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Abstract: MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental
selective pressure. This feature has dramatically limited the development of effective treatment.
However, genomic events are known to be associated with MPM progression, and specific genetic
signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components,
among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies
focused on the exploitation of MPM genetic asset and its interconnection with the surrounding
hypoxic microenvironment as well as transcript products and microvesicles representing both an
insight into the pathogenesis and promising actionable targets.
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1. Introduction

Malignant pleural mesothelioma (MPM) is a rare and extremely aggressive neoplasm
that arises from the pleural mesothelium and has a pathogenetic trigger highly linked to
asbestos exposure. To date, MPM cannot be irradicated with effective therapies, and the av-
erage survival of affected patients is approximately 12–15 months from diagnosis [1–3]. The
incidence in Europe is expected to peak around 2025 due to the long latency that can elapse
between exposure to asbestos fibers and the onset of the disease [4]. MPM diagnosis is gen-
erally reached through conventional morphology and immunohistochemistry (IHC) [5–8].
The expressions of BAP1, EZH2, and MTAP proteins are used to classify chronic pleuritis
from a malignant disease [9]. However, in some instances, a differential diagnosis between
MPM and carcinoma is not possible, and even an exhaustive ad excludendum IHC workup
may be inconclusive(Figure 1).

Asbestos is a direct non-mutagenic carcinogen; when its biopersistent nanometric
fibers are inhaled, they reach the pleural space and interact directly with cellular receptors,
causing a chronic inflammatory response with inappropriate activation leading to cellular
proliferation [10].

Int. J. Mol. Sci. 2023, 24, 3496. https://doi.org/10.3390/ijms24043496 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24043496
https://doi.org/10.3390/ijms24043496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0929-4394
https://orcid.org/0000-0003-2024-6131
https://orcid.org/0000-0003-0241-0620
https://orcid.org/0000-0003-4892-4192
https://orcid.org/0000-0002-4423-2482
https://orcid.org/0000-0001-8062-6836
https://doi.org/10.3390/ijms24043496
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24043496?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 3496 2 of 21
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 21 
 

 

 
Figure 1. Immunohistochemistry workup in case of pleural masses and suspect of MPM. The study 
should include the expression of vimentin 8, TTF1, p40, calretinin, WT-1, D240, citokeratin 5/6, 
vimentin, S100, BER-EP4, CEA, CD31, CD34, desmin, and myogenin D1. The most relevant 
differential diagnosis regards MPM (e.g., calretinin positive) vs. pleural metastases from lung cancer 
(e.g., PAS-positive staining in case of adenocarcinoma -ADC); in some cases, results might not solve 
the origin of neoplastic cells proliferating into the pleural space. Moreover, differential diagnosis 
requires the exclusion of undifferentiated MPM, the presence of a small/dormant lung primary 
carcinoma, a pleural localization of melanoma (expression of S100), rhabdomyosarcoma (expression 
of desmin and myogenin D1), and angiosarcoma (expression of CD31, CD34), ectopic lung epithelial 
cells which undergo a malignant transformation, or of epithelial cancer from an unknown primary 
site of origin. **= possible, * = rare 

Furthermore, it is known that chronic exposure to asbestos induces an inflammatory 
response in the mesothelial microenvironment with an immunosuppressive character that 
contributes to neoplastic progression. In fact, the lack of blockable tumor targets and the 
presence of a heterogeneous peritumoral stroma that favors a malignant evolution 
explains the failure of the most modern biological antiproliferative drugs, including small 
molecules, monoclonal antibodies and, more recently, immunotherapies, which have 
revolutionized the therapeutic management of many other human tumors. This very 
complex context is thus characterized by the absence of “driver” somatic genetic 
alterations on the one hand and by the presence of genetic alterations at the germinal level, 
which are known to have a predisposing role in the development of disease. Moreover, 
genetic signatures reflect the Darwinian selection of MPM cells operated by the specific 
tumor-surrounding milieu. According to the revised cataloging of cancer hallmarks, it is 
well known that the factors of the microenvironment affect cell behavior according to 
chemical (e.g., growth factors, cytokines, nutritional status, the chemical composition of 
the matrix) and mechanical (e.g., mechanical stress, matrix stiffness) dynamics. It is also 
known that the malignant potential of cells occurs when they become able to disseminate 
from their natural environment into the lymphatic and blood vessels and colonize distant 
organs [11,12]. MPM is characterized by synchronous multiple pleural localizations and 
presents a peculiar metastatic pattern. In advanced disease stages, it is characterized by 
invasion of the lymph nodes, lung, and chest wall, but the invasion of the peritoneum and 
pericardium can occur as well. Only in advanced cases, and relatively rarely, distant 
spreading arises [13–15]. A deeper understanding of tumor–stromal crosstalk is 
mandatory to efficiently impact MPM progression and improve a patient’s outcome. 

  

Figure 1. Immunohistochemistry workup in case of pleural masses and suspect of MPM. The
study should include the expression of vimentin 8, TTF1, p40, calretinin, WT-1, D240, citokeratin
5/6, vimentin, S100, BER-EP4, CEA, CD31, CD34, desmin, and myogenin D1. The most relevant
differential diagnosis regards MPM (e.g., calretinin positive) vs. pleural metastases from lung cancer
(e.g., PAS-positive staining in case of adenocarcinoma -ADC); in some cases, results might not solve
the origin of neoplastic cells proliferating into the pleural space. Moreover, differential diagnosis
requires the exclusion of undifferentiated MPM, the presence of a small/dormant lung primary
carcinoma, a pleural localization of melanoma (expression of S100), rhabdomyosarcoma (expression
of desmin and myogenin D1), and angiosarcoma (expression of CD31, CD34), ectopic lung epithelial
cells which undergo a malignant transformation, or of epithelial cancer from an unknown primary
site of origin. **= possible, * = rare.

