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1 Introduction

A very interesting recent development in the study of the maximally supersymmetric N =
4 Super Yang-Mills (SYM) theory in four dimensions concerns the correlators of scalar
operators belonging to the stress-tensor multiplet. It is well-known that while the 2- and
3-point functions of such operators are fully protected by superconformal symmetry [1],
their 4-point functions can be reduced to depending on a single function of the conformally
invariant cross-ratios [2, 3]. The new approach, initiated in [4], consists in integrating
these 4-point functions with a certain measure prescribed by superconformal symmetry.
These integrated correlators, which depend only on the rank of the gauge group and the
gauge coupling, can be computed exactly using supersymmetric localization [5] by relating
the stress-tensor multiplet insertions to the derivatives of the partition function of the
N = 2∗ theory, defined as a massive deformation of N = 4 SYM that preserves N = 2
supersymmetry.

Schematically, the two most studied integrated correlators read:∫
d4x1 . . . d

4x4 µ(x1, . . . , x4)
〈
Op(x1)Op(x2)O2(x3)O2(x4)

〉
= ∂τp∂τ̄p∂m2 logZN=2∗

∣∣∣
m=0

,∫
d4x1 . . . d

4x4 µ′(x1, . . . , x4)
〈
O2(x1) . . . O2(x4)

〉
= ∂m4 logZN=2∗

∣∣∣
m=0

,

(1.1)
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where Op is a 1
2 -BPS superconformal primary scalar operator with conformal dimension p

transforming in the [0, p, 0] representation of the R-symmetry gropus SU(4)R of the N = 4
SYM. The case p = 2 corresponds to the 20′ scalar operator inside the stress-tensor mul-
tiplet. In the right-hand side of (1.1), the partition function ZN=2∗ is computed with
supersymmetric localization in terms of a matrix model and depends on the mass parame-
ter m (eventually set to 0) and on the couplings τp and τp associated to Op [6]. Notice that
while the correlators in the left-hand side are computed in the flat Euclidean space R4, the
partition function of the N = 2∗ theory is defined on the 4-sphere S4. It is precisely the
conformal map between S4 and R4, together with supersymmetry, that fixes the integration
measures µ and µ′, which are the crucial ingredients in the relations (1.1). In particular, as
we will recall below, each derivative with respect to m determines the integrated insertion
of a linear combination of different scalar operators, all belonging to the stress-tensor mul-
tiplet. Hence, after applying the constraints coming from superconformal Ward identities,
the resulting correlators are all defined by a unique function of the conformal cross-ratios
and can be integrated over a specific measure.

The relations (1.1) were originally derived in [4], and further refined in [7–10]. Many
aspects of these integrated correlators have been subsequently explored, in particular by
identifying their modular [11–14] and weak-coupling [15] properties, by introducing general
gauge groups [16, 17], by considering operator insertions with generic [18] or large conformal
dimensions [19–22], or by extending them to a pure N = 2 setup [23–25].

Another very interesting class of integrated correlators is that of the 2-point functions in
presence of a line defect, like for example a 1

2 -BPS Wilson loop W . The idea comes from the
supersymmetric localization results for the N = 2∗ theory on S4 obtained in [26–30], where
not only the partition function but also the Wilson loop expectation value

〈
W
〉
N=2∗ was

computed in terms of a matrix model. Following the same reasoning as before, the second
mass derivative of log

〈
W
〉
N=2∗ is expected to be associated to an integrated correlator of

two 20′ operators in presence of a Wilson loop, namely∫
d4x1d

4x2 µ̂(x1, x2)
〈
O2(x1)O2(x2)

〉
W

= ∂m2 log
〈
W
〉
N=2∗

∣∣∣
m=0

. (1.2)

This relation has been conjectured in [31], where the right-hand side has been studied in
depth by computing the matrix model at strong coupling including several corrections be-
yond the planar level. Moreover, by applying a generic SL(2,Z) transformation, the matrix
model expectation value has been extended to generic (p, q) dyonic extended particles, dual
to extended (p, q) strings in Anti-de Sitter.

In this paper we aim to deriving the conjectured formula (1.2) concentrating our efforts
on the left-hand side. First of all, in section 2 we briefly review the main properties of
the un-integrated correlator

〈
O2(x1)O2(x2)

〉
W

(referring to [32–36] for a more detailed
analysis). In particular, following the R-symmetry decomposition and the defect CFT
prescriptions, we show that the dynamical part of

〈
O2(x1)O2(x2)

〉
W

can be written in
terms of three functions of two cross-ratios, but only one of such functions, corresponding
to the so-called 0-channel and denoted as F0 in [33, 34], is sensitive to the mass deformation
and is relevant for our purposes.

– 2 –
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Next, after discussing in section 3 the main properties of the N = 2∗ theory, in section 4
we focus on the explicit derivation of the integration measure µ̂(x1, x2), exploiting the
stereographic projection from S4 to R4 and the constraints arising from superconformal
Ward identities. Compared to the case of the integrated 4-point functions, the presence
of a 1

2 -BPS line defect partially breaks both supersymmetry and conformal invariance,
leading to highly non-trivial relations among the correlators of operators belonging to the
stress-tensor multiplet.

In section 5 we present the matrix model calculation of the right-hand side of (1.2)
based on the use recursion relations and Bessel kernels, along the lines recently developed
in [37–42] for the bulk 2- and 3-point functions in certain N = 2 superconformal theories.
Even though we recover already known results, we think that our derivation is worth being
presented and useful not only because it is simpler and more direct, but also because it is
amenable for generalizations to N = 2 SYM theories.

Finally, in section 6 we present our conclusions and discuss some open problems. A
lot of technical details are collected in four appendices. In particular, appendix D contains
an explicit derivation of the constraints on the 2-point functions in presence of a line
defect that are imposed by the symmetries of the model and of the Ward identities that
they satisfy.

2 Bulk correlators with a Wilson line: a quick review

We consider the N = 4 SYM theory with gauge group SU(N) defined in the flat Euclidean
space R4, whose coordinates will be indicated by xµ (µ = 1, · · · , 4). The fields of the theory
are a vector Aµ, six scalars ϕI (I = 1, · · · 6), and four chiral fermions plus their anti-chiral
counterparts. As is well-known, this field content guarantees superconformal invariance at
the quantum level.

Since the early days of the AdS-CFT correspondence, a widely studied superconformal
defect in this theory has been the 1

2 -BPS Wilson line in the fundamental representation of
SU(N) [43–45], defined by

W = 1
N

tr P exp
{√

λ

N

∫
dτ
[
iAµ(x) ẋµ(τ) + |ẋ(τ)| θI ϕ

I(x)
]}

. (2.1)

Here λ is the ’t Hooft coupling and θI are the components of a unit-normalized six-
dimensional vector that parametrizes a direction in the space of the scalar fields ϕI . With-
out any loss of generality, we choose the coordinate axes in such a way that the defect line
is parametrized by xµ(τ) = (0, 0, 0, τ). With this arrangement, then, the coordinates of a
bulk point x are naturally divided into the three transverse ones x⃗ = (xm) with m = 1, 2, 3
and the longitudinal one x4.

The insertion ofW breaks the global superconformal and R-symmetry algebra of N = 4
SYM to a sub-algebra whose bosonic part is

so(1, 2) ⊕ so(3) ⊕ so(5)R . (2.2)

– 3 –
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The first two terms define the breaking pattern of the four-dimensional Euclidean confor-
mal algebra so(1, 5) in presence of a line defect and account, respectively, for the conformal
transformations along the line and for the rotations in the three-dimensional space trans-
verse to the line. They represent also the isometries of AdS2 × S2 to which R4 with a line
can be conformally mapped in such a way that the line becomes the boundary of AdS2
(see for example [46] for details). Finally, the last term in (2.2) corresponds to the residual
R-symmetry that remains after picking the scalar direction defined by the unit vector θ in
the Wilson line connection.

The Wilson line also breaks half of the supersymmetries of the bulk theory. In fact it is
invariant only under transformations in which the anti-chiral parameters are directly related
to the chiral ones, see appendices A and B for details. In other words the supersymmetry
is effectively reduced to N = 2.

In presence of a conformal defect, bulk operators can have a non-vanishing 1-point func-
tion, whose space dependence is completely fixed by the residual conformal invariance [47].
For example, the 1-point function of a scalar operator O∆ with conformal dimension ∆ in
presence of W is1 〈

O∆(x)
〉

W
≡
〈
W O∆(x)

〉〈
W
〉 = a∆

|x⃗|∆
, (2.3)

where |x⃗| represents the orthogonal distance between x and the line, and the coefficient
a∆, which in general is a non-trivial function of N and λ, is part of the conformal data.

The conformal kinematics, instead, does not fix the space-dependence of the bulk 2-
point functions. In fact, in the case of two scalar operators O∆1 and O∆2 with conformal
dimensions ∆1 and ∆2, the 2-point function can be written as

〈
O∆1(x1)O∆2(x2)

〉
W

= a∆1∆2(ξ, η)
|x⃗1|∆1 |x⃗2|∆2

, (2.4)

where the coefficient in the numerator depends on the two conformally invariant cross-
ratios that can be constructed given two bulk points in presence of a line defect. In the
literature, various definitions of ξ and η are used. Here we find convenient to follow [46]
and take

ξ = (x4
12)2 + |x⃗1|2 + |x⃗2|2

2 |x⃗1| |x⃗2|
, η = x⃗1 · x⃗2

|x⃗1| |x⃗2|
, (2.5)

where x4
12 = (x4

1 − x4
2), which correspond to the geodesic distances between x1 and x2 in

AdS2 and S2 respectively.
In our analysis we will often consider a particular class of bulk operators, namely the

single-trace chiral primary operators that belong to the 20′ symmetric traceless represen-
tation of the so(6)R R-symmetry algebra. These operators are part of the stress-tensor
multiplet of N = 4 SYM, are 1

2 -BPS and can be written as

O(x, u) = uI uJ trϕI(x)ϕJ(x) , (2.6)

where uI are the six components of a vector u, such that u2 = 0 to enforce the tracelessness
condition. The correlation functions of these operators in presence of a Wilson line have

1If the Wilson line is normalized as in (2.1), one has ⟨W ⟩ = 1.
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been widely studied from several different points of view [32–36, 46, 48–52]. In particular,
it has been shown that their 1-point function defines a coefficient, usually called hW , which
is related to the Bremsstrahlung function in N = 4 SYM [53–58].2

The correlator of two 20′ operators has the generic form (2.4) with ∆1 = ∆2 = 2.
However, thanks to the residual superconformal symmetry, it is possible to introduce a
further R-symmetry cross-ratio according to

