The European Zoological Journal ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tizo21 # Molecular genetic differentiation of native populations of Mediterranean blue mussels, *Mytilus galloprovincialis* Lamarck, 1819, and the relationship with environmental variables R. Wenne, M. Zbawicka, A. Prądzińska, J. Kotta, K. Herkül, J. P. A. Gardner, A. P. Apostolidis, A. Poćwierz-Kotus, O. Rouane-Hacene, A. Korrida, F. Dondero, M. Baptista, S. Reizopoulou, B. Hamer, K. K. Sundsaasen, M. Árnyasi & M. P. Kent To cite this article: R. Wenne, M. Zbawicka, A. Prądzińska, J. Kotta, K. Herkül, J. P. A. Gardner, A. P. Apostolidis, A. Poćwierz-Kotus, O. Rouane-Hacene, A. Korrida, F. Dondero, M. Baptista, S. Reizopoulou, B. Hamer, K. K. Sundsaasen, M. Árnyasi & M. P. Kent (2022) Molecular genetic differentiation of native populations of Mediterranean blue mussels, *Mytilus galloprovincialis* Lamarck, 1819, and the relationship with environmental variables, The European Zoological Journal, 89:1, 755-784, DOI: 10.1080/24750263.2022.2086306 To link to this article: https://doi.org/10.1080/24750263.2022.2086306 # Molecular genetic differentiation of native populations of Mediterranean blue mussels, *Mytilus galloprovincialis* Lamarck, 1819, and the relationship with environmental variables R. WENNE ©¹, M. ZBAWICKA ©¹, A. PRĄDZIŃSKA¹, J. KOTTA ©², K. HERKÜL ©², J. P. A. GARDNER ©³, A. P. APOSTOLIDIS ©⁴, A. POĆWIERZ-KOTUS ©¹, O. ROUANE-HACENE ©⁵, A. KORRIDA ©⁶, F. DONDERO ©⁷, M. BAPTISTA ©⁸, S. REIZOPOULOU ©⁹, B. HAMER ©¹⁰, K. K. SUNDSAASEN¹¹, M. ÁRNYASI ©¹¹, & M. P. KENT ©¹¹ ¹Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland, ²Department of Marine Systems, Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia, ³School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand, ⁴Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece, ⁵Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 - Ahmed Ben Bella, Algeria, ⁶High Institute of Nursing Professions and Health Techniques, ISPITS-Agadir, Moroccan Ministry of Health and Social Protection, Kingdom of Morocco, ⁷Department of Science and Technological Innovation (DISIT), Ecotoxicology and Ecology, Università del Piemonte Orientale "Amedeo Avogadro", Novara, 15121, Italy, ⁸Marine and Environmental Sciences Centre, University of Lisbon, Portugal, ⁹Department of Biological Oceanography, Institute of Oceanography, Hellenic Centre for Marine Research, Athens Sounio, 19013 Anavyssos, Greece, ¹⁰Ruđer Bošković Institute, Center for Marine Research Rovinj, Rovinj, Croatia, and ¹¹Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (Cigene), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432 Ås, Norway (Received 12 August 2021; accepted 31 May 2022) # Abstract Blue mussels of the genus Mytilus are important ecosystem engineers in intertidal and subtidal communities. The distribution of Mytilus mussels is influenced by a number of benthic and pelagic environmental variables (e.g., substratum type and availability, water movement, phytoplankton production, physical disturbance) as well as interactions between these variables. Because of its broad tolerance of environmental variation the Mediterranean species, Mytilus galloprovincialis, has the greatest ability of all blue mussels to colonise new geographic regions. Understanding how population genetic variation is related to, or caused by, environmental variation is important but has long been a challenge. The present study examined the genetic differentiation of native populations of M. galloprovincialis throughout its entire geographic range in the Mediterranean Sea, the Black Sea and the Sea of Azov using 53 single nucleotide polymorphisms (SNP loci). Mussels, in total 1004 individuals collected from 36 locations, were genotyped and combined with existing SNP data for mussels from 11 reference sites. Pairwise comparisons of F_{ST} values, correspondence analysis (CA) and STRUCTURE analysis all revealed four groups of populations: the Atlantic Ocean; the western Mediterranean; the Aegean Sea; and the Azov, Black and Marmara Seas. One population - from Algeria (Oran West) - was intermediate between the two main groups of the Mediterranean Sea and Atlantic Ocean. Seascape genetic analyses using GLM and DistLM analyses were employed to test site-specific genetic variation as a function of 13 environmental variables. The GLM identified five environmental variables that explained variation in site-specific F_{ST} values, whilst in the DistLM best-fit model only four were significant. These analyses suggest that a complex mix of environmental variables contribute to explaining genetic variation of M. galloprovincialis populations within the Mediterranean Sea, which most likely reflects the complex geological history of formation, isolation and reconnection among the regional sub-basins of the Sea. Correspondence: R. Wenne, Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, Sopot 81-712, Poland. Email: rwenne@iopan.pl ^{© 2022} The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. **Keywords:** Biogeography, single nucleotide polymorphism, seascape genetics, geological formation, isolation and reconnection #### Introduction The Mediterranean Sea has a complex history of formation. Its origin dates to the Mesozoic and the Tethys Sea, when it acquired a shape similar to the present day in the Miocene (Picotti et al. 2014). At the end of the Miocene, the Mediterranean Sea was cut off from the Atlantic Ocean by a land barrier between Iberia and North Africa, which caused the water level to drop due to evaporation, which in turn gave rise to the Messinian crisis 5.75-5.32 milion years before present (M ybp) (Rouchy & Caruso 2006; Janssen & Peijnenburg 2014). The connection to the Atlantic Ocean was re-established 5.3 M ybp when seawater filled the Mediterranean trough (Krijgsman et al. 1999, 2018). Subsequently, during the Pliocene, a monsoon climate period was followed by cyclical sea-level changes related to periods of glaciation in the Northern hemisphere (Barsotti & Meluzzi 1968; Picotti et al. 2014). Other major regions, sometimes considered to be a basin or sub-basin of the Mediterranean Sea, also have complex and sometimes completely independent geological histories. For example, the Black Sea, prior to the establishment of a contemporary connection to the Mediterranean Sea through the Bosphorus Strait, the Sea of Marmara (including the Dardanelle Strait) that was established 10.5 K ybp, was a freshwater lake receiving water from melting glaciers. Earlier, the Black Sea was only periodically influenced by Mediterranean Sea waters (Ryan et al. 2014). These complex geological histories and the present-day multi-basin structure Mediterranean Sea present an opportunity to better understand how periods of isolation and then reconnection, plus the different ages of the basins and their very different environmental conditions may influence genetic connectivity and population genetic diversity. Given the complex history of formation of the Mediterranean Sea and its sub-basins it is not surprising that the Mediterranean Sea is a biodiversity hotspot (Coll et al. 2010; Danovaro et al. 2010; Pascual et al. 2017). Two main regions of biodiversity of the Mediterranean terrestrial fauna and flora have evolved, with different geological histories: the West Iberian and the North African separated by the Strait of Gibraltar to the west, and the Balkan and Anatolian to the east. These regions differ strongly in taxonomic composition and population divergencies of land organisms as a result of isolation in older (a few M ybp) and more recent glacial refugia (Sanmartín 2003; Froufe et al. 2016). In contrast to land and freshwater organisms, marine species, including benthic sedentary organisms such as mussels, have the ability to disperse via their pelagic stages of development (larvae) and/or colonise new areas as adults on drifting items (e.g., kelp). Such dispersal potential, when realised, may mean that their populations are characterised by high connectivity and low spatial genetic differentiation (e.g., Lessios et al. 1998; Addison et al. 2008; Reisser et al. 2014). Consequently, such marine organisms may spread and reconnect isolated populations with the result that present-day marine populations in the Mediterranean basin may be only weakly genetically differentiated. The native smooth-shelled blue mussel, Mytilus galloprovincialis, is a widely distributed species throughout the Mediterranean Sea. The species is an important ecosystem engineer in the intertidal and subtidal hard-bottom communities (Borthagaray & Carranza 2007; Arribas et al. 2014; Cinar et al. 2020), where the sessile adults are attached by byssus threads to hard substrata but the larvae may travel large distances in the water column. In addition, the mixing of Mediterranean populations may have been caused by a long history of shipping and trade activity associated with the sea (Blondel et al. 1999; Coll et al. 2010). For example, marine organisms including the mussel Mytilus have been used as food since the early Paleolithic (ca. 50 K ybp) in present-day southern Spain and Gibraltar (Cortés-Sánchez et al. 2019), the Neolithic in the Algarve, Portugal (Callapez & Pimentel 2018) and the Middle Bronze Age in present-day Italy (Zedda et al. 2003; Minniti 2005), as evidenced by preserved mussel shells in middens in caves and the vicinity of settlements. A simple form of mussel culture was initiated in Italy over 2 K ybp (Mattei & Pellizatto 1977; Smaal 2002). More recent intensive shipping activity,
translocations of hatchery stocks and rafting on natural (e.g., kelp) and/or man-made (e.g., plastics) materials may have contributed to possible reduction of genetic differentiation among populations within basins of the Mediterranean Sea (Giantsis et al. 2014a). The progenitor of modern smooth-shelled blue mussels gave rise to *Mytilus trossulus* in the Pacific Ocean, which subsequently invaded the North Atlantic Ocean after the opening of the Bering Strait 3.5 M ybp and gave rise to Atlantic Ocean *M. edulis* (Riginos & Cunningham 2005; Bach et al. 20192019; reviewed by Gardner et al. 2021). This newly evolved taxon spread in the Northwest Atlantic Ocean to reach Europe. The oldest fossils of M. edulis are found in deposits from the early Pliocene, its shells having been reported from middle and late Zanclean deposits in the vicinity of Lepe, on the Bay of Cadiz, Atlantic coast NW of Gibraltar (Belaústegui & Muñiz Guinea 2016). M. edulis colonised the Mediterranean Sea during periods of sea-level change before the Pleistocene (Vermeij 1992; Gardner et al. 2021). Glaciation in the Northern hemisphere took place 2.6 M vbp (Sosdian & Rosenthal 2009), likely resulting in a drop of sea level by 100 m. Divergence of M. galloprovincialis in the Mediterranean Sea from M. edulis in the North Atlantic Ocean probably occurred 2.5 M ybp and was followed by isolation lasting ~1.8 M v (Roux et al. 2014). Periods of glaciation forced the displacement of northern populations of boreal and colder-water species into southern Europe and resulted in the partial invasion of the Mediterranean Sea as a refugium, for example, by the bivalve Arctica islandica in the northern Adriatic Sea 1.8 M ybp (Crippa et al. 2016). During the Early-Middle Pleistocene Transition of 1.4 to 0.4 M vbp more regular cycles of glacial-interglacial periods became established and caused further changes to sea level. The global drop in sea level isolated the Mediterranea Sea biota, including its mussels, from the Northeast Atlantic Ocean biota. This scenario is supported by Riginos and Cunningham (2005) whose genetic analyses highlighted that isolation mechanisms (vicariance) were important for divergence of M. galloprovincialis from neighbouring M. edulis. It is possible that during such sea level changes the Atlantic Ocean mussel populations came into secondary contact with the Mediterranean Sea mussel populations many times in the period of (incomplete) separation that lasted ~1.7 M years (Barsotti & Meluzzi 1968). After colonisation by Mytilus, the influx of waters from the Atlantic Ocean to the present-day Mediterranean Sea was limited or cut off periodically due to tectonic changes, but mainly due to fluctuations in sea level to the west of the Strait of Gibraltar. In addition, strong evaporation of seawater caused the periodic lowering of the water level in Mediterranean Sea and gave rise to the isolation of parts of it as separate basins during the Pleistocene (Bianchi et al. 2012). In the last 150,000 years, changes in sea level of ~130 m below to 6-15 m above the present sea level have been caused by glaciations and warming periods (Benjamin et al. 2017). This complex and dynamic geological history of the Mediterranean Sea has given rise to the allopatric divergence of Mytilus populations and the evolution of M. galloprovincialis. In addition, natural hybrid zones are created in the areas where modern populations of *M. galloprovincialis* come into secondary contact with *M. edulis* (Bierne et al. 2003; Simon et al. 2020, 2021). The ability of Mytilus mussels to spread on natural and artificial floating objects has contributed to their emergence in recent years in regions as far apart as Svalbard in the Arctic – M. edulis (Berge et al. 2005; Kotwicki et al. 2021) and the South Shetland Islands off Antarctica – M. platensis (Cárdenas et al. 2020). However, of all of the members of the genus it is M. galloprovincialis that shows the greatest ability to colonise new geographic regions, whether via human-mediated transfer (e.g., deliberately for aquaculture or accidentally via hull fouling or ballast water) or naturally (e.g., via kelp rafting) (Gardner et al. 2021). In recent years, it has been recorded on the Atlantic coasts of South America, where in Argentina it hybridises with the native taxon, M. platensis (Zbawicka et al. 2018), and in Brazil where it inhabits farmed cultures of the native species, Perna perna (Birckolz et al. 2020; Lins et al. 2021). M. galloprovincialis has also been introduced to South Africa, the Pacific coast of North America, the Sea of Japan, China, Korea, Australia, New Zealand and Chile (Wilkins et al. 1983; McDonald & Koehn 1988; McDonald et al. 1991; Gardner et al. 2016; Han et al. 2017; Larraín et al. 2018; Zbawicka et al. 2019, 2022; Popovic et al. 2020). It is considered to be one of the most successful invasive species of the global coastal marine biota, often displacing native species (Geller 1999; Lowe et al. 2000; Gardner et al. 2021). The distribution of *Mytilus* species is controlled by a number of environmental processes involving both benthic and pelagic habitats (e.g., substratum type and availability, water movement, phytoplankton production, physical disturbance, seawater biogeochemistry) as well as interactions between these processes (Sandman et al. 2013; Kotta et al. 2015). For example, water movement can indirectly affect Mytilus spp. by modifying sedimentation rates or may directly affect sessile mussels by physically disturbing or detaching them (Westerbom et al. 2008). Furthermore, the sedentary benthic suspension feeding lifestyle of adult mussels is a life-history characteristic that requires water-borne food delivery, but the quantity and quality of such food delivery is highly variable in time and space (Dahlhoff & Menge 1996; Gardner 2000, 2013; Saurel et al. 2007). An ability to withstand environmental variability is often key to a species' range expansions, whether they be natural or human-mediated. Environmental tolerance can be related to or controlled by such mechanisms of adaptation as differences in gene family expression, gene splicing, methylation, past gene duplications and other genomic mechanisms also related to pangenome functions (Pujolar et al. 2014; Malachowicz et al. 2015; Kijewska et al. 2016, 2018; Bitter et al. 2019; Malachowicz & Wenne 2019; Clark et al. 2021; Corrochano-Fraile et al. 2022; Liu et al. 2022). For example, there is now a growing body of evidence to indicate that M. galloprovincialis is the best adapted smooth-shelled mussel to tolerate thermal variation, an adaptation that may be both facilitating its spread into non-native areas and its ability to outcompete congenerics (e.g., Braby & Somero 2006; Jones et al. 2010; Tomanek & Zuzow 2010). When seeking to understand associations between environmental and population genetic variation it is important to incorporate ecologically meaningful drivers into the models (e.g., direct and indirect environmental gradients, resource gradients). However, trying to identify environmental drivers that are relevant at different temporal and spatial scales is often difficult because the drivers may not act in isolation but may instead act synergistically, although not always to the same extent in time (e.g., different seasonal interactions) or in space (e.g., coastal headlands versus bays). Thus, quantifying interactive effects (i.e., how different environmental gradients separately or interactively modulate the resource-allele relationship) is still a major challenge (Palumbi et al. 2019; Hu et al. 2020; Zeng et al. 2020). To date, genetic studies of native M. galloprovincialis populations in the Mediterranean Sea are local in nature, having covered only certain regions (e.g., Ahmad & Beardmore 1976; Edwards & Skibinski 1987; Karakousis & Skibinski 1992; Quesada et al. 1995a, 1995b; Comesaña et al. 1998; Daguin & Borsa 1999; Giantsis et al. 2012, 2014a, 2014b; Bierne et al. 2003; Sammer et al. 2010; Vera et al. 2010; Lourenço et al. 2015; Fraïsse et al. 2016; Paterno et al. 2019). No genetic research has yet been undertaken at the pan-Mediterranean Sea scale. The aim of the present study was to test for genetic differentiation of M. galloprovincialis populations throughout its entire native range. We also tested if and how much environmental variables explained the population genetic diversity of M. galloprovincialis. By including key environmental variables in our testing we seek to explore links between patterns of environmental and genetic variability of the mussel populations. A strong match between genetic and environmental variation and the presence of clear genetic differentiation according to present day environmental gradients may indicate the importance of local adaptation processes in Mediterranean Sea M. galloprovincialis or barriers to gene flow. Alternatively, a relationship between environmental variation and subtle regional genetic differentiation may reflect the complex geological history of the region and the evolutionary history of the mussel populations. ### Materials and methods The environment The Mediterranean Sea is a land-locked, semienclosed marginal sea of the Atlantic Ocean. The Mediterranean Sea is a very complex marine environment and is oceanographically diverse with a number of distinct sub-seas. Sea surface temperature exhibits strong seasonality and pronounced spatial gradients from west to east and north to south. The Mediterranean Sea is microtidal with a typical tidal range of less than 50 cm. The salinity of the Mediterranean Sea is high throughout the basin from 35 PSU on the West to 39 PSU on the East, but is brackish in the Black Sea and Sea of Azov. The Mediterranean Sea has very low nutrient concentrations, especially in its eastern parts, which is reflected in the patterns of primary productivity. Locally, riverine nutrient input can be significant; however, most river