Furthermore, it is known that chronic exposure to asbestos induces an inflammatory
response in the mesothelial microenvironment with an immunosuppressive character that
contributes to neoplastic progression. In fact, the lack of blockable tumor targets and
the presence of a heterogeneous peritumoral stroma that favors a malignant evolution
explains the failure of the most modern biological antiproliferative drugs, including small
molecules, monoclonal antibodies and, more recently, immunotherapies, which have
revolutionized the therapeutic management of many other human tumors. This very
complex context is thus characterized by the absence of “driver” somatic genetic alterations
on the one hand and by the presence of genetic alterations at the germinal level, which
are known to have a predisposing role in the development of disease. Moreover, genetic
signatures reflect the Darwinian selection of MPM cells operated by the specific tumor-
surrounding milieu. According to the revised cataloging of cancer hallmarks, it is well
known that the factors of the microenvironment affect cell behavior according to chemical
(e.g., growth factors, cytokines, nutritional status, the chemical composition of the matrix)
and mechanical (e.g., mechanical stress, matrix stiffness) dynamics. It is also known that the
malignant potential of cells occurs when they become able to disseminate from their natural
environment into the lymphatic and blood vessels and colonize distant organs [11,12].
MPM is characterized by synchronous multiple pleural localizations and presents a peculiar
metastatic pattern. In advanced disease stages, it is characterized by invasion of the lymph
nodes, lung, and chest wall, but the invasion of the peritoneum and pericardium can occur
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as well. Only in advanced cases, and relatively rarely, distant spreading arises [13–15]. A
deeper understanding of tumor–stromal crosstalk is mandatory to efficiently impact MPM
progression and improve a patient’s outcome.

2. Genetic Alterations and Disease Stage

Although some data are available regarding inter-individual susceptibility to asbestos
carcinogenic potential and MPM onset, and several signatures and polymorphisms have
been discovered to influence the risk of developing the disease [for a review, see [16–20],
fewer data are available regarding the genetic asset associated to disease progression and
patient’s prognosis. Genes known to be altered and associated with MPM onset are detailed
in Tables 1 and 2. Notably, MPM can occur spontaneously in the absence of documented
exposure to asbestos or other risk factors. The most relevant data regards the detection
of alterations in the BRCA1-associated protein gene (BAP1) [21]. The BAP1 gene encodes
a deubiquitylase found to be associated with multiprotein complexes that regulate key
cellular pathways, including the cell cycle, cellular differentiation, cell death, gluconeogen-
esis, and the DNA damage response. BAP1 behaves as a tumor suppressor gene whose
mutations predispose to MPM onset. Low doses of asbestos are sufficient to trigger MPM in
the presence of genetic predisposition. Loss of BAP1 protein expression is documented in
>50% of cases [22]. Somatic BAP1 changes are frequently reported, followed by mutations
in NF2 (encoding for merlin) and CDKN2A (encoding for p16INK4A and p14ARF) genes.
Germline mutations in BRCA1 associated protein-1 (BAP1) gene have been reported in
families with a high MPM incidence; BAP1 somatic alterations can coexist in a condition
of biallelic inactivation. When mesotheliomas were acquired, both mutations that short-
ened the BAP1 gene and uncontrolled expression of BAP1 were found. Germline BAP1
mutations cause mesothelioma and other malignancies, namely, uveal cancer, meningioma,
and melanoma, overall defined as “BAP1- related cancer syndrome”. Germline mutations
affecting the BAP1 gene are inherited and exist in an autosomal dominant phenotype, with
the first mutated allele being inherited and the second inactivating mutation being acquired
later in life. Notably, patients with MPM due to the BAP1-related cancer syndrome seem to
have a better prognosis [22–24]. Great efforts have been directed toward understanding the
genetics behind what makes one more susceptible to the cancerogenic potential of asbestos.
Particular focus has been placed on the genes involved in inflammatory infiltration, oxida-
tive stress, chromosome instability, and response to treatments [25]. In this perspective, it
has been reported that specific variants in three genes associated with iron metabolism,
namely, ferritin, transferrin, and hephaestin, are significantly associated with protection
against the development of MPM [26,27]. Moreover, different pathway signatures have
been detected in MPM samples from patients in response to tissue damage after lung-
sparing surgery, chemotherapy, and radical hemi-thoracic radiotherapy treatment with
curative intent [28]. Due to their role in the inflammasome, polymorphisms of NLRP1 and
NLRP3 genes have been hypothesized to be involved in determining genetic susceptibility
to MPM [29]. However, preliminary results have not been validated in a cohort of MPM
cases and the controls with known asbestos exposure in Northern Italy, and thus, further
validation is required [30].
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Table 1. Most commonly altered genes in MPM.

Gene Location Pathway Variant Types

BAP 1 3p21.1

BRCA-associated protein-1 (ubiquitin
carboxy-terminal hydrolase) (BAP1) is a
gene that encodes a protein that has a
high affinity for the BRCA1 protein and
functions as a tumor suppressor protein

Missense mutations, nonsense mutations,
silent mutations, frameshift insertions
and deletions, and in-frame insertions
and deletions.

NF2 22q12.2

Neurofibromin 2 (NF2) is a gene that
encodes a protein that functions by
connecting cytoskeletal components with
cell-surface proteins, cytoskeletal
proteins, and ion transport proteins.

Fusions, missense mutations, nonsense
mutations, silent mutations, frameshift
deletions and insertions, and in-frame
deletions and insertions.

CDKN2A 9p21.3

Cell cycle control. Cyclin-dependent
kinase inhibitor 2A (CDKN2A) gene
encodes several protein isoforms that
function as inhibitors of CDK4 and ARF.

Missense mutations, nonsense mutations,
silent mutations, in-frame deletions,
frameshift deletions and insertions, and
whole gene deletions.

CDKN2B 9p21.3

Cell cycle control. Cyclin-dependent
kinase inhibitor 2B (CDKN2B, also
known as p15) is a gene that encodes a
protein that binds to CDK4 or CDK6 and
inhibits their activation.

Missense and silent mutations.

TP53 17p13.1

Cell cycle control.Tumor protein p53
(TP53) is a gene that codes for a tumor
suppressor protein, cellular tumor
antigen p53. The protein regulates
expression of genes involved in cell cycle
arrest, apoptosis, senescence, DNA repair,
and changes in metabolism.

The most common alterations in TP53 are
TP53 Mutation (32.56%), TP53 Missense
(26.61%), TP53 c.217-c.1178 Missense
(26.50%), TP53 Exon 5 Mutation (9.30%),
and TP53 Exon 8 Mutation (8.49%) [3].

SETD2 3p21.31

Chromatin remodeling/DNA
methylation. SET domain containing 2
(SETD2) is a gene that encodes a protein
that is a member of a class of huntingtin
interacting proteins. The protein
functions as a histone methyltransferase
specific for lysine-36 of histone H3.