σ = (u1 · u2)
(u1 · θ) (u2 · θ)

, (2.7)

and write the 2-point function as

〈
O(x1, u1)O(x2, u2)

〉
W

= (u1 · θ)2 (u2 · θ)2 F(ξ, η, σ)
|x⃗⊥1 |2 |x⃗⊥2 |2

. (2.8)

Here F is a polynomial of order 2 in σ, namely

F(ξ, η, σ) = σ2 F0(ξ, η) + σ F1(ξ, η) + F2(ξ, η) . (2.9)

The three functions F0, F1 and F2 correspond to the three possible channels in which the
polarization vectors u1 and u2 of the bulk operators contract, respectively, zero, one or
two times with the θ vector of Wilson line. Actually these three functions are not fully
independent, since the following constraints have to be imposed [33, 34](

∂z + 1
2∂ω

)
F(ξ, η, σ)

∣∣∣∣
z=ω

= 0 ,
(
∂z̄ + 1

2∂ω

)
F(ξ, η, σ)

∣∣∣∣
z̄=ω

= 0 , (2.10)

where (z, z̄, ω) are related to (ξ, η, σ) according to

ξ = 1 + zz̄

2
√
zz̄

, η = z + z̄

2
√
zz̄
, σ = −(1 − ω)2

2ω . (2.11)

As mentioned in the Introduction, our goal is to probe the N = 4 SYM theory under
a massive deformation that preserves half of its supersymmetries. To do this, we have to
split the fields of N = 4 SYM into a N = 2 vector multiplet and a N = 2 hyper-multiplet,
and give a mass to the latter. Once this split is realized, the initial R-symmetry algebra is
broken to

su(2)F ⊕ su(2)R ⊕ u(1)R (2.12)

where the first component is usually referred to as the flavor symmetry. Correspondingly,
the 20′ operators reorganize as follows

20′ → (1,1)±2 ⊕ (1,1)0 ⊕ (2,2)±1 ⊕ (3,3)0 . (2.13)

Here, (1,1)±2 correspond to the chiral and anti-chiral dimension-2 operators made up with
the scalars of the N = 2 vector multiplet, while (3,3)0 are three dimension-2 triplets of

2This relation has been generalized using supersymmetric localization to generic N = 2 SCFTs [59–61].
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su(2)R, aligned in the directions of su(2)F , which are built only with the scalars of the
hyper-multiplet. In the next section, following [4], we will consider a mass deformation of
N = 4 SYM that is driven by one of these triplets constructed with the hyper-multiplet
scalars. On the other hand, in the Wilson line connection only the scalars of the N = 2
vector multiplet can appear. Therefore, in the correlators of two bulk operators that induce
the mass deformation in presence of a Wilson line, we necessarily have

(u1 · θ) = (u2 · θ) = 0 . (2.14)

This means that only the 0-channel, with the corresponding function F0, can be probed in
this way.

One could also consider deformations associated to other components of the 20′ decom-
position (2.13) which correspond to integrated correlators3 probing different R-symmetry
channels in the expansion (2.9). For example the deformation associated to the marginal
coupling (τ, τ̄) has been already studied in the literature [46, 51, 52, 58, 62, 63] and realizes
the integrated correlator ∂τ∂τ̄ log ⟨W ⟩, which is associated to insertions of the chiral/anti-
chiral operators (1,1)±2. Such insertions are localized by supersymmetry arguments [6],
and hence belong the topological sub-sector of N = 4 SYM (see appendix C of [31] for a
more detailed analysis).4

In this paper we concentrate on the mass deformation of N = 4 SYM, giving rise to
the integrated correlator (1.2).

We conclude this brief review by anticipating that in order to derive our results, we will
need to consider not only bulk 2-point functions of scalar operators like those mentioned
above, but also correlators involving spin-1 conserved currents, namely the currents that
are part of the so-called N = 2 current multiplet. The expressions of these correlators
follow from the general formalism of [65] (see also [66]) and involve functions of the cross-
ratios ξ and η, which in our case are related to the function F0 by differential relations
that are a consequence of superconformal Ward identities.

3 The mass-deformed N = 4 SYM on a 4-sphere

To describe the mass deformation of N = 4 SYM in detail, we need first to introduce some
further notation. We denote by φ and φ the two scalars of the N = 2 vector multiplet
that remain massless (and that are used to construct the Wilson line connection). On the
other hand, we denote by q and q̃ the two complex scalars of the N = 2 hyper-multiplet,
and by ψa and ψ a (with a = 1, 2) their chiral and anti-chiral fermionic partners.5 The
scalars q and q̃ and their complex conjugates can be arranged in a (2×2) matrix Qia (with

3We expect that not all the deformations give rise to linearly independent integrated correlators, as
shown in [8] for the integrated 4-point function.

4In general the topological sub-sector contains chiral/anti-chiral primaries with higher conformal dimen-
sion ∆ = p, which realize a correlator ∂τp∂τ̄p log ⟨W ⟩, see [64] for explicit results for some values of p.

5We refer to appendix A for our conventions on spinors and to appendix B for the supersymmetry
transformations.
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i, a = 1, 2) as follows

(
Qia) =

(
q∗ q̃

−q̃ ∗ q

)
. (3.1)

This notation allows to write the supersymmetry transformations in a compact form (see
for example [67] and appendix B) and makes manifest the fact that the hyper-multiplet
scalars form a doublet with respect to both the su(2)R R-symmetry (labeled by i) and the
su(2)F flavor symmetry (labeled by a).

We then consider a deformation of N = 4 SYM in which the hyper-multiplet becomes
massive with a mass parameter m. The resulting theory has only N = 2 supersymmetry
and is usually called N = 2∗ SYM. Since later we will use supersymmetric localization [5],
we have put the theory on a compact space, which for simplicity we take to be a round
4-sphere S4. The action we consider is therefore

SN=2∗ = SN=4 + Sm (3.2)

where SN=4 is the standard N = 4 SYM action on a 4-sphere and [4, 8, 31]6

Sm =
∫
d4x

√
g(x)

[
m

( i
R
J(x) +K(x)

)
+m2 L(x)

]
. (3.3)

Here R is the radius of S4 (which will be set to 1 from now on), g(x) is the determinant of
the metric of S4, and

J(x) = tr q(x)q(x) + tr q̃(x) q̃(x) + tr q∗(x)q∗(x) + tr q̃ ∗(x) q̃ ∗(x) = trQia(x)Qia(x) , (3.4)

K(x) = −i trψa(x)ψa(x) − i trψa(x)ψ a(x) (3.5)

where the sum over repeated indices is understood. The m2-part of (3.3) corresponds to
the mass term for the bosons q and q̃ in flat space but, as argued in [4, 8, 10, 31], it does
not play any significant role in the following analysis and can be effectively ignored.7 Thus,
we may take [4, 8, 31]

Sm = m

∫
d4x

√
g(x)

(
i J(x) +K(x)

)
. (3.6)

The quadratic operators J(x) and K(x) are conformal primaries with dimensions 2
and 3 respectively, and can be written in terms of the so-called N = 2 current multiplet
which is a sub-multiplet of the N = 4 stress-tensor multiplet (see for example [68]). The
field content of a current multiplet consists of three scalars Φij = Φji (with i, j = 1, 2)

6Notice that the action of the N = 2∗ theory also contains a term proportional to m and cubic in
the scalar fields. However, such a term is proportional to the Yang-Mills coupling (see e.g. [30]) and thus
contributes to terms of higher order. On the contrary the terms in (3.3) which are the ones considered
in [4, 8, 31] are present also in the free theory and are sometimes called “proper” mass terms.

7More precisely, in [4, 8, 10] it is argued that the contributions arising from the m2-term cancel against
the boundary contributions that are generated by integrations by parts. Thus, one can in practice ignore
the m2 terms and freely perform integrations by parts.

– 7 –
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such that (Φij)∗ = ϵik ϵjℓ Φkℓ, two chiral fermions Xi and two anti-chiral fermions Xi, two
real scalars P and P , and one conserved current jµ. The supersymmetry transformations
of these fields are provided in appendix B where we also show that this multiplet can be
realized in terms of the hyper-multiplet as follows

Φij = trQiaQja , (3.7a)

Xi = 2
√

2 trQja ψa ϵji , Xi = 2
√

2 trQja ψa ϵji , (3.7b)

P = 2 trψa ψa , P = 2 trψa ψa , (3.7c)

jµ = 2 i trQia ∂µQ
ja ϵij − 2 trψaσµψ

a . (3.7d)

Notice that in these expressions the flavor indices a of the constituent fields are summed
over, meaning that the multiplet (3.7) is aligned along a specific Cartan direction of su(2)F .
Furthermore, with this explicit realization one can check that the dimension-2 operators
Φij in (3.7a) are the 20′ operators that belong to one of the triplets in the representation
(3,3)0 of the residual R-symmetry algebra, as mentioned in section 2.

Finally, comparing (3.4) and (3.5) with (3.7a) and (3.7c), we easily see that

J(x) = Φ11(x) + Φ22(x) , K(x) = − i
2 P (x) − i

2 P (x) . (3.8)

Thus, we can conclude that the mass deformation leading to N = 2∗ SYM on a 4-sphere is
driven by a particular combinations of the scalar components of a current multiplet along
a Cartan direction of the residual flavor symmetry (see also section 3 of [4] for further
details). As a final remark, we note that since the massive deformation breaks half of the
supersymmetry, all constraints that we will derive only require N = 2 supersymmetry.
However, when we restore m = 0 at the end, these constraints bear some implications also
for the function F0 in (2.9) which is an observable of the N = 4 theory in presence of a
line defect.

4 Integrated correlators with a Wilson line

We now consider a 1
2 -BPS line defect of the N = 2∗ SYM theory on S4 described by a

circular Wilson loop WC in the fundamental representation of SU(N). Its explicit expres-
sion is

WC = 1
N

tr P exp
{√

λ

N

∮
C
dτ

[
iAµ(x) ẋµ(τ) + φ(x) + φ(x)√

2

]}
. (4.1)

where C is a great circle of S4 and, as before, λ is the ’t Hooft coupling. As anticipated,
the scalars that appear in the Wilson loop connections are those of the N = 2 vector
multiplet. In particular, the combination φ+φ√

2 simply corresponds to the scalar ϕ1 in the
notation of section 2, implying that the θ-vector of WC is non-vanishing only in the first
direction (i.e. θI = 0 for I ̸= 1). This means that there is no direct (or tree-level) coupling
among the Wilson loop and the operators J and K defined in (3.4) and (3.5) which induce
the massive deformation, and that all interactions among them are mediated by the N = 4
SYM action.

