)

Evaluating the t-integral using (3.17), we get

Z(p)
n =

∫ +i∞

−i∞

ds

2πi
Γ(−s) Γ(2s + n + p) ζ2s+n+p−1

Γ(s + n + 1)

(√
λ

4π

)2s+n

. (A.4)

When λ → ∞ this integral receives contributions from poles on the negative real axis of
s. Summing the residues over such poles, one finds

Z(p)
n ∼

λ→∞
−1
2

∞∑
k=0

(2k − 1)B2k

(2k)!
Γ
(

n+p
2 + k − 1

)
Γ
(

n−p
2 + 2− k

) ( 4π√
λ

)p+2k−2
(A.5)

where B2k are the Bernoulli numbers. From this, it is straightforward to deduce that

Z(3)
1 ∼

λ→∞

2π√
λ

, Z(5)
1 ∼

λ→∞
0 , Z(6)

2 ∼
λ→∞

0 . (A.6)
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We observe that when n and p are both even or both odd, the asymptotic expansion (A.5)
terminates after a finite number of terms or even disappears as for example in Z(5)

1 or Z(6)
2 . This

fact is not in contradiction with the fact that Z(p)
n is always a non-trivial function of λ. Indeed,

beside the asymptotic series (A.5) one should consider also non-perturbative exponentially
suppressed terms that are obtained by using the so-called Cheshire cat resurgence (see for
instance [59] and references therein).

Strong coupling behavior of Y. The quantity Y is defined (2.39), namely

Y =
∫ ∞

0

dt

t

et

(et + 1)2

[√
λ t

π
J1

(√
λ t

π

)]
− log 2

2π2 λ . (A.7)

After using (A.2) and (2.21), we get

Y = 2
∫ ∞

0

dt

t

et

(et + 1)2

∫ +i∞

−i∞

ds

2πi
Γ(−s)
Γ(s + 2)

(√
λ t

2π

)2s+2

− log 2
2π2 λ

= 2
∫ +i∞

−i∞

ds

2πi
Γ(−s) Γ(2s + 2) η2s+1

Γ(s + 2)

(√
λ

2π

)2s+2

− log 2
2π2 λ . (A.8)

Picking up the residue at s = −1, which is the only pole located on the negative real
axis, we find

Y ∼
λ→∞

− log 2
2π2 λ + 1

4 (A.9)

up to exponentially suppressed non-perturbative terms.

Strong coupling behavior of
∞∑

k=1
2k
(
Z(2)

2k

)2. Using the Mellin-Barnes representation (A.2)

in the definition (3.18), we obtain
∞∑

k=1
2k
(
Z(2)

2k

)2 =
∞∑

k=1
2k

∫ ∞

0

dt

t

et t2

(et − 1)2

∫ ∞

0

dt′

t′
et′ t′ 2

(et′ − 1)2

∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

× Γ(−s) Γ(−s′)
Γ(s + 2k + 1)Γ(s′ + 2k + 1) t2s+2k t′ 2s′+2k

(√
λ

4π

)2s+2s′+4k

. (A.10)

Evaluating the integrals over t and t′ we find

∞∑
k=1

2k
(
Z(2)

2k

)2 =
∞∑

k=1
2k

∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

(√
λ

4π

)2s+2s′+4k

ζ2s+2k+1 ζ2s′+2k+1

× Γ(−s) Γ(−s′) Γ(2s + 2k + 2)Γ(2s′ + 2k + 2)
Γ(s + 2k + 1)Γ(s′ + 2k + 1)

=
∞∑

k=1
2k

∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

(√
λ

4π

)2s+2s′+4

ζ2s+3 ζ2s′+3

× Γ(k − s − 1) Γ(k − s′ − 1) Γ(2s + 4)Γ(2s′ + 4)
Γ(s + k + 2)Γ(s′ + k + 2) (A.11)
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where the last step follows from shifting s 7→ s + 1− k and s′ 7→ s′ + 1− k. We now perform
the sum over k by means of the identity

∞∑
k=1

k
Γ(k − s − 1) Γ(k − s′ − 1)
Γ(k + s + 2)Γ(k + s′ + 2) = 1

2(s + s′ + 2)
Γ(−s) Γ(−s′)