Missense mutations, nonsense mutations,
silent mutations, frameshift deletions and
insertions, and in-frame deletions.

PBRM1 3p21.1

Chromatin remodeling/DNA
methylation. Polybromo 1 (PBRM1) is a
gene that encodes a protein that is a
member of a protein complex that
functions in ligand-dependent
transcriptional activation by nuclear
hormone receptors.

Missense mutations, nonsense mutations,
silent mutations, frameshift deletions and
insertions, and in-frame deletions.

KMT2D 12q13.12

Chromatin remodeling/DNA
methylation. Lysine (K)-specific
methyltransferase 2D (KMT2D) is a gene
that encodes a protein that functions as a
histone methyltransferase that
methylates the LYS-4 position of histone
H3.

Missense mutations, nonsense mutations,
silent mutations, frameshift deletions and
insertions, and in-frame deletions.

FBXW7 4q31.3

F-box/WD repeat-containing protein 7.
F-box and WD repeat domain containing
7, E3 ubiquitin protein ligase (FBXW7) is
a gene that encodes a member of the
F-box protein family.

Missense, nonsense, silent, and
frameshift insertions and deletions.
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Table 1. Cont.

Gene Location Pathway Variant Types

ATM 11q22.3

DNA damage/repair. ATM
serine/threonine kinase (ATM) is a gene
that encodes a protein that is a member
of the PI3/PI4-kinase family. The protein
functions as a cell cycle checkpoint kinase
and regulates multiple downstream
effectors.

Missense mutations, nonsense mutations,
silent mutations, whole gene deletions,
frameshift deletions and insertions, and
in-frame deletions and insertions.

LATS2 13q12.11 Serine/threonine-protein kinase LATS2.

The most common alterations in LATS2
are LATS2 Amplification (0.33%), LATS2
Loss (0.20%), LATS2 P479_A480dup
(0.02%), LATS2 R1054* (0.02%), and
LATS2 A476T (0.02%).

CREBBP 16p13.3

CREB-binding protein. CREB-binding
protein (CREBBP) is a gene that encodes
a protein that functions in transcriptional
activation and is involved in the
regulation of embryonic development,
growth control, and homeostasis. The
protein also acetylates histone proteins.

Fusions, missense mutations, nonsense
mutations, silent mutations, frameshift
insertions and deletions, and in-frame.

ARID1B 6q25.3

AT-rich interactive domain-containing
protein 1B. AT rich interactive domain 1B
(SWI 1-like) (ARID1B) is a gene that
encodes a protein that is a component of
the SWI/SNF chromatin remodeling
complex. The protein functions in
cell-cycle activation.

Missense mutations, nonsense mutations,
silent mutations, frameshift deletions and
insertions, and in-frame deletions and
insertions.

PTEN 10q23.31

PI3K/AKT1/MTOR. PTEN (phosphatase
and tensin homolog) is a gene that
encodes for phosphatidylinositol
3,4,5-trisphosphate 3-phosphatase and
dual-specificity protein phosphatase
PTEN. This protein is a lipid/protein
phosphatase that plays a role in multiple
cell processes, including growth,
proliferation, survival, and maintenance
of genomic integrity. PTEN acts as a
tumor suppressor by negatively
regulating the PI3K/AKT signaling
pathway.

Somatic mutations of PTEN occur in
multiple malignancies. Germline
mutations of PTEN lead to inherited
hamartoma and Cowden syndrome.

TET2 4q24

Chromatin remodeling/DNA
methylation. Tet methylcytosine
dioxygenase 2 (TET2; also known as
ten-eleven translocation 2) is a gene that
codes for methylcytosine dioxygenase
TET2, a protein involved in epigenetic
regulation of myelopoeisis.

TET2 is a tumor suppressor, and so in
cancer, loss of TET2 function, which can
occur via TET2 mutation, TET2 deletion,
or IDH1 or IDH2 mutation, can cause
myeloid or lymphoid transformations.
Mutations in TET2 have been found in
MDS, AML, ALL, and other hematologic
malignancies.

DNMT3A 2p23.3

Chromatin remodeling/DNA
methylation. DNMT3A (DNA
(cytosine-5-)-methyltransferase 3 alpha)
gene encodes the DNA
(cytosine-5)-methyltransferase 3A
protein, which is involved in epigenetic
gene regulation.

DNMT3A is most frequently mutated in
hematologic malignancies, but it has also
been observed in other cancers, including
lung cancer and MPM. The most
common alterations in DNMT3A are
DNMT3A Mutation (2.95%), DNMT3A
R882H (0.41%), DNMT3A Nonsense
(0.38%), DNMT3A R882C (0.21%), and
DNMT3A Loss (0.08%).
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Table 1. Cont.

Gene Location Pathway Variant Types

KMT2A 11q23.3

MLL cleavage product C180. Lysine
(K)-specific methyltransferase 2A
(KMT2A; also known as MLL) is a gene
that encodes a protein that functions as a
transcriptional coactivator. The protein is
involved in cellular processes including
the regulation of gene expression and
hematopoiesis.

Fusions, rearrangements, missense
mutations, nonsense mutations, silent
mutations, frameshift insertions and
deletions, and in-frame deletions.

FAT1 4q35.2

Protocadherin Fat 1, nuclear form. FAT
atypical cadherin 1 (FAT1) is a gene that
encodes a tumor suppressor protein that
controls cell proliferation.

Missense mutations, synonymous
mutations, nonsense mutations,
frameshift deletions, and frameshift
insertions.

MTAP 9p21.3 S-methyl-5’-thioadenosine
phosphorylase.

The most common alterations in MTAP
are MTAP Loss (4.92%), MTAP
Amplification (1.28%), MTAP-RAF1
Fusion (0.04%), MTAP A191fs (0.05%),
and MTAP A76V (0.04%).

EP300 22q13.2

Histone acetyltransferase p300. E1A
binding protein p300 (EP300) is a gene
that encodes a protein that functions in
transcriptional regulation by histone
acetylation.

Fusions, missense mutations, nonsense
mutations, silent mutations, frameshift
insertions and deletions, and in-frame
insertions and deletions.

PTCH1 9q22.32

Hedgehog signaling. Patched 1 (PTCH1)
is a gene that encodes a protein that
belongs to the patched gene family. The
protein functions as a receptor protein for
sonic hedgehog, desert hedgehog, and
indian hedgehog proteins.