– 8 –
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The vacuum expectation value of WC in the massive theory is

〈〈
WC
〉〉
N=2∗ :=

∫
D[fields] WC e−SN=4−Sm∫
D[fields] e−SN=4−Sm

(4.2)

where Sm is given in (3.6). Expanding for small m, we have

〈〈
WC
〉〉
N=2∗ =

〈〈
WC
〉〉[

1 −
〈〈
WC Sm

〉〉〈〈
WC
〉〉 + 1

2

〈〈
WC S

2
m

〉〉
−
〈〈
WC
〉〉 〈〈
S2

m

〉〉〈〈
WC
〉〉 + . . .

]
. (4.3)

Here we have used the symbol ⟨⟨ ⟩⟩ to denote the expectation values in the N = 4 SYM
theory on S4 to distinguish them from those in flat space that were simply indicated as
⟨ ⟩. Moreover, in writing the expansion (4.3) we have exploited the fact that ⟨⟨Sm⟩⟩ = 0.
Notice that the contribution proportional to m, corresponding to the second term in the
square bracket of (4.3), actually vanishes; indeed, since the Wilson loop WC and Sm are
made up of fields belonging to multiplets with different R-symmetry properties, the vacuum
expectation value ⟨⟨WC Sm⟩⟩ factorizes and thus vanishes: ⟨⟨WC Sm⟩⟩ = ⟨⟨WC⟩⟩ ⟨⟨Sm⟩⟩ = 0.
Therefore, ∂m

〈〈
WC
〉〉
N=2∗

∣∣
m=0 = 0 and the first non-vanishing mass-correction is propor-

tional to m2. This contribution is captured by

I = ∂2
m log

〈〈
WC
〉〉
N=2∗

∣∣∣
m=0

=
∂2

m

〈〈
WC
〉〉
N=2∗

∣∣∣
m=0〈〈

WC
〉〉 , (4.4)

which will be the main object of our analysis in the rest of this paper.
From (4.3) and the expression of Sm given in (3.6), it follows that

I = −
∫
d4x1

√
g(x1)

∫
d4x2

√
g(x2)

〈〈
WC J(x1) J(x2)

〉〉c〈〈
WC
〉〉

+
∫
d4x1

√
g(x1)

∫
d4x2

√
g(x2)

〈〈
WCK(x1)K(x2)

〉〉c〈〈
WC
〉〉

(4.5)

where the superscript c stands for connected.8 Using a stereographic projection, one can
map the correlators on S4 to correlators in R4 and rewrite (4.5) as a combination of inte-
grated bulk correlators in flat space, similar to those discussed in section 2. In particular,
adopting the stereographic projection described in appendix C, the circular Wilson loop WC
in (4.1) can be mapped to a straight Wilson line W along the x4-direction in R4 as in (2.1)
with θ = (1, 0, 0, 0, 0, 0). Furthermore, under this stereographic projection the correlator
on S4 of two bulk operators O of conformal dimension ∆ is mapped to the corresponding
correlator in R4 according to

〈〈
WC O(x1)O(x2)

〉〉
=
(1 + x2

1
2

)∆ (1 + x2
2

2

)∆ 〈
W O(x1)O(x2)

〉
. (4.6)

8We recall that, according to the observation in footnote 7, we have omitted the contribution of the
1-point function of the operator L(x) appearing in the mass deformation (3.3).
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Using this formula for ∆ = 2 and ∆ = 3 in the two terms of (4.5), and exploiting also
the explicit expression of the determinant of the metric of S4 in this parametrization, we
obtain

I = −
∫
d4x1

∫
d4x2

1(1 + x2
1

2

)2(1 + x2
2

2

)2
〈
J(x1) J(x2)

〉
W

+
∫
d4x1

∫
d4x2

1(1 + x2
1

2

)(1 + x2
2

2

) 〈
K(x1)K(x2)

〉
W

(4.7)

where we have used the same notation of section 2 for the bulk 2-point functions in presence
of the Wilson line, dropping the superscript c for simplicity.

According to (2.4), we have

〈
J(x1) J(x2)

〉
W

= F (ξ, η)
|x⃗1|2 |x⃗2|2

,
〈
K(x1)K(x2)

〉
W

= G(ξ, η)
|x⃗1|3 |x⃗2|3

(4.8)

where F and G are functions of the invariants ξ and η defined in (2.5). Here F corresponds
to the 0-channel in the R-symmetry expansion from (2.9). To avoid clutter in the notation,
we have omitted the subscript 0 since, as discussed above, only the 0-channel can be probed.

Exploiting the SO(3) symmetry, we can rotate the transverse axes so that the points
x1 and x2 take the form

x1 = (r1, 0, 0, t1) and x2 = (r2 cos θ, r2 sin θ, 0, t2) (4.9)

and the cross-ratios (2.5) become

ξ = t212 + r2
1 + r2

2
2 r1r2

, η = cos θ . (4.10)

Then, (4.7) becomes

I = −128π2
∫ +1

−1
dη

∫ ∞

0
dr1

∫ ∞

−∞
dt1

∫ ∞

0
dr2

∫ ∞

−∞
dt2

F (ξ, η)
(1 + r2

1 + t21)2(1 + r2
2 + t22)2

+ 32π2
∫ +1

−1
dη

∫ ∞

0
dr1

∫ ∞

−∞
dt1

∫ ∞

0
dr2

∫ ∞

−∞
dt2

G(ξ, η)
r1r2 (1 + r2

1 + t21)(1 + r2
2 + t22)

(4.11)

with ξ given by (4.10). Exploiting the SO(1,2) symmetry, we can now bring the points x1
and x2 in (4.9) to a reference configuration

x1 = (1, 0, 0, 0) and x2 = (ρ cos θ, ρ sin θ, 0, 0) (4.12)

in which the invariant ξ becomes

ξ = 1
2

(
ρ+ 1

ρ

)
, (4.13)

while η remains equal to cos θ. Thus, we can trade the integrals in (4.11) for the inte-
grals over the parameters of the SO(1,2) transformation that maps the reference config-
uration (4.12) to the generic one in (4.9). This can be realized by a special conformal
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transformation of parameter b along the Wilson line followed by a dilatation of parameter
λ and finally by a translation of parameter a along the Wilson line, obtaining

t1 = a+ λ b

1 + b2 , r1 = λ

1 + b2 ,

t2 = a+ λ b ρ2

1 + b2ρ2 , r2 = λ ρ

1 + b2ρ2 .

(4.14)

The Jacobian associated to this change of variables is

∣∣∣(∂t1, ∂r1, ∂t2, ∂r2)
(∂ρ, ∂a, ∂b, ∂λ)

∣∣∣ =


(1 − ρ2)λ2

(1 + b2)2(1 + b2ρ2)2 for ρ ≤ 1 ,

(ρ2 − 1)λ2

(1 + b2)2(1 + b2ρ2)2 for ρ ≥ 1 .
(4.15)

Let us now consider the integral in the first line of (4.11). After the change of vari-
ables (4.14), the integrals over a, b and λ can be performed analytically and one remains
with

−128π2
∫ +1

−1
dη

[
−
∫ 1

0
dρ

π2(1 − ρ2 + (1 + ρ2) log ρ
)

2(1 − ρ2)2 F (ξ, η)

+
∫ ∞

1
dρ

π2(1 − ρ2 + (1 + ρ2) log ρ
)

2(ρ2 − 1)2 F (ξ, η)
]

ξ= 1
2

(
ρ+ 1

ρ

) .
(4.16)

Replacing ρ → 1/ρ, the second line of (4.16) becomes equal to the first line and thus the
integral involving F becomes

128π4
∫ +1

−1
dη

∫ 1

0
dρ

(
1 − ρ2 + (1 + ρ2) log ρ

)
(1 − ρ2)2 F (ξ, η)

∣∣∣
ξ= 1

2

(
ρ+ 1

ρ

) (4.17)

In a similar way the integral in the second line of (4.11) involving the function G can be
evaluated to be

−64π4
∫ +1

−1
dη

∫ 1

0
dρ

log ρ
ρ

G(ξ, η)
∣∣∣
ξ= 1

2

(
ρ+ 1

ρ

) . (4.18)

In conclusion we have shown that

I = ∂2
m log

〈〈
WC
〉〉
N=2∗

∣∣∣
m=0

= 128π4
∫ +1

−1
dη

∫ 1

0
dρ

[(1 − ρ2 + (1 + ρ2) log ρ
)

(1 − ρ2)2 F (ξ, η) − log ρ
2ρ G(ξ, η)

]
ξ= 1

2

(
ρ+ 1

ρ

). (4.19)

To make further progress we now exploit the supersymmetries preserved by the Wilson
line which allow us to establish a relationship between the functions F and G by means
of the supersymmetric Ward identities satisfied by the bulk correlators in presence of a
Wilson line.
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4.1 Ward identity and final form of the integrated correlators

In this section we outline the derivation of the Ward identities which allow to relate the
functions F and G. A detailed derivation is presented in appendix D.

The first element is the fact that the Wilson line only preserves half of the supersym-
metries. Indeed, Wl is invariant only under transformations whose parameters satisfy the
BPS condition

ξ̄i
α̇ = ξiα(σ4)αα̇ . (4.20)

This enforces an effective identification between chiral and anti-chiral spinors, in agreement
with the fact that the original rotation symmetry SO(4) of the theory is reduced to SO(3)
by the presence of the line defect. As a consequence of this, it is convenient to repackage
the components (3.7) of the current multiplet and use the following fields

Φij , Yi = Xi + iXi , Zi = Xi − iXi , jm , S = Q− 2 j4 , T (4.21)

where
T = P + P , Q = P − P . (4.22)

The advantage of using these combinations is that the supersymmetry transformations
preserved by the Wilson line take a simpler form (see (D.2) in appendix D). Moreover,
the operator K that appears in the mass deformation coincides with T , up to a factor
of −(i/2).

The second element is that R-symmetry, flavor symmetry and conformal symmetry
in presence of a line defect severely constrain the form of the correlators. For example,
according to (2.4) for the scalar operators we have

〈
Φij(x1) Φkℓ(x2)

〉
W

= (ϵikϵjℓ + ϵiℓϵjk)A(x1, x2) with A(x1, x2) = a(ξ, η)
|x⃗1|2|x⃗2|2

, (4.23)

where the index structure in the right hand side is dictated by R-symmetry, and

〈
T (x1)T (x2)

〉
W

= H(x1, x2) = h(ξ, η)
|x⃗1|3|x⃗2|3

,
〈
Q(x1)Q(x2)

〉
W

= L(x1, x2) = ℓ(ξ, η)
|x⃗1|3|x⃗2|3

.

