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Modes of variation for Lorenz Curves
Modi di variazione per curve di Lorenz

Enea G. Bongiorno and Aldo Goia

Abstract This work illustrates how to perform functional principal component anal-
ysis and to compute the modes of variations for a sample of Lorenz curves. In partic-
ular, to coherently implement functional principal component analysis in a proper
manner, Lorenz curves are suitably transformed. The procedure is applied at the
income Lorenz curves for the Italian regions in the years 2000, 2006 and 2010.
Abstract Questo lavoro illustra come implementare I’analisi delle componenti prin-
cipali funzionali e come calcolare i modi di variazione per un campione di curve di
Lorenz. In particolare, al fine di implementare in maniera coerente [’analisi delle
componenti principali funzionali, le curve di Lorenz sono trasformate opportuna-
mente. La procedura é applicata alle curve di Lorenz del reddito per le regioni
italiane negli anni 2000, 2006 e 2010.

Key words: Lorenz curves, Modes of variation, income distributions

1 Introduction

In some applications, ranging from Economics to Biology, from Chemistry to En-
vironmetrics, it is interesting to consider the notion of concentration, that is the
attitude of a non—negative r.v. X to redistribute its total mass over the individuals
within the population. This concept allows to represent and distinguish situations
ranging from the maximum concentration setting (when one individual holds the
total mass) to the equidistribution one (when each individual hold the same mass).
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A formal way to depict the concentration of a probability law is given by the Lorenz
Curve (LC) [5] that is defined by

L:[0,1] — [0,1]
p = L(p)=Jg Q(t)dt/u,

where it = E[X], Q(p) = inf{x: F(x) > p} is the quantile function of X defined for
any p € (0,1) and with F being the cdf of X. For a LC one has L(0) =0, L(1) =1,
L(p) < p and L is continuous, increasing and convex on [0, 1]. As an instance, con-
sider the empirical LCs (i.e. based on the empirical versions of mean and quantile
function) of household income of the 20 regions of Italy for the years 2000, 2006,
2010 estimated from the Bank of Italy Survey on Household Income and Wealth, see
Fig. 1. Since L(p) is the percentage of the income X held by the p100% “poorest”
part of the population, each curve represents how the income concentrates within a
region population in a given year.
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Fig. 1 Each curve illustrates the concentration of family income in a given year (2000, 2006, 2010)
and region for a total of 60 empirical LCs.

These curves can be seen as a sample of a random element taking values in .Zor, the
family of continuous, increasing and convex functions from [0, 1] to itself passing
through the origin and (1, 1). In this view, one can explore data by borrowing tech-
niques from functional data analysis (FDA): a recent branch of statistics that studies
those phenomena whose observations are (discretized) curves; see e.g. [3, 4, 6]. Al-
tough a standard FDA approach for LCs is possible, in general, it is not advisable.
In fact, LCs are special functional data not directly observed but estimated from a
sample of a real random variable: this leads to a double stochasticity issue that could
impact over usual FDA techniques. Moreover, given the constrained nature of the
Lorenz curve process, .Zor is not a structured space (for instance Hilbert) and then
classical methods should be used with caution.

The aim of this work is to explore the variability of the described data by means
of the “modes of variation”. For a given functional process, its j-th mode of variation
is the mean function perturbed by +k,/n;v; where, k > 0 and {n;,v;} are the j-th
eigenelements of the covariance operator of the process. As a consequence, modes
of variation are usually computed after the functional principal component analysis
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(FPCA), but, given the above remarks on LCs, a naive application of FPCA leads to
modes of variation not belonging to -Zor and then to incoherent interpretations. To
tackle such issue, a preliminary transformation of data is necessary.

The remain part of this work is divided in two sections: Sect. 2 describes the embed-
ding proposed by [1] and the procedure to compute the modes of variations whereas
Sect. 3 illustrates some shortcomings arising with a naive FPCA and applies the
method presented in Sect. 2 to the Bank of Italy dataset (see Fig. 1).

2 Embedding and FPCA

Consider
Lor={Le Clzo,u :L(0)=0,L(1)=1,L' >0,L" > 0},

where L’ and L” denote the first and second derivative of L respectively.
The following map

y(L)=—In(L") —G—/Ol In(L"(p))dp, VL € Zor

is a bijection from Zor into the separable Hilbert space i’f ={ge .,2”[% e [g=0}

and its inverse, for any g € £, is given by
P 1
v )= p+ (= 1) [ zexp (=50 /iedz+p [ (= Dexp(—g(2)) [z
P

where &, = [ [ exp{—g(z)}dzdp is a scale technical factor. Hence, thanks to ,
Zor can be endowed with a Hilbert structure inherited by .#2. This allows to prop-
erly perform FPCA and to compute modes of variations in % as usual. Moreover,
v~ ! can be used to map the obtained results back in Zor.

In particular, given a sample of empirical LCs {L;(p),i = 1,...,n} each one esti-
mated from a sample drawn from a random variable Xj, the following procedure can
be implemented.

An embedding approach for Lorenz FPCA

1. Get Z;’ (p) from L;(p) by using a suitable smoother (e.g. local polynomial).
2. Embed the LC in the Hilbert space %> by means of :

~ =~ L
W@ = —In@)+ [ @ (p))dp.

3. Implement the FPCA in .#? by computmg the empirical
» mean [I, covariance operator Z and its eigenelements {2, i é e

567



Enea G. Bongiorno and Aldo Goia

+ j-th mode of variation of w(L) that is

=k A;E,

forany k> 0and j € {1,...,n}. n
4. Pull in back into .Zor by using Y1, to get M;, = y~ ! (i) the j-th
mode of variation in Zor.

The described procedure is statistically consistent since, under mild regularity
conditions on the cdf F and as n — oo, M (k) converges in probability to M;(k) the
theoretical j—th modes of variation when LCs are integrally observed.

3 Application

In this section the proposed approach is applied to the Bank of Italy dataset (see
Fig. 1). To better understand why an embedding approach is advantageous to study
the modes of variation instead of a direct one approach, the FPCA is firstly per-
formed on the original dataset of empirical LCs: the corresponding first three modes
of variations for different k are plotted in Fig. 2. From the latter, it emerges that the
direct approach provides coherent interpretations only for small values of k since
for large values of k the modes of variations are no longer LCs. Fig. 3 depicts the
modes of variations computed via the embedding approach for different k. As ex-
pected, since they are elements of Zor, it is possible to understand how the first
three PCs impacts on the mean and how they explain the variability of LCs.

Another interesting point is the analysis of the information brought by the factor
plane. Since the phenomenon under study is rather complex, some synthetic indexes,
such as the Gini one, are often used to help the researchers. The PCs allow to explain
the basic dynamics that regulate the composition of the L.Cs and therefore to go
beyond the analysis of a single index. To do this, consider the track-plots that allow
to appreciate the dynamics over time of the LCs with respect to the first two PCs; see
Fig. 4. Note that, even if the Gini index for one specific region can assume similar
values in distinct years, it can be placed in different quadrants of the factorial plane
over the time suggesting the presence of latent structures that can not be detected by
the synthetic index alone.
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Fig. 2 Fraction of explained variance of the j-th PC, mean curve (solid line) and modes of variation
for j = 1,2,3 and different k (dashed lines) for the sample of original LCs.
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Fig. 3 Fraction of explained variance of the j-th PC, mean curve M 1(0) (solid line) and modes of
variation M i (k) for different values of j and k (dashed lines) for the sample of LCs in Fig. 1.
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Fig. 4 (Left) Track-plots in the factorial plane of the first two PCs. (Right) Assosiated LCs and
Gini indexes.
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