Fusions, missense mutations, nonsense
mutations, silent mutations, whole gene
deletions, frameshift deletions and
insertions, and in-frame deletions and
insertions.

LATS1 6q25.1 Serine/threonine-protein kinase LATS1.

The most common alterations in LATS1
are LATS1 Amplification (0.16%), LATS1
Loss (0.14%), LATS1 R995C (0.03%),
LATS1 R670W (0.02%), and LATS1 R737*
(0.03%).

RECQL4 8q24.3

ATP-dependent DNA helicase Q4. RecQ
helicase-like 4 (RECQL4) is a gene that
encodes a DNA helicase that is
predominantly expressed in thymus and
testis.

Missense mutations, synonymous
mutations, nonsense mutations, and
frameshift deletions.

ROS1 6q22.1

Kinase fusions, receptor tyrosine
kinase/growth factor signaling. ROS1
(ROS proto-oncogene 1, receptor tyrosine
kinase) is a gene that encodes the
proto-oncogene tyrosine-protein kinase
ROS protein, a receptor tyrosine kinase
(RTK) of the insulin receptor family. OS1
fusions have been described in
glioblastoma and colangiocarcinoma.
ROS1 fusions containing an intact
tyrosine kinase domain possess
oncogenic activity. Signaling downstream
of ROS1 fusions results in activation of
cellular pathways known to be involved
in cell growth and cell proliferation.

The most common alterations in ROS1
are ROS1 Mutation (3.56%), ROS1 Fusion
(0.29%), ROS1 Amplification (0.17%),
ROS1 Loss (0.12%), and ROS1-CD74
Fusion (0.05%).
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Table 1. Cont.

Gene Location Pathway Variant Types

WT1 11p13

Beta-Catenin/WNT signaling. Wilms
tumor 1 (WT1) is a gene that encodes a
transcription factor that contains four
zinc finger motifs and a
proline/glutamine-rich DNA binding
region at opposite termini.

Fusions, missense mutations, nonsense
mutations, silent mutations and
frameshift deletions.

BCOR Xp11.4

BCL-6 corepressor. BCL6 corepressor
(BCOR) is a gene that encodes the BCL-6
corepressor protein. BCOR is a member
of the ankyrin repeat domain containing
gene family. The corepressor expressed
by BCOR binds to BCL6, a DNA-binding
protein that acts as a transcription
repressor for genes involved in
regulation of B cells, a type of immune
cell. BCOR mutations have been
observed in myelodysplastic syndromes,
endometrial cancer, and other cancers.

The most common alterations in BCOR
are BCOR Mutation (3.39%), BCOR
Frameshift (0.63%), BCOR Nonsense
(0.44%), BCOR N1459S (0.34%), and
BCOR Loss (0.22%).

ARID2 12q12

AT-rich interactive domain-containing
protein 2. AT-rich interactive domain 2
(ARID; RFX-like) (ARID2) is a gene that
encodes a protein that functions in a
chromatin remodeling complex to
promote gene transcription

Missense mutations, nonsense mutations,
silent mutations, frameshift insertions
and deletions, and in-frame insertions
and deletions.

ASXL1 20q11.21

Chromatin remodeling/DNA
methylation. Additional sex combs like
transcriptional regulator 1 (official
symbol ASXL1) is a gene that encodes the
putative Polycomb group protein ASXL1.
Normal ASXL1 plays a role in embryonic
development.

The most common alterations in ASXL1
are ASXL1 Mutation (2.62%), ASXL1
Nonsense (0.65%), ASXL1 Amplification
(0.67%), ASXL1 R693* (0.10%), and
ASXL1 Y591* (0.07%).

Table 2. Known MPM associated genetic biomarkers.

Location Pathway Variant Types

WT-1 11p13 Beta-Catenin/WNT signaling Expression

PMS2 Deficient Expression 7p22.1 Deficient Expression

MSLN Overexpression 16p13.3 Overexpression

MSLN Expression 16p13.3 Expression

MSH6 Deficient Expression 2p16.3 Chromatin remodeling/DNA
methylation Deficient Expression

MSH2 Deficient Expression 2p21-p16.3 Chromatin remodeling/DNA
methylation Deficient Expression

MLH1 Deficient Expression 3p22.2 DNA damage/repair Deficient Expression

HLA-A*02:01 Positive

Deficient DNA Mismatch
Repair (dMMR)

Predictive biomarker for use
of nivolumab,

pembrolizumab, dostarlimab,
fluorouracil, and ipilimumab

in patients
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Table 2. Cont.