systems discharging into the Mediterranean Sea are small by global standards (Uitz et al. 2012; Goffredo & Dubinsky 2014). Sampling and isolation of genomic DNA from mussel samples Mytilus spp. samples, consisting in total of 1004 individuals of mixed ages (not quantified) and sizes (5 to 50 mm shell length) were collected from 36 sites (nominally "populations") situated along the coasts of the Atlantic Ocean, the Mediterranean Sea and the Black Sea between 2004 and 2016 (Table I; Figure 1). DNA was isolated from mantle tissue that had been stored in 96% ethanol or at -70°C, using a modified CTAB method (Hoarau et al. 2002). Eleven reference site samples of M. galloprovincialis from the Atlantic Ocean coast of Spain and Portugal, the Mediterranean Sea and the Sea of Azov, M. edulis from France and M. trossulus from Canada, consisting of 316 specimens, were also included (Table I). Fifty three single nucleotide polymorphisms (SNPs) differentiating Mytilus taxa, and with the ability to identify hybridisation, were employed to assay genetic variation (Zbawicka et al. 2012, 2018; Gardner et al. 2016). Samples were genotyped using the Sequenom MassARRAY iPLEX genotyping platform (Gabriel et al. 2009). Table I. Sample code of Mytilus, numbers of specimens examined (N), location and country, geographic coordinates and year of sampling of all mussel populations. | e 40°348.51"N 42°27'51.89"N 42°27'51.89"N 44°29'0.82"N 44°29'0.82"N 49°38'30.82"N 49°38'30.82"N 49°30'2.00"N 42°32'49.39"N 42°32'49.39"N 41°13'39.84"N 41°13'39.84"N 41°13'39.84"N 41°21'27.56"N 39°47'31.32"N 40°40'41.64"N 44°5'29'40.8"N 40°40'41.16"N 40°40'41.16"N 40°40'41.16"N 40°38'1.17"N 40°38'1.17"N 40°38'1.23"N 39°42'55.40"N 39°42'55.40"N 40°38'1.23"N 45°45'57.13"N 45°448'01"N 39°47'59.88"N 36°448'01"N 38°34'14.89"N 38°34'14.89"N 38°34'14.89"N 38°34'14.89"N 38°34'14.89"N | Morocco Spain France Tunisia Ukraine Italy Italy Croatia Greece Italy Greece Greece Greece Greece Greece Italy Croatia Italy Croatia Italy Greece Greece Greece Greece Italy Spain Italy Algeria Algeria Algeria Italy France Greece Bulgaria Italy Italy Greece Greece Turkey Italy Algeria Italy Spain Ukraine Italy Italy Italy Italy Spain | |--|--| | ALC 29 Advanta, Balearie S. Spain 407845 p.I.N BAN 27 Barran Lagoon Tunisia 407345 p.I.N BLT 30 Bizerra Lagoon Tunisia 3771676 p.0v.N BLS 30 Brant Lagoon Tunisia 3771676 p.0v.N BLS 30 Brandisi, South Adriante S. Italy 497392 p.g.v.N CAT 31 Brandisi, South Adriante S. Italy 497392 p.g.v.N CHW 35 Istain, North Adriante S. Italy 497392 p.g.v.N CHRP 28 Istain, North Adriante S. Italy 497392 p.g.v.N CHR 30 Chulofier, South Adriante S. Italy 497392 p.g.v.N GAE 30 Could of Google C. 197302 p.g.v.N 497392 p.g.v.N GAR 30 Could of Could Agent S. Greece 399473 p.g.v.N GAR 30 Could of Could Agent S. Greece 399474 p.g.v.N LAAW 30 Could of Magnesia F. Greece 399473 p.g.v.N LAA | Spain 40°34'8.51"N France 42°27'51.89"N Tunisia 37°16'36.70"N Tunisia 37°16'36.70"N Ukraine 44°29'0.82"N Italy 43°59'36.15"N Croatia 40°36'30.20"N Greece 41°13'39.84"N Italy 41°127'56"N Greece 39°57'49.00"N Italy 41°13'39.84"N Italy 41°13'39.84"N Greece 39°57'44.2"N Greece 39°57'44.2"N Agrece 39°51'44.42"N Algeria 40°9'21.17"N Italy 40°46'13.28"N Algeria 35°40'40.44.64"N Algeria 35°40'44.16"N Italy 40°9'21.17"N Italy 40°40'41'38.7"N Bulgaria 42°2'6'1.00"N France 37°3'2'7.30"N Italy 40°3'1'3'7.30"N Italy 40°3'1'3'7.30"N Italy 40°3'1'3'7.30"N Italy 40°3'1'3'8'1.23"N Spain <t< td=""></t<> | | BAN 27 Banerus, Gulf of Lion France 42271 98 PV BLT 30 Bizerta Bay, Gulf of Tunis Tunisia 3771078 50 PV BLZ 30 Crimea Tunisia 3771078 50 PV BRI 30 Crimea Crimea 47290 82 PV BRI 30 Crimea Crimea 47290 82 PV CHW 28 Crimea Crimea 47290 82 PV CHW 28 Mare Piccolo, Transito, North Ionian S. Crounia 457214 92 97 PV CHR 29 Ordorio, Agean S. Crounia 4029249 39 PV GAR 30 Gragano (Pour), South Adrinitic Grace 3957449 30 PV GAR 30 Gragano (Pour), South Adrinitic Inlay 412127 50 PV GRK 30 Gragano (Pour), South Adrinitic Inlay 412127 50 PV GRK 30 Gragano (Pour), South Adrinitic Grace 395744 32 PV LAANW 30 L'Ampolia March Ionian S. Grace 39574 43 PV LAAN 10 <td>France 42°2751.89"N Tunisia 37°16'36.70"N Tunisia 44°29'0.82"N Italy 49°39'30.20"N Croatia 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Italy 40°30'2.00"N Italy 40°30'2.00"N Italy 40°30'2.83"N Greece 39°57'49.00"N Italy 40°30'2.83"N Algeria 39°54'4.42"N Algeria 39°54'4.42"N Italy 40°30'2.117"N Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°20'1.00"N Italy 40°20'1.00"N Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°30'1.17"N
Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°30'1.13"N Greece 42°41'58.74"N Italy 40°38'1.23"N Spain 45°30'25.42"N Italy 39°47'39.88"N Spain 42°13'34'12"N Spain 42°13'34'12"N Spain 43°11"N S</td> | France 42°2751.89"N Tunisia 37°16'36.70"N Tunisia 44°29'0.82"N Italy 49°39'30.20"N Croatia 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Greece 39°57'49.00"N Italy 40°30'2.00"N Italy 40°30'2.00"N Italy 40°30'2.00"N Italy 40°30'2.83"N Greece 39°57'49.00"N Italy 40°30'2.83"N Algeria 39°54'4.42"N Algeria 39°54'4.42"N Italy 40°30'2.117"N Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°20'1.00"N Italy 40°20'1.00"N Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°30'1.17"N Italy 40°30'1.13"N Greece 42°41'58.74"N Italy 40°38'1.23"N Spain 45°30'25.42"N Italy 39°47'39.88"N Spain 42°13'34'12"N Spain 42°13'34'12"N Spain 43°11"N S | | BGT 30 Biserra Bay, Calf of Tunis Tunisia 37°10'30.89°N BLT 30 Chimea Chimea Tunisia 37°10'30.89°N BRA 30 Chimea Ch | Tunisia 37°16'36.70"N Tunisia 47°10'30.89"N Italy 40°38'30.82"N Italy 40°30'2.00"N Croatia 49°29'36.15"N Greece 39°57'49.00"N Italy 40°30'2.00"N Italy 40°30'2.49.39"N Greece 39°57'49.00"N Italy 40°30'2.43"N Greece 39°57'49.09"N Italy 40°52.83"N Greece 39°57'49.00"N Italy 40°52.83"N Algeria 40°46'13.28"N Italy 40°46'13.49"N Algeria 40°46'14.4"N Algeria 35°10'44.16"N Italy 40°40'11.0"N Italy 40°20'11.0"N Italy 40°20'11.0"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°38'1.33"N Greece 30°43'39.27"N Italy 40°38'1.23"N Italy 40°38'1.23"N Italy 40°38'1.23"N Italy 39°47'59.88"N Spain 45°45'51.71"N Italy 39°47'59.88"N Spain 45°40'38'1.2"N Spain 42°13'54.12"N Spain 43°13'54.12"N Spain 43°13'54'12"N Spain 43°13'54'12"N Spain 43°13'54'12"N Spain 43°13'54'12"N | | BLT 30 Bineral Lagoon Tunisis 37*105089*N BLS 30 Cimma Tunisis 37*105089*N CAT 30 Camboilea, South Adrianic S. Inaly 40*3950.82*N CAT 30 Candidia, South Adrianic S. Inaly 40*3950.82*N CHRP 23 Brindia, South Adrianic S. Crossin 40*320.00*N CHRP 24 Dubevorils, Backer, Tayrerance, North Ionian S. Crossin 40*320.00*N DUB Perto Coulo, Aegean S. Crossin 40*320.00*N GAR 30 Gangano (bown), South Adrianic Country Intaly 41*321.27*N GAR 30 Gangano (bown), South Adrianic Country Greece 30*574.42*N GAR 30 Gangano (bown), South Adrianic S. Greece 30*574.42*N GRK 30 Carbonal Jagoon, South Adrianic S. Greece 30*574.42*N JAN JAN JARANINA Oriented S. Greece 30*574.42*N JAN JAN Adgent Jagoon, South Jamania Adgent Jagoon, Addent Jagoon, Addent Jagoon | Tunisia 37°10'30.89"N Ukraine 44°29'0.82"N Italy 49°39'30.82"N Italy 49°39'30.10"N Croatia 45°751.44"N Italy 40°30'20'0"N Greece 39°0'52'83"N Greece 39°0'52.83"N Greece 39°0'52.83"N Greece 39°0'52.83"N Italy 40°46'13.28"N Italy 40°46'13.28"N Italy 40°46'13.28"N Italy 40°46'13.28"N Italy 40°46'13.28"N Italy 40°46'14.6"N Italy 40°20'10'0"N Italy 40°20'10'0"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°31'33"N Greece 37°35'39.64"N Italy 40°38'1.23"N Italy 45°46'19.19"N Greece 39°26'57.08"N Italy 45°46'19.13"N Italy 45°46'19.13"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°44'8.01"N Portugal 38°34'14.89"N Spain 42°31'35.11"N Italy 39°47'59.88"N Spain 42°31'35.11"N Italy 39°47'59.88"N Spain 42°31'35.11"N Spain 42°31'35.11"N Italy 39°47'59.88"N Spain 42°31'35.11"N Italy 39°47'59.88"N Spain 42°31'35.11"N Italy 39°47'59.88"N Spain 43°31'38'1"N Spain 43°31'38'1"N Spain 43°31'38'1"N | | BLS 30 Crime 44290.8."N BLI 30 Crimical, South Adrianic S. Inday 40290.2.N° CAY 30 Catholica, South Adrianic S. Inday 40290.2.0."N CHW 35 Listan, North Adrianic S. Inday 40290.2.0."N CIRP 34 Dabovania, East-Central Adrianic Greece Greece 30757.44.N GAE 30 Galf of Gaeta, Thyrrenian S. Inday 407592.30.N GAR 30 Galgamo (baos), South Adrianic Greece 30757.44.00.N GAR 30 Galgamo (baos), South Adrianic Greece 30757.42.0.N GRM 30 Call of Gaeta, Thyrrenian S. Inday 417379.84.N GRM 30 L'Ampolia wild, Batearie S. Greece 394731.32.N ILAS David Adrianic S. Greece 394731.32.N MAK 20 L'Ampolia wild, Batearie S. Inday 497520.43.N MAK 30 Camade Marina, Orisano, Sardinia Adriania 497520.44.N MAK 30 Camadado, Pari | Ukraine 44°29'0.82"N Italy 40°38'30.82"N Italy 43°59'36.15"N Croatia 45°7'51.44"N Italy 40°30'2.00"N Greece 39°0'52'49.00"N Italy 41°21'27.56"N Greece 39°0'52.83"N Greece 39°0'52.83"N Greece 39°0'52.83"N Italy 40°9'21.17"N 40°36'1.30"N Italy 40°38'1.23"N Greece 37°35'39.64"N Italy 40°38'1.23"N Italy 40°38'1.23"N Italy 40°38'1.23"N Italy 40°38'1.23"N Italy 30°47'59.88"N Spain 36°4'48.01"N Portugal 38°4'18.9"N Spain 38°4'14.89"N Spain 38°4'14.89"N Spain 38°4'14.89"N Spain 38°4'14.89"N Spain 38°4'18.71"N Italy 38°4'15.11"N Italy 38°4'15.11"N Italy 38°4'15.31"N Spain 38°4'14.89"N Spain 38°4'14.89"N Spain 38°4'14.89"N Spain 38°4'14.89"N Spain 38°4'14.89"N Spain 38°4'14.89"N | | RNA 30 Brindists, South Adriatic S. Inaly 40°389'36.15"N CAT 36 Carbolica, South Adriatic S. Inaly 45°751.44"N CHR 38 Mare Procolo, Taranto, North Ionian S. Inaly 45°751.44"N DUB 34 Dubrovnik, Back-Curral Adriatic Croatia 45°751.44"N DUB 39 Guiff Gatea, Thyremian S. Inaly 41°329.493.9"N GAR 30 Guiff Gatea, Thyremian S. Inaly 41°329.493.7"N GAR 30 Guiff Gatea, Thyremian S. Inaly 41°329.493.7"N GRK 30 Guiff Gatea, Thyremian S. Greece 39°72.490.0"N GRM 30 Heraklon, Crete, South Aegean S. Greece 39°72.442."N IMC 20 Townolls wild Balacine S. Greece 39°72.442."N IMAC 20 Townolls wild Balacine S. Greece 39°72.442."N IAS 10 La Spezial, Ligurian S. Inaly 49°76.442."N IAS 10 L'Ampolla wild Balacine S. Greece <td< td=""><td> Italy</td></td<> | Italy | | CAT 30 Catholiae, South Adriatic S. Inaly 43°50.15°N CHW 35 Isruio, North Adriatic S. Croatia 45°731.44°N DUB 34 Dubrownik, Bast-Central Adriatic Greece 39°7749.00°N EGE 29 Porto Coude, Agean S. Iraly 40°302.00°N GAE 30 Gategano (bong), South Adrianic Greece 39°47749.00°N GAR 30 Gategano (bong), South Adrianic Greece 39°4731.32°N GRM 30 Mazonna Lagoon, North Ionian S. Greece 39°4731.32°N HER 30 Heraklon, Cree, South Agean S. Greece 39°4731.32°N HER 40 Mazonna Lagoon, North Ionian S. Greece 39°4731.32°N HER 40 Mazonna Lagoon, South Agean S. Greece 39°4731.32°N HAM 20 Torne Grande Marina, Oristano, Sardinia Inaly 44°5204.90°N MAR 20 Matanasia, Base-Central Adriatic S. Agean 39°4741.42°N NAK 20 Matanasia, Base-Central Adriatic S. | Italy 43°59'36.15"N Croatia 45°7'51.44"N Croatia 40°30'2.00"N Croatia 40°30'2.00"N Croatia 39°57'49.00"N Italy 41°21'27.56"N Greece 39°47'31.32"N Greece 39°47'31.32"N Greece 39°47'31.32"N Greece 39°47'31.32"N Greece 39°47'31.32"N Greece 39°47'31.32"N Greece 39°44'4.42"N Greece 35°20'40.96"N Italy 40°46'44.64"N Algeria 35°42'36.74"N Greece 37°35'39.64"N Greece 37°35'39.64"N Greece 37°35'39.64"N Greece 37°35'39.64"N Greece 39°43'32.73"N 38°42'6'33"N Greece 38°42'6'33"N Greece 38°42'6'33"N Greece 38°42'6'33"N Greece 39°44'8.01"N Grain 38°41'4.89"N Spain 36°44'8.01"N Grein 38°34'14.89"N 38°34'14.80"N Grein 38°34'14.80"N Grein 38°34'14.80"N Grein 38°34'14.80"N Grein 38°34'14.80"N Grein 38°34'14.80"N Grein Grein Grein Gre | | CIRW 35 Brina, North Adriant G. Croatia 467 274 47.N DUB 34 Brina, North Adriant G. Croatia 467 372 260°N DUB 34 Potro Coult, Aegean S. Iraly 407 372 46,39°N DUB 39 Potro Coult, Aegean S. Iraly 417 379,400°N GAR 30 Gargato (buoy), South Adriatic Iraly 417 31 32°N GRM 30 Kassiopi, Corfu, North Ionian S. Greece 39°47 31.32°N GRM 30 Heraklion, Crete, South Aegean S. Greece 39°47 31.32°N IMC 20 Torre Grande Mariant. Ostano, Sardinia Spain 40°46 13.28°N IMA 20 L'Ampolla wild, Balearie S. Greece 39°47 31.28°N IMA 20 Torre Grande Mariant S. Iraly 40°46 13.28°N IMA 20 Torre Grande Mariant S. Greece 39°47 44.2°N IMA 20 Torre Grande Mariant S. Greece 39°47 44.2°N MAK 20 Croatia Balearie S. Greece 39°47 44.2° | Croatia 45° 7'51.44"N Italy 40°30'2.00"N Greece 39°5749.00"N Italy 41°2127.56"N Greece 39°6744.05"N Greece 39°674.42"N Greece 39°674.44"N Italy 40°40'13.28"N 40°40'10'N Italy 40°20'12.00"N Italy 40°40'13.8"N Italy 40°40'13.8"N Italy 40°40'13.9"N Italy 40°40'13.8"N Italy 40°30'13.8"N Italy 40°30'13.8"N Italy 40°30'13.8"N Italy 40°30'13.8"N Italy 40°30'13.8"N Italy 30°47'59.88"N Spain 30°47'59.88"N Spain 30°47'59.88"N Spain 30°47'19.19"N Italy 30°47'19.89"N Spain 30°47'19.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | CIRP 28 Mare Recolo, Transito, North Ionian S. Italy 40°327.00°N DUB 34 Dubrownic, Regen Counto, Aegean S. Greece 39°37.40.00°N GAE 20 Porto Couló, Aegean T. Italy 41°123.249.30°N GAR 30 Gulf of Gene, Thyrrenia S. Italy 41°121.275.6°N GRA 30 Grassiopi, Corfu, North Ionian S. Greece 39°47.31.32°N GRA 30 Mazona Lagoon, North Ionian S. Greece 39°47.31.32°N HER 30 La Spezia, Ligurina S. Greece 39°47.31.32°N IMC 20 L'Ampolla wild, Balearic S. Italy 40°46.44.2°N IAA 30 L'Ampolla wild, Balearic S. Italy 40°46.44.2°N MAK 20 Makarska, East-Central Adrianic S. Italy 40°46.44.2°N MAK 20 La Spezia, Ligurina S. Italy 40°46.44.2°N MAK 20 Adabarska, East-Central Adrianic S. Italy 40°46.44.4°N NRA 30 Cora Marksa, Balearic S. Italy | Italy | | DUB 34 Dubrovnik, East-Central Adriatic Crocuit 42°2749,9°N GAE 29 Porto Coulo, Agean S. Inay 41°2749,9°N GAR 30 Gulf of Gaeta, Thyritenian S. Inay 41°2179,9°N GRK 30 Gulf of Gaeta, Thyritenian S. Inay 41°271,50°N GRK 30 Gargano (borth, North Ionian S. Greece 39° 052,83°N HER 30 Heraklion, Certe, South Agean S. Greece 39° 052,83°N IMC 20 Torre Grande Marine, Oistano, Sardinia Spain 40°4013,23°N IAAN 20 I.Ampola wild, Balearic S. Inay 43°1034,20°N MAK 20 Alakarska, East-Central Adminic S. Croatia 49°404,42°N MAK 20 Alakarska, East-Central Adminic S. Croatia 49°404,42°N MAK 30 Cramkfal, Dardanelle Strait Turkey 49°404,40°N NAM 30 Cram West, Alboran S. Algeria 49°404,40°N ORAE 30 Oran West, Alboran S. Algeria | Croatia 42°32'49.39"N Greece 39°57'49.00"N Italy 41°2127.56"N Greece 39°47'31.32"N Greece 39°47'31.32"N Greece 39°47'31.32"N Italy 40°40'13.28"N Italy
40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'14.16"N Italy 40°40'14.16"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°20'12.00"N Italy 40°30'12.1"N Italy 40°30'12.1"N Italy 40°30'12.1"N Italy 40°30'13'11"N Italy 40°30'13'11"N Italy 30°41'59'8"N Spain 36°44'8.01"N Spain 42°13'54.12"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | EGE 29 Porto Coulto, Aegean S. Greece 39°5749,00°N GAR 30 Gulf of Gaeta, Thyrrenian S. Inaly 41°127.56°N GAR 30 Kassiopi, Corfu, North Ionian S. Greece 39°471.277.56°N GRK 30 Kassiopi, Corfu, North Ionian S. Greece 39°471.277.56°N GRK 30 Herabilito, Cere, South Agean S. Greece 39°474.27N IMC 20 Torre Grande Marina, Oristano, Sardinia Inaly 49°529.43°N IAAN 12 Ambaraski, Balearic S. Inaly 49°529.43°N MOM 30 Corred Grande Marina, Oristano, Sardinia Inaly 49°529.43°N MAK 29 Ankaraski, Bast-Central Adrinit G.S. Inaly 49°529.43°N MOM 30 Gulf of Naples, Thyrrenian S. Inaly 49°529.43°N MOM 30 Gulf of Naples, Thyrrenian S. Algeria 49°464.46°N ORAN 25 Orheello, Thyrrenian S. Algeria 49°504.17°N PIST 27 Praini-Coular Adrian S. < | Greece 39°5749.00"N Italy 41°13'39.84"N Greece 39°47'31.32"N Greece 39°47'31.32"N Greece 39°0'52.83"N Greece 39°0'52.83"N Italy 40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'13.28"N Italy 40°40'14.16"N Italy 40°40'12.00"N Italy 40°40'14.16"N Italy 40°40'12.00"N Italy 40°40'12.00"N Italy 40°40'12.00"N Italy 40°40'12.00"N Italy 40°40'12.00"N Italy 40°40'12.10"N Italy 40°40'12.10"N Italy 40°40'12.10"N Italy 40°30'12.1"N Italy 40°30'12.1"N Italy 40°30'12.1"N Italy 30°47'59.88"N Spain 36°44'8.01"N Portugal 38°3'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | GAE 30 Gulf of Gaeta, Thyrrenian S. Italy 41°1373°84°N GAR 30 Gaggano (bordy, South Adraia; Italy 41°1373°84°N GRM 30 Kassiopi, Cordy, North Ionian S. Greece 39° 0728°3°N HER 30 Torre Grande Marina, Oristano, Sardinia Iraly 41°2173°18°N IAANW 30 L'Ampolla ville, Balearic S. Iraly 42°674.92°N LAAN 30 Canakale, Dardanelle Strait Iraly 44°579.43°N MAK 29 Makarska, Bas-Central Adriant S. Iraly 44°579.43°N MAM 30 Canakale, Dardanelle Strait Iraky 44°579.43°N NAA 30 Canakale, Dardanelle Strait Iraky 44°579.43°N NAA 30 Coran West, Alboran S. Iraky 40°90/11.20°N ORAB 30 Orne West, Alboran S. Iraly 40°90/11.00°N PSL 12 Port-Callo, Thyrenian S. Iraly 40°90/11.00°N SAR 30 Orne West, Alboran S. Brance, Galf, 40°90°N | Italy | | GRK 30 Gargano (buoy), South Adriatic Italy 41212756"N GRK 30 Mazona Lagoon, North Ionian S. Greece 39°473132"N GRM 30 Mazona Lagoon, North Ionian S. Greece 39°473132"N IMC 20 Torce Caracle Ambraina, Orisano, Sardinia Italy 39°54443"N LAMW 30 L'Ampolla wild, Balearic S. Italy 40°4613.28"N LAS 16 La Spezia, Ligurian S. Cranklashe, Darbarania, Orican darian S. Crostia 40°4613.28"N MAK 29 Adarsika, Bast-Central Adrianic S. Crostia 40°4613.28"N MAK 29 Crankladel, Dardanelle Strait Trukey 40°4614.64"N NEA 30 Gulf of Naples, Thyrenian S. Italy 40°4614.64"N ORAW 29 Orbetello, Thyrenian S. Italy 40°4614.64"N ORAW 29 Orbetello, Thyrenian S. Italy 40°2012.00"N PIST 27 Profescello, Thyrenian S. Italy 40°2012.00"N SAR 30 Saron | Italy 41°2127.56"N Greece 39°4731.32"N Greece 39°4731.32"N Greece 39°0752.83"N Greece 39°0752.83"N Italy 40°4613.28"N Italy 40°4613.28"N Italy 40°4644.64"N Algeria 35°1044.16"N Italy 40°40712.10"N Italy 40°2071.10"N Italy 40°20712.00"N France 37°3579.64"N France 37°3579.64"N France 42°41'58.74"N France 43°217.3"N Italy 43°217.3"N Italy 43°217.3"N Italy 43°217.3"N Italy 45°40'19.19"N Greece 37°3579.27.3"N Italy 45°40'19.19"N Greece 38°476.938"N Spain 45°30'25.42"N Italy 39°47'59.88"N Spain 36°448.01"N Spain 42°375.11"N 42°373.35.71.30 Spain 42°375.11"N | | GRK 30 Kassiopi, Corfu, North Ionian S. Greece 39°4731.32"N GRM 30 Hassiopi, Corfu, North Ionian S. Greece 39°4049.38"N HER 30 Herablion, Crests, South Assers. Greece 39°544.42"N IMC 20 L'Ampolla widi, Balearie S. Italy 40°4613.28"N LAS 16 La Spezia, Ligurian S. Italy 40°4613.28"N MAK 29 Crantal Adriatic S. Croatia 40°761.71"N NEA 30 Gulf of Naples, Thyremian S. Algeria 35°10/44.67"N ORAW 29 Oran East, Alboran S. Algeria 35°10/44.16"N ORAW 29 Oran East, Alboran S. Italy 40°20/12.0"N ORAW 29 Orbetcllo, Thyremian S. Italy 40°20/12.0"N PSL 27 Pristice, Gulf of Taranto, North IonianS. Italy 40°20/12.0"N PSL 27 Pristice, Gulf of Taranto, North IonianS. Italy 40°20/12.0"N SRR 30 Static Gulf of Taranto, North IonianS. Ita | Greece 39°4731.32"N Greece 35°20'40.96"N Italy 39°544.42"N Spain 40°46'13.28"N Italy 44°5'29.43"N Croatia 44°5'29.43"N Algeria 35°10'44.16"N Italy 42°26'21.00"N Italy 43°21'55.40"N France 37°35'39.64"N Bulgaria 42°21'21"N Italy 43°21'30"N Italy 43°21'30"N Italy 43°21'30"N Italy 43°21'30"N Italy 43°21'30"N Italy 43°21'30"N Italy 