Γ(s + 2)Γ(s′ + 2) , (A.12)

and get

∞∑
k=1

2k
(
Z(2)

2k

)2 =
∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

(√
λ

4π

)2s+2s′+4

ζ2s+3 ζ2s′+3

× Γ(−s) Γ(−s′) Γ(2s + 4)Γ(2s′ + 4)
(s + s′ + 2)Γ(s + 2)Γ(s′ + 2) . (A.13)

When we close the integration contours in an anti-clockwise way, we pick up two types of
contributions: the one from the residues at (s = −1 , s′ = −1), and the one from the residues
at (s = −s′ − 2 , s′ = −n) for n = 1, 2, · · · . The first contribution is

1
4 log λ + 1

2γ − 1
2 log(4π) + 1

2 , (A.14)

while the second is formally

−1
2

∞∑
n=1

B2n (4n2 − 1) ζ2n+1 . (A.15)

As it stands, this sum is divergent but we can easily regularize it by introducing the integral
representation (3.17) of the ζ-values and then using the generating function of the even
Bernoulli numbers, namely

f(t) ≡
∞∑

n=1

B2n

(2n)! t2n = t

et − 1 − 1 + t

2 . (A.16)

Doing this, the sum (A.15) can be rewritten as

−1
2

∞∑
n=1

B2n (4n2−1)ζ2n+1 =−1
2

∫ ∞

0

dt

t

et t2

(et−1)2

∞∑
n=1

(2n−1)B2n

(2n)! t2n

=−1
2

∫ ∞

0

dt

t

et t2

(et−1)2

[
t∂tf(t)−f(t)

]
= 5

12−
1
2 ζ3 . (A.17)

Adding (A.14) and (A.17), we obtain

∞∑
k=1

2k
(
Z(2)

2k

)2 ∼
λ→∞

1
4 log λ + 1

2γ − 1
2 log(4π)− 1

2ζ3 +
11
12 . (A.18)

Notice that this result agrees with the one derived in appendix A of [29] with different methods.
Indeed one can check that the expression in the right-hand side of (A.13) equals −F (2,2)

16 ,
where F

(2,2)
2 is defined in (A.26) of [29]. Using this information, we readily obtain (A.18).
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Strong coupling behavior of
∞∑

k=1
(−1)k

√
2k Z(4)

2k Y2k. Combining the definitions (3.18)

and (2.24) and the Mellin-Barnes representation (A.2), we can write

∞∑
k=1

(−1)k
√
2k Z(4)

2k Y2k = A+ B (A.19)

where

A = log 2
2π2 λ

∫ ∞

0

dt

t

et t4

(et − 1)2

∫ +i∞

−i∞

ds

2πi
Γ(−s)
Γ(s + 3)

(√
λ t

4π

)2s+2

= log 2
2π2 λ

∫ +i∞

−i∞

ds

2πi
Γ(−s) Γ(2s + 6) ζ2s+5

Γ(s + 3)

(√
λ

4π

)2s+2

(A.20)

and

B = −
∞∑

k=1
4k

∫ ∞

0

dt

t

et

(et + 1)2

∫ ∞

0

dt′

t′
et′ t′ 4

(et′ − 1)2

∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

×
(√

λ t

2π

)2s+2k (√
λ t

4π

)2s′+2k Γ(−s) Γ(−s′)
Γ(s + 2k + 1)Γ(s′ + 2k + 1)

= −
∞∑

k=1
k

∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

(√
λ

π

)2s+2s′+4k (1
2

)2s+4s′+6k−2

× Γ(−s) Γ(2s + 2k)
Γ(s + 2k + 1) η2s+2k−1

Γ(−s′) Γ(2s′ + 2k + 4)
Γ(s′ + 2k + 1) ζ2s′+2k+3 . (A.21)

Here we have performed the integrals over t and t′ using (2.21) and (3.17).
The strong-coupling behavior of A can be easily obtained by closing the contour in an anti-

clockwise manner and picking up the residue at the only pole located at s = −2. This yields

A ∼
λ→∞

4 log 2 . (A.22)