Location Pathway Variant Types

BRCA2 Mutation 13q13.1 DNA damage/repair

Missense mutations, nonsense
mutations, silent mutations,

whole gene deletions,
frameshift deletions and
insertions, and in-frame

deletions

BRCA2 Loss 13q13.1 DNA damage/repair Loss

BRCA1 17q21.31 DNA damage/repair

Missense mutations, nonsense
mutations, silent mutations,

frameshift deletions and
insertions, and in-frame

deletions

Several changes have been introduced in the last edition of the tumor, node, and
metastasis (TNM) staging system for MPM as a better evaluation of tumor thickness and
a refinement of the N classification as important factors associated with survival [31,32].
However, several limitations persist, and the TNM (as well as the systems proposed by the
International Mesothelioma Interest Group—IMIG) system remains almost inadequate. The
need to improve the accuracy of staging criteria is strictly related to the rarity of the MPM
on the one hand, to its morphologic, biologic, and clinical heterogeneity on the other, and to
the low percentages of cases that undergo surgical resection with a clear examination of the
tumor by a pathologist. Thus, it makes sense to identify disease markers to be integrated
with clinical features and validated into heuristic algorithms to efficiently assess disease
progression. Great efforts have been made to identify genetic signatures with the predictive
values of tumor aggressiveness and patient outcome. Cytogenetic studies performed on
MPM have demonstrated heterogeneous and highly variable chromosomal aberrations,
with only a few features being shared between patients. Loss-of-heterozygosity mainly oc-
cur in 1p, 3p, 6q, 9p, 13q, 15q, and 22q chromosomal regions. Two of these regions are most
frequently altered, namely, the CDKN2A–ARF gene at 9p21 and NF2 at 22q12, which behave
as tumor suppressors [33]. Oncogene activation events encompass missense somatic muta-
tion in KRAS and TP53, which have been detected in human MPM samples and are known
to induce not only epithelial transformation but also aggressive mesotheliomas in animal
models [34]. Transformation of human epithelial mesothelium is known to be regulated by
ERKs transducers, which have different roles in the regulation of cell injury and repair, and
a critical role is played by ERK2 [35]. Some genomic events are known to be associated with
MPM progression. For instance, Ivanov et al. [36] demonstrated differential copy number
alteration in patients with long- and short-term recurrence and identified chromosomal
losses in 1p, 9p, 9q, 4p, and 3p, and gains in 5p, 18q, 8q, and 17q, as commonly shared by
the analyzed cases. Deletion in 9p21.3 was specifically associated with a worse outcome.
Another issue regards the hepatocyte growth factor (HGF)/scatter factor and its receptor
tyrosine kinase, MET, which are highly expressed in most human malignant mesotheliomas.
MET gene is located on chromosome 7q31. In the cancer context, MET phosphorylation is
responsible for the activation of genetic programs defined as Invasive Growth (IG), which
drives metastatic spreading [37]. Mutations in the semaphorin and in the juxtamembrane
domains of the receptor and an alternative exon 10 splicing have been reported [38] in MPM.
In addition, MET overexpression is frequently reported in MPM, mainly in the epitheliod
forms, but this data is not directly related to MET gene amplification, and it is not fully
associated with patient outcomes [39,40]. Thus, the predictive role of Met overexpression
as a predictive marker for targeted drugs is not fully verified [41]. The activation of the
HGF/MET pair is consistent with that of EMT (epithelial-to-mesenchymal transition),
which is known to be induced by several transducers, among which transforming growth
factor β (TGF-β). EMT- or IG derives from oxidative damages induced by asbestos on
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mesothelial cells and, once activated, promotes the acquisition by a transformed cell of
more aggressive phenotypes and invasive capacity markers [42]. In this context, several
mesenchymal markers are expressed and often redundant: phosphorylation SMAD1/5
pathway is essential to activate EMT by TGF-β [43], which can also act through the mitogen-
activated protein kinase (MAPK) [44]. It has been shown that HGF-MET pair-mediated
cell proliferation of human MPM cell lines is associated with the occurrence of activating
mutations in the phosphoinositide 3-kinase (PI3K)/MAPK 5/Fra-1 pathway transducers,
which mediate resistance to anti-MET agents [45,46]. We and others also confirmed the
activation of the MAP/ERK pathway, which represents a potentially actionable target to
impact MPM progression and aggressiveness. Therefore, a strong rationale to multi-kinase
combination therapy persists [47–49]. The post-transcriptional analysis reported that the
miR-200 family (mainly miR-141 and miR-200c) could impact TGF-β-induced EMT through
reciprocal repression with zinc-finger E-box-binding homeobox 1(ZEB1) [50].

The advent of massively parallel sequencing techniques has revolutionized the field
of molecular oncology, giving the opportunity to discover the entire cancer genome and
identify novel targeted regions and epigenetic and RNA markers [51–53]. The first com-
prehensive genomic analysis applied to MPM confirmed BAP1, CDKNA2A/B, and NF2
as the most frequently mutated genes [54,55]. On the other hand, transcriptomic profil-
ing revealed different subgroups closely but strictly recalling known histologic subtypes,
with the mesenchymal one, characterized by the activation of the EMT process, being
associated with sarcomatoid morphology and, as expected, with more aggressive clinical
behavior [56]. Subsequent and recent works pointed out changes affecting p53/DNA
repair and PIK3CA pathways as being associated with reduced overall survival [57,58],
demonstrating an overall poorly mutated landscape with high levels of tumor mutational
burden (TMB) in only 5% of cases [59]. Different genetic signatures (including CDH2, CKS2,
KIF11, KIF88, Lox, NF2, TP53, SETD2, LATS2, SETDB1, PBRM1, LATS1, SETD5) have been
more recently proposed as independent prognostic tools in MPM [60,61]. Very recently,
Zhang and coll. [62] were able to demonstrate that the BAP1 event occurs as early as clonal
selection, whereas changes in NF2 genes, leading to Hippo inactivation, are selected later
in cancer progression or evolve in parallel with the evolutionary trajectory. The same group
also identified lesions affecting chromosome 4 as mutations in the FBXW7gene (4q31.3) as
negative prognostic tumor suppressors involved in resistance to antimicrotubule agents,
such as vinorelbine. Overall, MPM evolution shapes the MPM microenvironment since
unstable genomic clusters generate more efficient immunosurveillance, ultimately leading
to a scarce response to immune checkpoint inhibitors.

In conclusion, it is well known that MPM has a uniquely poor somatic mutational land-
scape and that the disease is mainly driven by selective pressure on the microenvironment.
Thus, available therapies are not MPM-specific, and patient outcome is still poor and mod-
estly affected by current treatments. The absence of driving somatic lesions explains the
clinical failure of small molecules, whereas immunotherapy has shown limited advantages
in association with standard chemotherapy. Growing interest is addressed to the germline
MPM profile. A better understanding of the genetic variants and polymorphisms in MPM
patients will help decipher a still unexplored milieu and improve mechanistic knowledge
of MPM biology and interindividual susceptibility to asbestos. Moreover, this knowledge
could be helpful in identifying novel actionable targets and in designing personalized and
more efficient therapeutic strategies.