(4.24)

Also the correlator of two currents in a defect CFT depends on the coordinates and the
cross-ratios in a very specific form. This has been derived in [65, 66] and is presented
in (D.36).

The third element to consider is that all these structures must be compatible with
the supersymmetry transformations of the various fields. For example, starting from the
correlators 〈

Φij(x1)Ykα(x2)
〉

W
= 0 ,

〈
S(x1)Yiα(x2)

〉
W

= 0 , (4.25)

which identically vanish because of statistics, and computing their supersymmetry varia-
tions one can show that 〈

S(x1)S(x2)
〉

W
= −16 ∂(1)

4 ∂
(2)
4 A(x1, x2) (4.26)
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where ∂(a)
µ denotes the derivative with respect to xµ

a . In a very similar way, starting from
the vanishing correlators〈

Zkα(x1),Φij(x2)
〉

W
= 0 ,

〈
Ziα(x1)S(x2)

〉
W

= 0 , (4.27)

one finds 〈
jm(x1)S(x2)

〉
W

= 8 ∂(1)
m ∂

(2)
4 A(x1, x2) . (4.28)

Finally, from the supersymmetry variation of〈
Ziα(x1)T (x2)

〉
W

= 0 ,
〈
Ziα(x1) jn(x2)

〉
W

= 0 , (4.29)

one obtains 〈
jm(x1) jn(x2)

〉
W

= 1
4
〈
T (x1)T (x2)

〉
W
δmn − 4 ∂(1)

m ∂(2)
n A(x1, x2) . (4.30)

The details on the derivations of these relations are given in appendix D where one can
find also other identities among correlators which are summarized in table 1.

By inserting the form of the correlators prescribed by the defect CFT in the rela-
tions (4.26), (4.28) and (4.30), one can read how the scalar functions h(ξ, η) and ℓ(ξ, η)
introduced in (4.24) are related to a(ξ, η). The result of this calculation, whose details are
reported in appendix D, is quite simple; in fact

h(ξ, η) = −32 ∂ηa(ξ, η) , ℓ(ξ, η) = −32 ∂ξa(ξ, η) . (4.31)

Furthermore, we have found that the consistency of the solution of the Ward identities
requires that the function a(ξ, η) has to satisfy the following equation

2a+ ξ∂ξa+ η∂ηa = 0 . (4.32)

We can now collect our findings and determine the relation between the functions
F (ξ, η) and G(ξ, η) that appear in the integrated correlators. Using (3.8) and (4.23),
we have〈

J(x1) J(x2)
〉

W
=
〈(

Φ11(x1) + Φ22(x2)
) (

Φ11(x2) + Φ22(x2)
〉

W
= 4 a(ξ, η)

|x⃗1|2|x⃗2|2
, (4.33)

from which we read that
F (ξ, η) = 4 a(ξ, η) . (4.34)

On the other hand, from (3.8) and (4.24) we have

〈
K(x1)K(x2)

〉
W

=
(
− i

2

)2 〈
T (x1)T (x2)

〉
W

= −1
4

h(ξ, η)
|x⃗1|3|x⃗2|3

, (4.35)

yielding
G(ξ, η) = −1

4 h(ξ, η) . (4.36)

Finally, using (4.31) we arrive at the relation

G(ξ, η) = 8 ∂ηa(ξ, η) = 2 ∂ηF (ξ, η) (4.37)
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which implies that (4.19) can be rewritten as follows

I = 128π4
∫ +1

−1
dη

∫ 1

0
dρ

[(1 − ρ2 + (1 + ρ2) log ρ
)

(1 − ρ2)2 F (ξ, η) − log ρ
ρ

∂ηF (ξ, η)
]

ξ= 1
2

(
ρ+ 1

ρ

) .
(4.38)

Since the second term in the square brackets is a total derivative, it contributes only to
boundary terms and thus, according to the observation in footnote 7, it can be discarded.

5 The matrix model calculation

We now present the calculation of the integrated correlator I using the matrix model
approach. Even if this calculation has already appeared in the literature [31] (see also [26]),
we propose an alternative derivation based on the use of recursion relations and Bessel
kernels [41] which is very direct and may be useful also for generalizations to massive
deformations of N = 2 theories.

As is well known, using localization techniques the N = 2∗ SYM theory on a 4-sphere
can be described by a matrix model [5] whose partition function is

Z(m) =
∫
da e−

8π2N
λ

tr a2
∣∣∣Z1−loop(a,m)Zinst(a, λ,m)

∣∣∣2 . (5.1)

Here a is a Hermitian matrix in the fundamental representation of SU(N) which we write as

a =
N2−1∑
b=1

ab Tb (5.2)

where the generators are normalized in such a way that tr Tb Tc = 1
2 δbc. In the following,

use the so called “full-Lie algebra approach”, introduced in [69], namely we integrate over
all matrix elements of a with the normalized measure

da =
N2−1∏
b=1

dab

√
2π

. (5.3)

The two factors Z1−loop(a,m) and Zinst(a, λ,m) are the contributions of the 1-loop and
instanton fluctuations around the localization locus. In the large-N limit we can neglect
instanton effects and set Zinst(a, λ,m) = 1. The explicit expression of the 1-loop term,
which does not depend on the ’t Hooft coupling λ, is given in [5] and can be regarded as
an interaction action in the matrix model, namely∣∣∣Z1−loop(a,m)

∣∣∣2 = e−Sint(a,m) . (5.4)

In the limit of small m, we have

Sint(a,m) = −m
2

2

[ ∞∑
n=1

2n∑
ℓ=0

(−1)n+ℓ (2n+ 1)!
ℓ!(2n− ℓ)! ζ2n+1 tr a2n−ℓ tr aℓ

]
+O(m4) (5.5)
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where ζk is the Riemann-ζ value ζ(k). From the partition function, we obtain

∂2
m logZ(m)

∣∣∣
m=0

= 1
Z(0)

∫
da e−

8π2N
λ

tr a2
[ ∞∑

n=1

2n∑
ℓ=0

(−1)n+ℓ (2n+ 1)!
ℓ!(2n− ℓ)! ζ2n+1 tr a2n−ℓ tr aℓ

]
.

(5.6)
Rescaling the matrix a according to

a →

√
λ

8π2N
a , (5.7)

we have

∂2
m logZ(m)

∣∣∣
m=0

=
∫
da e− tr a2 M(a, λ) ≡

〈
M(a, λ)

〉
0 (5.8)

where

M(a, λ) = −
∞∑

n=1

2n∑
ℓ=0

(−1)n+ℓ (2n+ 1)!
ℓ!(2n− ℓ)! ζ2n+1

(
λ

8π2N

)n

tr a2n−ℓ tr aℓ , (5.9)

and the notation ⟨ ⟩0 stands for the vacuum expectation value in the free Gaussian matrix
model.

It is now useful to change basis and rewrite M(a, λ) in terms of the normal-ordered
operators Pn(a) introduced in [37, 41]9 which satisfy the following properties〈

Pn(a)
〉

0 = 0 ,
〈
Pm(a)Pn(a)

〉
0 = δmn , (5.10)

and are related to tr an as follows:

tr an =
(
N

2

)n/2 [ n−1
2 ]∑

k=0

√
n− 2k

(
n

k

)
Pn−2k(a) +

〈
tr an〉

0 . (5.11)

Inserting this relation in (5.9), with some simple algebra one can prove that

M(a, λ) = M(0)(λ) + M(1)(a, λ) + M(2)(a, λ) (5.12)

where the three terms containing, respectively, zero, one and two normal-ordered opera-
tors,10 can be expressed as follows

M(0)(λ) = N2 M0,0(λ) ,

M(1)(a, λ) = 2N
∞∑

k=1
M0,2k(λ)P2k(a) ,

M(2)(a, λ) =
∞∑

k,ℓ=1

[
M2k,2ℓ(λ)P2k(a)P2ℓ(a) + M2k+1,2ℓ+1(λ)P2k+1(a)P2ℓ+1(a)

]
. (5.13)

9In [37] these operators were denoted by ωn(a).
10Notice that in the planar ’t Hooft limit M(0) is of order N2, M(1) is of order N and M(2) is of order N0.

– 15 –



J
H
E
P
1
2
(
2
0
2
3
)
0
4
7

Here the λ-dependent coefficients are given by the following convolutions of Bessel functions
of the first kind Jr:

M0,0(λ) =
∫ ∞

0

dx

x
χ

(2πx√
λ

)[
1 −

(2J1(x)
x

)2]
,

M0,r(λ) = (−1)
r
2 +1 √r

∫ ∞

0

dx

x
χ

(2πx√
λ

) 2J1(x)
x

Jr(x) (r ≥ 1) ,

Mr,s(λ) = (−1)
r+s+2rs

2 +1 √r s
∫ ∞

0

dx

x
χ

(2πx√
λ

)
Jr(x) Js(x) (r, s ≥ 1) , (5.14)

where the kernel function is

χ(x) =
(
x/2

)2
sinh2(x/2) . (5.15)

We remark that even if we started from a perturbative expansion in powers of λ (see (5.9)),
using this formalism we have found expressions that can be continued beyond perturbation
theory and hold for any value of λ. Indeed, the integrals in (5.14) can be easily studied
at strong coupling where the asymptotic expansion for λ → ∞ can be obtained with a
straightforward application of the Mellin-Barnes method. It is interesting to observe that
the coefficients Mr,s(λ) in (5.14) have the same structure of the elements Xr,s(λ) appearing
in the study of the 2- and 3-point functions of scalar operators in certain N = 2 supercon-
formal gauge theories [37–42]. The only difference is in the kernel function χ(x), which in
the present case is given in (5.15), whereas there is equal to 2/ sinh2(x/2). Similar convolu-
tions of Bessel functions with different kernels appear also in the study of other observables
both in N = 4 and in N = 2 SYM theories (see for example [70] and references therein).

Using (5.13) in (5.8), it is now immediate to see that

∂2
m logZ(m)

∣∣∣
m=0

= N2
∫ ∞

0

dx

x
χ

(2πx√
λ

)[
1 −

(2J1(x)
x

)2]
+ . . . (5.16)

where the ellipses stand for terms subleading in the large-N limit, in agreement with the
results of [26]. We note in passing that by applying the hyperbolic Laplacian operator
∆τ = τ2

2 ∂τ∂τ , where

τ = τ1 + i τ2 = θ

2π + i 4πN
λ

(5.17)

is the standard complexified Yang-Mills coupling, we readily obtain

∆τ ∂
2
m logZ(m)

∣∣∣
m=0

= N2

2
[
M2,2(λ) − 2M1,1(λ)

]
+ . . .