To obtain the strong-coupling behavior of B, as in the previous case, we first perform the
shifts s 7→ s + 1− k and s′ 7→ s′ + 1− k, and then sum over k exploiting the identity (A.12).
Proceeding in this way, we get

B = −
∞∑

k=1
k

∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

(√
λ

π

)2s+2s′+4 (1
2

)2s+4s′+4
η2s+1 ζ2s′+5

× Γ(k − s − 1) Γ(k − s′ − 1) Γ(2s + 2)Γ(2s′ + 6)
Γ(s + k + 2)Γ(s′ + k + 2)

= −
∫ +i∞

−i∞

ds

2πi

∫ +i∞

−i∞

ds′

2πi

(√
λ

π

)2s+2s′+4 (1
2

)2s+4s′+4
η2s+1 ζ2s′+5

× Γ(−s) Γ(−s′) Γ(2s + 2)Γ(2s′ + 6)
2 (s + s′ + 2)Γ(s + 2)Γ(s′ + 2) . (A.23)
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In closing the integration contours anti-clockwise we pick up two types of contributions: the one
from the residues at (s = −1 , s′ = −1), and the one from the residues at (s = −s′−2 , s′ = −n)
for n = 1, 2, · · · . The first one is

−3
2 ζ3 , (A.24)

while the second contribution is formally

3
2 ζ3 − 4 log 2 + 4

∞∑
n=1

4n B2n (4n2 − 1) η2n+1 . (A.25)

Again the sum over n is divergent but it can be regularized using the integral representa-
tion (2.21) of the Dedekind η-values and the generating function (A.16) of the even Bernoulli
numbers. In fact we have

4
∞∑

n=1
4n B2n (4n2 − 1) η2n+1 = 4

∫ ∞

0

dt

t

et t2

(et + 1)2

∞∑
n=1

(2n − 1)B2n

(2n)! (2t)2n

= 4
∫ ∞

0

dt

t

et t2

(et + 1)2

[
t ∂tf(2t)− f(2t)

]
= 3

2 ζ3 . (A.26)

Using this in (A.25) and adding (A.24) we conclude that

B ∼
λ→∞

3
2 ζ3 − 4 log 2 . (A.27)

Finally, combining (A.19), (A.22) and (A.27), we simply get

∞∑
k=1

(−1)k
√
2k Z(4)

2k Y2k ∼
λ→∞

3
2 ζ3 . (A.28)

We have checked this result also numerically, finding agreement.

B The matrix model for the Sp(N) theory

In this appendix, we briefly discuss the matrix model for the N = 2 superconformal gauge
theory with one anti-symmetric and four fundamental hypermultiplets. Even if this model
has already been discussed in the literature [29, 38, 39] we present here an analysis based on
the use of the full Lie algebra approach with the purpose of showing that this methods also
works quite efficiently in this case. We believe that this can help in better understanding and
appreciating the similarities between the Sp(N) theory and the D theory. In the sequel all
quantities referring to the Sp(N) theory will be denoted by a ˜ sign.

B.1 The P̃ operators

By exploiting supersymmetric localization the partition function of the Sp(N) theory can
be written as an integral over a matrix ã belonging to the Lie algebra sp(N):

Z̃Sp =
∫

dã e−
8π2
g2 tr ã2

|Z̃1−loop Z̃inst|2 . (B.1)
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In the large-N ’t Hooft limit we can neglect instanton corrections and set Z̃inst = 1. The
1-loop part can be expressed as

|Z̃1−loop|2 = e−S̃Sp , (B.2)

where

S̃Sp = 4
∞∑

k=1
(−1)k+1

(
λ

8π2N

)k+1
(22k − 1) ζ2k+1

k + 1 tr ã2k+2 . (B.3)

We observe that in this matrix model there are no double-trace terms and that the above
expression is formally identical to the single-trace action (2.11) of the D theory with the
replacement of a by ã.

In analogy to what we have done in section 2, we introduce the P̃ operators defined as

P̃k =

√
k

2

⌊ k−1
2 ⌋∑

ℓ=0
(−1)ℓ

(
N

2

)ℓ− k
2 (k − ℓ − 1)!