3. The Role of Microenvironmental Hypoxia

Hypoxia defines the condition in which tissue oxygen is available at an insufficient
level to maintain and guarantee homeostasis. During malignant transformation, hypoxia
develops as a consequence of a series of events, mainly rapid and uncontrollable cell
proliferation, altered metabolism, and inappropriate vascularization of the tumor mass.
Hypoxia regulates the crosstalk between tumor and microenvironment (TME) and is as-
sociated with worse patient prognosis. It represents a relevant target to impair tumor
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progression and chemoresistance as well [63–66]. The effects of asbestos on the extracellular
matrix sustain MPM cells, preventing apoptosis and facilitating their spreading. Indeed,
biopersistent fibers impact the tumor microenvironment, and MPM cells are known to
produce collagen and matrix metalloproteinases, activate inflammatory cells and cytokines,
and secrete angiogenetic factors, such as VEGF which acts as an autocrine growth factor
and mitogen for malignant cells [67]. Angiogenetic agents have been tested in MPM as
monotherapy [1], even though with unsatisfactory results. The hypoxic microenvironment
is mainly responsible for the tumor’s neoangiogenic response but also modulates gene and
microRNA (miRNA) expression, translational response pathways, and protein activation,
ultimately contributing to chemo–radio-resistance through a variety of mechanisms [68].
Hypoxia is a hallmark driving force for tumor progression in solid cancers. The aggressive
malignant potential of MPM cells, defined by increased clonogenic capacity and motility
in the absence of proliferative gain, is increased in hypoxic conditions due to upregula-
tion of the HIF1alfa, HIF2alfa, and target Glut-1 genes [69]. Moreover, hypoxia induces a
metabolic switch in cancer cells leading to increased glucose uptake and the switch from
pyruvate to lactate [70]. This phenomenon has been demonstrated in MPM as well through
PET/CT scan analysis with 2-[19 F]-fluoro-2-deoxy-D-glucose (F-FDG) tracers. In vivo,
F-FDG uptake in pleural MPM shows high correlations with upregulation of GLUT1, HIF1,
VEGF, CD34, Ki67, and MTOR upregulation, and poor patient prognoses; HIF-1 activation
increases glucose transport (via GLUT-1) as well as glutamine and L-type amino acid
transport (via LAT1) in pleural MPM [71–73]. Moreover, hypoxia is also known to promote
the Invasive Growth program as a consequence of the activation of the MET-promoter gene
by HIF-1alfa [74]. The occurrence of von Hippler Lindau mutations detected by massively
parallel sequencing of MPM samples has been reported to be associated with resistance to
the HIF1alfa inhibitor YC-1 [75]. Moreover, important crosstalk between hypoxia-induced
milieu and inflammatory pathways is sustained by the interaction between HIF1alfa and
NF-
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B transcription factors, a well-recognized regulator of several genes involved in in-
flammatory and immune responses [76,77]. Notably, a series of miRNAs whose expression
is significantly deregulated by hypoxia, specifically, Let-7c-5p and miR-151a-5p, have been
shown to be related to hypoxia and energy metabolism, differentially expressed in MPM
and healthy mesothelium, and associated to worse clinical outcome [78]. Hypoxia is also
related to chemoresistance in MPM according to several mechanisms: (i) reduction of
expression of proton-coupled folate transporter (PCFT), which is associated with response
to pemetrexed [79]; (ii) induction of expression on MPM cells of stemness (CD26, CD44,
and ABCG22); iii) and hypoxia adaptation (ABCG2, ALDH1a1, HIFs) markers [80], even
though the level of HIF1alfa seems to not predict patient survival [81]. In conclusion, as in
other cancers, hypoxia deeply characterizes MPM’s surrounding stroma and is strongly
associated with tumor onset and progression: it is also implicated in the failure of standard
treatments. A deeper understanding of the molecular basis of the hypoxic mesothelioma
microenvironment could be of help in the clinical setting as well.