= N2
∫ ∞

0

dx

x
χ

(2πx√
λ

)[
J1(x)2 − J2(x)2]+ . . . , (5.18)

which agrees with the expression derived in [4, 10] in the study of the integrated correlator
of four scalar operators in N = 4 SYM.
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Let us now introduce in the matrix model the circular Wilson loop that, after the
rescaling (5.7), is represented by the following operator [5]

W(a, λ) = 1
N

tr exp
(√

λ

2N a

)
. (5.19)

In the large N -limit we can rewrite it in terms of the normal-ordered operators as follows

W(a, λ) =
〈
W(a, λ)

〉
0 +

∞∑
n=2

wn(λ)Pn(a) (5.20)

where
〈
W(a, λ)

〉
0 is the vacuum expectation value in the free matrix model given by the

well-known result in terms of the modified Bessel function [44]

〈
W(a, λ)

〉
0 = 2 I1(

√
λ)√

λ
, (5.21)

and the λ-dependent coefficients wn are

wn(λ) =
〈
W(a, λ)Pn(a)

〉
0 = N

√
n In(

√
λ) , (5.22)

as one can check using eq. (4.30) of [71].
Let us now consider the vacuum expectation value of the Wilson loop operator (5.20)

in the massive N = 2∗ theory. This vacuum expectation value, which is the matrix-model
counterpart of the gauge theory expression (4.2), reads

W(m) = 1
Z(m)

∫
da W(λ, a) e− tr a2 e

m2
2 M(λ,a)+O(m4) , (5.23)

so that

I = ∂2
m logW(m)

∣∣∣
m=0

=
〈
W(a, λ) M(a, λ)

〉
0 −

〈
W(a, λ)

〉
0
〈
M(a, λ)

〉
0〈

W(a, λ)
〉

0
. (5.24)

In the large-N limit, we can use (5.12), (5.13), (5.14), (5.20) and (5.21) to obtain

I =
√
λ

2NI1(
√
λ)

∞∑
n=2

√
n In(

√
λ)
〈
Pn(a) M(1)(a, λ)

〉
0 + . . .

=
√
λ

I1(
√
λ)

∞∑
k=1

√
2k I2k(

√
λ) M0,2k(λ) + . . .

= −
√
λ

I1(
√
λ)

∫ ∞

0

dx

x
χ

(2πx√
λ

) 2J1(x)
x

∞∑
k=1

(−1)k 2k I2k(
√
λ) J2k(x) + . . . . (5.25)

Using the identity

∞∑
k=1

(−1)k 2k I2k(
√
λ) J2k(x) = −

√
λx

2 (x2 + λ)
[√
λ I0(

√
λ) J1(x) − x I1(

√
λ) J0(x)

]
, (5.26)
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which simply follows from the recursion properties of the Bessel functions, we finally obtain

I = λ

I1(
√
λ)

∫ ∞

0

dx

x
χ

(2πx√
λ

) √
λ I0(

√
λ) J1(x)2 − x I1(

√
λ) J0(x) J1(x)

x2 + λ
+ . . . . (5.27)

This agrees with the results of [26] (see also [31]).11 Expanding (5.27) for small values of λ,
it is straightforward to obtain the perturbative expansion of I, whose first few terms are

I ∼
λ→0

3 ζ3
32π2 λ

2 −
(

ζ3
256π2 + 25 ζ5

256π4

)
λ3 +

(
ζ3

4096π2 + 15 ζ5
4096π4 + 735 ζ7

8192π6

)
λ4 +O(λ5) + . . . .

(5.28)
On the other hand, using the asymptotic behavior of the Bessel functions for large values
of λ, we can easily compute from (5.27) the strong-coupling expansion of I, whose first
terms are

I ∼
λ→∞

√
λ

2 +
(1

4 − π2

6

)
+O(λ−1/2) + . . . . (5.29)

6 Conclusions and open problems

Our main result is the integral relation (4.38) between the second mass derivative of the
Wilson loop expectation value and the function F that appears in the correlator of two
specific scalar operators belonging to the stress-tensor multiplet in presence of a line de-
fect. The derivation of this result heavily relies on the analysis of the constraints imposed
on correlators by the symmetries of the N = 4 SYM theory that survive when the mass
deformation is introduced and a 1

2 -BPS Wilson line is added. Quite remarkably, the su-
perconformal Ward identities that follow from these constraints admit a solution in terms
of a single function of the two invariant cross-ratios that enter in the correlation func-
tions of two bulk operators in presence of a line defect. Therefore, as shown at the end of
section 4 (see in particular (4.31)–(4.37)), all contributions to the mass derivative of the
expectation value of the Wilson loop can be expressed as integrals of this function with a
specific integration measure. Quite unexpectedly, however, in solving the superconformal
Ward identities among 2-point functions of bulk operators, we found that this function
has to satisfy a homogeneity condition (see (4.32) or (D.43)). It would be very interesting
to explore the implications of this condition, and more generally to carry out a detailed
analysis of the perturbative expansion of the integrated correlators with a Wilson loop and
compare it with the matrix model predictions, similarly to what has been done in [15] for
the integrated 4-point functions. Another open problem is the study of the properties of
the integrated correlators at strong coupling from the point of view of field theory, also
in relation to the explicit results of the matrix model derived in [31] and briefly reviewed
in section 5.

11Note that in [26] the result is not normalized with respect to the vacuum expectation value (5.21), and
that we differ by an overall normalization factor of 1/2 with respect to [31].
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A Conventions

Indices. Our conventions for indices are the following:

- Vector indices in R4: µ, ν = 1, . . . , 4.

- After the line insertion along x4, they split as µ = (m, 4) where m = 1, 2, 3 labels the
directions orthogonal to the defect.

- Chiral and anti-chiral spinor indices in R4: α, β = 1, 2 and α̇, β̇ = 1, 2.

- After the line insertion, the unique SU(2) spinor index is labeled by α, β = 1, 2.

- SO(6)R R-symmetry indices: I, J = 1, . . . 6.

- SU(2)R R-symmetry indices: i, j = 1, 2.

- SU(2)F flavor symmetry indices: a, b = 1, 2.

Spinors. We denote by ψ a chiral spinor of components ψα with α = 1, 2, and by ψ an
anti-chiral spinor with components ψα̇ with α̇ = 1, 2. Spinor indices are raised and lowered
with the following rules

ψα = ψβ ϵ
βα , ψα = ψβ ϵβα , ψα̇ = ψβ̇ ϵ

β̇α̇ , ψα̇ = ψβ̇ ϵβ̇α̇ (A.1)

where
ϵ12 = ϵ1̇2̇ = ϵ21 = ϵ2̇1̇ = 1 , (A.2)

and they are contracted as follows

ψ χ ≡ ψα χα , ψ χ ≡ ψα̇χ
α̇ . (A.3)

Unless necessary to avoid ambiguities, most of the times we will not write explicit indices
in the spinor contractions.

We realize the Clifford algebra of R4 with the matrices (σµ)αβ̇ and (σµ)α̇β where

σµ = (σ⃗,−i1) , σµ = (−σ⃗,−i1) (A.4)
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with σ⃗ being the Pauli matrices. The so(4) generators Jµν = −Jνµ act on chiral and
anti-chiral spinors as follows(

Jµν) β

α
ψβ and

(
Jµν)α̇

β̇
ψβ̇ (A.5)

where (
Jµν) β

α
= i

2
(
σµν) β

α
= i

8
(
σµσ̄ν − σν σ̄µ) β

α
, (A.6a)(

Jµν)α̇
β̇

= i
2
(
σ̄µν)α̇

β̇
= i

8
(
σ̄µσν − σ̄νσµ)α̇

β̇
. (A.6b)

Writing so(4) as su(2)+ ⊕ su(2)−, the generators Jm
± (m = 1, 2, 3) of su(2)± are given by

Jm
± = 1

2ϵ
mnpJnp ± Jm4 , (A.7)

so that, using (A.6), one finds

(
Jm

+
) β

α
= 1

2(σm) β

α
,
(
Jm
−
) β

α
= 0 , (A.8a)(

Jm
−
)α̇

β̇
= 1

2(σm)α̇
β̇
,
(
Jm

+
)α̇

β̇
= 0 . (A.8b)

This shows that a chiral spinor ψ transforms in the (2,1) representation of su(2)+⊕su(2)−,
while an anti-chiral spinor ψ transforms in the (1,2).

Defect spinors. In presence of a Wilson line along the direction x4, the rotational sym-
metry SO(4) is broken to the SO(3) symmetry that rotates the coordinates xm transverse
to the defect. At the level of the covering spin group, this breaking corresponds to

SU(2)+ × SU(2)− → diag
(
SU(2)+ × SU(2)−

)
. (A.9)

One can easily see this also by considering the generators (A.7): indeed, in presence of the
defect, the rotations J i4 are broken, and thus

Jm
± → Jm = 1

2ϵ
mnpJnp . (A.10)

Under the breaking pattern (A.9), the vector representation decomposes as 4 → 3 ⊕ 1,
corresponding to the splitting of a vector vµ into (v⃗, v4). Similarly, all tensor fields can be
decomposed. As far as spinors are concerned, both chiral and anti-chiral spinors collapse
to the same spinor representation:

(2,1) → 2 , (1,2) → 2 . (A.11)

This means that under rotations of the three-dimensional space transverse to the defect, a
chiral spinor with a lower index α behaves in the same way as an anti-chiral spinor with
an upper index α̇. In other words, in presence of the defect we can identify the two indices
and simply denote them by α.
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In our set-up, however, we deal with spinors that carry also an index i of the SU(2)R

symmetry group and satisfy the pseudo-reality conditions

(ψi
α)∗ ≡ ψα

i = ψj
β ϵji ϵ

βα and (ψiα̇)∗ ≡ ψiα̇ = ψjβ̇ ϵji ϵβα . (A.12)

Explicitly, these conditions read

(ψ1
1)∗ = −ψ2

2 , (ψ1
2)∗ = ψ2

1 , (A.13)

(the signs remain the same if the chiral index is raised), and

(ψ11̇)∗ = ψ22̇ , (ψ12̇)∗ = −ψ21̇ (A.14)

(again, the signs are the same if the anti-chiral index is lowered). Comparing (A.13)
and (A.14) we see that there is an overall sign difference in the behavior with respect to
complex conjugation between the chiral and anti-chiral spinors. Therefore, in the reduction
to the defect symmetric notation, we have to set

ψiα̇ → iψi
α (A.15)

with ψ̄i
α obeying the pseudo-reality condition (A.13).