ℓ! (k − 2ℓ)!
(
tr ãk−2ℓ −

〈
tr ãk−2ℓ〉

0

)
, (B.4)

where ⟨ ⟩0 denotes the vacuum expectation value in the N = 4 SYM with gauge group
Sp(N). The definition (B.4) ensures that, at leading order in the large-N expansion, the
P̃ operators are orthonormal in the free theory:〈

P̃2k1 P̃2k2

〉
0 = δk1,k2 + O

( 1
N

)
. (B.5)

Moreover, it can be shown that in the free theory the correlation functions among P̃ operators
can be factorized à la Wick into product of 2- and 3-point correlators only.

Inverting (B.4), we can express the traces of ã in terms of the P̃ operators and rewrite the
interaction action (B.3) as a sum of two contributions. Only the term which is linear in the P̃
operators is relevant for our analysis, so that for all expectation values we can effectively use

S̃Sp = −
∞∑

k=1
Ỹ2k P̃2k (B.6)

where

Ỹ2k = 4 (−1)k+1 √k

∫ ∞

0

dt

t

et

(et + 1)2 J2k

(√
λ t

π

)
− δk,1

log 2
2π2 λ =

√
2Y2k . (B.7)

Following the same procedure discussed for the D theory, we compute the first orders of
the large-N expansion of the 1- and the 2-point connected correlators of the P̃ operators
in the interacting Sp(N) theory and get

〈
P̃2n

〉
Sp = Ỹ2n +

√
n

2N
Ỹ
(

Ỹ + 1√
2

)
+ O

( 1
N2

)
, (B.8)

〈
P̃2n1 P̃2n2

〉c
Sp = δn1,n2 +

√
n1n2
2N

(
1 + 2

√
2 Ỹ
)
+ O

( 1
N2

)
, (B.9)

where

Ỹ =
∞∑

k=1

√
2k Ỹ2k . (B.10)
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B.2 The mass-deformed theory

Mimicking [29] we consider a mass deformation of this Sp(N) gauge theory, in which the
four fundamental hypermultiplets gain a mass m̃i (i = 1, . . . , 4). We refer to this massive
theory as Sp∗. Repeating the same steps of section 3, in the planar limit we can write the
small-mass expansion of the partition function of the Sp∗ theory in the following form

Z̃Sp∗ =
∫

dã e− tr ã2 e−S̃Sp−
∑

i
m̃2

i S̃2−
∑

i
m̃4

i S̃4+O(m̃6) (B.11)

where S̃2 and S̃4 are exactly defined as in (3.8) and (3.9) replacing a → ã. Hence, for analogy
with the D∗ theory, the quantities of our interest are

−∂4
mi

FSp∗

∣∣∣
m=0

= −24
〈
S̃4
〉

Sp + 12
〈
S̃ 2

2
〉

Sp − 12
〈
S̃2
〉2

Sp (i = 1, . . . , 4) , (B.12a)

−∂2
mi

∂2
mj

FSp∗

∣∣∣
m=0

= 4
〈
S̃ 2

2
〉

Sp − 4
〈
S̃2
〉2

Sp (i ̸= j = 1, . . . , 4) . (B.12b)

To evaluate the right-hand sides of these equations, the next step is to rewrite S̃4 and S̃2
in terms of the P̃ operators introduced in (B.4). Thus we have

S̃4 = S̃
(1)
4 + S̃

(0)
4 and S̃2 = S̃

(1)
2 + S̃

(0)
2 (B.13)

where, as usual, the superscripts (1) and (0) denote, respectively, the linear term in the P̃
operators and the term coming from the vacuum expectation values ⟨tr ã2k⟩0. Very similarly
to what occurs in the D∗ theory, the right-hand sides of (B.13) can be expressed as

S̃
(1)
4 = −1

6

∞∑
k=1

(−1)k
√

k Z(4)
2k P̃2k , (B.14)

S̃
(1)
2 = 2

∞∑
k=1

(−1)k
√

k Z(2)
2k P̃2k , (B.15)

S̃
(0)
4 = −N

3
2π√

λ
Z(3)

1 + 1
4ζ3 −

π

6
√

λ
Z(3)