4. The Hypoxia and Stemness Interconnection in MPM

Solid tumors contain a cellular subset that displays stemness properties: the cancer
stem cells (CSC). Stem cells are defined as those elements which harbor the capacity to
self-renew and the potency to generate differentiated cells [82]. The concept of CSC implies
that tumor growth, similar to healthy tissue regeneration, is orchestrated by a small fraction
of dedicated stem cells. The canonical theory describes stem cells and CSC as quiescent
elements featuring intrinsic properties and capable of asymmetric division, thus giving
rise to one stem cell and one rapidly defining cell. These cells also harbor the potential to
sustain tumorigenesis and constitutively express molecular markers of multidrug resis-
tance; they feature a quiescent, not-addicted phenotype, theoretically insensitive to chemo
and targeted therapies [83–85]. According to this model, non-stem malignant cells have
limited functional plasticity. More recent data support a more dynamic cellular hierarchy
according to which CSC is not definitely rare or quiescent; they should express a vast range
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of gene products rather than a specific signature and are instructed by the signals of the
niche [86,87]. The niche is a defined unique anatomic locus devoted to maintaining stem
cell homeostasis. Moreover, it cooperates with stem cells in tissue regeneration and repair.
The dialogue between stem cells and their niche is necessary for tissue homeostasis. The
alteration of this balance or a deficient niche function is implicated in different patholo-
gies [88–94]. In a similar fashion, CSCs reside in niches that also sustain CSC immune
escape and are implicated in metastatic potential [95]. In this context, hypoxia is known to
play a key role in maintaining CSC. Hypoxia is a key feature of MPM metabolism, related
to oxygen consumption from rapidly proliferating cells, stromal reaction to biopersistent
fibers, and neoangiogenesis [96,97]. In MPM patients, hypoxic areas are clearly detectable
with F-fluoromisonidazole (FMISO) Positron Emission Tomography (PET) scans, and they
are associated with increased metabolic activity on Fluorodeoxyglucose (FDG)-PET [54].
Hypoxia is also traced by immunohistochemistry with positive staining for a Hypoxia-
Induced Factor 1α (HIF1α) [81]. The hypoxic microenvironment sustains undifferentiated
phenotype and promotes invasive cellular behavior characterized by the projection of pseu-
dopodia and increased expression of epithelial-to-mesenchymal transition markers such as
E-cadherin, vimentin, and Bcl2 [69]. Coherently, with respect to histotype, sarcomatoid and
biphasic MPM harbor enriched stem compartments, which are responsible for increased
aggressiveness and chemoradioresistance if compared to epitheliod activation [98]. HIFs
also regulate the stemness of CSCs, since they require activation of HIF-1α and HIF-2α to
maintain their self-sustainability under hypoxic conditions [99–101]. Moreover, the hypoxic
microenvironment may correlate with an altered immune response, strongly unbalanced to-
ward immunosuppression which contributed to the intrinsic resistance of MPM to immune
checkpoint inhibition in MPM [68,102]. Hypoxia, by acting via increased HIF1α-expression,
induces PD-L1 expression in tumor cell lines as well as in murine macrophage and dendritic
cells. In MPM, although being related to higher response rates to nivolumab [103–105], the
increased PD1 and PD-L1 expression are mainly associated with sarcomatoid morphology
and do not significantly affect overall survival [106–108]. This observation clearly points
out that other parameters are involved with PD1 and PD-L1 in determining real sensitiv-
ity to immunotherapy in a complex and heterogeneous context as MPM, such as tumor
mutational burden or tumor-infiltrating lymphocytes, the tumor-associated macrophages
(TAMs), which are abundantly present in the MPM microenvironment and play an impor-
tant role in inducing T-cell suppression, Tim-3 (T cell immunoglobulin and mucin-domain
containing-3), which is a co-inhibitory receptor expressed on IFN-γ-producing T cells,
FoxP3+ Treg cells, and innate immune cells (macrophages and dendritic cells), T-regulatory
cells [88,109–112]. Moreover, the expression of PD-L1 in cancer stem cells has been related
to immune evasion [113,114]. The knowledge of CSC in other solid cancers has led to the
development of studies focused on the identification of initiating cancer cells in MPM as
well [115]. Previous work reported the expression of MPM cells of several markers, such as
SP, CD9, CD24, CD26, BMI1, OCT4, and NOTCH1, as related to a primary stem signature.
Their expressions were correlated with several cancer-related genes, and phosphorylation
of ERK by EGF was regulated by the expression of CD26 but not CD24 [116,117]. Moreover,
the expression of Bmi-1+, uPAR+, and ABCG2+ has been associated with putative stemness
and induction of resistance to platinum and pemetrexed in MPM cell lines [118]. The
CSC compartment in MPM is emerging as a novel actionable target and mesospheres as a
reliable model which recapitulates tumor onset and progression and can be exploited for
therapeutic purposes [108,119]. The strategies developed essentially aim at: (i) destroying
CSC; (ii) inducing differentiation of the stem elements; (iii) targeting the niche [120]. Several
trials have been designed to impair MPM stem cells. The dual FAK and the Proline-rich ty-
rosine kinase 2 (Pyk2) member inhibitor, defactinib, was revealed as an efficient suppressor
of CSCs [121–123]. This data supported the rationale for the phase II double-blind, random-
ized COMMAND-A study with defactinib in mesothelioma (Clinical trial NCT01870609).
The results of the study didn’t show a beneficial effect of defactinib in improving OS (overall
survival) and PFS (progression-free survival) in MPM [124]. However, the study pointed
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out two relevant issues: first was the potential role of the ezrin-radixin-moesin (ERM)
protein (merlin or neurofibromin) which shares a regulatory domain with FAK-related
Pyk2 kinases [125]. The NF2 gene encoding for the merlin protein is frequently mutated
or inactivated in MPM [126–128] and represents a potential therapeutic target [129–131].
Notably, merlin is known to be critical for maintaining normal structure and function of
the hematopoietic stem cell niche [132], and FAK cooperates in preserving the self-renewal
of CSC, and the overexpression of merlin has been shown to affect proliferation and via-
bility of CSC-enriched MPM [133]. Mithramycin is an antineoplastic agent produced by
Streptomyces plicatus which behaves as DNA/RNA polymerase inhibitor, DNA-binding
transcriptional inhibitor and antibiotic and has been observed to facilitate tumor necrosis
factor (TNF)-α activity and Fas-ligand-induced, which is known to induce malignant cell
reprogramming, differentiation, and senescence [134,135]. The NCT02859415 is a phase I/II
trial aimed at evaluating continuous 24h intravenous infusion of mithramycin in patients
with thoracic malignancies, including MPM. The study was recently terminated, and data
are under analysis (https://clinicaltrials.gov/ct2/show/NCT02859415, accessed on 30
January 2023).

In conclusion, hypoxia represents a key feature involved in MPM onset and progres-
sion, and it is strictly related to the maintenance of cancer cell hierarchical compartments.
However, the increasing body of knowledge regarding this peculiar bio-molecular context
could be of help in designing tailored and more efficient therapeutic platforms.

5. Trancriptome and Secretome Profile of MPM

Strong preclinical evidence supports the role of hypoxia and MPM CSCs in deter-
mining disease resistance to therapies. A main mechanism is related to the alteration of
microRNAs (miRNAs) [136]. The latter are small non-coding RNA (ncRNA) molecules
that are known to play a regulatory role in cancer by acting either as oncogenes or tumor
suppressors; moreover, they behave as actionable targets with predictive and prognostic
roles. Other forms of ncRNAs include long non-coding RNAs (lncRNA), PIWI-interacting
RNAs (piRNA), small interfering RNAs (siRNA), and microRNAs (miRNA) [137,138]. It is
well known that the hypoxic microenvironment in MPM interferes with a range of miRNAs
and that some miRNAs target HIF1α [139–142]. With respect to MPM, published data point
out that let-7c-5p and miR-151-5p can be considered “hypoxamiRs” involved in tumor initi-
ation and EMT maintenance, altered metabolism, chemoresistance, and poor prognosis [78].
On the other hand, several miRNAs are known to be downregulated in hypoxic conditions:
miR-15b, 16, 19a, 20a, 20b, 29b, 30b, 30e-5p, 101, 141, 122a, 186, 320, and 197 [143]. Among
them, miR-16 behaves as a tumor suppressor in MPM, being a promising actionable target
to impair MPM growth [144,145]. TargomiRs are minicells (EnGeneIC Dream Vectors)
loaded with miR-16-based mimic microRNA (miRNA) and directed against EGFR that
are designed to counteract the loss of the miR-15 and miR-16 family miRNAs [146]. The
MESOMIR 1 phase I trial showed a safe profile and demonstrated some therapeutic activity
in a clinical setting in MPM (NCT02369198). In other cancer types, miRNAs have been
reported to be involved in maintaining the stemness phenoptype of CSCs [147–150], but
this role in MPM is not yet documented.