We can summarize this discussion by providing a set of effective rules to implement
on spinors the defect symmetry breaking pattern:

ψiα̇ → iψi
α , ψi

α̇ → −iψiα ,

(σm)αβ̇ → (σm) β
α , (σm)α̇β → −(σm) β

α (m = 1, 2, 3) ,

(σ4)αβ̇ → −i δ β
α , (σ4)α̇β → −i δ β

α ,

(σmn) β
α → −i ϵmnp (σp) β

α , (σmn)α̇
β̇
→ −i ϵmnp (σp) β

α (m,n, p = 1, 2, 3) ,

(σm4) β
α → −i (σm) β

α , (σm4)α̇
β̇
→ i (σm) β

α (m = 1, 2, 3) ,

ϵα̇β̇ → −ϵαβ , ϵα̇β̇ → −ϵαβ .

(A.16)

B Supersymmetry transformations and multiplets

In this appendix we collect the supersymmetry transformations of the various N = 2
multiplets that were considered in the main text. We denote the supersymmetry parameters
by ξiα and ξi

α̇ with i = 1, 2. The chiral and anti-chiral indices α and α̇ are lowered and
raised according to the rules described in appendix A. We will only write the supersymmetry
transformations for the free theory since this is enough for our purposes. In particular this
means that all derivatives are normal non-covariant derivatives.

The free N = 2 vector multiplet. This multiplet consists of a vector Aµ, two scalars
φ and φ, two chiral fermions λiα and two anti-chiral fermions λ α̇

i . To close the supersym-
metry algebra off-shell one has to introduce three auxiliary fields Dij = Dji. The N = 2
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supersymmetry transformations are (suppressing spinor indices)

δAµ = i ξiσµλi − i ξ̄iσµλi , (B.1a)

δϕ =
√

2 ξiλi , δϕ =
√

2 ξ̄iλi , (B.1b)

δλi = −1
2 ξ

jϵji σ
µνFµν − i

√
2 ξ̄jϵji σ

µ∂µϕ+ ξj Dji , (B.1c)

δλi = −1
2 ξ̄

jϵji σ
µνFµν + i

√
2 ξjϵji σ

µ∂µϕ+ ξ̄j Dji , (B.1d)

δDij = i ξ̄kϵki σ
µ∂µλj − i ξkϵki σ

µ∂µλj + (i↔ j) (B.1e)

where Fµν is the field strength of Aµ. These transformations close the following N = 2
algebra [

δ1 , δ2
]

= −2 i (ξi
1 σ

µξ̄j
2 − ξi

2 σ
µξ̄j

1) ϵji ∂µ . (B.2)

One can easily verify that the connection appearing in the Wilson line Wl considered in
the main text, namely

L = iA4 + φ+ φ√
2

, (B.3)

is left invariant by supersymmetry transformations in which

ξ̄i
α̇ = ξiα(σ4)αα̇ . (B.4)

Thus, the presence of the Wilson line Wl reduces by half the number of supersymmetries and
enforces an identification between chiral and anti-chiral spinors, as explained in appendix A.
The supersymmetries that satisfy the condition (B.4) close the following algebra[

δ1 , δ2
]

= −4 i ξi
1 ξ

j
2 ϵji ∂4 , (B.5)

in agreement with the fact that only the translations in the direction of the line defect (x4

in our case) are a symmetry of the configuration.
Applying to (B.4) the effective rules (A.16), we easily find that the BPS condition on

the supersymmetry parameters simply reads as

ξiα = ξiα . (B.6)

The same relation holds with the index α lowered.

The free N = 2 hyper-multiplet. This multiplet is formed by two complex scalars, q
and q̃, two chiral fermions ψa

α and two anti-chiral fermions ψaα̇. Organizing the scalars in
a (2 × 2) matrix Qia as in (3.1), namely(

Qia) =
(
q∗ q̃

−q̃ ∗ q

)
, (B.7)

the supersymmetry transformations are (suppressing spinor indices)

δQia = −
√

2 ξiψa −
√

2 ξ̄iψa , (B.8a)
δψa = i

√
2 ξ̄iσµ∂µQ

jaϵji , (B.8b)
δψa = −i

√
2 ξiσµ∂µQ

jaϵji . (B.8c)

They close the algebra (B.2) on shell.
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The free N = 2 current multiplet. This multiplet consists of three scalars Φij = Φji,
such that (Φij)∗ = ϵik ϵjℓ Φkℓ, two chiral fermions Xiα, two anti-chiral fermions X α̇

i , two
real scalars P and P , and one conserved current jµ. These fields can be regarded as a
subset of the N = 4 stress tensor multiplet. Their supersymmetry transformations are
(suppressing spinor indices) [68]

δΦij = 1
2 ξ

iϵjkXk − 1
2 ξ̄

iϵjkXk + (i↔ j) , (B.9a)

δXi = ξjϵji P + 2 i ξj σµ∂µΦkℓ ϵkj ϵℓi + ξjϵji σ
µjµ , (B.9b)

δXi = ξjϵji P + 2 i ξj σµ∂µΦkℓ ϵkj ϵℓi + ξjϵji σ
µjµ , (B.9c)

δP = −2 i ξi σµ∂µXi , δP = 2 i ξi σµ∂µXi , (B.9d)

δjµ = −i ξi σµν ∂
νXi + i ξi σµν ∂

νXi . (B.9e)

These transformation close the N = 2 algebra (B.2) if ∂µjµ = 0. One can verify that these
supersymmetry transformations follow from those in (B.8) upon using the definitions given
in (3.7). In this calculation one also sees that the on-shell conditions on the hyper-multiplet
components imply the conservation of jµ.

C Stereographic projection

A 4-sphere S4 can be conveniently described as embedded in R5. Let the coordinates of
R5 be (ηµ, η5) with µ = 1, · · · , 4. Then, a 4-sphere with unit radius is described by the
following equation

4∑
µ=1

(ηµ)2 + (η5)2 = 1 . (C.1)

In these coordinates, the North and South poles are the points:

N := (0, 0, 0, 0,+1) and S := (0, 0, 0, 0,−1) . (C.2)

We now conformally map the S4 to R4 with coordinates xµ by means of the following
stereographic projection

ηµ = 2xµ

1 + x2 , η5 = 1 − x2

1 + x2 (C.3)

where x2 =
∑

µ(xµ)2. It is easy to see that under such a map we have

ds2 =
4∑

µ=1
(dηµ)2 + (dη5)2 = Ω̃(x)−2

4∑
µ=1

(dxµ)2 (C.4)

where the conformal factor is
Ω̃(x) = 1 + x2

2 . (C.5)

Under this projection the North and South poles are mapped respectively to the origin and
to the point at infinity in R4.
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N

S

ηµ

η5

Figure 1. Stereographic projection of a vertical great circle of S4 onto a straight line in R4.

A great circle C of S4 passing through the North and South poles (C.2) can be
parametrized as

(0, 0, 0, sin τ, cos τ) with τ ∈ [−π,+π] . (C.6)

Under the stereographic projection (C.3), it is mapped to a straight line in R4 parametrized
by

(0, 0, 0, t) with t = tan
(
τ

2

)
. (C.7)

This is shown in figure 1.

D Ward identities

The N = 2 current multiplet in presence of a Wilson line. Let us consider a
N = 2 current multiplet in presence of a Wilson line. Its supersymmetry transformations
can be obtained from those listed in (B.9) by applying the effective rules (A.16) to reduce
the rotational symmetry to the one preserved by the defect and by imposing the identifi-
cation (B.4) to guarantee the invariance of Wilson line. To write these transformations in
a simpler form, it is convenient to introduce the following combinations12

Yiα = Xiα − X̄iα , Ziα = Xiα + X̄iα , S = P − P − 2 j4 , T = P + P . (D.1)

Using these combinations and understanding the contractions on spinor indices, one obtains

δΦij = −1
2ξ

i Y j + (i↔ j) , (D.2a)

δY i = S ξi − 4 i ∂4Φij ξj , (D.2b)
δS = 2 i ξi ∂4Yi , (D.2c)

δZi = T ξi − 2 i j⃗ · σ⃗ ξi + 4 ∂⃗Φij · σ⃗ ξj , (D.2d)

δT = 2 i ξi ∂4Zi + 2ξi σ⃗ · ∂⃗Yi , (D.2e)

δj⃗ = −ξi σ⃗ ∂4Zi + ξi σ⃗ × ∂⃗Yi . (D.2f)

12In the original notation we would have Yiα = Xiα + iX α̇
i and Ziα = Xiα − iX α̇

i .
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One can easily verify that, on all fields in the multiplet, these supersymmetries square to
the translations along the Wilson line as in (B.5). It is also interesting to observe that the
fields Φij , Yiα and S form a sub-multiplet on which the supersymmetry algebra closes.

Constraints from R and flavour symmetry. The 2-point correlators of fields be-
longing to the current multiplet that are allowed by statistics (namely boson/boson and
fermion/fermion ones) are restricted in form by R-symmetry. For example, since Φij is
symmetric in i and j and ϵij is the only R-invariant 2-index tensor at our disposal, we have

〈
Φij(x1)S(x2)

〉
W

=
〈
Φij(x1)T (x2)

〉
W

=
〈
Φij(x1) j⃗(x2)

〉
W

= 0 (D.3)

and

〈
Φij(x1) Φkℓ(x2)

〉
W

= (ϵik ϵjℓ + ϵiℓ ϵjk)A(x1, x2) (D.4)

where A(x1, x2) a symmetric function of its arguments. Similarly, for the fermion/fermion
correlators we have

〈
Y i

α(x1)Y j
β (x2)

〉
W

= ϵij
(
ϵαβ b(x1, x2) + τ⃗αβ · b⃗(x1, x2)

)
, (D.5a)〈

Zi
α(x1)Y j

β (x2)
〉

W
= ϵij

(
ϵαβ c(x1, x2) + τ⃗αβ · c⃗(x1, x2)

)
, (D.5b)〈

Zi
α(x1)Zj

β(x2)
〉

W
= ϵij

(
ϵαβ d(x1, x2) + τ⃗αβ · d⃗(x1, x2)

)
. (D.5c)

where τ⃗αβ ≡ σ⃗ γ
α ϵγβ is symmetric in α and β. The functions b(x1, x2) and d(x1, x2) are

anti-symmetric in their arguments, while b⃗(x1, x2) and d⃗(x1, x2) are symmetric. We further
define