45°41'58.14"N Italy 45°41'58.14"N Italy 45°41'59.8"N Spain 45°426'31"N Italy 39°426'57.08"N Ukraine 45°30'25.42"N Italy 39°24'57.11"N Italy 39°24'57.11"N Italy 39°24'57.11"N Italy 39°44'80"N Spain 36°44'80"N Spain 36°44'80"N Spain 42°13'54.12"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | GRM 30 Mazoma Lagoon, North Ionian S. Greece 39° 0'52.83"N HER 30 Heraklion, Crete, South Aegean S. Greece 39° 0'52.83"N IMC 20 Torre Grande Marina, Orisano, Sardinia Iraly 40° 46'13.28"N LAMW 30 L'Ampolla wild, Balearic S. Iraly 40° 46'13.28"N MAK 29 Makarska, East-Central Adriatic S. Croatia 40° 46'13.28"N MOM 30 Canakkale, Dardanelle Strait Turkey 40° 46'14.6"N NEA 30 Orif of Naples, Thyrrenian S. Iraly 40° 46'14.6"N ORAW 20 Orne Bast, Alboran S. Algeria 35° 42'36.74"N ORB 25 Orbetello, Thyrrenian S. Iraly 40° 46'41.6"N ORB 25 Orbetello, Thyrrenian S. Iraly 40° 40'14.16"N ORB 25 Orbetello, Thyrrenian S. Iraly 40° 40'14.16"N ORB 25 Orbetello, Thyrrenian S. Iraly 40° 40'14.16"N PST 12 Orbetello, Thyrrenian S. Iral | Greece 39° 0'52.83"N Greece 35°20'40.96"N Italy 90°54'4.42"N Spain 40°46'13.28"N Italy 44° 5'29.43"N Croatia 49° 9'21.17"N Italy 40° 9'21.17"N Italy 40° 20'11.00"N Italy 40° 20'12.00"N France 35° 10'44.16"N Italy 40° 20'12.00"N France 37° 25'5.40"N Greece 37° 25'5.40"N Italy 40° 20'12.00"N France 42° 26'12.00"N Italy 40° 20'12.00"N 45° 20'57.08"N Italy 30° 26'57.08"N Italy 30° 26'57.08"N Italy 30° 26'57.08"N Spain 36° 448'01"N Spain 42° 13'54.12"N Spain 42° 13'54.12"N Spain 42° 13'54.12"N | | HER 30 Heraklion, Crete, South Aegean S. Greece 35°2040,96°"N IMC 20 Torre Gamed Marinia, Oristano, Sardinia Irlay 39°444,42"N LAS 16 La Spezia, Ligurian S. Irlay 44°529,43"N LAS 16 La Spezia, Ligurian S. Irlay 44°529,43"N MAK 29 Makarska, East-Central Adriatic S. Croatia 49°921,17"N MOM 30 Canakasha, Davtan S. Croatia 49°921,17"N NEA 30 Orien Bast, Alboran S. Algeria 35°4044,16"N ORAW 29 Orbetello, Thyrenian S. Italy 40°461,16"N PIST 27 Orbetello, Thyrenian S. Italy 40°461,16"N PIST 29 Orbetello, Thyrenian S. Italy 40°461,16"N PIST 20 Orbetello, Thyrenian S. Italy 40°461,16"N PIST 20 Orbetello, Thyrenian S. Greece 43°225,40"N SAR 30 South-Bast Black S. Bulgaria 42°416,87"N | Greece 35°20'40.96"N Italy 40°46'13.28"N Italy 44° 5'29.43"N Croatia 44° 5'29.43"N Turkey 40° 9'21.17"N Italy 42°20'17"N Italy 42°20'17"N Italy 42°20'100"N Italy 43°21'55.40"N Greece 37°35'39.64"N Bulgaria 42°21'30"N Italy 43°21'35"N Turkey 38°4'26'33"N Greece 37°35'39.27"N Italy 43°21'3"N Italy 45°40'19.19"N Greece 38°4'26'33"N Greece 38°4'26'33"N Turkey 38°4'26'33"N Spain 45°30'25.42"N Italy 45°30'25.42"N Italy 39°24'57.08"N Ukraine 45°30'25.42"N Italy 39°4'15"N Italy 39°4'15"N Spain 36°4'48.01"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | IMC 20 Torre Grande Marina, Oristano, Sardinia Italy 39°444.42°N LAMW 30 L'Ampolla Maid, Balearic S. Iraly 49°4613.28°N LAS 16 La Spezia, Ligurina S. Iraly 44°4613.28°N MAK 29 Makarska, East-Central Adriatic S. Croatia 43°1634.99°N MOM 30 Canakkale, Dardanelle Strait Turkey 40°4644.64°N ORAE 30 Oran East, Alboran S. Italy 40°4644.64°N ORAW 29 Orbetello, Thyrrenian S. Algeria 35°474.10°N ORAW 29 Orbetello, Thyrrenian S. Italy 40°4614.64°N ORAW 20 Orbetello, Thyrrenian S. Italy 40°4041.0°N PIST 27 Orbetello, Thyrrenian S. Italy 40°4041.0°N PST 12 Port-Saint-Louis-du-Rhône France 47°2521.0°N SAR 30 Saronikos Gulf, Aegean S. Greece 47°2721.0°N SET 23 Sariana, North Adriatic S. Greece 47°241°S.7°A | Italy 39°544.42"N Spain 40°4613.28"N Italy 44° 5′29.43"N Croatia 43°16′34.99"N Turkey 40° 9′21.17"N Italy 40°46′44.64"N Algeria 35°42′36.74"N Italy 42°26′21.00"N France 37°35′39.64"N Bulgaria 42°21′20"N France 37°35′39.64"N Italy 43°22′55.40"N Italy 43°23′27;30"N Italy 45°46′19.19"N Greece 40°38′1.23"N Turkey 38°4′26.33"N Spain 45°40′57.08"N Italy 45°40′57.10"N Italy 39°26′57.08"N Italy 39°26′57.08"N Italy 39°26′57.08"N Italy 39°26′57.08"N Italy 39°27′53.0"N Italy 39°27′53.0"N Italy 39°27′53.0"N Italy 39°27′57.08"N Spain 42°41′59.1"N 38°37/14.89"N 38 | | LAMW 30 L'Ampolla wild, Balearic S. Spain 40°46/13.28"N LAS 16 La Spezia, Ligurian S. Italy 44°529.43"N MAK 29 Makarska, East-Central Adriatic S. Croatia 49°720.43"N MOM 30 Canatkalele, Dardanelle Strait Turkey 40°921.17"N NEA 30 Crand Reat, Alboran S. Algeria 35°42.36"14"N ORAW 29 Oran West, Alboran S. Algeria 35°41.04"N ORAW 29 Oran West, Alboran S. Italy 40°40.44.64"N ORAW 20 Oran West, Alboran S. Italy 40°20.12.00"N PIST 27 Orberello, Thyrrenan S. Italy 40°20.12.00"N PSL 12 Port-Saint-Louis-du-Rhône France 47°250.4"N SRR 29 Sarnikos Gulf, Aegean S. Bulgaria 42°41.58.4"N SRR 29 Sarta Giufo f Lion France 43°225.4"N SGL 23 Sarta Giufo f Lion France 40°30.1.39"N | Spain 40°46'13.28"N Italy Croatia 44° 5'29.43"N Croatia 40° 9'21.17"N Italy Algeria 35° 10'44.16"N Italy Algeria 35° 10'44.16"N Italy Creece 37° 35' 36' 30"N France 42° 26' 21.00"N France 37° 35' 30.64"N Bulgaria 42° 25' 5.40"N France 37° 35' 30.64"N Greece 37° 35' 30' 30"N Italy 45° 41' 58.74"N Italy 45° 41' 58.74"N Italy 39° 43° 22' 73"N Italy 45° 46' 19.19"N Greece 40° 38° 4' 26' 33"N Spain 45° 40' 38' 171"N Italy 39° 47' 59.88"N Italy 39° 47'
59.88"N Spain 36° 4' 48.01"N Spain 38° 34' 14.89"N Spain 42° 13' 54.12"N | | LAS 16 La Spezia, Ligurian S. Iraly 44° 5'29,43"N MAKK 29 Makarska, Bast-Central Adriatic S. Croatia 43°16'34,99"N MOM 30 Ganakkale, Dardanelle Strait Turkey 40°46'44.64"N NEA 30 Gulf of Naples, Thyrerian S. Algeria 33°42'36.74"N ORAW 29 Oran West, Alboran S. Algeria 33°42'36.74"N ORAW 29 Oran West, Alboran S. Italy 40°46'44.64"N ORAW 29 Oran West, Alboran S. Italy 40°20'12.00"N PIST 27 Pesicci, Gulf of Taranto, North IonianS. Italy 40°20'12.00"N PSL 12 Port-Saint-Louis-du-Rhône Greece 37°35'30.64"N SBRB 29 Sumny Beach, South-East Black S. France 43°23'57'30"N SBR 29 Sumny Beach, South-East Black S. France 43°23'57'30"N SGL 23 Satis Guisa Lagoon (Sagno), Sardinia Iraly 45°40'10.19"N SGL 23 Saina Guisa Lagoon (Sagno), Sardinia | Croatia 44° 5′29.43"N Croatia 49°16′34.99"N Italy 40° 9′21.17"N Algeria 35°42′36.74"N Algeria 35°10′44.16"N Italy 40°20′12.00"N France 37°25′5.40"N Greece 37°35′30.64"N Bulgaria 42°26′21.00"N France 42°41′58.74"N France 43°22′57.30"N Italy 43°21′7.30"N Italy 43°21′7.30"N Italy 45°46′19.19"N Greece 40°38′1.23"N Turkey 38°4′26.33"N Spain 45°46′19.19"N Italy 45°47′59.88"N Spain 45°30′25.42"N Italy 39°47′59.88"N Spain 36°4′48.01"N Spain 36°4′48.01"N Spain 42°13′54.12"N Spain 42°13′54.12"N Spain 42°13′54.12"N | | MAK 29 Makarska, East-Central Adriatic S. Croatia 43°16'34.99"N MOM 30 Canalkale, Dardanelle Strait Turkey 40°9'21.17"N NEA 30 Gulf of Naples, Thyremian S. Algeria 39°42'40.4"N ORAW 29 Oran West, Alboran S. Algeria 35°40'44.16"N ORB 25 Ordetello, Thyremian S. Italy 40°50'12.00"N PIST 27 Poitcello, Thyremian S. Italy 40°20'12.00"N PSAR 30 Ornevello, Thyremian S. Italy 40°20'12.00"N PSAR 30 Saronikos Gulf, Aegan S. Italy 40°20'12.00"N SAR 30 Saronikos Gulf, Aegan S. Bulgaria 42°42'158.7"N SET 23 Sumny Beach, South-East Black S. Bulgaria 43°22'3.7"N SET 23 Sunny Gusta Legan S. Greece 40°38'1.23"N SIS 31 Sistiana, North Adriatic S. Greece 40°38'1.23"N VAL 29 Valencia, Balearic S. Spain 45°30'25'4"N <td>Croatia 43°16'34.99"N Turkey 40° 9'21.17"N Italy 40°46'44.64"N Algeria 35°10'44.16"N Italy 40°20'12.00"N Italy 40°20'12.00"N France 37°25'5.40"N Greece 37°35'30.64"N Bulgaria 42°25'5.40"N France 37°35'30.64"N Italy 43°22'57.30"N Italy 43°22'7.30"N Greece 40°38'1.23"N Turkey 38°4'26.33"N Spain 39°26'57.08"N Italy 45°46'19.19"N Italy 45°46'19.19"N Italy 39°47'59.88"N Spain 36°4'48.01"N Portugal 38°34'14.89"N Spain 42°31'38'11"N Spain 36°4'48.01"N Spain 42°31'38'11"N Spain 42°31'38'11"N Spain 42°31'38'11"N Spain 42°31'38'11"N Spain 42°31'38'11"N</td> | Croatia 43°16'34.99"N Turkey 40° 9'21.17"N Italy 40°46'44.64"N Algeria 35°10'44.16"N Italy 40°20'12.00"N Italy 40°20'12.00"N France 37°25'5.40"N Greece 37°35'30.64"N Bulgaria 42°25'5.40"N France 37°35'30.64"N Italy 43°22'57.30"N Italy 43°22'7.30"N Greece 40°38'1.23"N Turkey 38°4'26.33"N Spain 39°26'57.08"N Italy 45°46'19.19"N Italy 45°46'19.19"N Italy 39°47'59.88"N Spain 36°4'48.01"N Portugal 38°34'14.89"N Spain 42°31'38'11"N Spain 36°4'48.01"N Spain 42°31'38'11"N Spain 42°31'38'11"N Spain 42°31'38'11"N Spain 42°31'38'11"N Spain 42°31'38'11"N | | MOM 30 Çanakkale, Dardanelle Strait Turkey 40° 9′21.17"N NEA 30 Gulf o Naples, Thyrenian S. Italy 40° 9′21.17"N ORAE 30 Oran West, Alboran S. Algeria 35′42′36.74"N ORAW 29 Oran West, Alboran S. Italy 40°20′12.00"N PSL 12 Pristicci, Gulf of Taranto, North IonianS. Italy 40°20′12.00"N PSL 12 Port-Saint-Louis-du-Rhône France 43°22′55.40"N SAR 30 Saronikos Gulf, Aegean S. Bulgaria 42°41′58,74"N SBRB 29 Sunny Bacch, South-East Black S. Bulgaria 42°41′58,74"N SET 23 Sert, Gulf of Lion France 37°35′39,47"N SGL 23 Striana, North Adriatic S. Greece 40°32/37,37"N SIS 31 Sistiana, North Adriatic S. Greece 40°32/39,27"N VAL 18 Irani, Aegean S. Turkey 38°4/36,37"N VAL 29 Valencia, Balearic S. Spain 45°4/35,17"N | Turkey 40° 9'21.17"N Italy Algeria 35°42'36.74"N Algeria 35°10'44.16"N Italy 40°20'12.00"N Italy 40°20'12.00"N France 37°25'5.40"N Greece 37°35'39.64"N France 42°41'58.74"N Italy 43°22'7.30"N Italy 43°22'7.30"N Italy 43°22'7.30"N Italy 43°22'7.1"N Italy 45°41'9.19"N Greece 40°38'1.23"N Turkey 38°4'26.33"N Spain 45°47'59.88"N Italy 39°47'59.88"N Spain 36°4'48.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | NEA 30 Gulf of Naples, Thyrrenian S. Italy 40°46'44.64"N ORAE 30 Oran East, Alboran S. Algeria 35°42'36,14"N ORAW 29 Orban West, Alboran S. Italy 42°26'11.0"N ORB 25 Orbetclelo, Thyrrenian S. Italy 42°26'21.00"N PIST 27 Pisticci, Gulf of Taranto, North IonianS. Italy 40°20'12.00"N PSL 12 Port-Saint-Louis-du-Rhône France 43°22'55.40"N SAR 30 Saronikos Gulf, Aegean S. Greece 37°35'39.64"N SBRB 29 Sanny Bacch, South-East Black S. France 42°41'58.74"N SGL 23 Sett, Gulf of Lion France 42°41'58.74"N SIS 31 Sistiana, North Adriatic S. Greece 40°38'1.23"N VAL 18 Izmir, Aegean S. Greece 40°38'1.23"N VAL 29 Valencia, Balearic S. Spain 45°43'51.71"N LID* 29 Camarinal Borristano Camarinal 45°4 | Algeria 35°42'36.74"N Algeria 35°10'44.16"N Italy 40°20'12.00"N Italy 40°20'12.00"N France 37°25'5.40"N Greece 37°35'39.64"N France 42°41'58.74"N France 42°41'58.74"N Italy 43°22'7.30"N Italy 43°22'7.30"N Greece 40°38'1.23"N Greece 40°38'1.23"N Greece 40°38'1.23"N Italy 38°4'26.33"N Spain 45°46'10.19"N Italy 38°4'26.33"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°4'48.01"N Spain 36°4'48.01"N Spain 38°31'38'1'38'N Spain 42°13'54.12"N Spain 42°13'54.12"N | | ORAE 30 Oran East, Alboran S. Algeria 35°42'36.74"N ORAW 29 Oran West, Alboran S. Italy 42°26'21.00"N PIST 27 Pisticci, Gulf, Of Taranto, North IonianS. Italy 40°20'12.00"N PIST 12 Port-Saint-Louis-du-Rhône France 47°22'55.40"N PSK 30 Saronikos Gulf, Aegean S. Greece 37°35'9.64"N SBRB 29 Sunny Beach, South-East Black S. France 42°41'58.74"N SGL 23 Sete, Gulf of Lion France 43°23'73.30"N SGL 23 Satta Giusta Lagoon (Stagno), Sardinia Italy 45°41'99.17"N SISI 31 Sistiana, North Adriatic S. Greece 40°38'1.23"N VAL 29 Valencia, Balearic S. Spain 45°42'57.08"N AZO* 30 Sea of Azov Italy 45°30'25.42"N ORR* 29 Oristano Spain 39°47'59.88"N CAS* 30 Camarinal Spain 45°30'25.42"N | Algeria 35°42'36.74"N Algeria 35°10'44.16"N Italy 42°26'21.00"N France 37°25'5.40"N Greece 37°35'39.64"N Bulgaria 42°41'58.74"N France 42°41'58.74"N Italy 39°43'92.27"N Italy 45°46'19.19"N Greece 40°38'1.23"N Turkey 38°4'26.33"N Spain 45°46'19.18"N Italy 39°47'59.88"N Italy 39°47'59.88"N Spain 45°30'25.42"N Italy 39°47'59.88"N Spain 36°4'48.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | ORAW 29 Oran West, Alboran S. Algeria 35°10'44.16"N ORB 25 Orbetello, Thyremian S. Italy 42°26'21.00"N PIST 27 Pisticci, Gulf of Taranto, North IonianS. Italy 40°20'12.00"N PSL 12 Port-Saint-Louis-du-Rhône France 37°25'540"N SAR 30 Saronikos Gulf, Aegean S. Greece 37°25'540"N SBRB 29 Sunny Beach, South-East Black S. Bulgaria 42°41'58.74"N SET 23 Sete, Gulf of Lion France 43°23'27.30"N SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Italy 45°4(19.19"N SIS 31 Sixiana, North Adriatic S. Greece 40°38'1.23"N VAL 18 Izmir, Aegean S. Turkey 38°4'16,19.10"N VAL 29 Valencia, Balearic S. Spain 45°45'51.11"N VAL 30 Sea of Azov Ukraine 45°4'35'1.11"N ORR* 29 Canarrian Spain 30°4'48.01"N | Algeria 35°10'44.16"N Italy 42°26'21.00"N Italy 40°20'12.00"N Greece 37°35'39.64"N Bulgaria 42°41'58.74"N France 42°41'58.74"N Italy 39°43'92.27"N Italy 45°46'19.19"N Greece 40°38'1.23"N Turkey 38°4'26.33"N Spain 45°46'19.18"N Italy 39°26'57.08"N Italy 39°26'57.08"N Italy 39°26'57.08"N Italy 39°26'57.08"N Spain 45°30'25.42"N Italy 39°47'59.88"N Spain 36°4'48.01"N Spain 38°34'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | ORB 25 Orbetello, Thyrrenian S. Italy 42°26/21.00"N PIST 27 Pisticci, Gulf of Taranto, North IonianS. Italy 40°20/12.00"N PSL 12 Port-Saint-Louis-du-Rhône France 43°22/55.40"N SAR 30 Saronikos Gulf, Aegean S. Bulgaria 42°41/58.74"N SET 23 Sento Gulf of Lion France 43°23/27.30"N SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Italy 45°46/19.19"N SIS 31 Sistiana, North Adriaic S. Greece 40°38/1.23"N TURK 18 Izmir, Aegean S. Turkey 38° 4′26.33"N VAL 29 Valencia, Balearic S. Spain 45°30/25.42"N AXO* 30 Sea of Azov Italy 45°30/25.42"N CAM* 29 Oristano Spain 36°4/48.01"N CAM* 29 Oristano Spain 36°4/48.01"N CAS* 30 Vigo Vigo | Italy 42°26′21.00°N Italy 40°20′12.00°N France 37°35′39.64°N Greece 37°35′39.64°N Bulgaria 42°41′58.74°N Italy 43°23′27.30°N Italy 43°23′27.30°N Italy 43°32′27.30°N Greece 40°38′1.23°N Turkey 38°42′6.33°N Spain 45°46′19.19°N Italy 39°26′57.08°N Italy 45°30′25.42°N Italy 39°47′59.88°N Spain 39°26′57.08°N Spain 39°26′57.08°N Italy 39°47′59.88°N Spain 36°4′48.01°N Spain 42°13′54′12°N Spain 42°13′54′12°N | | PIST 27 Pisticci, Gulf of Taranto, North IonianS. Iraly 40°20′12.00″N PSL 12 Port-Saint-Louis-du-Rhône France 3°22′55.40″N SAR 30 Saronikos Gulf, Aegean S. Greece 37°35′39.64″N SBRB 29 Sumny Beach, South-East Black S. Bulgaria 42°41′58.74″N SET 23 Scut, Gulf of Lion France 43°22′53.730″N SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Iraly 45°40′19.19″N SIS 31 Sixiana, North Adriatic S. Greece 40°38′1.23″N TUKK 18 Izmir, Aegean S. Turkey 38°426.19.19″N VAL 29 Valencia, Balearic S. Spain 45°30′25.42″N ADa 30 Viston Iraly 45°30′25.42″N CAM* 29 Camarinal Portugal 38°441′4.89″N VIG* 30 Vigo Portugal 38°441′4.89″N VIG* 30 Vigo Spain 42°13′54.12″N | Italy 40°20′12.00°N France 37°35′39.64°N Greece 37°35′39.64°N Bulgaria 42°41′58.74°N Italy 43°23′27.30°N Italy 43°23′27.30°N Italy 43°39′27°N Greece 43°39′27°N Italy 45°46′19.19°N Greece 40°38′1.23°N Turkey 38°42′6.33°N Spain 45°42′6.33°N Italy 39°47′58.88°N Italy 39°47′58.88°N Spain 36°4′48.01°N Portugal 38°34′14.89°N Spain 42°13′54′12°N Spain 42°13′54′12°N | | PSL 12 Port-Saint-Louis-du-Rhône France 43°22'55.40"N SAR 30 Saronikos Gulf, Aegean S. Greece 37°35'39.64"N SBRB 29 Sumny Beach, South-East Black S. Bulgaria 42°41'58.74"N SET 23 Sete, Gulf of Lion France 43°23'27.30"N SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Iraly
45°46'19.19"N SIS 31 Sistiana, North Adriatic S. Greece 40°38'1.23"N TURK 18 Izmir, Aegean S. Trurkey 38°4'6.13.13"N VAL 29 Valencia, Balearic S. Spain 45°4'3'51.71"N AZOa 30 Sea of Azov Ukraine 45°4'3'51.71"N LIDa 32 Lido Oristano Italy 45°30'25-42"N ORA 29 Camarinal Spain 38°34'14.80"N VIGb 30 Vigo Spain 42°1'3'54'1.13"N VIGb 30 Vigo Spain 42°1'3'54'1.2"N | France 43°22′55.40°N Greece 37°35′39.64°N Bulgaria 42°41′58.74°N France 43°23′27.30°N Italy 45°46′19.19°N Greece 40°38′1.23°N Turkey 38°4′26.33°N Spain 40°38′1.23°N Ukraine 45°43′51.71°N Italy 39°4′759.88°N Spain 36°4′48.01°N Portugal 38°34′14.89°N Spain 42°13′54′12°N | | SAR 30 Saronikos Gulf, Aegean S. Greece 37°35'39.64"N SBRB 29 Sunny Beach, South-East Black S. Bulgaria 42°41'58.74"N SET 23 Sete, Gulf of Lion France 43°23'27.30"N SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Iraly 39°43'39.27"N SIS 31 Sixiana, North Adriatic S. Greece 40°38'1.23"N TURK 18 Izmir, Aegean S. Turkey 38° 4'26.33"N VAL 29 Valencia, Balearic S. Ukraine 45°43'51.71"N AZOa 30 Sea of Azov Ukraine 45°30'25.42"N LIDa 32 Lido 1raly 45°30'25.42"N ORIa 29 Oristano Spain 36°4'48.01"N CAMb 29 Camarinal Spain 36°4'48.01"N VIGb 30 Vigo Spain Spain VIGe 30 Vigo Spain Spain | Greece 37°35′39,64°N Bulgaria 42°41′58.74°N France 43°23′27.30°N Italy 45°46′19.19°N Greece 40°38′1.23°N Turkey 38°4′26.33°N Spain 45°46′19.19°N Italy 39°26′57.08°N Italy 45°30′25.42°N Italy 39°47′59.88°N Spain 36°4′48.01°N Portugal 38°34′14.89°N Spain 42°13′54′12°N Spain 42°13′54′12°N | | SBRB 29 Sunny Beach, South-East Black S. Bulgaria 42°41′58.74″N SET 23 Sete, Gulf of Lion France 43°23′27.30″N SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Italy 45°46′19.19″N SIS 31 Sixiana, North Adriatic S. Greece 40°38′1.23″N TURK 18 Izmir, Aegean S. Turkey 38° 4′26.33″N VAL 29 Valencia, Balearic S. Christon Ukraine 45°43′51.71″N LIDa 32 Lido Ukraine 45°30′25.42″N ORIa 29 Oristano Italy 39°47′59.88″N CAMb 29 Camarinal Spain 36°4′48.01″N CASb 30 Vigo Spain 42°13′54.12″N VIGb 30 Vigo Spain 42°13′54.12″N | Bulgaria 42°41'58.74"N France 43°23'27.30"N Italy 45°46'19.19"N Greece 40°38'1.23"N Turkey 38°4'26.33"N Spain 42°46'19.19"N (Ukraine 45°45'1.71"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°4'48.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | SET 23 Sete, Gulf of Lion France 43°23′27.30°N SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Italy 45°46′19.19°N SIS 31 Sixiana, North Adriatic S. Greece 40°38′1.23°N TES 30 Thessaloniki, Aegean S. Turkey 38° 4′26.33°N VAL 29 Valencia, Balearic S. Spain 39°26′57.08°N AZOa 30 Sea of Azov Ukraine 45°43′51.71°N LIDa 32 Lido 1faly 39°47′59.88°N ORIa 29 Oristano 1faly 39°41′48.01°N CAMb 29 Camarinal Spain 36°4′48.01°N CASb 30 Vigo Spain 42°13′54.12°N VIGb 30 Vigo Spain 42°13′54.12°N | France 43°23'27.30"N Italy 39°43'39.27"N S. Italy 45°46'19.19"N Turkey 38°4'26.33"N Spain 39°26'57.08"N Ukraine 45°36'1.17"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°448.01"N Spain 38°34'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | SGL 23 Santa Giusta Lagoon (Stagno), Sardinia Italy 39°43'39.27"N SIS 31 Sixiana, North Adriatic S. Italy 45°46'19.19"N TES 30 Thessaloniki, Aegean S. Greece 40°38'1.23"N TURK 18 Izmir, Aegean S. Turkey 38° 4'26.33"N VAL 29 Valencia, Balearic S. Ukraine 45°43'51.71"N LIDa 32 Lido Italy 45°30'25.42"N ORIa 29 Oristano Italy 39°47'59.88"N CAMb 29 Camarinal Spain 36°4'48.01"N CASb 30 Vigo Spain 42°13'54.12"N VIGb 30 Vigo Spain 42°13'54.12"N | tagno), Sardinia Italy 39°43'39.27"N S. Greece 40°38'1.23"N Turkey 38° 426.33"N Spain 39°26'57.08"N Ukraine 45°43'51.71"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°448.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Smain 42°13'54.12"N | | SIS 31 Sistiana, North Adriatic S. Italy 45°46'19.19"N TES 30 Thessaloniki, Aegean S. Greece 40°38'1.23"N TURK 18 Izmir, Aegean S. Turkey 38° 4'26.33"N VAL 29 Valencia, Balearic S. Spain 39°26'57.08"N AZOa 30 Sea of Azov Ukraine 45°43'51.71"N LIDa 32 Lido Italy 45°30'25.42"N ORIa 29 Oristano Italy 39°47'59.88"N CAMb 29 Camarinal Spain 36°4'48.01"N CASb 30 Vigo Spain 42°13'54.12"N | S. Italy 45°46'19.19"N Greece 40°38'1.23"N Turkey 38° 4'26.33"N Spain 39°26'57.08"N Ukraine 45°35'1.71"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°448.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Smain 42°13'54.12"N | | TES 30 Thessaloniki, Aegean S. Greece 40°38'1.23"N TURK 18 Izmir, Aegean S. Turkey 38° 4'26.33"N VAL 29 Valencia, Balearic S. Spain 39°26'57.08"N AZO ^a 30 Sea of Azov Ukraine 45°43'51.71"N LID ^a 32 Lido 1fraly 45°30'25.42"N ORI ^a 29 Oristano 1fraly 39°47'59.88"N CAM ^b 29 Camarinal Spain 36°4'48.01"N CAS ^b 30 Vigo Spain 42°13'54.12"N VIG ^b 30 Vigo Spain 42°13'54.12"N | Greece 40°38'1.23"N Turkey 38° 4'26.33"N Spain 39°26'57.08"N Ukraine 45°30'25.42"N Italy 39°47'59.88"N Spain 36°4'48.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | TURK 18 Izmir, Aegean S. Turkey 38° 4'26.33"N VAL 29 Valencia, Balearic S. Spain 39°26'57.08"N AZOa 30 Sea of Azov Ukraine 45°43'51.71"N LIDa 32 Lido 45°30'25.42"N ORIa 29 Oristano 1taly 39°47'59.88"N CAMb 29 Camarinal 36°4'48.01"N CASb 30 Vigo Spain 42°13'54.12"N VIGb 30 Vigo Spain 42°13'54.12"N | In S. Spain Spain 39°26'57.08"N Ukraine 45°42'51.71"N Italy 1taly Spain 30°47'59.88"N 45°43'51.71"N Italy 50°47'59.88"N Spain 30°47'59.88"N Spain 42°13'54'12"N Spain 50°47'35 71"N Spain 50°47'59.88"N Spain 50°47'59.88"N | | VAL 29 Valencia, Balearic S. Spain 39°26'57.08"N AZOa 30 Sea of Azov Ukraine 45°43'51.71"N LIDa 32 Lido Ifaly 45°30'25.42"N ORIa 29 Oristano Iraly 39°47'59.88"N CAMb 29 Camarinal Spain 36°4'48.01"N CASb 30 Cascais Portugal 38°34'14.89"N VIGb 30 Vigo Spain 42°13'54.12"N | learic S. Spain 39°26'57.08"N Ukraine 45°43'51.71"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°448.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Spain 42°13'54.12"N | | AZO ^a 30 Sea of Azov Ukraine 45°43′51.71"N LID ^a 32 Lido Italy 45°30′25.42"N ORI ^a 29 Oristano Italy 39°47′59.88"N CAM ^b 29 Camarinal Spain 36°4′48.01"N CAS ^b 30 Cascais Portugal 38°34′14.89"N VIG ^b 30 Vigo Spain 42°13′54.12"N | Ukraine 45°43'51.71"N Italy 45°30'25.42"N Italy 39°47'59.88"N Spain 36°448.01"N Portugal 38°34'14.89"N Spain 42°13'54.12"N Smain 43°21'38'71"N | | LIDa 32 Lido Italy 45°30′25.42°N ORIa 29 Oristano Italy 39°47′59.88°N CAMb 29 Camarinal Spain 36°4′48.01°N CASb 30 Cascais Portugal 38°34′14.89°N VIGb 30 Vigo Spain 42°13′54.12°N | 45°30′25.42″N
