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Abstract

Blue mussels of the genus Mynlus are important ecosystem engineers in intertidal and subtidal communities. The
distribution of Myrilus mussels is influenced by a number of benthic and pelagic environmental variables (e.g., substratum
type and availability, water movement, phytoplankton production, physical disturbance) as well as interactions between
these variables. Because of its broad tolerance of environmental variation the Mediterranean species, Myzilus galloprovin-
cialis, has the greatest ability of all blue mussels to colonise new geographic regions. Understanding how population genetic
variation is related to, or caused by, environmental variation is important but has long been a challenge. The present study
examined the genetic differentiation of native populations of M. galloprovincialis throughout its entire geographic range in
the Mediterranean Sea, the Black Sea and the Sea of Azov using 53 single nucleotide polymorphisms (SNP loci). Mussels,
in total 1004 individuals collected from 36 locations, were genotyped and combined with existing SNP data for mussels
from 11 reference sites. Pairwise comparisons of Fgt values, correspondence analysis (CA) and STRUCTURE analysis all
revealed four groups of populations: the Atlantic Ocean; the western Mediterranean; the Aegean Sea; and the Azov, Black
and Marmara Seas. One population — from Algeria (Oran West) — was intermediate between the two main groups of the
Mediterranean Sea and Atlantic Ocean. Seascape genetic analyses using GLM and DistLLM analyses were employed to test
site-specific genetic variation as a function of 13 environmental variables. The GLM identified five environmental variables
that explained variation in site-specific Fgt values, whilst in the DistLLM best-fit model only four were significant. These
analyses suggest that a complex mix of environmental variables contribute to explaining genetic variation of M. gallopro-
vincialis populations within the Mediterranean Sea, which most likely reflects the complex geological history of formation,
isolation and reconnection among the regional sub-basins of the Sea.
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Introduction

The Mediterranean Sea has a complex history of
formation. Its origin dates to the Mesozoic and the
Tethys Sea, when it acquired a shape similar to the
present day in the Miocene (Picotti et al. 2014). At
the end of the Miocene, the Mediterranean Sea was
cut off from the Atlantic Ocean by a land barrier
between Iberia and North Africa, which caused the
water level to drop due to evaporation, which in turn
gave rise to the Messinian crisis 5.75-5.32 milion
years before present (M ybp) (Rouchy & Caruso
2006; Janssen & Peijnenburg 2014). The connection
to the Atlantic Ocean was re-established 5.3 M ybp
when seawater filled the Mediterranean trough
(Krijgsman et al. 1999, 2018). Subsequently, during
the Pliocene, a monsoon climate period was fol-
lowed by cyclical sea-level changes related to periods
of glaciation in the Northern hemisphere (Barsotti &
Meluzzi 1968; Picotti et al. 2014). Other major
regions, sometimes considered to be a basin or
sub-basin of the Mediterranean Sea, also have com-
plex and sometimes completely independent geolo-
gical histories. For example, the Black Sea, prior to
the establishment of a contemporary connection to
the Mediterranean Sea through the Bosphorus
Strait, the Sea of Marmara (including the
Dardanelle Strait) that was established 10.5 K ybp,
was a freshwater lake receiving water from melting
glaciers. Earlier, the Black Sea was only periodically
influenced by Mediterranean Sea waters (Ryan et al.
2014). These complex geological histories and the
present-day  multi-basin  structure  of  the
Mediterranean Sea present an opportunity to better
understand how periods of isolation and then recon-
nection, plus the different ages of the basins and
their very different environmental conditions may
influence genetic connectivity and population
genetic diversity.

Given the complex history of formation of the
Mediterranean Sea and its sub-basins it is not surpris-
ing that the Mediterranean Sea is a biodiversity hot-
spot (Coll et al. 2010; Danovaro et al. 2010; Pascual et
al. 2017). Two main regions of biodiversity of the
Mediterranean terrestrial fauna and flora have
evolved, with different geological histories: the West
Iberian and the North African separated by the Strait
of Gibraltar to the west, and the Balkan and Anatolian
to the east. These regions differ strongly in taxonomic
composition and population divergencies of land
organisms as a result of isolation in older (a few M
ybp) and more recent glacial refugia (Sanmartin 2003;
Froufe et al. 2016). In contrast to land and freshwater

organisms, marine species, including benthic seden-
tary organisms such as mussels, have the ability to
disperse via their pelagic stages of development (lar-
vae) and/or colonise new areas as adults on drifting
items (e.g., kelp). Such dispersal potential, when rea-
lised, may mean that their populations are charac-
terised by high connectivity and low spatial genetic
differentiation (e.g., Lessios et al. 1998; Addison et
al. 2008; Reisser et al. 2014). Consequently, such
marine organisms may spread and reconnect isolated
populations with the result that present-day marine
populations in the Mediterranean basin may be only
weakly genetically differentiated.