Extracellular vesicles (EVs) are small, membrane-bound structures that are released
by cells into the extracellular space and are reported to be involved in mesothelial transfor-
mation [151–153]. Comprising exosomes, microvesicles, and apoptotic bodies, EVs play a
crucial role in various physiological processes, including cell-to-cell communication and
the transport of molecules between cells [154]. Recent studies have also uncovered that
EVs have a significant impact on the development and progression of tumors [155]. Tumor-
derived EVs are indeed found in high concentrations in the blood and urine of cancer
patients [156] and contain a variety of biomolecules, including proteins, lipids, and nucleic
acids, that can influence the behavior of surrounding cells [157]. Despite being limited in
number, some publications suggest that EVs play a role in the initiation and progression
of malignant pleural mesothelioma (MPM) [158]. Regarding MPM initiation, it is well
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established that asbestos exposure is a key cause, and EVs may play a role in the underlying
biology. A study by Munson and colleagues found that asbestos-exposed lung epithelial
cells and macrophages secrete EVs with unique proteomic cargo, including proteins, such
as plasminogen activator inhibitor 1, vimentin, thrombospondin, and glypican-1 [159].
These EVs were also found to alter the gene expression of mesothelial cells, leading to
changes related to epithelial-to-mesenchymal transition and other cancer-related genes,
which contribute to disease outcomes. In another study, the same group exposed mice to
asbestos by oropharyngeal aspiration, and 56 days later, plasma EVs were analyzed for
proteomic content, revealing an abundance of acute-phase proteins, such as haptoglobin,
ceruloplasmin, and fibulin-1 [160]. All of them were previously reported as implicative of
asbestos exposure [161,162]. Regarding tumor progression, EVs play a significant role by
promoting the growth and spread of cancer cells [163]. For MPM, EVs can carry oncogenes,
which are genetic mutations that drive cancer development, and transfer them to other
cells, leading to the formation of new tumors. For example, cargo can be transported
between cells through actin-based cellular extensions, known as tunneling nanotubes,
and MPM-EVs have been shown to increase their formation [164]. Furthermore, EVs can
promote the growth and survival of cancer cells by stimulating angiogenesis and activating
signaling pathways that promote cell proliferation. Studies investigating the protein and
genetic (miRNA) content of EVs derived from MPM support these claims. Greening and
colleagues used quantitative proteomics to investigate MPM-EVs and identified protein
networks associated with angiogenesis and metastasis [165]. Furthermore, using iTRAQ®

mass spectrometry, it was found that MPM-EVs were enriched in proteins involved in
carbon metabolism, the stress response to amino acids biosynthesis, protein processing in
the endoplasmic reticulum, and antigen processing and presentation [166]. Other studies
reported that MPM-EVs are rich in cytoskeleton proteins and their associated proteins
(like moesin, ezrin, desmoplakin, actinin-4, and fascin [167]), signal transduction-involved
proteins [15]. It’s particularly interesting that developmental endothelial locus-1, which
can act as an angiogenic factor, has been found to be present and, thus, increase vascular
development in the neighborhood of the tumor [168]. Additionally, MPM-EVs contain
miRNAs involved in the post-transcriptional regulation of genes and protein expression,
affecting cellular processes like proliferation, migration, and apoptosis. Specifically, higher
levels of miR-16-5p [169], miR-222-3p, miR-30a-5p, and miR-16-5p were upregulated in
exosomes from MPM, while miR-31-5p was significantly decreased [170]. EVs also play a
crucial role in the immune response to tumors. Recent research has shown that MPM-EVs
contain a high concentration of molecules that aid in antigen presentation, as well as im-
munoglobulins and complement factors [151,152]. Proteomic studies have also revealed
the presence of protein networks that play a role in immunoregulation [149]. As a result,
tumor-derived EVs can suppress the activity of immune cells, making it harder for the
body to fight cancer. Additionally, EVs can help cancer cells evade the immune system by
disguising themselves as healthy cells. In this regard, Clayton and colleagues have proven
the role of tumor EVs bearing NKG2D in inhibiting immunological functions, thereby
contributing to cancer immune evasion. Indeed, incubating MPM-EVs with leukocytes
resulted in a marked reduction in the proportion of NKG2D-positive CD3+CD8+ cells
and CD3− cells [171]. On the other hand, MPM cells also release exosomes that express a
distinct set of proteins involved in antigen presentation, making them a valuable source of
tumor-associated antigens. Mahaweni et al. have investigated the use of MPM-derived
exosomes in dendritic cell-based immunotherapy, resulting in improved survival of tumor-
bearing mice [172]. It is worth noting that this is a significant advancement, as MPM has
few tumor-associated antigens. The potential to serve as a diagnostic tool for early cancer
detection is another characteristic of EVs in MPM. Recent research has yielded promising
results, though further validation with larger sample populations is needed. For instance,
a study by Javadi and colleagues found higher ratios of biomarkers, such as galectin-1,
mesothelin, VEGF, and osteopontin, in MPM samples compared to benign samples [173].
On the other hand, exosomal angiopoietin-1 levels were found to be higher in benign
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samples than in malignant ones. Additionally, changes in miRNA expression have been
identified as potential diagnostic tools. For example, a study by Cavalleri and colleagues
found that miR-103a-3p and miR-30e-3p provided the most discriminating combination
when comparing plasmatic EVs from MPM and cancer-free patients [174]. Finally, the
unique molecular composition of EVs presents an opportunity to utilize them as a means
of delivering drugs and genetic material directly to tumor cells, ultimately leading to the
development of targeted therapeutics. One of the major benefits of using EVs as a drug de-
livery system is their ability to selectively target specific cells and tissues, a process known
as “homing”; another benefit is their ability to cross biological barriers [175]. Tumor-derived
EVs, in particular, have been found to possess the ability to target cancer cells, thus deliver-
ing therapeutic agents directly to them while avoiding healthy cells [176]. This happens
by recognizing specific receptors on the surface of cancer cells and has been demonstrated
even in studies of MPM. In this regard, as reported by Monaco and colleagues, the transfer
of microRNA-126 via exosomes has been shown to inhibit angiogenesis and cell growth in
diseased tissue [156]. It is thus clear that EVs play a significant role in the development
and progression of MPM [177]. Most importantly, EVs not only represent a key mechanistic
system in MPM but also identify a powerful, actionable target. Further understanding of
the mechanisms by which EVs contribute to cancer will pave the way for creating new
diagnostic tools and therapeutic strategies.

6. Conclusions

The complex tumor and microenvironmental cross-talk that specifically characterizes
MPM is becoming a novel promising therapeutic target. A main issue regards the role
of hypoxia in inducing activation of proliferative signals and in maintaining neoplastic
cell hierarchy and stem compartment. Hypoxia also interferes with MPM cell transcripts
and miRNA expressions. The latter, together with exosomes and microvesicles, although
behaving as key pathogenic clues, also define a possible line of therapy against MPM,
featuring a powerful translational potential for future clinical development and use.
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