39°47′59.88″N
36°4′48.01″N
38°34′14.89″N
42°13′54.12″N
43°21′35 71″N | | ORIa 29 Oristano Italy 39°47'59.88"N CAMb 29 Camarinal Spain 36°4′48.01"N CASb 30 Cascais Portugal 38°34'14.89"N VIGb 30 Vigo Spain 42°13'54.12"N | 39°47′59.88″N
36°4′48.01″N
38°34′14.89″N
42°13′54.12″N
73°2′13′54.12″N | | CAMb 29 Camarinal Spain 36°4′48.01"N CASb 30 Cascais Portugal 38°34'14.89"N VIGb 30 Vigo Spain 42°13'54.12"N | 36°4′48.01"N
38°34′14.89"N
42°13′54.12"N
43°3′1′38.71"N | | CAS ^b 30 Cascais Portugal 38°34'14.89"N VIG ^b 30 Vigo Spain 42°13'54.12"N | gal 38°34'14.89"N
42°13'54.12"N
73°21'38 71"N | | VIG ^b 30 Vigo Spain 42°13'54.12"N | 42°13′54.12″N
43°21′38 71″N | | | 13021/38 71%N | | oa Spain 43°21'38.71"N | 1 11:0C 17 CF | Table I. (Continued). | No. | Sample | Z | Location | Country | Coordinates | | Year | |-----------|---|------------------|---|-----------------------------|--|---------------------------------|-------------| | 44 | $\mathrm{CHA}^{\mathrm{c}}$ | 20 | Charente | France | 45°56′60.00"N | 1° 1′55.20"W | 2015 | | 45 | Γ OI c | 29 | Loire | France | 47°14′43.83"N | 2°13'48.88"W | 2004 | | 46 | $MSMA^c$ | 30 | Mont Saint Michel Bay | France | 48°39′0.06″N | 1°31′40.26"W | 2015 | | 47 | $KKAT^d$ | 28 | Halifax | Canada | 44°30′33.79″N | 63°29′24.91"W | 1996 | | Reference | eference samples are marked in hold $ ho^a M$ | in hold (aM oall | onllopominicialis Mediterranean: samule 37 - Wenne et al. 2020, 38 -, 2016, 39 - Zhawicka et al. 2018; ^b M. onllopominicialis Atlantic: 40 -, 2018, 41 | et al. 2020, 38 -, 2016, 39 | - Zhawicka et al. 2018: ^b M | aallobrosvincialis Atlantic: 40 | -, 2018, 41 | and 42 -; Wenne et al. 2020, 43 -, 2016; ^cM. edulis: 44 - Simon et al. 2021, 45 - Wenne et al. 2016, 46 - unpublished data; ^cM trossulus: 47 - Zbawicka et al. 2018) #### Data analysis Genetic diversity. Population genetic variation was analysed in Arlequin v. 3.5.1.2 (Excoffier & Lischer 2010) to estimate: locus-specific allele frequencies, proportion of polymorphic SNPs (P_O) , minor allele frequencies (MAF for bi-allelic), observed (H_O) and expected (H_E) heterozygosities, genetic diversity and differentiation (pairwise F_{ST}), inbreeding coefficient (F_{IS}) and departures from Hardy-Weinberg equilibrium (HWE). An analysis of molecular variance (AMOVA) with 1000 permutations to estimate variance components among Mytilus populations was also conducted in Arlequin. The most informative loci were identified by calculating F_{ST} outlier loci using the approach of Excoffier et al. (2009) implemented in Arlequin. The upper limits of the 95% confidence intervals were identified with 20,000 iterations and characterised by estimating the 0.05 and 0.95 and 0.99 quantiles of the distribution. The false discovery rate (FDR-BY) was applied to correct significance (P) values after multiple testing (Benjamini & Yekutieli 2001; Narum 2006). Population genetic differentiation and structure. F_{ST} measures in the Newick format, obtained in POPTREEW (Takezaki et al. 2014), were used to construct a neighbour-joining (NJ) tree illustrating the differentiation among populations (all M. galloprovincialis and M. edulis, but not the reference M. trossulus) and visualised in MEGA version 6 (Tamura et
al. 2013). Two methods were used for the population structure analyses. First, correspondence analysis (CA; Benzécri 1992), implemented in GENETIX (Belkhir et al. 2003), was used to visualise genetic structure among populations. The results are presented as a scatter plot, with the axes representing the contribution of inertia of the data matrix in a way that can be considered analogous to the total variance in allelic frequencies (Benzécri 1992). Second, clustering and assignment testing were performed using the Bayesian-based method implemented in STRUCTURE v. 2.3.4. STRUCTURE was employed using the model assuming admixture, ignoring population affiliation and allowing for the correlation of allelic frequencies between clusters. This admixture model allows for individual structure with mixed ancestry, meaning that fractions of the genome could have come from different ancestors (Pritchard et al. 2000; Falush et al. 2007). The most appropriate number of genetic clusters (K) was determined by a diagram-based comparison of log-likelihoods for values of K. At least five runs were used to calculate each K value, following the method described by Evanno et al. Figure 1. Locations of 36 sampling and 10 reference sites in the Mediterranean Sea and Atlantic Ocean (KKAT from Halifax, Canada, Northwestern Atlantic Ocean is not shown). Sample site names and geographical coordinates are detailed in Table I. (2005). Threshold q-values of 0.2 were used as a criterion to separate hybrid and pure mussels (Vähä & Primmer 2006). Individuals were considered residents if q > 0.8 for the area where they were sampled. Individuals with q-values from 0.2 to 0.8 were considered to be potentially admixed, as they could not be readily assigned as residents or migrants (Lecis et al. 2006). Individuals with an assignment probability of q > 0.8 were defined as belonging to the wild population (cf. Jonker et al. 2013), whilst those with $q \le 0.8$ were labelled as admixed. A Monte Carlo Markov Chain was run for 100,000 iterations following a burn-in period of 50,000 iterations. Linking genetic and environmental variation. Regional-scale proxies for weather and local environmental conditions were obtained from online databases for 13 environmental variables (Table S1). As a proxy for the global climate and weather (air and water temperature, cloud, wind speed, waves) we used ERA5 reanalyses (for all methodological details of environmental variables and modelling see references in Table S1). Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface variables. To characterise biogeochemical patterns (concentrations of chlorophyll a, nitrate and phosphate, as well as marine primary production) we used the CMEMS global biogeochemical multi-year hindcast product GLOBAL REANALYSIS BIO 001 029. CMEMS provides daily estimates for all biogeochemical variables. Model inputs for the physical conditions (salinity, mixed layer thickness) were obtained from the CMEMS global ocean eddy-resolving reanalysis product GLOBAL REANALYSIS PHY-001-030. Data for the global distribution of photosynthetically available radiation at the sea surface and on the seafloor were obtained from Gattuso et al. (2020). Relationships between environmental variables and genetic variation of *M. galloprovincialis* populations from the Mediterranean Sea (i.e., excluding populations CHA, LOI, MSMA and KKAT) were tested using two complementary seascape genetics approaches. First, following Wei et al. (2013), we used population-specific F_{ST} values (the response variable and where negative F_{ST} values were set to zero) and the 13 environmental variables in a GLM (the GLZ routine in Statistica v. 12). We employed a normal distribution and a log link function. To minimise Type I error that may be associated with stepwise (forward or backward) model building we employed the "all effects" model. Second, following Silva and Gardner (2016), we used population-specific allelic frequencies (the response variables) and the 13 environmental independent variables in a distance-based linear model (DistLM in the PRIMER + PERMANOVA v. 6 software package -Anderson et al. 2008). This test is a permutational equivalent to partial redundancy analysis (Legendre & Anderson 1999). DistLM was used to perform an ordination of fitted values from a given model and is constrained to find linear combinations of predictor variables (environmental data) that explain the greatest variation in the data cloud (population-specific allele frequencies). Permutation of residuals was carried out under a reduced (or partial) model and because this is a permutational test, there are no assumptions about data normality (Anderson et al. 2008). Marginal tests (one independent variable at a time) and sequential tests (all independent variables entered into the model based on their relative importance (most significant first) in the marginal tests) were employed to identify the environmental variables that explained the greatest variation in the genetic dataset. Model fit was tested using adjusted R^2 (i.e., adjusted for the number of terms in the model), the AIC value and the BIC value. Note that these two seascape genetic analyses use the same environmental dataset but test for population-specific variation in different dependent variables: for the GLM this is population-specific F_{ST} values (a summary metric of population differentiation) whereas for the DistLM this is locus-specific allele frequencies (i.e., the raw genetic data). ### Results SNP validation and Hardy-Weinberg equilibrium Fifty-three SNPs were genotyped (Table II). ORF identification was not possible for only five SNPs. Forty-four SNPs (83.01%) were located in coding regions, of which only three (5.66%) were not synonymous. Four SNPs (7.54%) were located in non-coding regions. The MAF ranged from 0.000 (7 different loci) to 0.404 (1 locus) (Table II). The vast majority of loci were in Hardy-Weinberg equilibrium (HWE) in all populations. No SNPs with departures from HWE were observed in 10 populations (AGA, BLS, CHW, CIRP, MOM, ORAW, SBRB, TURK and reference CAS and LOI). Only one population (VAL) had three SNPs that were not in HWE (P < 0.01). In the remaining samples the fraction of SNPs showing significant departures from HWE was one or two for 20 and 14 populations, respectively (Table III). Detection of outlier loci and highly informative SNPs Eighteen of the 53 SNPs differentiated M. trossulus (Halifax, Nova Scotia, Canada) from other taxa (BM33B, BM44B, BM30C, BM201B, BM12A, BM103B, BM10B, BM30A, BM11A, BM2G, BM101A, BM116A, BM64A, BM202B, BM202A, BM92B, BM203D, BM62A). When the M. trossulus reference sample was excluded from the analysis seven outlier SNPs differentiating M. edulis from M. galloprovincialis (BM101A, BM12C, BM17B, BM21C, BM201C, BM57A, BM67C) were identified (Fig. S1). After excluding reference samples of M. edulis and the Atlantic Ocean lineage of M. galloprovincialis an analysis was performed of the samples from the Mediterranean Sea and the Black Sea (including the Sea of Azov, the Marmara Sea and the Straits of Dardenelle). Two outlier SNPs differentiating Mediterranean Sea from Black Sea/Sea of Azov M. galloprovincialis populations (BM105A, BM106B) were identified (Fig. S2). #### Genetic diversity The percentage of polymorphic loci (Po) in all M. galloprovincialis populations ranged from 45% in the Morocco (AGA) and Turkey (TURK) samples to 56.60% in the Croatia (DUB) and reference IMC (Italy) samples (Table III). Observed heterozygosity (H_O) for 53 loci across 47 populations was lower than expected (H_E) , except for two samples: ORAE and BLS (Table III). The highest H_O values ranged from 0.310 to 0.327 and were recorded at TURK, ORAW, AGA and ORAE. The highest values of the expected heterozygosity (H_E) were observed at SET, TURK and AGA (0.327, 0.328 and 0.341, respectively), whilst the lowest values were observed at PIST and TES (0.278 and 0.287, respectively). The mean within-population fixation index F_{IS} (averaged over all polymorphic loci in 47 populations) was 0.069. For seven samples (GRM, SIS, CIRP, GAR, BAN, VAL and reference M. trossulus KKAT) significant F_{IS} values indicated an excess of homozygotes (Table III), (Continued) Table II. Descriptive properties of 53 SNP loci among 47 populations of Mytilus spp., genome location, substitution type, allelic variant, F_{ST} P-value associated with test for outlier status, minor allele frequency (MAF), GenBank accession number and supporting reference. | Location Discound profession 7.7. | Region | Substitution | Allele | $F_{ m ST}$ | H_O | $F_{ m IS}$ | No. of sampling sites where the locus was polymorphic | MAF | GenBank accession number | | |---|-----------|--------------|-------------|--------------------|---------------|-------------|---|-------|--------------------------|--| | Ribosomal protem L7a
Proteasome subunit beta type-6-like | coding | synon | AYI.
C/T | 0.957 | 0.159 0.295 | 0.210 | 5
46 | 0.003 | KT713378
KT713379 | Wenne et al. 2016
Wenne et al. 2016 | | Proteasome subunit beta type-5-like | coding | nonsyn | A/G | 0.736 | 0.032 | 0.054 | П | 0.006 | KT713380 | | | | NA | NA | A/G | 0.110 | 0.492 | 0.326 | 45 | 0.384 | KT713381 | Wenne et al. 2016 | | | NA | NA | A/G | 0.088 | 0.217 | 0.996 | 33 | 0.137 | KT713382 | Wenne et al. 2016 | | | coding | synon | A/C | 0.805 | 0.035 | 0.027 | - | 0.004 | KJ871040 | Zbawicka et al.
2014 | | | coding | synon | A/C | 0.965 | 0.047 | 0.000 | 2 | 0.001 | KT713387 | Wenne et al. 2020 | | | NA | NA | A/G | 0.028 | 0.274 | 0.017 | 46 | 0.168 | KT713388 | Wenne et
al. 2016 | | | coding | synon | A/G | 0.931 | 0.045 | -0.008 | 8 | 0.001 | KJ871041 | Zbawicka et al.
2014 | | | coding | synon | A/T | 0.000 | 0.001 | 0.000 | - | 0.000 | KT713389 | Wenne et al. 2020 | | | coding | synon | C/T | 0.750 | 0.044 | -0.060 | 7 | 900.0 | KJ871042 | Zbawicka et al.
2014 | | | coding | synon | C/T | 0.235 | 0.482 | 0.034 | 47 | 0.255 | KJ871042 | Wenne et al. 2016 | | | NA | NA | C/T | 0.114 | 0.312 | 0.048 | 45 | 0.175 | KT713383 | Wenne et al. 2016 | | | coding | synon | C/T | 0.021 | 0.396 | 0.044 | 47 | 0.268 | KJ871044 | Wenne et al. 2016 | | | coding | synon | A/G | 0.516 | 0.090 | 0.089 | 15 | 0.030 | KJ871045 | Zbawicka et al.
2014 | | | noncoding | NA | A/C | 0.667 | 0.032 | 0.616 | 3 | 0.007 | AY267750.1 | Zbawicka et al.
2012 | | | coding | synon | G/T | 0.214 | 0.417 | 0.001 | 45 | 0.216 | AY267750.1 | Zbawicka et al.
2012 | | | noncoding | NA | A/C | 1.000 1.000 | 1.000 | 0.000 | 0 | 0.000 | AY267749.1 | Zbawicka et al.
2012 | | | coding | synon | A/T | 1.000 1.000 | 1.000 | 0.000 | 0 | 0.000 | AY267749.1 | Zbawicka et al.
2012 | | | noncoding | NA | C/T | 0.193 | 0.442 | 0.054 | 45 | 0.246 | AY267742.1 | Zbawicka et al.
2012 | | | noncoding | NA | A/T | 1.000 | 1.000 | 0.000 | 0 | 0.000 | AY267757.1 | Zbawicka et al.
2012 | | | coding | synon | C/T | 0.104 | 0.498 | -0.006 | 46 | 0.364 | DQ865151 | Zbawicka et al.
2012 | | | coding | nonsyn | D/O | 0.982 0.043 | 0.043 | 0.000 | П | 0.000 | KJ871047 | Zbawicka et al.
2014 | | Locus | Location | Region | Substi-
tution | Allele | $F_{ m ST}$ | H_O | $F_{ m IS}$ | No. of sampling sites where the locus was polymorphic | MAF | GenBank accession
number | Reference | |----------|--|--------|-------------------|------------|-------------|-------|-------------|---|-------|-----------------------------|-------------------------| | 24 BM21C | qm-like protein | coding | synon | A/C/
T | 0.237 | 0.378 | -0.035 | 47 | NA | KJ871047 | Zbawicka et al.
2014 | | 25 BM26B | UnKnown13 | NA | NA | A/T | 0.190 | 0.215 | 0.000 | 41 | 0.105 | KJ871050 | Zbawicka et al.
2014 | | 26 BM2G | UnKnown05 | coding | synon | G/T | 0.944 | 0.041 | -0.041 | 1 | 0.001 | KJ871032 | Zbawicka et al.
2014 | | 27 BM30A | Ribosomal protein 117 | coding | synon | A/G | 0.855 | 0.037 | -0.149 | 1 | 0.003 | KJ871052 | Zbawicka et al.
2014 | | 28 BM30C | Ribosomal protein 117 | coding | synon | A/T | 0.491 | 0.023 | 0.082 | 7 | 0.011 | KJ871052 | Zbawicka et al.
2014 | | 29 BM32A | ubiquinol-cytochrome c reductase subunit 6 | coding | synon | A/G | 0.032 | 0.493 | 0.406 | 47 | 0.402 | KT713371 | Wenne et al. 2016 | | 30 BM33B | Cytochrome c oxidase subunit IV | coding | synon | A/T | 0.453 | 0.020 | -0.327 | 1 | 0.010 | KJ871054 | Zbawicka et al.
2014 | | 31 BM35C | Ribosomal protein L7 | coding | synon | Δ T | 0.102 | 0.368 | 0.036 | 47 | 0.215 | KJ871055 | Wenne et al. 2016 | | 32 BM35D | Ribosomal protein L7 | coding | synon | A/G | 0.084 | 0.292 | 0.128 | 45 | 0.168 | KJ871055 | Zbawicka et al.
2014 | | 33 BM36F | ribosomal protein S3a | coding | synon | A/C | 0.215 | 0.170 | -0.003 | 46 | 0.071 | KT713373 | Wenne et al. 2016 | | 34 BM38B | ribosomal protein S8e | coding | synon | A/G | 0.045 | 0.302 | 0.054 | 47 | 0.172 | KT713368 | Wenne et al. 2016 | | 35 BM44B | ubiquitin/ribosomal protein S27a | coding | synon | A/G | 0.490 | 0.025 | 0.430 | 8 | 0.011 | KJ871057 | Zbawicka et al.
2014 | | 36 BM50B | CoA-binding protein | coding | synon | A/G | 0.056 | 0.003 | -0.059 | 1 | 0.002 | KJ871059 | Zbawicka et al.
2014 | | 37 BM54A | ETC C1 NDUFA4 | coding | synon | A/G | 0.672 | 0.063 | 0.065 | 20 | 0.010 | KJ871060 | Zbawicka et al.
2014 | | 38 BM57A | NADH-ubiquinone_oxidoreductase | coding | nonsyn | C/T | 0.199 | 0.442 | 0.028 | 45 | 0.242 | KT713374 | Wenne et al. 2016 | | 39 BM57D | NADH-ubiquinone oxidoreductase | coding | synon | A/C | 0.155 | 0.470 | -0.003 | 46 | 0.290 | KT713374 | Wenne et al. 2016 | | 40 BM5B | Ribosomal protein S6e | coding | synon | A/G | 0.058 | 0.207 | 0.023 | 41 | 0.114 | KJ871035 | Wenne et al. 2016 | | 41 BM5D | Ribosomal protein S6e | coding | synon | C/T | 0.035 | 0.355 | -0.004 | 47 | 0.227 | KJ871035 | Zbawicka et al.
2014 | | 42 BM60A | UnKnown08 | coding | synon | A/G | 0.192 | 0.013 | 0.051 | 4 | 900.0 | KJ871063 | Zbawicka et al.