1 + 1
24Z(4)

2 − λ

4608π2N
Z(6)

2 + O

( 1
N2

)
, (B.16)

where Z(p)
n was defined in (3.18). We do not need to display the term S̃

(0)
2 since in the

connected combination ⟨S̃ 2
2 ⟩Sp − ⟨S̃2⟩2

Sp appearing in (B.12) it cancels out. To derive (B.16)
we used the fusion/fission identities of the Sp(N) traces [64] which lead to

〈
tr ã2k〉

0 = Nk+1

2k−1
(2k)!

k!(k + 1)! +
Nk

2k

(2k − 1)!
k!(k − 1)!(1− δk,0)

+ Nk−1

2k+1
(2k − 1)(2k − 3)!
3(k − 2)!(k − 2)! (1− δk,1)(1− δk,0) + O(Nk−2) . (B.17)

Combining (B.14) and (B.16) with the 1-point correlator (B.8) we obtain

〈
S̃4
〉

Sp = −N

3
2π√

λ
Z(3)

1 + 1
4ζ3 −

π

6
√

λ
Z(3)

1 + 1
24Z(4)

2 − 1
6

∞∑
k=1

(−1)k
√

k Z(4)
2k Ỹ2k

− 1
96N

[
λ

48π2 Z(6)
2 −

√
λ

π
Z(5)

1 Ỹ
(

Ỹ + 1√
2

)]
+ O

( 1
N2

)
, (B.18)
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while, exploiting (B.15) and the connected 2-point correlator (B.9), we find

〈
S̃ 2

2
〉

Sp −
〈
S̃2
〉2

Sp =
∞∑

k=1
4k
(
Z(2)

2k

)2 + 1
2N

(√
λ

4π
Z(3)

1

)2 (
1 + 2

√
2 Ỹ
)
+ O

( 1
N2

)
. (B.19)

Comparing (B.18) and (B.19) with their counterparts in the D theory given in (3.24)
and (3.26), respectively, we see that the overall structure is similar but the coefficients
are clearly different. Moreover, in the Sp(N) gauge theory there is no contribution from
the free energy of the E theory, since in the symplectic case the interaction action contains
only the single-trace part. For this reason the perturbative expansions defined in (B.12) are
profoundly distinct from those given in (4.1). Indeed we have

−∂4
mi

FSp∗

∣∣∣
m=0

∼
λ→0

N
(
24ζ3−120ζ5 λ̂+420ζ7 λ̂2−1260ζ9 λ̂3+· · ·

)
(B.20a)

−
[
60ζ5 λ̂−(108ζ2

3+315ζ7) λ̂2−(720ζ3 ζ5−1260ζ9) λ̂3+· · ·
]

+ 1
N

[(
54ζ2

3+
105
2 ζ7

)
λ̂2+(540ζ3ζ5−630ζ9) λ̂3+· · ·

]
+O

( 1
N2

)
,

−∂2
mi

∂2
mj

FSp∗

∣∣∣
m=0

∼
λ→0

(
36ζ2

3 λ̂2−240ζ3 ζ5 λ̂3+· · ·
)

+ 1
N

(
18ζ2

3 λ̂2−180ζ3ζ5 λ̂3+· · ·
)
+O

( 1
N2

)
, (B.20b)

where λ̂ = λ/(8π2).
Quite remarkably, at strong coupling the same quantities behave very similarly. This is

due to the strong-coupling expansion of the Z(p)
k coefficients and of Ỹ. Exploiting the results

derived in appendix A, it is straightforward to check that

−∂4
mi

FSp∗

∣∣∣
m=0

∼
λ→∞

32π2

λ
N+6logλ+12γ−12log(4π)−12ζ3+22

+ 3
N

(
1− log2

π2 λ

)
+O

( 1
N2

)
, (B.21a)

−∂2
mi

∂2
mj

FSp∗

∣∣∣
m=0

∼
λ→∞

2logλ+4γ−4log(4π)−4ζ3+
22
3

+ 1
N

(
1− log2

π2 λ

)
+O

( 1
N2

)
. (B.21b)

Up to order 1/N , our results agree with the expressions in eq. (3.13) of [29].
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