〈
jµ(x1) jν(x2)

〉
W

= Cµν(x1, x2) , (D.6)〈
T (x1)T (x2)

〉
W

= H(x1, x2) . (D.7)

Also the flavour symmetry imposes restrictions on the form of the 2-point functions.
To see this, we recall that the operators P and P contain terms with opposite non-zero
flavour charges, as explicitly shown in (3.7c). Thus, they can have non-vanishing correlation
functions among themselves.13 Instead, their correlators with the current jµ, which is
neutral, vanish. This fact entails that

〈
jµ(x1)T (x2)

〉
W

= 0 , (D.8a)〈
jµ(x1)S(x2)

〉
W

= −2
〈
jµ(x1) j4(x2)

〉
W

= −2Cµ4(x1, x2) , (D.8b)〈
S(x1)S(x2)

〉
W

=
〈
Q(x1)Q(x2)

〉
W

+ 4
〈
j4(x1) j4(x2)

〉
W

= L(x1, x2) + 4C44(x1, x2) .
(D.8c)

13Notice that the correlator
〈
P (x1)P (x2)

〉
W

is not zero through its tr(ψ1ψ1) tr(ψ2ψ2) term. Indeed,
there is a bulk Yukawa coupling of the form φψ1ψ2 which can turn a ψ1ψ2 pair into a φ that can be
adsorbed by the Wilson line. A mirror reasoning holds for the

〈
P (x1)P (x2)

〉
W

correlator.
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For convenience, in the last line we have defined Q = P − P and set
〈
Q(x1)Q(x2)

〉
W

=
L(x1, x2). It is quite natural to assume that

〈
P (x1)P (x2)

〉
W

=
〈
P (x1)P (x2)

〉
W

and that〈
P (x1 P (x2)

〉
W

=
〈
P (x1)P (x2)

〉
W

. From this, it follows that〈
T (x1)S(x2)

〉
W

=
〈
T (x1)Q(x2)

〉
W

=
〈
(P (x1) + P (x1)) (P (x2) − P (x2))

〉
W

= 0 . (D.9)

Notice that even if do not make this assumption a priori, the consistency of the supersym-
metry Ward identities forces a posteriori the correlator between T and S to vanish, as we
will shortly see.

Constraints from supersymmetry. By considering the supersymmetry variation of
boson/fermion correlators, which are obviously vanishing, one can obtain relations among
the above 2-point functions, which further constrain their form. For example, starting from〈
Φij(x1)Y k

α (x2)
〉

W
= 0, we get

0 =
〈
δΦij(x1)Y k

α (x2)
〉

W
ϵkj +

〈
Φij(x1) δY k

α (x2)
〉

W
ϵkj (D.10)

=
[
− 1

2
〈
Y j

β (x1)Y k
α (x2)

〉
W
ξiβ − 1

2
〈
Y i

β(x1)Y k
α (x2)

〉
W
ξjβ

− 4 i
〈
Φij(x1) ∂4Φkℓ(x2)

〉
W
ξℓ,α

]
ϵkj .

Taking into account the constraints (D.3), (D.4) and (D.5), and contracting the ϵ-symbols,
we obtain

0 = b(x1, x2) ξi
α + b⃗(x1, x2) · σ⃗ β

α ξi
β − 8 i ∂(2)

4 A(x1, x2) ξi
α , (D.11)

where with ∂
(a)
µ we denote the derivative with respect to xµ

a . This relation implies

b⃗(x1, x2) = 0⃗ , b(x1, x2) = 8 i ∂(2)
4 A(x1, x2) = −8 i ∂(1)

4 A(x1, x2) , (D.12)

where in the last step we have taken into account that b(x1, x2) is anti-symmetric, and thus
A(x1, x2) can depend on the 4th components only through the combination x4

12 = x4
1 − x4

2,
in agreement with translational invariance along the direction of the line defect.

Consider now
〈
S(x1)Y i

α(x2)
〉

W = 0. From its supersymmetry variation we obtain

0 =
〈
δS(x1)Y i

α(x2)
〉

W
+
〈
S(x1) δY i

α(x2)
〉

W

= −2 i
〈
∂

(1)
4 Y j

β (x1)Y i
α(x2)

〉
W
ξβ

j +
〈
S(x1)S(x2)

〉
W
ξi

α (D.13)

where in the second line we have inserted the R-symmetry constraint (D.3). Using (D.5)
and (D.8c) and exploiting (D.12), this reduces to

L(x1, x2) + 4C44(x1, x2) = 2 i ∂(1)
4 b(x1, x2) = −16 ∂(1)

4 ∂
(2)
4 A(x1, x2) . (D.14)

Starting from
〈
Zk

α(x1) Φij(x2)
〉

W
= 0, we find

0 =
〈
δZk

α(x1) Φij(x2)
〉

W
ϵkj +

〈
Zk

α(x1) δΦij(x2)
〉

W
ϵkj (D.15)

=
[
4
〈
∂⃗(1)Φkℓ(x1) Φij(x2)

〉
W

· σ⃗ β
α ξℓβ + 1

2
〈
Zk

α(x1)Y j
β (x2)

〉
W
ξiβ

+ 1
2
〈
Zk

α(x1)Y i
β(x2)

〉
W
ξjβ
]
ϵkj
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where as before we have retained only the correlators that are not zero by global symmetry
considerations. Using (D.3), (D.4) and (D.5) and contracting the ϵ-symbols, we obtain

0 = −8 ∂⃗(1)A(x1, x2) · σ⃗ β
α ξi

β + c(x1, x2) ξi
α + c⃗(x1, x2) · σ⃗ β

α ξi
β , (D.16)

implying

c(x1, x2) = 0 , c⃗(x1, x2) = 8 ∂⃗(1)A(x1, x2) . (D.17)

From the variation of
〈
Zi

α(x1)S(x2)
〉

W
= 0, it follows that

0 =
〈
δZi

α(x1)S(x2)
〉

W
+
〈
Zi

α(x1) δS(x2)
〉

W

=
〈
T (x1)S(x2)

〉
W
ξi

α − 2 i
〈⃗
j(x1)S(x2)

〉
W

· σ⃗ β
α ξi

β − 2 i
〈
Zi

α(x1) ∂(2)
4 Y j

β (x2)
〉

W
ξjβ .

(D.18)

Using (D.5), after simple algebra this becomes

0 =
〈
T (x1)S(x2)

〉
W
ξi

α − 2 i
[〈
jm(x1)S(x2)

〉
W

− ∂
(2)
4 cm(x1, x2)

]
· (σm) β

α ξi
β , (D.19)

which requires〈
T (x1)S(x2)

〉
W

= 0 ,
〈
jm(x1)S(x2)

〉
W

= ∂
(2)
4 cm(x1, x2) = 8 ∂(1)

m ∂
(2)
4 A(x1, x2) (D.20)

where in the last step we inserted the relation (D.17). As anticipated, the vanishing of the
correlator between T and S, which we imposed as a consequence of the flavor symmetry,
has been now obtained as a constraint imposed by the supersymmetry Ward identities.

If we consider the variation of
〈
T (x1)Y i

α(x2)
〉

W
= 0, we do not get any new information.

Indeed, one can show that

0 =
〈
δT (x1)Y i

α(x2)
〉

W
+
〈
T (x1) δY i

α(x2)
〉

W
=
[
2 i ∂(1)

4 c⃗(x1, x2) + 2 ∂⃗(1)b(x1, x2)
]
· σ⃗ β

α ξi
β .

(D.21)

with the quantity in square brackets identically vanishing if we use the results (D.12)
and (D.17).

Next we consider the variation of
〈
Zi

α(x1)T (x2)
〉

W
= 0. Proceeding as in previous

cases, we find

0 =
〈
δZi

α(x1)T (x2)
〉

W
+
〈
Zi

α(x1) δT (x2)
〉

W
(D.22)

=
〈
T (x1)T (x2)

〉
W
ξi

α + 2 i ξβ
j

〈
Zi

α(x1) ∂(2)
4 Zj

β(x2)
〉

W
+ 2 ξβ

j σ⃗
γ

β

〈
Zi

α(x1) ∂⃗(2)Y j
γ (x2)

〉
W
.

Inserting the form (D.5) and (D.7) of the correlators and taking into account that c(x1, x2)=
0, after some algebraic manipulations this relation becomes

0 =
[
H(x1, x2) + 2 i ∂(2)

4 d(x1, x2) − 2 ∂⃗(2) · c⃗(x1, x2)
]
ξi

α

+ 2 i
[
∂

(2)
4 d⃗(x1, x2) + ∂⃗(2) × c⃗(x1, x2)

]
· σ⃗ β

α ξi
β . (D.23)
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The two square brackets must separately vanish, leading to

H(x1, x2) + 2 i ∂(2)
4 d(x1, x2) − 16 ∂⃗(2) · ∂⃗(1)A(x1, x2) = 0 , (D.24a)

∂
(2)
4 d⃗(x1, x2) + 8 ∂⃗(2) × ∂⃗(1)A(x1, x2) = 0 (D.24b)

where we have used the expression of c⃗(x1, x2) given in (D.17).
Starting from

〈
Zi

α(x1) jn(x2)
〉

W
= 0, we get

0 =
〈
δZi

α(x1) jn(x2)
〉

W
+
〈
Zi

α(x1) δjn(x2)
〉

W

= −2 i
〈
jm(x1) jn(x2)

〉
W

(σm) β
α ξβ − ξβ

j (σn) γ
β

〈
Zi

α(x1) ∂(2)
4 Zj

γ(x2)
〉

W
(D.25)

+ ϵnmp ξβ
j (σm) γ

β

〈
Zi

α(x1) ∂(2)
p Y j

γ (x2)
〉

W
.

Using the parametrizations (D.5) and (D.6) of the correlators, after some algebra we can
recast this relation in the form

0 = −2 iCmn(x1, x2) (σm) β
α ξi

β + ∂
(2)
4 d(x1, x2) (σn) β

α ξi
β + ∂

(2)
4 dn(x1, x2) ξi

α

− i ϵnmp∂
(2)
4 dm(x1, x2) (σp) β

α ξi
β + ϵnmp∂(2)

m cp(x1, x2) ξi
α (D.26)

+ i ∂(2)
m cm(x1, x2) (σn) β

α ξi
β − i ∂(2)

m cn(x1, x2) (σm) β
α ξi

β .