2014 | | 43 BM61A | Ribosomal_L1 | coding | synon | C/T | 0.134 | 0.211 | 0.037 | 45 | 0.106 | KT713375 | Wenne et al. 2016 | | | | | | | | | | | | | | (Continued) Table II. (Continued). | Locus | Location | Region | Substi-
tution | Allele | $F_{ m ST}$ | H_O | $F_{ m IS}$ | No. of sampling sites where the locus was polymorphic | MAF | GenBank accession
number | Reference | |----------|-----------------------|--------|-------------------|-----------|-----------------------|-------|-------------|---|-------|-----------------------------|-------------------------| | 44 BM62A | Ribosomal L13e | coding | synon | A/G | A/G 1.000 1.000 0.000 | 000.1 | 0.000 | 0 | 0.000 | KJ871064 | Zbawicka et al.
2014 | | 45 BM64A | Ribosomal protein L35 | coding | synon | C/T | 0.982 | 0.044 | 0.001 | 1 | 0.000 | KJ871065 | Zbawicka et al.
2014 | | 46 BM67C | Ribosomal protein S6e | coding | synon | A⁄T | 0.252 (| 0.312 | 0.226 | 47 | 0.154 | KJ871066 | Wenne et al. 2016 | | 47 BM6C | EFG N | coding | synon | C/T | 0.273 (| 0.029 | 0.124 | œ | 0.015 | KJ871036 | Zbawicka et al.
2014 | | 48 BM75C | UBA UBA-TS-N domain | coding | synon | D/O | 0.047 0.003 | | -0.049 | 1 | 0.001 | KT713370 | Wenne et al. 2016 | | 49 BM78B | UnKnown12 | coding | synon | A/G | 0.125 (| 0.437 | 0.062 | 47 | 0.262 | KJ871069 | Zbawicka et al.
2014 | | 50 BM8E | Ribosomal protein L3 | coding | synon | A/G | 0.546 0.079 | | 0.067 | 29 | 0.019 | KJ871038 | Zbawicka et al.
2014 | | 51 BM92B | UnKnown06 | coding | synon | A/T | 1.000 1.000 | | 0.000 | 0 | 0.000 | KJ871074 | Zbawicka et al.
2014 | | 52 BM9B | Ribosomal protein S2 | coding | synon | A/G | 0.075 0.297 | | 0.037 | 47 | 0.175 | KJ871039 | Zbawicka et al.
2014 | | 53 BM9C | Ribosomal protein S2 | coding | synon | A/C/
T | 0.132 | 0.401 | 0.031 | 47 | NA | KJ871039 | Zbawicka et al.
2014 | $F_{\rm ST}$ - fixation index, values with P < 0.05 after Benjamini-Yekutieli corrections are marked in bold; H_O - observed heterozygosity; $F_{\rm IS}$ - inbreeding coefficient; No. - number of sampling sites where the locus was polymorphic; MAF - minor allele frequency. which may indicate a relationship between individuals within a population, resulting from the collection of related individuals from a small area. Estimates of average pairwise differences within-population diversity among the *M. galloprovincialis* populations revealed that the most diverse population was BLT from Tunisia and the least diverse was CHW from Croatia. In the reference samples the greatest diversity was observed in the Atlantic *M. galloprovincialis* BID population from Spain and the lowest in the *M. edulis* MSMA population from France. The same samples exhibited the greatest and the least gene diversity (Table III). Allelic frequencies were calculated for 53 SNPs and minor allele frequency (MAF) was determined for 51 bi-allelic SNPs (Table S2). Across all 47 populations the MAF values ranged from 0.075 to 0.124. MAF values in the M. galloprovincialis populations ranged from 0.087 to 0.124, and were generally low, but higher than for M. edulis reference populations: CHA (0.075), LOI (0.083) and MSMA (0.083). MAF values for the M. galloprovincialis samples from the Black Sea (0.087) and the Aegean Sea (0.094) were low in comparison to other M. galloprovincialis samples. The MAF values for Atlantic M. galloprovincialis were higher (0.110, 0.119, 0.122 and 0.124 for CAS, CAM, BID and VIG, respectively - Table III) than for the Mediterranean Sea populations Μ. galloprovincialis. # Genetic differentiation among populations Pairwise comparisons of F_{ST} values among all 47 populations for the 53 SNPs indicated that many pairs of populations were significantly different from one another (P < 0.05 after Benjamini-Yekutieli correction) (Table S3). As expected, statistically significant genetic differentiation was observed for most of the pairwise comparisons involving reference M. trossulus (KKAT), reference Atlantic Ocean M. galloprovincialis (BID, VIG, CAS and CAM) and reference M. edulis (MSMA, LOI and CHA). The M. galloprovincialis populations AGA, MOM, ORAW and BLS exhibited the greatest numbers of statistically significant values of F_{ST} . Low but statistically significant levels of differentiation were observed between pairs of populations from the Aegean Sea and the Black Sea. The highest $F_{\rm ST}$ values were observed in the pairwise comparisons of SBRB (the Black Sea) with SAR (0.077) and TURK (0.073), both in the Aegean Sea, as well as between AZO (the Sea of Azov) and TURK (0.075). The pairwise F_{ST} values for the Aegean Sea and the Black Sea populations were also statistically significant when compared to other Mediterranean Sea populations: the highest value was observed for the TURK and SGL pair (Santa Giusta Lagoon, Italy) and was 0.061. Most other pairwise F_{ST} values were ≤ 0.03 and were not significantly different from zero. There was no statistically significant differentiation for MOM (Dardanelle Strait) and populations from the Black Sea (SBRB, BLS, AZO), but differentiation between MOM and most populations from the Aegean was observed: MOM-HER (0.047), MOM-SAR (0.048), MOM-TES (0.040) and MOM-TURK (0.047). For the pairwise comparison of MOM-EGE the F_{ST} value was not-significantly different from zero, indicating the absence of genetic differentiation. No significant genetic differentiation was
observed for the CHW (northern Adriatic Sea) – BLS (Black Sea) pair. AMOVA was performed comparing groups of samples for five different scenarios where populations were defined a priori (details in Table IV). The estimated values of the F-statistic were significant for all five scenarios, and the greatest variance was exhibited within individuals for all scenarios. Considering samples from the Mediterranean Sea as one group the percent of variation was the greatest (~21%) among populations in comparison not with other scenarios (range ~1.2 to 3.2%). The levels of percent variance were quite similar when the samples from the Mediterranean Sea basin were divided into 2 or 4 groups. AMOVA analysis with the division into two groups (the Atlantic Ocean and the Mediterranean Sea with the Black Sea and the Sea of Azov) showed a significant increase of the variance component value among populations within groups. The inclusion of the ORAW population from the Alboran Sea in both the Atlantic Ocean and Mediterranean Sea groups did not affect the differences in proportions of genetic variability. Neighbour-joining (NJ) tree analysis with M. edulis as the outgroup revealed relationships among M. galloprovincialis populations (Figure 2). A separate group with 97% bootstrap support consisted of reference samples of Atlantic Ocean M. galloprovincialis (BID, CAM, CAS and VIG), with the Moroccan Atlantic Ocean sample (AGA) plus the ORAW (inside the Mediterranean Sea) sample. This group was clearly separated from all other M. galloprovincialis populations. Within the M. galloprovincialis from the Mediterranean Sea, two main branches of the tree were distinguished: the first encompassed populations from the Sea of Azov, the Black Sea, and the Marmara Sea (MOM, SBRB, BLS, AZO), and the second from around the Aegean Sea (EGE, HER, SAR, TURK, TES and BRI). Between these two clusters several Table III. Genetic diversity indices of the 47 Mytilus populations. | Sample | P_O | H_O | H_E | MAF | Av. gene diversity over loci | Average no. pairwise differences within population | No. loci with departure from HWE; P < 0.01 | $F_{ m IS}$ | |--------|-------|-------|-------|-------|------------------------------|--|--|-------------| | AGA | 45.28 | 0.318 | 0.341 | 0.110 | 0.144 | 7.544 | 0 | 0.030 | | ALC | 50.94 | 0.268 | 0.311 | 0.103 | 0.141 | 7.912 | 2 | 0.117 | | BAN | 50.94 | 0.261 | 0.316 | 0.105 | 0.147 | 8.056 | 2 | 0.157 | | BGT | 54.72 | 0.291 | 0.316 | 0.110 | 0.155 | 8.575 | 2 | 0.048 | | BLT | 54.72 | 0.293 | 0.319 | 0.113 | 0.167 | 8.950 | 2 | 0.066 | | BLS | 49.06 | 0.295 | 0.289 | 0.087 | 0.136 | 7.246 | 0 | -0.040 | | BRI | 52.83 | 0.276 | 0.298 | 0.105 | 0.146 | 7.879 | 2 | 0.053 | | CAT | 50.94 | 0.275 | 0.309 | 0.100 | 0.141 | 7.674 | 2 | 0.076 | | CHW | 50.94 | 0.284 | 0.292 | 0.097 | 0.137 | 6.867 | 0 | -0.032 | | CIRP | 49.06 | 0.261 | 0.311 | 0.097 | 0.137 | 7.681 | 0 | 0.147 | | DUB | 56.60 | 0.254 | 0.277 | 0.102 | 0.136 | 7.434 | 2 | 0.027 | | EGE | 50.94 | 0.254 | 0.286 | 0.094 | 0.131 | 7.198 | 1 | 0.086 | | GAE | 52.83 | 0.295 | 0.319 | 0.111 | 0.151 | 8.347 | 2 | 0.042 | | GAR | 52.83 | 0.251 | 0.305 | 0.102 | 0.144 | 7.938 | 1 | 0.150 | | GRK | 52.83 | 0.263 | 0.297 | 0.100 | 0.151 | 8.045 | 1 | 0.102 | | GRM | 50.94 | 0.263 | 0.314 | 0.104 | 0.144 | 7.890 | 2 | 0.136 | | HER | 54.72 | 0.272 | 0.301 | 0.116 | 0.153 | 8.446 | 1 | 0.082 | | IMC | 56.60 | 0.257 | 0.285 | 0.108 | 0.161 | 8.508 | 1 | 0.097 | | LAMW | 52.83 | 0.265 | 0.293 | 0.095 | 0.144 | 7.633 | 1 | 0.067 | | LAS | 52.83 | 0.261 | 0.301 | 0.101 | 0.148 | 8.028 | 1 | 0.124 | | MAK | 50.94 | 0.288 | 0.308 | 0.101 | 0.151 | 7.903 | 1 | 0.040 | | MOM | 52.83 | 0.252 | 0.290 | 0.094 | 0.137 | 7.622 | 0 | 0.110 | | NEA | 52.83 | 0.291 | 0.317 | 0.114 | 0.160 | 8.556 | 1 | 0.066 | | ORAE | 52.83 | 0.327 | 0.318 | 0.110 | 0.156 | 8.376 | 1 | -0.060 | | ORAW | 50.94 | 0.316 | 0.317 | 0.109 | 0.145 | 8.075 | 0 | -0.025 | | ORB | 50.94 | 0.268 | 0.300 | 0.102 | 0.141 | 7.523 | 1 | 0.076 | | PIST | 54.72 | 0.255 | 0.278 | 0.095 | 0.146 | 7.755 | 1 | 0.065 | | PSL | 50.94 | 0.284 | 0.322 | 0.101 | 0.154 | 8.301 | 1 | 0.111 | | SAR | 50.94 | 0.276 | 0.302 | 0.104 | 0.143 | 7.741 | 1 | 0.067 | | SBRB | 47.17 | 0.277 | 0.307 | 0.091 | 0.124 | 6.969 | 0 | 0.056 | | SET | 50.94 | 0.296 | 0.327 | 0.119 | 0.151 | 8.161 | 1 | 0.064 | | SGL | 52.83 | 0.276 | 0.316 | 0.108 | 0.162 | 8.564 | 1 | 0.114 | | SIS | 52.83 | 0.247 | 0.295 | 0.103 | 0.147 | 7.840 | 1 | 0.142 | | TES | 50.94 | 0.255 | 0.287 | 0.096 | 0.137 | 7.412 | 2 | 0.088 | | TURK | 45.28 | 0.310 | 0.328 | 0.095 | 0.138 | 7.337 | 0 | 0.032 | | VAL | 54.72 | 0.231 | 0.281 | 0.100 | 0.141 | 7.700 | 3 | 0.161 | | AZO | 50.94 | 0.274 | 0.275 | 0.087 | 0.138 | 7.293 | 1 | -0.006 | | LID | 54.72 | 0.275 | 0.309 | 0.114 | 0.145 | 8.102 | 2 | 0.072 | | ORI | 49.06 | 0.289 | 0.310 | 0.102 | 0.131 | 7.508 | 1 | 0.032 | | CAM | 47.17 | 0.318 | 0.341 | 0.119 | 0.149 | 8.108 | 1 | 0.044 | | CAS | 52.83 | 0.270 | 0.298 | 0.110 | 0.152 | 8.004 | 0 | 0.077 | | VIG | 54.72 | 0.279 | 0.309 | 0.124 | 0.155 | 8.644 | 2 | 0.084 | | BID | 50.94 | 0.319 | 0.338 | 0.122 | 0.158 | 8.713 | 1 | 0.035 | | CHA | 39.62 | 0.257 | 0.281 | 0.075 | 0.112 | 5.954 | 2 | 0.061 | | LOI | 49.06 | 0.224 | 0.244 | 0.083 | 0.114 | 5.978 | 0 | 0.061 | | MSMA | 50.94 | 0.226 | 0.245 | 0.083 | 0.075 | 5.630 | 1 | -0.007 | | KKAT | 62.26 | 0.199 | 0.245 | 0.110 | 0.135 | 7.343 | 2 | 0.146 | P_O , % of polymorphic loci; H_O , observed heterozygosity; H_E , expected heterozygosity; MAF, minor allele frequency; $F_{\rm IS}$, inbreeding coefficient; values with P < 0.05 after Benjamini–Yekutieli correction are marked in bold. populations from the Adriatic Sea region formed a separate, but not well supported, sub-group. The remaining *M. galloprovincialis* populations fell outside these two main clusters with little or no evidence of groupings based on geography. Correspondence analysis (CA) of 43 *M. galloprovincialis* populations (of which 7 are reference populations) revealed clear separation of an Atlantic Ocean grouping, a Black Sea plus Sea of Azov grouping, and a third grouping consisting of all other populations, except the ORAW population that was located between the Atlantic Ocean and the Mediterranean Sea groups (Figure 3). After removal of Atlantic Ocean and African samples a CA carried out on 33 populations and including 3 reference populations (LID, ORI, AZO) resolved three groups: the *M. galloprovincialis* from the Black Sea and the Sea of Azov, *M. galloprovincialis* from the Mediterranean Sea, and *M. galloprovincialis* from the Aegean Sea (Figure 4). STRUCTURE analysis of 46 Mytilus populations (i.e., excluding the reference M. trossulus) revealed that the largest increase of LnP(D) was for K = 2 and then for K = 3. The greatest subdivision was detected at K = 2 where the clusters corresponded to the separation of the M. edulis and M. galloprovincialis populations (Figure 5). At K = 3, the clusters corresponded to M. edulis, and two groups of M. galloprovincialis, with a general division into lineages from the Mediterranean Sea and the Atlantic Ocean because individuals are potentially admixed. Division between the M. galloprovincialis groups was most apparent at the population level because the frequency of one of the clusters characteristic of M. galloprovincialis was >77% (average 80%) in Atlantic Ocean populations, whereas the frequency of the second cluster was >50% (average 61%) in M. galloprovincialis from the Mediterranean Sea populations (Fig. S3). From the STRUCTURE analysis when K = 3 most of the 1292 individuals (97.2%) were correctly assigned to their original sample taxon (one of the three clusters) with q > 0.8. Mussels collected from Morocco (AGA, Atlantic Ocean) and Algeria (ORAW, Mediterranean Sea) showed gene admixture characteristic of M. galloprovincialis reference groups from the Atlantic Ocean (BID, VIG, CAS and CAM). A second sample from Algeria (ORAE), located east of the Alboran Front, showed gene admixture characteristic of M. galloprovincialis populations from the Mediterranean Sea. #### Linking genetic and environmental variation The GLM testing of the "All effects" model was significant (P < 0.05), with Mixed Layer thickness (P < 0.0001), PAR at surface (P < 0.004), PAR on seafloor (P < 0.011), Cloud cover (P < 0.03) and SST (P < 0.036) as significant terms. The other eight environmental variables did not explain significant variation in the population-specific F_{ST} values (P > 0.05). For the DistLM analysis the best-fit models built using adjusted R^2 , AIC and BIC gave the same results so we report here only the results for AIC. The marginal test results (Table V) indicated that seven of the 13 environmental variables explained significant variation in population-specific SNP locus allele frequencies. These seven variables explained a total of 75% of the variation in the SNP dataset. In the sequential testing the best-fit model contained all 11 environmental variables, of which five variables were statistically significant (Wave Ht. PO₄, SST, PAR at surface, Mixed layer) in a 13term model that explained 61.4% of the variation in the SNP dataset (Table V). #### Discussion The Mediterranean Sea is characterised by a high biodiversity of marine organisms and a large number of endemic species (Coll et al. 2010; Danovaro et al. 2010). Despite the connection with the Atlantic Ocean via the Strait of Gibraltar and the possibility of transport of planktonic larvae and motile adults, many species show genetic distinctiveness of their Mediterranean Sea populations (Patarnello et al. 2007; Pascual et al. 2017). These species include the cirriped *Chthamalus montagui* (Shemesh et al. 2009; Pannacciulli et al. 2017), the shrimp *Palaemon elegans* (Reuschel et al. 2010) and the blue mussel *Mytilus
galloprovincialis* (Varvio et al. 1988; Quesada et al. 1995b; Kijewski et al. 2011; Zbawicka et al. 2012; Del Rio-Lavín et al. 2022). The location of the Almeria-Oran Front is the area where two circular sea currents meet and flow from north to south-east into the Mediterranean Sea and then south-west, which directs water of Atlantic Ocean origin into the Alboran Sea. This is considered to be an isolating factor (Millot & Taupier-Letage 2005; Millot 2013; Pascual et al. 2017) for some marine species between the Atlantic Ocean proper and the Mediterranean Sea. Abrupt changes of allele frequencies in M. galloprovincialis populations related to this front have been reported for a range of difference genetic marker types, including allozymes (Sanjuan et al. 1994; Quesada et al. 1995a), mtDNA (Quesada et al. 1995b), microsatellites (Diz & Presa 2008; Ouagajjou et al. 2010; Ouagajjou & Presa 2015) and a few nuclear DNA markers (El Ayari et al. 2019). In addition to environmental factors, El Ayari et al. (2019) also highlight the possibility of intrinsic mechanisms, such as Table IV. Analysis of molecular variance (AMOVA) calculated for five scenarios (different groupings of samples). All values were significant for a P value < 0.05. | | Among groups | sdno | Among populations
within groups | ılations
oups | Among individuals within populations | ziduals
lations | Within individuals | | |--|------------------------------|---------------------------------------|------------------------------------|--------------------------------|--------------------------------------|------------------------------|--------------------------------------|---| | Scenario | Variance
component | %
variation | Variance
component | %
variation | Variance
component | %
variation | Variance
component | %
variation | | Mediterranean Sea only /1 group/ Mediterranean Sea only /2 groups/ Mediterranean Sea only /4 groups/ Atlantic Ocean & Mediterranean Sea incl. ORAW Atlantic Ocean incl. ORAW & Mediterranean Sea | 0.83
0.11
0.04
0.07 | 20.86
3.20
1.23
1.64
1.50 | 0.02
0.01
0.82
0.82 | 0.52
0.43
20.25
20.26 | 0.28
0.30
0.29
0.28 | 6.98
9.07
9.02
6.89 | 2.89
2.90
2.91
2.89
2.89 | 72.16
87.21
89.33
71.22
71.34 | Scenario 1 - Mediterranean Sea only /1 group/ = 38 populations (pooled ALC, BAN, BGT, BLT, IMC, LAMW, LAS, ORAE, PSL, SET, SGL, VAL, ORI, ORAW, ORB, GAE, NEA, Scenario 2 - Mediterranean Sea only /2 groups/ = Mediterranean Sea (pooled ALC, BAN, BGT, BLT, IMC, LAMW, LAS, ORAE, PSL, SET, SGL, VAL, ORI, ORAW, ORB, GAE, Scenario 3 - MediterraneanSea only /4 groups/ = Western Mediterranean Sea (pooled ALC, BAN, BGT, BLT, IMC, LAMW, LAS, ORAE, PSL, SET, SGL, VAL, ORI, ORAW); Central Mediterranean Sea (pooled ORB, GAE, NEA, PIST, CIRP, BRI, GAR, CAT, LID, SIS, CHW, MAK, DUB, GRK, GRM); Aegean Sea (pooled SAR, TES, EGE, MOM, TURK, NEA, PIST, CIRP, BRI, GAR, CAT, LID, SIS, CHW, MAK, DUB, GRK, GRM, SAR, TES, EGE, TURK, HER); Black Sea and Sea of Azov (pooled SRB, AZO, BLS, MOM). PIST, CIRP, BRI, GAR, CAT, LID, SIS, CHW, MAK, DUB, GRK, GRM, SAR, TES, EGE, TURK, HER, SRB, AZO, BLS, MOM). HER); Black Sea and Sea of Azov (SRB, AZO, BLS). Scenario 4 - Atlantic Ocean & Mediterranean Sea incl. ORAW = Atlantic Ocean (pooled CAS, BID, VIG, CAM, AGA); Mediterranean Sea and Black Sea and Sea of Azov (pooled ALC, BAN, BGT, BLT, IMC, LAMW, LAS, ORAE, PSL, SET, SGL, VAL, ORI, ORAW, ORB, GAE, NEA, PIST, CIRP, BRI, GAR, CAT, LID, SIS, CHW, MAK, DUB, GRK, GRM, SAR, TES, EGE, TURK, HER, SRB, AZO, BLS, MOM). Scenario 5 - Atlantic Ocean incl. ORAW & Mediterranean Sea = Atlantic Ocean (pooled CAS, BID, VIG, CAM, AGA, ORAW); Mediterranean Sea and Black Sea and Sea of Azov (pooled ALC, BAN, BGT, BLT, IMC, LAMW, LAS, ORAE, PSL, SET, SGL, VAL, ORI, ORB, GAE, NEA, PIST, CIRP, BRI, GAR, CAT, LID, SIS, CHW, MAK, DUB, GRK, GRM, SAR, TES, EGE, TURK, HER, SRB, AZO, BLS, MOM). Figure 2. Neighbour-joining tree of Mytilus galloprovincialis populations from the Mediterranean Sea, Black Sea and the Sea of Azov, and reference populations of M. edulis and M. galloprovincialis based on the $F_{\rm ST}$ distance measures obtained with POPTREEW and visualised with MEGA version 6. The numbers at the nodes represent percent bootstrap values estimated from 10,000 replicates (only values above 30 are shown). pre- or post-zygotic isolation, in the maintenance of the blue mussel hybrid zone on the Algerian coast of the Mediterranean Sea, just east of Oran. Our SNP results confirm the occurrence of the Atlantic Ocean lineage of *M. galloprovincialis* on the Alboran African coast (sample ORAW) and the Mediterranean Sea lineage east of Oran (ORAE). In the present study, significant differentiation between mussel populations of the Sea of Azov and the Black Sea from the Mediterranean Sea populations was identified with two of the 53 SNP loci. No statistically significant differences were observed among populations from the Black Sea and the Sea of Azov and the Dardanelle Straits. Most genotypes were common to the Mediterranean, Black and Azov Seas and what differences existed are attributable to genotype frequency differences among the populations. A few SNP loci with alleles rare in the Black Sea and Sea of Azov populations were more frequent in the Mediterranean Sea populations (e.g., BM102A "C", BM105A "G", BM26B "T"), or those that did not occur in the Black Sea and Sea of Azov, for example, BM106B "G". Only two genotypes were more frequent in the Sea of Azov than in Black Sea populations: BM147A "C" and BM32A "A". Significant differentiation between mussel populations from the Mediterranean and Black Seas has also been found using as many as 512 SNP loci (Paterno et al. 2019) although no significant genetic structuring was noted within the Figure 3. The first two axes of the correspondence analysis (CA) computed from the SNP locus variation among 36 *M. galloprovincialis* populations from the Mediterranean Sea, Black Sea and Atlantic Ocean and seven reference populations of *M. galloprovincialis*). Samples from Morocco (AGA - Atlantic Ocean) and Algeria (ORAE and ORAW - Mediterranean Sea) are shown as red filled triangles. Samples from the Aegean Sea region (EGE, HER, SAR, TES, Turk) are shown as red unfilled triangles. Each point or triangle is one of the studied populations. LID and ORI (blue filled triangles), AZO (yellow filled triangle) and BID, CAM, CAS and VIG (grey filled triangles) are reference samples. Black Sea populations using genotyping of 998 SNP loci (Paterno et al. 2019). Genetic divergence has also been reported for M. galloprovincialis from Mediterranean Sea and Black Sea populations at the mtDNA level (Ladoukakis et al. 2002). RFLP analysis of COIII gene polymorphism in M. galloprovincialis populations revealed that almost all Sea haplotypes also occur in Mediterranean Sea populations, that is, the Black Sea populations are a sub-set of the Mediterranean Sea populations. In addition, no significant differences in allele frequencies have been reported between populations of M. galloprovincialis from the southern Black Sea, Bosphorus Strait and Sea of Marmara by assessment of variation in the COIII mtDNA region and six microsatellite loci (Kalkan et al. 2011). It has been suggested that a shift from Black Sea-like to Mediterranean Sea-like genetic structure occurs at a location in the Dardanelle Strait, which is supported by our SNP data. The most common mtDNA haplotype identified by RFLP analysis of ND2-COIII in a population from the Sea of Azov was also present in a sample from Villafranche-sur-Mer, northwestern Mediterranean Sea (Śmietanka et al. 2004). However, a few rare haplotypes were unique. Genotyping-by-sequencing of the same region of mtDNA revealed haplotype frequency differences between populations from the Sea of Azov and Black Sea, but most common haplotypes were also present in the northwestern Mediterranean Sea (Gerona, Banylus sur Mer and Gulf of Oristano) (Śmietanka et al. 2009, 2014). Because the timing of onset of the flow of Mediterranean Sea waters into and possible colonisation by euryhaline bivalve populations of the Black Sea has not been defined precisely (Nikula & Väinölä 2003; Sromek et al. 2019), we have reviewed in detail here the information available. It is estimated that Mediterranean Sea water from the Aegean Sea filled the Sea of Marmara and replaced freshwater originating from the Black Sea approximately 12 K ybp (Algan et al. 2001). The outflow of lacustrine water from the present area of the Black Sea probably occurred between 10 to 8.4 K ybp, which was followed by pulses of Mediterranean Sea seawater entering the Black Sea (Hiscott et al. 2007). Connection of the Black Sea to the Mediterranean Sea may have taken place 9.4 k ybp, as indicated by strontium/oxygen ratio changes in molluscan shells (Major et al. 2006). Transition Figure 4. Correspondence analysis (CA) plot computed from the SNP locus variation among 34 populations of *M. galloprovincialis* from the Mediterranean Sea, Aegean Sea and Black Sea. Each point or triangle is one of the studied populations. LID and ORI (blue filled triangles) and AZO (yellow filled triangles) are reference samples. of the Black Sea from a freshwater lake to a marine environment most probably occurred between 8.9 and 8.5 K ybp (Tyuleneva et al. 2014). Outflow of freshwater or isolation lasted until 8 K ybp (Soulet et al. 2011) and was followed by establishment of today's hydrographic system with surface