The native smooth-shelled blue mussel, Myzlus
galloprovincialis, is a widely distributed species
throughout the Mediterranean Sea. The species is
an important ecosystem engineer in the intertidal
and subtidal hard-bottom communities
(Borthagaray & Carranza 2007; Arribas et al. 2014;
Cinar et al. 2020), where the sessile adults are
attached by byssus threads to hard substrata but
the larvae may travel large distances in the water
column. In addition, the mixing of Mediterranean
populations may have been caused by a long history
of shipping and trade activity associated with the sea
(Blondel et al. 1999; Coll et al. 2010). For example,
marine organisms including the mussel Myzilus have
been used as food since the early Paleolithic (ca.
50 K ybp) in present-day southern Spain and
Gibraltar (Cortés-Sanchez et al. 2019), the
Neolithic in the Algarve, Portugal (Callapez &
Pimentel 2018) and the Middle Bronze Age in pre-
sent-day Italy (Zedda et al. 2003; Minniti 2005), as
evidenced by preserved mussel shells in middens in
caves and the vicinity of settlements. A simple form
of mussel culture was initiated in Italy over 2 K ybp
(Mattei & Pellizatto 1977; Smaal 2002). More
recent intensive shipping activity, translocations of
hatchery stocks and rafting on natural (e.g., kelp)
and/or man-made (e.g., plastics) materials may have
contributed to possible reduction of genetic differ-
entiation among populations within basins of the
Mediterranean Sea (Giantsis et al. 2014a).

The progenitor of modern smooth-shelled blue
mussels gave rise to Myzilus trossulus in the Pacific
Ocean, which subsequently invaded the North
Atlantic Ocean after the opening of the Bering
Strait 3.5 M ybp and gave rise to Atlantic Ocean
M. edulis (Riginos & Cunningham 2005; Bach et al.
20192019; reviewed by Gardner et al. 2021). This
newly evolved taxon spread in the Northwest
Atlantic Ocean to reach Europe. The oldest fossils



of M. edulis are found in deposits from the early
Pliocene, its shells having been reported from mid-
dle and late Zanclean deposits in the vicinity of
Lepe, on the Bay of Cadiz, Atlantic coast NW of
Gibraltar (Belaustegui & Mufiz Guinea 2016). M.
edulis colonised the Mediterranean Sea during peri-
ods of sea-level change before the Pleistocene
(Vermeij 1992; Gardner et al. 2021). Glaciation in
the Northern hemisphere took place 2.6 M ybp
(Sosdian & Rosenthal 2009), likely resulting in a
drop of sea level by 100 m. Divergence of M. gallo-
provincialis in the Mediterranean Sea from M. edulis
in the North Atlantic Ocean probably occurred
2.5 M ybp and was followed by isolation lasting
~1.8 M y (Roux et al. 2014). Periods of glaciation
forced the displacement of northern populations of
boreal and colder-water species into southern
Europe and resulted in the partial invasion of the
Mediterranean Sea as a refugium, for example, by
the bivalve Arctica islandica in the northern Adriatic
Sea 1.8 M ybp (Crippa et al. 2016). During the
Early-Middle Pleistocene Transition of 1.4 to
0.4 M ybp more regular cycles of glacial-interglacial
periods became established and caused further
changes to sea level. The global drop in sea level
isolated the Mediterranea Sea biota, including its
mussels, from the Northeast Atlantic Ocean biota.
This scenario is supported by Riginos and
Cunningham (2005) whose genetic analyses high-
lighted that isolation mechanisms (vicariance) were
important for divergence of M. galloprovincialis from
neighbouring M. edulis. It is possible that during
such sea level changes the Atlantic Ocean mussel
populations came into secondary contact with the
Mediterranean Sea mussel populations many times
in the period of (incomplete) separation that lasted
~1.7 M years (Barsotti & Meluzzi 1968). After colo-
nisation by Myunlus, the influx of waters from the
Atlantic Ocean to the present-day Mediterranean
Sea was limited or cut off periodically due to tec-
tonic changes, but mainly due to fluctuations in sea
level to the west of the Strait of Gibraltar. In addi-
tion, strong evaporation of seawater caused the per-
iodic lowering of the water level in the
Mediterranean Sea and gave rise to the isolation of
parts of it as separate basins during the Pleistocene
(Bianchi et al. 2012). In the last 150,000 years,
changes in sea level of ~130 m below to 6-15 m
above the present sea level have been caused by
glaciations and warming periods (Benjamin et al.
2017). This complex and dynamic geological history
of the Mediterranean Sea has given rise to the allo-
patric divergence of Myrnlus populations and the
evolution of M. galloprovincialis. In addition, natural
hybrid zones are created in the areas where modern
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populations of M. galloprovincialis come into second-
ary contact with M. edulis (Bierne et al. 2003; Simon
et al. 2020, 2021).