The condition for the vanishing of the coefficient of ξi
α is

0 = ∂
(2)
4 d⃗(X1, X2) + ∂⃗(2) × c⃗(x1, x2) (D.27)

which, taking into account (D.17), coincides with (D.24b). Thus, this condition does not
add any new constraint. Instead, by imposing the vanishing of the coefficient of (σm) β

α ξi
β ,

we extract the following new relation

2Cmn(x1, x2) +
[
i ∂(2)

4 d(x1, x2) − ∂⃗(2) · c⃗(x1, x2)
]
δmn

+ϵmnp∂
(2)
4 dp(x1, x2) + ∂(2)

m cn(x1, x2) = 0 , (D.28)

which, using (D.17), can be rewritten as

2Cmn(x1, x2) +
[
i ∂(2)

4 d(x1, x2) − 8 ∂⃗(2) · ∂⃗(1)A(x1, x2)
]
δmn + 8 ∂(1)

m ∂(2)
n A(x1, x2) = 0 .

(D.29)

In the coefficient of δmn we recognize the same combination that appears in (D.24a), so
that in the end we have

Cmn(x1, x2) = 1
4 H(x1, x2) δmn − 4 ∂(1)

m ∂(2)
n A(x1, x2) . (D.30)

The last boson/fermion correlator to consider is
〈
jm(x1)Y i

α(x2)
〉

W
= 0. However, one

can show that its supersymmetry variation yields the following two conditions

∂
(1)
4 cm(x1, x2) +

〈
jm(x1)S(x2)

〉
W

= 0 , − i ∂(1)
4 cn(x1, x2) − ∂(1)

n b(x1, x2) = 0 , (D.31)

which are identically satisfied taking into account the earlier results (D.20) and (D.12).
Thus, no new constraints are obtained from this correlator.

We summarize the identities we have found in table 1.
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〈
Φij(x1) Φkℓ(x2)

〉
W

= (ϵik ϵjℓ + ϵiℓ ϵjk
)
A(x1, x2)〈

Y i
α(x1)Y j

β (x2)
〉

W
= 8 i ϵij ϵαβ ∂

(2)
4 A(x1, x2)〈

Zi
α(x1)Y j

β (x2)
〉

W
= 8 ϵij τ⃗αβ · ∂⃗ (1)

4 A(x1, x2)〈
Zi

α(x1)Zj
β(x2)

〉
W

= ϵij ϵαβ d(x1, x2) + ϵij τ⃗αβ · d⃗(x1, x2)〈
S(x1)S(x2)

〉
W

= −16 ∂(1)
4 ∂

(2)
4 A(x1, x2)〈

jm(x1)S(x2)
〉

W
= 8 ∂(1)

m ∂
(2)
4 A(x1, x2)〈

T (x1)T (x2)
〉

W
= H(x1, x2)〈

jm(x1) jn(x2)
〉

W
= 1

4 H(x1, x2) δmn − 4 ∂(1)
m ∂

(2)
n A(x1, x2)

Table 1. The non-vanishing 2-point functions of the component fields of the current multiplet.
The functions d(x1, x2) and d⃗(x1, x2) appearing in the Z-Z correlator are related to the functions
A(x1, x2) and H(x1, x2) as indicated in (D.24).

Constraints from defect CFT. We now show that by imposing consistency with the
rules of the defect CFT [47] one obtains further constraints on the form of the 2-point
functions derived in the previous subsection.

In our derivation we follow [66] and introduce the two invariant cross-ratios preserved
by the conformal symmetry in presence of a Wilson line given by14

u = (x1 − x2)2

4 r1r2
, v = x⃗1 · x⃗2

r1r2
. (D.32)

These invariants are related to ξ and η used in the main text and defined in (2.5) as follows

u = ξ − η

2 , v = η . (D.33)

We recall that the top-components Φij of the current multiplet are conformal fields of
dimension 2. Thus, their 2-point function in presence of the Wilson line has the form (2.4)
with ∆1 = ∆2 = 2. This implies that

A(x1, x2) = a

r2
1r

2
2

(D.34)

where a is a function of the cross-ratios u and v. Also the 2-point function
〈
T (x1)T (x2)

〉
has a similar form, but with ∆1 = ∆2 = 3. Thus,

H(x1, x2) = h

r3
1r

3
2

(D.35)

14In [66] the invariants u and v are called, respectively, ξ1 and ξ2. Since in our discussion also the
supersymmetry parameters have been called ξi we have preferred to use a different name for the cross-
ratios.
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where h is a function of u and v. Our goal is to establish a relation between the functions
h and h by exploiting the Ward identities previously obtained. To do so, we use the
relation among the current/current correlator, the derivatives of A and the function H as
displayed in the last row of table 1. The crucial ingredient for this calculation is the form
of the current/current correlator in a defect CFT. This has been derived in full generality
in [65, 66]. Adapting eq. (3.4) of [66] to our present conventions and recalling that jµ has
conformal dimension 3, we have

〈
jm(x1) jn(x2)

〉
W

= 1
r3

1r
3
2

[
δmn

(
f4 + f5
64u3

)
+ xm

1 x
n
2

r1r2

(
f4

128u4 + (1 + 4u2)f1
256u5 + f2 + 2f3

64u3

)

+ xn
1x

m
2

r1r2

(
f4

128u4 − f5
64u3v

+ f1
256u5 + f2

64u3v2 − f3
64u4v

)

+ xm
1 x

n
1 + xm

2 x
n
2

r1r2

(
f3

128u4v
− f1

256u5 − f4
128u4

)

+
(
xm

1 x
n
2

r2
1

+ xm
1 x

n
2

r2
2

)(
− f1 + f3

128u4

)

+
(
xm

1 x
n
1

r2
1

+ xm
2 x

n
2

r2
2

)(
f1

128u4 − f2
64u3v

+ (v − 2u)f3
128u4v

)]
, (D.36a)

〈
jm(x1) j4(x2)

〉
W

= − x4
12

r3
1r

3
2

[
xm

1
r1r2

(
f1

256u5 + f4
128u4

)
+ xm

2
r1r2

(
f3

128u4v
− f1

256u5 − f4
128u4

)

+ xm
1
r2

1

(
− f1 + f3

128u4

)]
, (D.36b)

〈
j4(x1) j4(x2)

〉
W

= 1
r3

1 r
3
2

[
f4

64u3 − (x4
12)2

r1r2

(
f1

256u5 + f4
128u4

)]
, (D.36c)

where f1, . . . , f5 are five functions of the invariants u and v.
We are now in the position of deriving the constraints imposed by the Ward identities.

From 〈
jm(x1) jn(x2)

〉
W

− 1
4H(x1, x2) δmn + 4∂(1)

m ∂(2)
n A(x1, x2) = 0 , (D.37)

using (D.34), (D.35) and (D.36a), computing the derivatives of A(x1, x2) and imposing the
vanishing of the six independent coordinate structures, we obtain a linear system of six
equations that allows us to write the functions f1, . . . , f5 and h in terms of the derivatives
of a. The solution of this system turns out to be

f1 = −256u4[u ∂2
ua+ 3∂ua− 4v(2a+ u ∂ua+ v ∂va)

]
, (D.38a)

f2 = −256u3v
[
v ∂2

va+ 3∂va− 4u(2a+ u ∂ua+ v ∂va)
]
, (D.38b)

f3 = −256u4v
[
∂2

u,va+ 4(2a+ u ∂ua+ v ∂va)
]
, (D.38c)

f4 = +128u3[3∂ua− 4(2u+ v)(2a+ u ∂ua+ v ∂va)
]
, (D.38d)

f5 = −256u3[3∂va− 2(2u+ v)(2a+ u ∂ua+ v ∂va)
]
, (D.38e)

and
h = 16(∂ua− 2∂va) . (D.39)
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Inserting this last result in (D.35) we then obtain〈
T (x1)T (x2)

〉
W

= 16∂ua− 32∂va

r3
1r

3
2

. (D.40)

On the other hand, using the Ward identity (D.20) together with the fact that
⟨jm(x1)Q(x2)⟩ = 0 because of the flavor symmetry constraints,15 we obtain the following
relation 〈

jm(x1) j4(x2)
〉

W
+ 4 ∂m

(1)∂
4
(2)A(x1, x2) = 0 . (D.41)

Exploiting (D.36b) and proceeding as before, we obtain from (D.41) a linear system of
three equations for the functions f1, f3 and f4 that appear in the jm-j4 correlator. The
solution of this system is

f1 = −256u4[u ∂2
ua+ 3∂ua

]
, (D.42a)

f3 = −256u4v ∂2
u,va , (D.42b)

f4 = +384u3∂ua (D.42c)

which is compatible with (D.38) provided

2a+ u∂ua+ v∂va = 0 . (D.43)

As a further consistency check, we consider the Ward identity (D.14), namely〈
Q(x1)Q(x2)

〉
W

+ 4
〈
j4(x1) j4(x2)

〉
W

+ 16 ∂(1)
4 ∂

(2)
4 A(x1, x2) = 0 . (D.44)

Using (D.36c) and the expression for f1 and f4 that we have found before together with
the condition (D.43), it is easy to deduce from (D.44) that〈
Q(x1)Q(x2)

〉
W

= 1
r3

1r
3
2

[(
− f4

16u3 + 8∂ua

)
+ (x4

12)2

r1r2

(
f1

64u5 + f4
32u4 + 4∂2

ua

)]
= −16∂ua

r3
1r

3
2
.

(D.45)
This has exactly the form expected for a 2-point function of scalar operators of dimension
3 in a defect CFT.

We can now rewrite our results on the scalar correlators in terms of the cross-ratios ξ
and η used in the main text. From (D.33) we easily see that ∂u = 2∂ξ and ∂v = ∂ξ + ∂η,
so that (D.40) and (D.45) simply become〈

T (x1)T (x2)
〉

W
= −32 ∂ηa

r3
1r

3
2

and
〈
Q(x1)Q(x2)

〉
W

= −32 ∂ξa

r3
1r

3
2

. (D.46)

In terms of these cross-ratios, the homogeneity equation (D.43) reads 2a+ ξ∂ξa+ ∂ηa = 0.
We conclude by mentioning that we have also performed the above analysis using the
parametrization of the current/current correlators in the defect CFT given in [65] with the
embedding formalism. The results obtained with this method are identical to the ones we
have presented.

15We observe that even without imposing the vanishing of this correlator, one would nevertheless conclude
that it has to vanish for consistency. Indeed, as shown in [66] the 2-point function of a current and a scalar
operator in a defect CFT contains structures that appear neither in the jm-j4 correlator nor in the double
derivatives of the scalar function A with respect to xm

1 and x4
2. Thus, the only way to impose the Ward

identity constraint is to require that the correlator of jm and Q vanishes, just as required by flavor symmetry.
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