outflow of low salinity Black Sea water and inflow at depth of Mediterranean Sea high salinity waters (Kokkos & Sylaios 2016) via the Bosphorus Strait (Hiscott et al. 2007). The first representatives of Mediterranean mollusc fauna appeared in deposits in the Bosphorus region 5.3 K ybp, whilst Mytilus sp. appeared for the first time ~4.4 K ybp (Algan et al. 2001). In a core from the southwest Black Sea, M. galloprovincialis has been found in layers dated to 5.9-2.4 K ybp (Hiscott et al. 2007). Filipova-Marinova et al. (2013) observed the occurrence of a M. galloprovincialis shell layer in deposits of Varna Lake (Bulgarian Black Sea) that were radiocarbon dated to 7,776 to 6,183 ybp. According to Tyuleneva et al. (2014) timing of the arrival of M. galloprovincialis in the northwestern Black Sea (estimated without ¹⁴C dating) was from the Bugazian at 10.5-8.4 K ybp, Kalamitian beds at 7.1 to 4 K ybp and Dzhemetinian beds at 4.1 K ybp to the present in sediments containing marine euryhaline species. A discrepancy in time estimation of the earliest appearance of Mytilus in Black Sea deposits may be related to elution and displacement of some sediment layers. It can be assumed that *Mytilus* populations settled the Black Sea sometime since 8 K ybp as a result of post-glacial expansion from refugia. Time of divergence of mtDNA haplotypes in the Black Sea and Mediterranean Sea mussel populations has been estimated as a few hundred thousand years ago (Śmietanka et al. 2014), which is much earlier than the origin of the mussel population in the Black Sea. Therefore, euryhaline M. galloprovincialis populations evolved in the Mediterranean Sea and the Aegean Sea (possibly including the Levantine Sea) long before the contemporary marine phase of the Black Sea. Similar to the Black Sea situation, the Baltic Sea in northern Europe was a freshwater lake and became connected with the Atlantic Ocean and newly developing North Sea approximately 8-9 ybp (Berglund et al. 2005; Behre 2007). For comparison, Kostecki and Janczak-Kostecka (2011) have reported the onset of the marine water environment in Pomeranian Bay, southwest Baltic Sea, to be 8.9-8.3 ybp as determined using geochemical estimators. The Baltic Sea is characterised by lower marine species diversity in comparison to the present-day North Sea (Johannesson & Andre 2006; Wennerström et al. 2017). Genetic divergence of Mytilus populations in both regions (i.e., the Black Sea from the Figure 5. Plot from STRUCTRE analysis for 46 populations (i.e., excluding reference KKAT M. trossulus) at K = 2 and K = 3. Each individual is represented by a single vertical line broken into two or three coloured segments, with lengths proportional to each of the K inferred clusters. Site abbreviations of the samples are provided in Table I. Vertical black lines separate the samples. Mediterranean Sea and the Baltic Sea from the North Sea) is recent in evolutionary time and can be related to a bottleneck effect, subsequent expansion of populations and selection factors acting via brackish water conditions. A characteristic of the *M. edulis* and *M. trossulus* SNP allele BM105A "A" is its increased frequency among mussels in the Black Sea and Sea of Azov and its decreased frequency among mussels in the Mediterranean Sea. Nevertheless, the absence of *M. edulis* and *M. trossulus* genotypes, as determined from our studies and other published research, excludes the possibility that *Mytilus* populations from areas such as the White Sea and/or the Barents Sea have invaded the Black Sea from northeast European seas via routes now closed to them. Mitochondrial DNA genetic analyses of *M. gallo-provincialis* from northern, central and southern Greek coasts of the Aegean Sea revealed that these populations were homogeneous (Ladoukakis et al. 2002; Giantsis et al. 2014b). Moreover, Giantsis et al. (2014b) reported that the population from the area closest to the Dardanelle Strait (Sea of Marmara, Turkey) differed significantly from the Aegean Sea populations, whereas differences between samples from the Aegean, Ionian and North Adriatic Seas were weak with the exception of one sample from the area of Zadar (Croatia). MtDNA sequence analyses revealed genetic homogeneity among all Greek populations and the clear differentiation of the only Turkish sample (Çanakkale, Dardanelle Strait, Sea of Marmara) from the Aegean populations (Giantsis et al. 2014b). On the other hand, microsatellite data suggested significant differentiation of Italian samples (from the North Adriatic Sea and Ligurian Sea, respectively) from Aegean samples (Giantsis et al. 2014a). Genotyping with a large number of SNPs in a more local study revealed population variation in the northern and southern Adriatic Sea different from that in the northern Ionian Sea (Paterno et al. 2019). The results of the present study are in agreement with the findings of these different studies and extend the microstalite DNA analyses (Giantsis et al. 2014a) concerning the genetic Table V. Marginal (top) and sequential (bottom) test results from the DistLM analysis. | Marginal tests | | | | | | | |------------------|-----------|-----------|----------|--------|--------|-------------| | Variable | SS(trace) | Pseudo-F | | ď | | % Prop. | | Wave Ht | 5.312 | 15.586 | | 0.0001 | 27.54 | | | PO_4 | 1.952 | 4.617 | | 0.0090 | 10.12 | | | SST | 1.919 | 4.531 | | 0.0037 | 6.95 | | | PSU | 1.800 | 4.210 | | 0.0113 | 9.31 | | | 2 m air temp | 1.226 | 2.782 | | 0.0307 | 6.36 | | | Cloud cover | 1.182 | 2.677 | | 0.0343 | 6.10 | | | PAR at surface | 1.162 | 2.628 | | 0.0342 | 6.02 | | | 10 m wind | 0.993 | 2.225 | | 0.0642 | 5.15 | | | NO_3 | 0.850 | 1.890 | | 0.0793 | 4.41 | | | Prim Prodn | 0.794 | 1.761 | | 0.1051 | 4.12 | | | Mixed layer | 0.714 | 1.577 | | 0.1446 | 3.70 | | | Chl | 0.513 | 1.120 | | 0.2972 | 2.66 | | | PAR at seafloor | 0.348 | 0.754 | | 0.5503 | 1.81 | | | Sequential tests | | | | | | | | Variable | AIC | SS(trace) | Pseudo-F | Ь | %Prop. | Cumul. prop | | +Wave Ht | -44.332 | 5.31 | 15.586 | 0.0001 | 27.54 | 27.544 | | $+PO_4$ | -48.595 | 1.89 | 6.272 | 0.0001 | 9.82 | 37.365 | | +SST | -51.451 | 1.29 | 4.662 | 0.0004 | 69.9 | 44.054 | | +PSU | -50.008 | 0.14 | 0.496 | 0.9056 | 7.21 | 44.774 | | +2 m air temp | -48.660 | 0.16 | 0.565 | 0.8606 | 8.30 | 45.604 | | +Cloud cover | -48.035 | 0.33 | 1.170 | 0.2807 | 1.71 | 47.317 | | +PAR at surface | -50.587 | 1.02 | 3.908 | 0.0011 | 5.29 | 52.609 | | +10 m wind | -49.595 | 0.21 | 0.806 | 0.6161 | 1.10 | 53.706 | | +NO ₃ | -49.843 | 0.45 | 1.772 | 0.0705 | 2.36 | 56.065 | | +Prim Prodn | -48.824 | 0.19 | 0.738 | 2069.0 | 0.99 | 57.056 | | +Mixed layer | -49.726 | 0.54 | 2.164 | 0.0258 | 2.80 | 59.858 | | +Chl | -48.832 | 0.20 | 0.782 | 0.6374 | 1.02 | 60.878 | | +PAR at seafloor | -47.431 | 0.10 | 0.407 | 0.9690 | 0.05 | 61.419 | + indicates the addition of a given term into the full model, variables being added in the order shown Variable name (refer to Table S1): 2 m air temp - 2 metre air temperature; 10 m wind - 10 metre wind speed; Chl - Total chlorophyll; Cloud cover - Total cloud cover; Mixed layer - Mixed layer thickness; NO₃ - Nitrate concentration; PAR at seafloor - Photosynthetically available radiation on the floor of the ocean; PAR at surface - Photosynthetically available radiation at ocean surface; PO₄ - Phosphate concentration; Prim Prodn - Phytoplankton primary production; PSU - Salinity; SST - Sea surface temperature; Wave Ht - Significant height of combined wind waves and swell. structure of East-Central Mediterranean M. galloprovincialis populations. No differences between northern and southern Adriatic Sea M. galloprovincialis populations were observed in our study by genotyping with 53 SNPs. However, the Canakkale (Sea of Marmara) population differed from the Aegean Sea samples and the Canakkale sample is representative of the Black Sea mussel population genetic variation. A very rare allele (BM5B "G") was more frequent in Aegean Sea mussels than in all other M. galloprovincialis, M. edulis and M. trossulus populations. Such subdivision of populations within the Eastern versus Western basins of the Mediterranean Sea has also been reported for other species, for example, the marbled Pomatoschistus marmoratus (Mejri et al. 2011), the sea star Astropecten aranciacus (Zulliger et al. 2009) and the cockle Cerastoderma glaucum (Nikula & Väinölä 2003). We did not observe significant genetic differentiation among populations of M. galloprovincialis in the Western Mediterranean Basin, east of the Alboran Front to the coasts of Italy and Tunisia. Similarly, analysis of samples from Banyuls (France) and Haouaria (Tunisia) using 512 SNP loci did not identify differences (Paterno et al. 2019). Lack of genetic differentiation among M. galloprovincialis populations within the Western Basin can be partly explained by natural reasons, such as extensive gene flow and a common paleogeographic history of this Basin including the Balearic, Ligurian and Tyrrenian Seas separated from the Eastern Basin by the Siculo-Tunisian Strait. After each glacial phase since the Pleistocene (cycles of 41 K years prior to and 100 K years after the Mid Pleistocene М. galloprovincialis Transition), populations expanded into newly flooded areas as a result of sea level rising and then retreated with sea level falling (repeated interglacial colonisation and expansion, and retreat during glaciations). However, the biggest drop in sea level occurred 24-19 K ybp during the Last Glacial Maximum (Boavida et al. 2019). Surface waters in the central Mediterranean Sea (in the vicinity of the Siculo-Tunisian Strait) were most probably much colder in spring during glacial periods in comparison to interglacial periods (Rouis-Zargouni et al. 2010), which suggests much colder winter temperatures in comparison to the present. Strong meltwater discharge also probably influenced cooling (lower temperatures) and increased
variability of the salinity of coastal Mediterranean Sea waters. Increase in rainfall during the past interglacial/glaciation periods resulted in a decrease of sea surface salinities e.g., in the northern Tyrrhenian Sea (Dixit et al. 2020) and increased suspended matter concentrations, and intensified the flux of nutrient and organic matter in the Mediterranean Sea causing deposition of sapropels (Toucanne et al. 2015) in both the Eastern and Western basins (Rohling et al. 2015). Thus, a combination of physico-chemical changes in sea water composition may explain genetic differentiation observed in contemporary Western and Eastern Mediterranean Sea populations of M. galloprovincia-A separation of western and eastern Mediterranean populations by a possible barrier of shallow in periodically water the Mediterranean Sea (the Siculo-Tunisian Strait) has been indicated by Chefaoui et al. (2017). A divergence between western and eastern Mediterranean Sea populations has also been found for species such as the sea bass Dicentrarchus labrax (Bahri-Sfar et al. 2000), the sea cucumber Holothuria polii (Valente et al. 2015), the crab Carcinus aestuarii (Ragionieri & Schubart 2013), the hermit crab Diogenes pugilator (Almón et al. 2021), and the cockle Cerastoderma glaucum (Sromek et al. 2019). Seascape genetics seeks to identify associations between environmental variation and genetic variation with the ultimate aim of identifying key environmental factors that contribute to explanation of population genetic variation and regional differences in genetic structure (e.g., Selkoe et al. 2008, 2016; Riginos & Liggins 2013; Wei et al. 2013; Silva & Gardner 2016; Zeng et al. 2020). Typically this approach, which is most often based on variation of neutral genetic markers, seeks to identify environmental factors that promote (e.g., currents) or retard (e.g., salinity variation acting as a barrier) gene flow. Whilst this new approach to understanding connectivity is both powerful and elegant, it is often limited by data availability - the low numbers of environmental variables that are available for multiple sites within a region of study. In the present study we used 13 environmental variables collated from 43 sites within the Mediterranean Sea. The GLM analysis identified five environmental variables (mixed layer thickness, PAR at surface, PAR at seafloor, SST, Cloud cover) that explained variation in population-specific F_{ST} values. In contrast, the sequential tests for the DistLM analysis best-fit model, which explained 61% of the variation in the raw SNP data set, included all 13 environmental variables, although only four variables (Wave height, PO₄, SST, PAR at surface) were significant in the multiterm model. Earlier literature suggests that salinity and temperature often drive the generic patterns of hard-bottom intertidal species including Mytilus spp. (Kaiser et al. 2011) and this result was observed for SST but not for salinity (PSU) in the M. galloprovincialis of the Mediterranean Sea. The absence of salinity from our significant results may reflect the fact that the gradient in Mediterranean Sea is not great, and certainly not as great as in other regions (e.g., in the Baltic Sea - Kijewski et al. 2019). Overall, our results suggest that there is a complex mix of environmental variables that contribute to genetic variation of M. galloprovincialis populations in the Mediterranea Sea, rather than a simple (one or two variable) explanation as has been reported for several other coastal and deep-sea marine invertebrates (e.g., Wei et al. 2013; Silva & Gardner 2016; Zeng et al. 2020). The complexity of the seascape genetics results in the present study may reflect (1) the reasonably large number of environmental variables in our data set (n = 13) and the fact that many different environmental variables are likely to influence gene flow in any given system (i.e., we might expect to detect a complex result simply because we have a complex environmental data set) and/or (2) the complex geological history of the Mediterranean Sea and the formation of its waters and the associated sub-basins of the region leading to complex interactions between environmental and genetic variation that may be site-specific or regional rather than basinwide. In addition, as noted above, seascape genetic analyses usually focus on detecting associations across neutral loci. Many of the SNPs loci employed here are in coding regions even if they do not exhibit outlier status (refer to Figs. S1 and S2). Thus, the detection of an association between genes under (low) selective pressure and environmental variation cannot be ruled out. Elsewhere, Sun and Hedgecock (2017) have highlighted for high gene-flow species (M. galloprovincialis falls into this group) the need to better understand the role that temporal genetic variation may play in contributing to seascape genetics analysis results from a single (snap-shot) version to a temporal sampling series. Finally, it is worth noting that the GLM and DistLM analyses are both linear-based methods that do not include interaction terms. Other analytical approaches, such as boosted regression trees (Elith et al. 2006, 2008; Leathwick et al. 2006; Hastie et al. 2009; Kotta et al. 2017) may prove to be more informative because they are not constrained to detect only linear relationships and can examine interactions among variables, but they require larger (training) data sets than are often available to most researchers and to us for the present study. The contemporary genetic structure of the Mediterranean Sea populations of *M. galloprovincialis* is the result of a combination of natural and anthropogenic factors. The dispersal ability of the species is expected to result in high gene flow and connectivity among populations and lead to genetic homogenisation on a broad spatial scale. Although this could explain the homogenisation observed within individual basins, it cannot explain the comparative homogenisation found among the different basins. For instance, based on the topography and oceanographic conditions of the Siculo-Tunisian Strait in the central Mediterranean Sea, one would expect to observe (at least a degree of) genetic differentiation between samples from the Adriatic Sea and the Ligurian Sea, which this study did not find. Anthropogenic activities, including hull fouling, transport of ballast water, the movements of exploration or drilling rigs and unrecorded humanmediated transplantation of spat for aquaculture may all have played an important role in overcoming natural barriers to mussel connectivity and consequently may have contributed to the shaping of the present patterns of genetic homogeneity among the Central-Western Mediterranean Sea mussel populations. For example, the M. galloprovincialis Atlantic form has been reported to have been introduced via ballast water and/or hull fouling to ports in an area from the north of France to Norway, where it has hybridised with local M. edulis (Simon et al. 2020). These hybrids have been termed "dock mussels" (because they are mostly found in docks associated with shipping activity) and have appeared in recent decades rather than centuries. In the opposite direction, Mediterranean ports may also experience strong pressure from invasive species, including M. edulis. For example, M. edulis specimens have been identified using molecular genotyping on a barge hull, which arrived from Middlesborough, northern England, and was moored near the wreck of the cruise vessel Costa Concordia (Isola del Giglio, north Tyrrhenian Sea) in 2012 (Casoli et al. 2016). However, these mussels experienced a high mortality rate at temperatures over 22°C and did not live long enough to interbreed with local populations of M. galloprovincialis. Prior to this, Beaumont et al. (2006) reported anecdotal evidence of the introduction of M. edulis to the Mediterranean coast of France for aquaculture. Development of an aquaculture industry targeted on Mytilus spp. production and other commercially important shellfish in the twentieth century contributed to unintentional introductions and the spread of many species (Coll et al. 2010) and can also be considered as a vector of mussel transportation between basins in the Mediterranean Sea. An excellent example is the case of Chalastra, a culture area near Thessaloniki, Greece, which serves as the main mussel culture area in the Aegean Sea. Mussel spat from this area have been repeatedly translocated to other mussel farms throughout Greece, Italy and France for ongrowing. Given that these Figure 6. Rafting on anthropogenic plastic objects: detached mussel farm bouy on the beach near Gargano (GAR), Adriatic Sea in 2012. Photo by Marta Półtorak. translocations are unrecorded it is very difficult to estimate the magnitude of their contribution to the current lack of geographical structure observed within Mediterranean Sea *M. galoprovinciallis* populations. An example is the similarity of the Adriatic sample (CHW) to the Black Sea population (BLS). Growing attention has been paid to the spread of Mytilus spp. by rafting on natural or artificial floating objects, including anthropogenic litter (Miller et al. 2018; Rech et al. 2018; Zbawicka et al. 2019; reviewed by Gardner et al. 2021). Plastic debris has been indicated as a transport vector for Mytilus sp./ spp. on long distances in the North Atlantic and Arctic Oceans (Kotwicki et al. 2021). The main contributor to this spread via rafting is mariculture-related gear, including detached (Figure 6). Interestingly, M. edulis that originated from market discards, aquaria discharged into the sea or introduced for aquaculture purposes in Venezia, Italy (Crocetta 2012), was not observed in our samples and most probably did not establish populations on the coast of Italy. In addition, our results do not confirm the existence of M. edulis (the so-called rock mussel grown in the Ebro Delta
for aquaculture purposes, Wenne et al. (2022)) among native M. galloprovincialis populations on the coasts of Spain in the Balearic Sea. #### Acknowledgements We thank Marta Półtorak (Poland) and Giorgos Chatzigeorgiou (Hellenic Center of Marine Research, Institute of Marine Biology and Genetics, Greece), and Paolo Sordino (Stazione Zoologica Anton Dohrn, Naples, Italy) for providing samples of *Mytilus* from four locations in the Mediterranean Sea. This research was funded in part by the IO PAS Statutory Taks 4.1, the 2011/01/B/NZ9/04352 NCN project to R.W. and the ASSEMBLE plus (No. 730984) project of the European Union's Horizon 2020 Programme. AP was supported by fellowship 43/DW/2017/01/2 "Doktorat wdrożeniowy" from MNISW in Poland. ## **Funding** This work was supported by the European Union's Horizon 2020 Framework Programme [730984]; Ministry of Science and Higher Education [43/DW/2017/01/2]; Narodowe Centrum Nauki [2011/01/B/NZ9/04352]. #### Disclosure statement No potential conflict of interest was reported by the author(s). #### **ORCID** R. Wenne http://orcid.org/0000-0001-6994-1181 M. Zbawicka http://orcid.org/0000-0001-5156-6184 J. Kotta http://orcid.org/0000-0002-4970-6755 K. Herkül http://orcid.org/0000-0002-4356-8152 J. P. A. Gardner http://orcid.org/0000-0002-6943-2413 A. P. Apostolidis http://orcid.org/0000-0001-7941-1790 A. Poćwierz-Kotus http://orcid.org/0000-0001-6667- 0. Rouane-Hacene http://orcid.org/0000-0002-9349- A. Korrida http://orcid.org/0000-0003-2206-4964 F. Dondero http://orcid.org/0000-0001-7945-3712 M. Baptista http://orcid.org/0000-0001-8833-4766 S. Reizopoulou http://orcid.org/0000-0002-4719-6536 B. Hamer (b) http://orcid.org/0000-0002-3142-8128 M. Árnyasi (b) http://orcid.org/0000-0003-3319-7404 M. P. Kent http://orcid.org/0000-0001-8822-8533 ## References Addison JA, Ort BS, Mesa KA, Pogson GH. 2008. Range-wide genetic homogeneity in the California sea mussel (*Mytilus californianus*): A comparison of allozymes, nuclear DNA markers, and mitochondrial DNA sequences. Molecular Ecology 17(19):4222–4232. DOI:10.1111/j.1365-294X.2008.03905.x. Ahmad M, Beardmore JA. 1976. Genetic evidence that the "Padstow mussel" is *Mytilus galloprovincialis*. Marine Biology 35(2):139–147. DOI:10.1007/BF00390935. Algan O, Çağatay N, Tchepalyga A, Ongan D, Eastoe C, Gökaşan E. 2001. Stratigraphy of the sediment infill in Bosphorus Strait: Water exchange between the Black and Mediterranean Seas during the last glacial Holocene. Geo-Marine Letters 20(4):209–218. DOI:10.1007/s003670000058. Almón B, Cuesta JA, Schubart CD, Armenia L, Enrique García-Raso J. 2021. Redescription of the hermit crab *Diogenes* - pugilator (Decapoda: Anomura) reveals the existence of a species complex in the Atlanto-Mediterranean transition zone, resulting in the resurrection of *D. curvimanus* and the description of a new species. Zoological Journal of the Linnean Society. DOI: 10.1093/zoolinnean/zlab093. - Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK: PRIMER-E Ltd. - Arribas L, Donnarumma L, Palomo M, Scrosati R. 2014. Intertidal mussels as ecosystem engineers: Their associated invertebrate biodiversity under contrasting wave exposures. Marine Biodiversity 44(2):203–211. DOI:10.1007/s12526-01 4-0201-z. - Bach L, Zbawicka M, Strand J, Wenne R. 2019. Mytilus trossulus in NW Greenland is genetically more similar to North Pacific than NW Atlantic populations of the species. Marine Biodiversity 49 (2):1053–1059. DOI:10.1007/s12526-018-0870-0. - Bahri-Sfar L, Lemaire C, Ben Hassine OK, Bonhomme F. 2000. Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proceedings of the Royal Society, London: Series B Biological Sciences, 267:929–935. - Barsotti G, Meluzzi C. 1968. Osservazioni su Mytilus edulis L. e Mytilus galloprovincialis Lamark. Conchiglie 4:50–58. - Beaumont A, Gjedrem T, Moran P. 2006. Blue Mussel M. edulis and Mediterranean mussel M. galloprovincialis. In Genetic Effects of Domestication, Culture and Breeding of Fish and Shellfish, and Their Impacts on Wild Populations, Crosetti D, Lapegue S, Olesen I, Svaasand T (Eds.), GENIMPACT Project: Evaluation of Genetic Impact of Aquaculture Activities on Native Populations. European Network WP1 Workshop "Genetics of Domestication, Breeding and Enhancement of Performance of Fish and Shellfish", Viterbo, Italy, 12–17 June, 2006, 6 pp. - Behre K-E. 2007. A new Holocene sea-level curve for the southern North Sea. Boreas 36(1):82–102. DOI:10.1111/j.1502-38 85.2007.tb01183.x. - Belaústegui Z, Muñiz Guinea F. 2016. Ichnology of the Lepe area (Huelva, SW Spain): Trace fossils at the Pliocene 'Arroyo Valleforero' section and modern traces at the Piedras Estuary. Comunicações Geológicas 103:131–142. - Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2003. GENETIX version 4.04, logiciel sous Windows™ pour la genetique des populations. Montpellier, France: Laboratoire Genome, Populations, Interactions: CNRS UMR 5000, Université de Montpellier II. - Benjamin J, Rovere A, Fontana A, Furlani S, Vacchi M, Inglis RH, Galili E, Antonioli F, Sivan D, Miko S, Mourtzas N, Felja I, Meredith-Williams M, Goodman-Tchernov B, Kolaiti E, Anzidei M, Gehrels R. 2017. Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quaternary International 449:29–57. - Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29(4):1165–1188. DOI:10.1214/aos/1013699998. - Benzécri JP. 1992. Correspondence analysis handbook. In: Balakrishnan N, Schucany WR, Garvey PR, editors. Statistics: A Series of Textbooks and Monographs. Vol. 125. New York, NY: Marcel Dekker. pp. 1–688. - Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D. 2005. Ocean temperature oscillations enable reappearance of blue mussels *Mytilus edulis* in Svalbard after a 1000 year absence. Marine Ecology Progress Series 303:167–175. DOI:10.3354/meps303167. - Berglund BE, Sandgren P, Barnekow L, Hannon G, Jiang H, Skog G, Yu S-Y. 2005. Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quaternary International 130(1):111–139. DOI:10.1016/j.quaint.2004.04.036. - Bianchi CN, Morri C, Chiantore M, Montefalcone M, Parravicini V, Rovere A. 2012. Mediterranean Sea biodiversity between the legacy from the past and a future of change. In: Stambler N, editor. Life in the Mediterranean Sea: A look at habitat changes. New York: Nova Science Publishers, Inc. pp. 1–55. - Bierne N, Borsa P, Daguin C, Jollivet D, Viard F, Bonhomme F, David P. 2003. Introgression patterns in the mosaic hybrid zone between *Mytilus edulis* and *M. galloprovincialis*. Molecular Ecology 12(2):447–461. DOI:10.1046/j.1365-294X.2003.01730.x. - Birckolz CJ, Gernet MDV, Baggio RA, Silveira Júnior N, LRLd S, Belz CE. 2020. First record of the Mediterranean mussel Mytilus galloprovincialis (Bivalvia, Mytilidae) in Brazil. Papéis Avulsos de Zoologia 60:e20206007. DOI:10.11606/1807-0205/2020.60.07. - Bitter MC, Kapsenberg L, Gattuso J-PJP, Pfister CA. 2019. Standing genetic variation fuels rapid adaptation to ocean acidification. Nature Communications 10(1):5821. DOI:10.1038/s41467-019-13767-1. - Blondel J, Aronson J, Ferris R, Theil EC. 1999. Biology and wildlife of the mediterranean region. Oxford: Oxford University Press. p. 328. - Boavida J, Becheler R, Choquet M, Frank N, Taviani M, Bourillet J-FJF, Meistertzheim A-LAL, Grehan A, Savini A, Arnaud-HaondArnaud-Haond S. 2019. Out of the Mediterranean? Post-glacial colonization pathways varied among cold-water coral species. Journal of Biogeography 46 (5):915–931. DOI:10.1111/jbi.13570. - Borthagaray AI, Carranza A. 2007. Mussels as ecosystem engineers: Their contribution to species richness in a rocky littoral community. Acta Oecologica 31(3):243–250. DOI:10.1016/j. actao.2006.10.008. - Braby CE, Somero GN. 2006. Ecological gradients and relative abundance of native (*Mytilus trossulus*) and invasive (*Mytilus galloprovincialis*) blue mussels in the California hybrid zone. Marine Biology 148(6):1249–1262. DOI:10.1007/s00227-005-0177-0. - Callapez PM, Pimentel R. 2018. Moluscos e crustáceos do sítio de ocupação do menir de Padrão I (Vila do Bispo, Algarve, Portugal): Aspetos da dieta alimentar e da ecologia litoral num contexto costeiro do Neolítico antigo. Boletín de la Real Sociedad Española de Historia Natural 112:53–72. DOI:10.29077/bol/112/ce06_callapez. - Cárdenas L, Leclerc J-CJC, Bruning P, Garrido I, Detree C, Figueroa A, Astorga M, Navarro JM, Johnson LE, Carlton JT, Pardo L. 2020. First mussel settlement observed in Antarctica reveals the potential for future invasions. Scientific Reports 10(1):5552. DOI:10.1038/s41598-020-62340-0. - Casoli E, Ventura D, Modica MV, Belluscio A, Capello M, Oliverio M, Ardizzone G. 2016. A massive ingression of the alien species Mytilus edulis L. (Bivalvia: Mollusca) into the Mediterranean Sea following the Costa Concordia cruiseship disaster. Mediterranean Marine Science 17(2):404. DOI:10.12681/mms.1619. - Chefaoui RM, Duarte CM, Serrao EA. 2017. Palaeoclimatic conditions in the Mediterranean explain genetic diversity of *Posidonia oceanica* seagrass meadows. Scientific Reports 7 (1):2732. DOI:10.1038/s41598-017-03006-2. - Çinar ME, Bakir K, Öztürk B, Doğan A, Açik ŞS, Kirkim F, Dağli E, Kurt G, Evcen A, Koçak F, Bitlis B. 2020. Spatial distribution pattern of macroinvertebrates associated with the black mussel *Mytilus galloprovincialis* (Mollusca: Bivalvia) in the Sea of Marmara. Journal of Marine Systems 211:103402. DOI:10.1016/j.jmarsys.2020.103402. - Clark MS, Peck LS, Thyrring J. 2021. Resilience in Greenland intertidal *Mytilus*: The hidden stress defense. The Science of the Total Environment 767:144366. DOI:10.1016/j.
scitotenv.2020.144366. - Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos MS, Koukouras A, Lampadariou N, Laxamana E, López-Fé de la Cuadra CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E. 2010. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PloS One 5:0011842. - Comesaña AS, Posada D, Sanjuan A. 1998. Mytilus galloprovincialis Lmk. in northern Africa. Journal of Experimental Marine Biology and Ecology 223:271–283. - Corrochano-Fraile A, Davie A, Carboni S, Bekaert M. 2022. Evidence of multiple genome duplication events in *Mytilus* evolution. BMC Genomics 23(1):340. DOI:10.1186/s12864-022-08575-9. - Cortés-Sánchez M, Simón-Vallejo MD, Jiménez-Espejo FJ, Lozano FranciscoMdC MC, Vera-Peláez JL, Maestro González A, Morales-Muñiz A. 2019. Shellfish collection on the westernmost Mediterranean, Bajondillo cave (~160-35 cal kyr BP): A case of behavioral convergence? Quaternary Science Reviews 217:284–296. DOI:10.1016/j. quascirev.2019.02.007. - Crippa G, Angiolini L, Bottini C, Erba E, Felletti F, Frigerio C, Hennissen JAI, Leng MJ, Petrizzo MR, Raffi I, Raineri G, Stephenson MH. 2016. Seasonality fluctuations recorded in fossil bivalves during the early Pleistocene: Implications for climate change. Palaeogeography Palaeoclimatology, Palaeoecology. 446:234–251. DOI:10.1016/j. palaeo.2016.01.029. - Crocetta F. 2012. Marine alien Mollusca in Italy: A critical review and state of the knowledge. Journal of the Marine Biological Association of the United Kingdom 92(6):1357– 1365. DOI:10.1017/S002531541100186X. - Daguin C, Borsa P. 1999. Genetic characterisation of Mytilus galloprovincialis Lmk. in North West Africa using nuclear DNA markers. Journal of Experimental Marine Biology and Ecology 235:55–65. - Dahlhoff EP, Menge BA. 1996. Influence of phytoplankton concentration and wave exposure on the ecophysiology of *Mytilus californianus*. Marine Ecology ProgessProgress Series 144:97–107. DOI:10.3354/meps144097. - Danovaro R, Company JB, Corinaldesi C, D'Onghia G, Galil B, Gambi C, Gooday AJ, Lampadariou N, Luna GM, Morigi C, Olu K, Polymenakou P, Ramirez-Llodra E, Sabbatini A, Sardà F, Sibuet M, Tselepides A. 2010. Deep-sea biodiversity in the Mediterranean Sea: The known, the unknown, and the unknowable. PLoS One 5:e11832. - Del Rio-Lavín A, Díaz-Arce N, Larraín MA, Araneda C, Rodríguez-Ezpeleta N, Jiménez E, PardoMÁ MÁ. 2022. Population structure and geographic origin assignment of *Mytilus galloprovincialis* mussels using SNPs. Aquaculture 550:737836. DOI:10.1016/j.aquaculture.2021.737836. - Dixit Y, Toucanne S, Fontanier C, Pasquier V, Lora JM, Jouet G, Tripati A. 2020. Enhanced western Mediterranean rainfall during past interglacials driven by North Atlantic pressure changes. Quaternary International 553:1–13. DOI:10.1016/j.guaint.2020.08.017. - Diz AP, Presa P. 2008. Regional patterns of microsatellite variation in *Mytilus galloprovincialis* from the Iberian Peninsula. Marine Biology 154(2):277–286. DOI:10.1007/s00227-008-0921-3. - Edwards CA, Skibinski DOF. 1987. Genetic variation of mitochondrial DNA in mussel (*Mytilus edulis* and *M. galloprovincialis*) populations from South West England and South Wales. Marine Biology 94(4):547–556. DOI:10.1007/BF00431401. - El Ayari T, Trigui El Menif N, Hamer B, Cahill AE, Bierne N. 2019. The hidden side of a major marine biogeographic boundary: A wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity 122:770–784. - Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMCM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2):129–151. DOI:10.1111/j.2006.0906-7590.04596.x. - Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77 (4):802–813. DOI:10.1111/j.1365-2656.2008.01390.x. - Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14(8):2611–2620. DOI:10.1111/j.1365-294X.2005.02553.x. - Excoffier L, Hofer T, Foll M. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103 (4):285–298. DOI:10.1038/hdy.2009.74. - Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564–567. DOI:10.1111/j.1755-0998.2010.02847.x. - Falush D, Stephens M, Pritchard JK. 2007. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes 7(4):574–578. DOI:10.1111/j.1471-8286.2007.01758.x. - Filipova-Marinova M, Pavlov D, Vergiev S, Slavchev V, Giosan L. 2013. Palaeoecology and Geoarchaeology of Varna Lake, Northeastern Bulgaria. Comptes Rendus de l'Académie Bulgare des Sciences: Sciences Mathématiques et Naturelles. 66:377–392. - Fraïsse C, Belkhir K, Welch JJ, Bierne N. 2016. Local interspecies introgression is the main cause of extreme levels of intraspecific differentiation in mussels. Molecular Ecology 25 (1):269–286. DOI:10.1111/mec.13299. - Froufe E, Prie V, Faria J, Ghamizi M, Goncalves DV, Gurlek ME, Karaouzas I, Kebapci ÜU, Sereflisan H, Sobral C, Sousa R, Teixeira A, Varandas S, Zogaris S, Lopes-Lima M. 2016. Phylogeny, phylogeography, and evolution in the Mediterranean region: News from a freshwater mussel (Potomida, Unionida). Molecular Phylogenetics and Evolution 100:322–332. DOI:10.1016/j.ympev.2016.04.030. - Gabriel S, Ziaugra L, Tabbaa D. 2009. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current - Protocols in Human Genetics 60(1) Current protocols in human genetics, Chapter 2, Unit 2.12-Unit 12.12. DOI:10.1002/0471142905.hg0212s60. - Gardner JPA. 2000. Where are the mussels on Cook Strait (New Zealand) shores? Low seston quality as a possible factor limiting multi-species distributions. Marine Ecology Progress Series 194:123–132. DOI:10.3354/meps194123. - Gardner JPA. 2013. Bottom-up control of temperate rocky intertidal community structure: Evidence from a transplant experiment. Marine Ecology Progress Series 491:137–151. DOI:10.3354/meps10456. - Gardner JPA, Oyarzún PA, Toro JE, Wenne R, Zbawicka M. 2021. Phylogeography of Southern hemisphere blue mussels of the genus *Mytilus*: Evolution, biosecurity, aquaculture and food labelling. Oceanography and Marine Biology 59:139– 232 - Gardner JPA, Zbawicka M, Westfall KM, Wenne R. 2016. Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: The need for baseline data and enhanced protection in the Southern Ocean. Global Change Biology 22(9):3182–3195. DOI:10.1111/gcb.13332. - Gattuso J-PJP, Gentili B, Antoine D, Doxaran D. 2020. Global distribution of photosynthetically available radiation on the seafloor. Earth System Science Data 12(3):1697–1709. DOI:10.5194/essd-12-1697-2020. - Geller, JB 1999. Decline of a native mussel masked by sibling species invasion. Conservation Biology 13(3):661–664. DOI: jstor.org/stable/2641881. - Giantsis IA, Abatzopoulos TJ, Angelidis P, Apostolidis AP. 2014b. Mitochondrial Control Region Variability in Mytilus galloprovincialis Populations from the Central-Eastern Mediterranean Sea. International Journal of Molecular Sciences 15(7):11614–11625. DOI:10.3390/ijms150711614. - Giantsis IA, Kravva N, Apostolidis AP. 2012. Genetic characterization and evaluation of anthropogenic impacts on genetic patterns in cultured and wild populations of mussels (Mytilus galloprovincialis) from Greece. Genetics and Molecular Research 11(4):3814–3823. DOI:10.4238/2012.August.1 7.14. - Giantsis IA, Mucci N, Randi E, Abatzopoulos TJ, Apostolidis AP. 2014a. Microsatellite variation of mussels (Mytilus galloprovincialis) in central and eastern Mediterranean: Genetic panmixia in the Aegean and the Ionian Seas. Journal of the Marine Biological Association of the United Kingdom 94(4):797–809. DOI:10.1017/S0025315414000174. - Goffredo S, Dubinsky Z. 2014. The Mediterranean Sea. Its history and present challenges. Dordrecht Heidelberg New York London: Springer. 678pp. - Han ZQ, Mao YL, Shui BN, Yanagimoto T, Gao TX. 2017. Genetic structure and unique origin of the introduced blue mussel *Mytilus galloprovincialis* in the north-western Pacific: Clues from mitochondrial cytochrome c oxidase I (COI) sequences. Marine & Freshwater Research 68(2):263–269. DOI:10.1071/MF15186. - Hastie T, Tibshirani R, Friedman J. 2009. Overview of supervised learning. In: Hastie T, Tibshirani R, Friedman J, editors. The elements of statistical learning. Springer Series in Statistics. New York, NY: Springer. pp. 9–41. - Hiscott RN, Aksu AE, Mudie PJ, Marret F, Abrajano T, Kaminski MA, Evans J, Çakiroğlu Aİ, Yaşar D. 2007. A gradual drowning of the southwestern Black Sea shelf: Evidence for a progressive rather than abrupt Holocene reconnection with the eastern Mediterranean Sea through the - Marmara Sea Gateway. Quaternary International 167-168:19–34. DOI:10.1016/j.quaint.2006.11.007. - Hoarau G, Holla S, Lescasse R, Stam WT, Olsen JL. 2002. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish *Platichthys flesus*. Molecular Biology and Evolution 19(12):2261–2264. DOI:10.1093/oxfordjournals.molbev.a004049. - Hu ZM, Zhong KL,
Weinberger F, Duan DL, Draisma SGA, Serrão EA. 2020. Linking ecology to genetics to better understand adaptation and evolution: A review in marine macrophytes. Frontiers in Marine Science 7:545102. DOI:10.3389/ fmars.2020.545102. - Janssen AW, Peijnenburg KTCA. 2014. Holoplanktonic Mollusca: Development in the Mediterranean basin during the last 30 Million years and their future. 341-362. In: Goffredo S, Dubinsky Z, editors. The Mediterranean Sea. Its history and present challenges. Dordrecht Heidelberg New York London: Springer. pp. 678 pp. - Johannesson K, Andre C. 2006. INVITED REVIEW: Life on the margin: Genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology 15 (8):2013–2029. DOI:10.1111/j.1365-294X.2006.02919.x. - Jones SJ, Lima FP, Wethey DS. 2010. Rising environmental temperatures and biogeography: Poleward range contraction of the blue mussel, *Mytilus edulis* L., in the western Atlantic. Journal of Biogeography 37(12):2243–2259. DOI:10.1111/ j.1365-2699.2010.02386.x. - Jonker RM, Kraus RHS, Zhang Q, van Hooft P, Larsson K, van der Jeugd HP, KurversRHJM RHJM, van Wieren SE, LoonenMJJE MJJE, CrooijmansRPMA RPMA, Ydenberg RC, Groenen MAM, Prins HHT. 2013. Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis. Molecular Ecology 22(23):5835–5847. DOI:10.1111/mec.12548. - Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA, Brierley AS, Hiddink JG, Kaartokallio H, Polunin NVC, Raffaelli DG. 2011. Marine ecology: Processes, systems, and impacts. Oxford: Oxford University Press. - Kalkan E, Kurtulus A, Maraci ÖO, Bilgin R. 2011. Is the Bosphorus Strait a barrier to gene flow for the Mediterranean mussel, Mytilus galloprovincialis (Lamarck, 1819)? Marine Biology Research 7(7):690–700. Lamarck, 1819)?. DOI:10.1080/17451000.2011.558098 - Karakousis Y, Skibinski DOF. 1992. An analysis of allozyme, mitochondrial DNA and morphological variation in mussel (Mytilus galloprovincialis) populations from Greece. Experientia 48(9):878–881. DOI:10.1007/BF02118424. - Kijewska A, Kalamarz-Kubiak H, Arciszewski B, Guellard T, Petereit C, Wenne R. 2016. Adaptation to salinity in Atlantic cod from different regions of the Baltic Sea. Journal of Experimental Marine Biology and Ecology 478:62–67. DOI:10.1016/j.jembe.2016.02.003. - Kijewska A, Malachowicz M, Wenne R. 2018. Alternatively spliced variants in Atlantic cod (*Gadus morhua*) support response to variable salinity environment. Scientific Reports 8(1):11607. DOI:10.1038/s41598-018-29723-w. - Kijewski T, Śmietanka B, Zbawicka M, Gosling E, Hummel H, Wenne R. 2011. Distribution of *Mytilus* taxa in European coastal areas as inferred from molecular markers. Journal of Sea Research 65(2):224–234. DOI:10.1016/j.seares.2010 .10.004. - Kijewski T, Zbawicka M, Strand J, Kautsky H, Kotta J, Ratsep M, Wenne R. 2019. Random forest assessment of correlation between environmental factors and genetic differentiation of - populations: Case of marine mussels Mytilus. Oceanologia 61 (1):131–142. DOI:10.1016/j.oceano.2018.08.002. - Kokkos N, Sylaios G. 2016. Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea. Oceanologia 58(2):103–116. DOI:10.1016/j.oceano.2015.12.003. - Kostecki R, Janczak-Kostecka B. 2011. Holocene evolution of the Pomeranian Bay environment, southern Baltic Sea. Oceanologia 53:471–487. DOI:10.5697/oc.53-1-TI.471. - Kotta J, Oganjan K, Lauringson V, Parnoja M, Kaasik A, Rohtla L, Kotta I, Orav-Kotta H. 2015. Establishing functional relationships between abiotic environment, macrophyte coverage, resource gradients and the distribution of *Mytilus trossulus* in a brackish non-tidal environment. PLoS One 10(8):e0136949. DOI:10.1371/journal.pone.0136949. - Kotta J, Orav-Kotta H, Jänes H, Hummel H, Arvanitidis C, Van Avesaath P, Bachelet G, Benedetti-Cecchi L, Bojanić N, Como S, Coppa S, Coughlan J, Crowe T, Dal Bello M, Degraer S, De La Pena JAJ, Fernandes De Matos VK, Espinosa F, Faulwetter S, Frost M, Guinda X, Jankowska E, Jourde J, Kerckhof F, Lavesque N, Leclerc JC, Magni P, Pavloudi C, Pedrotti ML, Peleg O, Pérez-Ruzafa A, Puente A, Ribeiro P, Rilov G, Rousou M, Ruginis T, Silva T, Simon N, Sousa-Pinto I, Troncoso J, Warzocha J, Weslawski JM. 2017. Essence of the patterns of cover and richness of intertidal hard bottom communities: A pan-European study. Journal of the Marine Biological Association of the United Kingdom 97(3):525–538. DOI:10.1017/S0025315416001351. - Kotwicki L, Weslawski JM, Włodarska-Kowalczuk M, Mazurkiewicz M, Wenne R, Zbawicka M, Minchin D, Olenin S. 2021. The re-appearance of the *Mytilus* spp. complex in Svalbard, Arctic, during the Holocene: The case for an arrival by anthropogenic flotsam. Global and Planetary Change 202:103502. DOI:10.1016/j.gloplacha.2021.103502. - Krijgsman W, Capella W, Simon D, Hilgen FJ, Kouwenhoven TJ, Meijer PT, Sierro FJ, Tulbure MA, van den Berg BCJ, van der Schee M, Flecker R. 2018. The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Marine Geology 403:238–246. DOI:10.1016/j.margeo.2018.06.008. - Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400(6745):652–655. DOI:10.1038/23231. - Ladoukakis EDM, Saavedra C, Magoulas A, Zouros E. 2002. Mitochondrial DNA variation in a species with two mitochondrial genomes: The case of *Mytilus galloprovincialis* from the Atlantic, the Mediterranean and the Black Sea. Molecular Ecology 11 (4):755–769. DOI:10.1046/j.1365-294X.2002.01473.x. - Larraín MA, Zbawicka M, Araneda C, Gardner JPA, Wenne R. 2018. Native and invasive taxa on the Pacific coast of South America: Impacts on aquaculture, traceability and biodiversity of blue mussels (*Mytilus* spp.). Evolutionary Applications 11 (3):298–311. DOI:10.1111/eva.12553. - Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P. 2006. Variation in demersal fish species richness in the oceans surrounding New Zealand: An analysis using boosted regression trees. Marine Ecology Progress Series 321:267–281. DOI:10.3354/meps321267. - Lecis R, Pierpaoli M, Biro ZS, Szemethy L, Ragni B, Vercillo F, Randi E. 2006. Bayesian analyses of admixture in wild and domestic cats (*Felis silvestris*) using linked microsatellite loci. Molecular Ecology 15(1):119–132. DOI:10.1111/j.1365-294X.2005.02812.x. - Legendre P, Anderson MJ. 1999. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69(1): - 1–24. DOI:10.1890/0012-9615(1999)069[0001:DBRATM] 2.0.CO;2. - Lessios HA, Kessing BD, Robertson DR 1998. Massive gene flow across the world's most potent marine biogeographic barrier. Proceedings of the Royal Society, London: Series B Biological Sciences, 265:83–588. - Lins DM, Zbawicka M, Wenne R, Poćwierz-Kotus A, Molina JRA, Alves LP, Rocha RM. 2021. Ecology and genetics of *Mytilus galloprovincialis*: A threat to bivalve aquaculture in southern Brazil. Aquaculture 540:736753. DOI:10.1016/j. aquaculture.2021.736753. - Liu S, Tengstedt A, Jacobsen M, Pujolar JM, Jónsson B, Lobón-Cervià J, Bernatchez L, Hansen M. 2022. Genome-wide methylation in the panmictic European eel (Anguilla Anguilla). Authorea. DOI:10.22541/au.164698946.64263 - Lourenço CR, Nicastro KR, Serrão EA, Castilho R, Zardi GI. 2015. Behind the mask: Cryptic genetic diversity of Mytilus galloprovincialis along southern European and northern African shores. Journal of Molluscan Studies 81:380–387. - Lowe S, Browne M, Boudjelas S, De Poorter M 2000. 100 of the world's worst invasive alien species: A selection from the global invasive species database. The Invasive Species Group. http://www.issg.org/pdf/publications/worst_100/eng lish_100_worst.pdf - Major CO, Goldstein SL, Ryan WBF, Lericolais G, Piotrowski AM, Hajdas I. 2006. The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews 25(17–18):2031–2047. DOI:. - Malachowicz M, Kijewska A, Wenne R. 2015. Transcriptome analysis of gill tissue of Atlantic cod *Gadus morhua* L. from the Baltic Sea. Marine Genomics 23:37–40. DOI:10.1016/j. margen.2015.04.005. - Malachowicz M, Wenne R. 2019. Mantle transcriptome sequencing of *Mytilus* spp. and identification of putative biomineralization genes. PeerJ 6:e6245. DOI:10.7717/peerj.6245. - Mattei N, Pellizatto M. 1977. Mollusk Fisheries and Aquaculture in Italy. Edited by Clyde L Mackenzie, Jr Victor G Burrell, Jr Aaron Rosenfield Willis L Hobart, The History, Present Condition, and Future of the Molluscan Fisheries of North and Central AtnericaAmerica and Europe Volume 3, Europe, The NOAA Technical Report NMFS (0892-8908) Technical Reports of the Fishery Bulletin series is published by the Scientific Publications Office, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115-0070: 201-216. - McDonald JH, Koehn RK. 1988. The mussels *Mytilus galloprovincialis* and *M. trossulus* on the Pacific coast of North America. Marine Biology 99(1):111–118. DOI:10.1007/BF00644984. - McDonald JH, Seed R, Koehn RK. 1991. Allozymes and morphometric characters of three species of *Mytilus* in the Northern and Southern Hemispheres. Marine Biology 111 (3):323–333. DOI:10.1007/BF01319403. - Mejri R, Arculeo M, Hassine OK, Brutto SL. 2011. Genetic architecture of the marbled goby *Pomatoschistus marmoratus* (Perciformes, Gobiidae) in the Mediterranean Sea. Molecular Phylogenetics and Evolution 58:395–403. DOI:10.1016/j.ympev.2010.12.001. - Miller JA, Carlton JT, Chapman JW, Geller JB, Ruiz GM. 2018. Transoceanic dispersal of the mussel *Mytilus galloprovincialis* on Japanese tsunami marine debris: An approach for evaluating rafting of a coastal species at sea. Marine - Pollution Bulletin 132:60–69. DOI:10.1016/j.marpolbul.20 17.10.040. - Millot C. 2013. Levantine Intermediate Water characteristics: An astounding general
misunderstanding! Scientia Marina 77 (2):217–232. DOI:10.3989/scimar.03518.13A. - Millot C, Taupier-Letage I. 2005. Circulation in the Mediterranean Sea. Handbook of Environmental Chemistry 5(Part K):29-66. - Minniti C. 2005. Shells at the Bronze Age Settlement of Coppa Nevigata (Apulia, Italy). Proceedings of the 9th Conference of the International Council of Archaeozoology, Durham, England, August 2002 Series Editors: Keith Dobney, Peter Rowley-Conwy and Umberto Albarella, 71–81. - Narum SR. 2006. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conservation Genetics 7(5):783– 787. DOI:10.1007/s10592-005-9056-y. - Nikula R, Väinölä R. 2003. Phylogeography of *Cerastoderma glaucum* (Bivalvia: Cardiidae) across Europe: A major break in the Eastern Mediterranean. Marine Biology 143(2):339–350. DOI:10.1007/s00227-003-1088-6. - Ouagajjou Y, Aghzar A, Minambres M, Presa P, Perez M. 2010. Differential gene flow between populations of Mytilus galloprovincialis distributed along Iberian and north African coasts. Thalassas 26:75–78. - Ouagajjou Y, Presa P. 2015. The connectivity of Mytilus galloprovincialis in northern Morocco: A gene flow crossroads between continents. Estuarine, Coastal and Shelf Science 152:1–10. DOI:10.1016/j.ecss.2014.10.016. - Palumbi SR, Evans TG, Pespeni MH, Somero GN. 2019. Present and future adaptation of marine species assemblages: DNA-based insights into climate change from studies of physiology, genomics, and evolution. Oceanography 32(3):82–93. DOI:10.5670/oceanog.2019.314. - Pannacciulli FG, Maltagliati F, de Guttry C, Achituv Y. 2017. Phylogeography on the rocks: The contribution of current and historical factors in shaping the genetic structure of *Chthamalus montagui* (Crustacea, Cirripedia). Plos One 12 (6):e0178287. DOI:10.1371/journal.pone.0178287. - Pascual M, Rives B, Schunter C, Macpherson E. 2017. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12(5):e0176419. DOI:10.1371/journal. pone.0176419. - Patarnello T, Volckaert FA, Castilho R. 2007. Pillars of Hercules: Is the Atlantic-Mediterranean transition a phylogeographical break? Molecular Ecology 16:4426–4444. DOI:10.1111/j.1365-294X.2007.03477.x. - Paterno M, Bat L, Souissi JB, Boscari E, Chassanite A, Congiu L, Guarnieri G, Kruschel C, Mačić V, Marino IAM, Micu D, Milchakova N, Panayotova M, Papetti C, Planes S, Strungaru S, Todorova VR, Voutsinas E, Zane L. 2019. A Genome-Wide Approach to the Phylogeography of the Mussel Mytilus galloprovincialis in the Adriatic and the Black Seas. Frontiers in Marine Science 6:566. DOI:10.3389/fmars.2019.00566. - Picotti V, Negri A, Capaccioni B. 2014. The geological origins and paleoceanographic history of the Mediterranean Region: Tethys to present. In: Goffredo S, Dubinsky Z, editors. The Mediterranean Sea Its history and present challenges. Dordrecht: Springer. pp. 3–10. - Popovic I, Matias AMA, Bierne N, Riginos C. 2020. Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evolutionary Applications 13:515–532. DOI:10.1111/eva.12857. - Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155 (2):945–959. DOI:10.1093/genetics/155.2.945. - Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Munch K, Jónsson B, Jian JB, Cheng L, Maes GE, Bernatchez L, Hansen MM. 2014. Genome-wide single-generation signatures of local selection in the panmictic European eel. Molecular Ecology 23(10):2514–2528. DOI:10.1111/mec.12753. - Quesada H, Zapata C, Alvarez G. 1995a. A multilocus allozyme discontinuity in the mussel *Mytilus galloprovincialis*: The interaction of ecological and life-history factors. Marine Ecology Progress Series 116:99–115. DOI:10.3354/meps116099. - Quesada H, Beynon CM, Skibinski DO. 1995b. A mitochondrial DNA discontinuity in the mussel *Mytilus galloprovincialis* Lmk: Pleistocene vicariance biogeography and secondary intergradation. Molecular Biology and Evolution 12:521–524. - Ragionieri L, Schubart CD. 2013. Population genetics, gene flow, and biogeographical boundaries of *Carcinus aestuarii* (Crustacea: Brachyura: Carcinidae) along the European Mediterranean coast. Biological Journal of the Linnean Society 109(4):771–790. DOI:10.1111/bij.12099. - Rech S, Borrell Pichs YJ, Garcia-Vazquez E. 2018. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna. PLoS One 13(1):e0191859. DOI:10.1371/journal.pone.0191859. - Reisser CMO, Bell JJ, Gardner JPA. 2014. Correlation between pelagic larval duration and realised dispersal: Long-distance genetic connectivity between northern New Zealand and the Kermadec Islands archipelago. Marine Biology 161(2):297– 312. DOI:10.1007/s00227-013-2335-0. - Reuschel S, Cuesta JA, Schubart CD. 2010. Marine biogeographic boundaries and human introduction along the European coast revealed by phylogeography of the prawn *Palaemon elegans*. Molecular Phylogenetics and Evoution 55(3):765–775. DOI:10.1016/j.ympev.2010.03.021. - Riginos C, Cunningham CW. 2005. Local adaptation and species segregation in two mussel (*Mytilus edulis x Mytilus trossulus*) hybrid zones. Molecular Ecology 14:381–400. DOI:10.1111/ j.1365-294X.2004.02379.x. - Riginos C, Liggins L. 2013. Seascape genetics: Populations, individuals, and genes marooned and adrift. Geography Compass 7(3):197–216. DOI:10.1111/gec3.12032. - Rohling EJ, Marino G, Grant KM. 2015. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews 143:62–97. - Rouchy J, Caruso A. 2006. The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sedimentary Geology 188–189188-189:35–67. DOI:10.1016/j.sedgeo.2006.02.005. - Rouis-Zargouni I, Turon J-L, Londeix L, Essallami L, Kallel N, Sicre M-A. 2010. Environmental and climatic changes in the central Mediterranean Sea (Siculo-Tunisian Strait) during the last 30ka based on dinoflagellate cyst and planktonic foraminifera assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 285 (1-2):17-29. DOI:10.1016/j.palaeo.2009.10.015. - Roux C, Fraisse C, Castric V, Vekemans X, Pogson GH, Bierne N. 2014. Can we continue to neglect genomic variation in introgression rates when inferring the history of speciation? A case study in a *Mytilus* hybrid zone. Journal of Evolutionary Biology 27(8):1662–1675. DOI:10.1111/jeb.12425. - Ryan WBF, Vachtman D, McHugh C, Çağatay MN, Mart Y. 2014. A channeled shelf fan initiated by flooding of the Black Sea. In: Goffredo S, Dubinsky Z, editors. The Mediterranean - Sea. Its history and present challenges. Dordecht: Springer. pp. 11–27. - Sammer O, Manchado M, Infante C, Zuasti E, Crespo A, Saoud Y. 2010. Genetic polymorphism and population structure analysis of blue mussels (*Mytilus* spp.) in the north-western Mediterranean coasts of Morocco. Egyptian Journal of Biology 12:65–73. - Sandman AN, Wikström SA, Blomqvist M, Kautsky H, Isaeus M. 2013. Scale-dependent influence of environmental variables on species distribution: A case study on five coastal benthic species in the Baltic Sea. Ecography 36(3):354–363. DOI:10.1111/j.1600-0587.2012.07053.x. - Sanjuan A, Zapata C, Alvarez G. 1994. Mytilus galloprovincialis and M. edulis on the coasts of the Iberian Peninsula. Marine Ecology Progress Series 113:131–146. DOI:10.3354/ meps113131. - Sanmartín I. 2003. Dispersal vs. vicariance in the Mediterranean: Historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). Journal of Biogeography 30 (12):1883–1897. DOI:10.1046/j.0305-0270.2003.00982.x. - Saurel C, Gascoigne JC, Palmer MR, Kaiser MJ. 2007. In situ mussel feeding behavior in relation to multiple environmental factors: Regulation through food concentration and tidal conditions. Limnology and Oceanography 52(5):1919–1929. DOI:10.4319/lo.2007.52.5.1919. - Selkoe KA, Henzler CM, Gaines SD. 2008. Seascape genetics and the spatial ecology of marine populations. Fish and Fisheries 9 (4):363–377. DOI:10.1111/j.1467-2979.2008.00300.x. - Selkoe KA, D'Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB, von der Heyden S, Toonen RJ. 2016. A decade of seascape genetics: Contributions to basic and applied marine connectivity. Marine Ecology Progress Series 554:1–19. DOI:10.3354/meps11792. - Shemesh E, Huchon D, Simon-Blecher N, Achituv Y. 2009. The distribution and molecular diversity of the Eastern Atlantic and Mediterranean chthamalids (Crustacea, Cirripedia). Zoologica Scripta 38(4):365–378. DOI:10.1111/j.1463-6409.2008.00384.x. - Silva CNS, Gardner JPA. 2016. Identifying environmental factors that are associated with the genetic structure of the New Zealand scallop: Linking seascape genetics and ecophysiological tolerance. ICES Journal of Marine Science 73:1925–1934. DOI:10.1093/icesjms/fsv240. - Simon A, Arbiol C, Nielsen EE, Couteau J, Sussarellu R, Burgeot T, Bernard I, Coolen JWP, Lamy J-B, Robert S, Skazina M, Strelkov P, Queiroga H, Cancio I, Welch JJ, Viard F, Bierne N. 2020. Replicated anthropogenic hybridisations reveal parallel patterns of admixture in marine mussels. Evolutionary Applications 13:575–599. DOI:10.1111/eva.12879. - Simon A, Fraïsse C, El Ayari T, Liautard-Haag C, Strelkov P, Welch JJ, Bierne N. 2021. How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. Journal of Evolutionary Biology 34(1):208–223. DOI:10.1111/jeb.13709. - Smaal AC. 2002. European mussel cultivation along the Atlantic coast: Production status, problems and perspectives. Hydrobiologia 484(1/3):89–98. DOI:10.1023/A:10213529 04712. - Śmietanka B, Zbawicka M, Wołowicz M, Wenne R. 2004. Mitochondrial DNA lineages in the European populations of mussels (*Mytilus* spp.). Marine Biology 146(1):79–92.
DOI:10.1007/s00227-004-1418-3. - Śmietanka B, Burzyński A, Wenne R. 2009. Molecular population genetics of male and female mitochondrial genomes in - European mussels *Mytilus*. Marine Biology 156(5):913–925. DOI:10.1007/s00227-009-1137-x. - Śmietanka B, Burzyński A, Hummel H, Wenne R. 2014. Glacial history of the European marine mussels *Mytilus*, inferred from distribution of mitochondrial DNA lineages. Heredity 113 (3):250–258. DOI:10.1038/hdy.2014.23. - Sosdian S, Rosenthal Y. 2009. Deep-Sea Temperature and Ice Volume Changes Across the Pliocene-Pleistocene Climate Transitions. Science 325(5938):306–310. DOI:10.1126/ science.1169938 - Soulet G, Menot G, Garreta V, Rostek F, Zaragosi S, Lericolais G, Bard E. 2011. Black Sea "Lake" reservoir age evolution since the Last Glacial Hydrologic and climatic implications. Earth and Planetary Science Letters 308(1–2):245–258. DOI:10.1016/j.epsl.2011.06.002. - Sromek L, Forcioli D, Lasota R, Furla P, Wolowicz M. 2019. Next-generation phylogeography of the cockle *Cerastoderma glaucum*: Highly heterogeneous genetic differentiation in a lagoon species. Ecology and Evolution 9(8):4667–4682. DOI:10.1002/ece3.5070. - Sun X, Hedgecock D. 2017. Temporal genetic change in North American Pacific oyster populations suggests caution in seascape genetics analyses of high gene-flow species. Marine Ecology Progress Series 565:79–93. DOI:10.3354/meps12009. - Takezaki N, Nei M, Tamura K. 2014. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Molecular Biology and Evolution 31(6):1622–1624. DOI:10.1093/molbev/msu093. - Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12):2725–2729. DOI:10.1093/molbev/mst197. - Tomanek L, Zuzow MJ. 2010. The proteomic response of the mussel congeners *Mytilus galloprovincialis* and *M. trossulus* to acute heat stress: Implications for thermal tolerance limits and metabolic coastscosts of thermal stress. Journal of Experimental Biology 213(20):3559–3574. DOI:10.1242/jeb.041228. - Toucanne S, Angue Minto'o CM, Fontanier C, Bassetti M-A, Jorry SJ, Jouet G. 2015. Tracking rainfall in the northern Mediterranean borderlands during sapropel deposition. Quaternary Science Reviews 129:178–195. DOI:10.1016/j. quascirev.2015.10.016. - Tyuleneva N, Suchkov I, Fedoronchuk N. 2014. Changes in coastline positions during the Holocene in the shelf of the Northwestern Black Sea. Quaternary International 345:77–87. DOI:10.1016/j.quaint.2013.07.041. - Uitz J, Stramski D, Gentili B, D'Ortenzio F, Claustre H. 2012. Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations: Primary production in the Mediterranean. Global Biogeochemical Cycles 26(GB20242):1–10. DOI:10.1029/2011GB004055. - Vähä JP, Primmer CR. 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Molecular Ecology 15(1):63–72. DOI:10.1111/j.1365-294X.2005.02773.x. - Valente S, Serrão EA, González-Wangüemert M. 2015. West versus East Mediterranean Sea: Origin and genetic differentiation of the sea cucumber *Holothuria polii*. Marine Ecology 36(3):485–495. DOI:10.1111/maec.12156. - Varvio SL, Koehn RK, Väinölä R. 1988. Evolutionary genetics of the *Mytilus edulis* complex in the North Atlantic region. Marine Biology 98(1):51–60. DOI:10.1007/BF00392658. - Vera M, Pardo BG, Pino-Querido A, Álvarez-Dios JA, Fuentes J, Martínez P. 2010. Characterization of single-nucleotide polymorphism markers in the Mediterranean mussel, *Mytilus gal-loprovincialis*. Aquaculture Research 41(10):e568–e575. DOI:10.1111/j.1365-2109.2010.02550.x. - Vermeij GJ. 1992. Trans-equatorial connections between biotas in the temperate eastern Atlantic. Marine Biology 112(2):343–348. DOI:10.1007/BF00702481. - Wei KJ, Wood AR, Gardner JPA. 2013. Seascape genetics of the New Zealand greenshell mussel: Sea surface temperature explains macrogeographic scale genetic variation. Marine Ecology Progress Series 477:107–121. DOI:10.3354/meps10158. - Wenne R, Bach L, Zbawicka M, Strand J, McDonald JH. 2016. A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biology 39(2):343–355. DOI:10.1007/s00300-015-1785-x. - Wenne R, Prądzińska A, Poćwierz-Kotus A, Larraín MA, Araneda C, Zbawicka M. 2022. Provenance of Mytilus food products in Europe using SNP genetic markers. Aquaculture 554:738135. - Wenne R, Zbawicka M, Bach L, Strelkov P, Gantsevich M, Kukliński P, Kijewski T, McDonald JH, Sundsaasen KK, Árnyasi M, Lien S, Kaasik A, Herkül K, Kotta J. 2020. Trans-Atlantic distribution and introgression as inferred from single nucleotide polymorphism: Mussels Mytilus and environmental factors. Genes 11(5):530. DOI:10.3390/genes11050530. - Wennerström L, Jansson E, Laikre L. 2017. Baltic Sea genetic biodiversity: Current knowledge relating to conservation management. Aquatic Conservation: Marine and Freshwater Ecosystems 27(6):1069–1090. DOI:10.1002/aqc.2771. - Westerbom M, Mustonen O, Kilpi M. 2008. Distribution of a marginal population of *Mytilus edulis*: Responses to biotic and abiotic processes at different spatial scales. Marine Biology 153 (6):1153–1164. DOI:10.1007/s00227-007-0886-7. - Wilkins NP, Fujino K, Gosling EM. 1983. The Mediterranean mussel *Mytilus galloprovincialis* Lmk. in Japan. Biological Journal of the Linnean Society 20(4):365–374. DOI:10.1111/j.1095-8312.1983.tb01597.x. - Zbawicka M, Drywa A, Śmietanka B, Wenne R. 2012. Identification and validation of novel SNP markers in European populations of marine *Mytilus* mussels. Marine Biology 159(6):1347–1362. DOI:10.1007/s00227-012-1915-8. - Zbawicka M, Gardner JPA, Wenne R. 2019. Cryptic diversity in smooth-shelled mussels on Southern Ocean Islands: Connectivity, hybridisation and a marine invasion. Frontiers in Zoology 16(1):32. DOI:10.1186/s12983-019-0332-v. - Zbawicka M, Sanko T, Strand J, Wenne R. 2014. New SNP markers reveal largely concordant clinal variation across the hybrid zone between Mytilus spp. in the Baltic Sea. Aquatic Biology 21:25–36. DOI:10.3354/ab00566. - Zbawicka M, Trucco MI, Wenne R. 2018. Single nucleotide polymorphisms in native South American Atlantic coast populations of smooth shelled mussels: Hybridization with invasive European Mytilus galloprovincialis. Genetics, Selection, Evolution 50(1):5. DOI:10.1186/s12711-018-0376-z. - Zbawicka M, Wenne R, Dias PJ, Gardner JPA. 2022. Combined threats to native smooth-shelled mussels (genus *Mytilus*) in Australia: Bioinvasions and hybridisationhybridization. Zoological Journal of the Linnean Society 194(4):1194–1211. DOI:10.1093/zoolinnean/zlab067. - Zedda M, Corda L, Manca P, Gadau S, Lepore G, Farina V. 2003. Sea shells from a Bronze Age site in Sardinia. Biologia Marina Mediterranea 10:1138–1139. - Zeng C, Rowden AA, Clark MR, Gardner JPA. 2020. Species-specific genetic variation in response to deep-sea environmental variation amongst Vulnerable Marine Ecosystem indicator taxa. Scientific Reports 10(1):2844. DOI:10.1038/s41598-020-59210-0. - Zulliger DE, Tanner S, Ruch M, Ribi G. 2009. Genetic structure of the high dispersal Atlanto-Mediterranean Sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci. Marine Biology 156 (4):597–610. DOI:10.1007/s00227-008-1111-z.