The ability of Myzilus mussels to spread on natural
and artificial floating objects has contributed to their
emergence in recent years in regions as far apart as
Svalbard in the Arctic — M. edulis (Berge et al. 2005;
Kotwicki et al. 2021) and the South Shetland
Islands off Antarctica — M. platensis (Cardenas et
al. 2020). However, of all of the members of the
genus it is M. galloprovincialis that shows the greatest
ability to colonise new geographic regions, whether
via human-mediated transfer (e.g., deliberately for
aquaculture or accidentally via hull fouling or ballast
water) or naturally (e.g., via kelp rafting) (Gardner
et al. 2021). In recent years, it has been recorded on
the Atlantic coasts of South America, where in
Argentina it hybridises with the native taxon, M.
platensis (Zbawicka et al. 2018), and in Brazil
where it inhabits farmed cultures of the native spe-
cies, Perna perna (Birckolz et al. 2020; Lins et al.
2021). M. galloprovincialis has also been introduced
to South Africa, the Pacific coast of North America,
the Sea of Japan, China, Korea, Australia, New
Zealand and Chile (Wilkins et al. 1983; McDonald
& Koehn 1988; McDonald et al. 1991; Gardner et
al. 2016; Han et al. 2017; Larrain et al. 2018;
Zbawicka et al. 2019, 2022; Popovic et al. 2020).
It is considered to be one of the most successful
invasive species of the global coastal marine biota,
often displacing native species (Geller 1999; Lowe
et al. 2000; Gardner et al. 2021).

The distribution of Myrilus species is controlled by
a number of environmental processes involving both
benthic and pelagic habitats (e.g., substratum type
and availability, water movement, phytoplankton
production, physical disturbance, seawater biogeo-
chemistry) as well as interactions between these
processes (Sandman et al. 2013; Kotta et al.
2015). For example, water movement can indirectly
affect Myzilus spp. by modifying sedimentation rates
or may directly affect sessile mussels by physically
disturbing or detaching them (Westerbom et al.
2008). Furthermore, the sedentary benthic suspen-
sion feeding lifestyle of adult mussels is a life-history
characteristic that requires water-borne food deliv-
ery, but the quantity and quality of such food deliv-
ery is highly variable in time and space (Dahlhoff &
Menge 1996; Gardner 2000, 2013; Saurel et al.
2007). An ability to withstand environmental varia-
bility is often key to a species’ range expansions,
whether they be natural or human-mediated.
Environmental tolerance can be related to or con-
trolled by such mechanisms of adaptation as differ-
ences in gene family expression, gene splicing,
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methylation, past gene duplications and other geno-
mic mechanisms also related to pangenome func-
tions (Pujolar et al. 2014; Malachowicz et al. 2015;
Kijewska et al. 2016, 2018; Bitter et al. 2019;
Malachowicz & Wenne 2019; Clark et al. 2021;
Corrochano-Fraile et al. 2022; Liu et al. 2022).
For example, there is now a growing body of evi-
dence to indicate that M. galloprovincialis is the best
adapted smooth-shelled mussel to tolerate thermal
variation, an adaptation that may be both facilitating
its spread into non-native areas and its ability to
outcompete congenerics (e.g., Braby & Somero
2006; Jones et al. 2010; Tomanek & Zuzow 2010).
When seeking to understand associations between
environmental and population genetic variation it is
important to incorporate ecologically meaningful
drivers into the models (e.g., direct and indirect
environmental gradients, resource gradients).
However, trying to identify environmental drivers
that are relevant at different temporal and spatial
scales is often difficult because the drivers may not
act in isolation but may instead act synergistically,
although not always to the same extent in time (e.g.,
different seasonal interactions) or in space (e.g.,
coastal headlands versus bays). Thus, quantifying
interactive effects (i.e., how different environmental
gradients separately or interactively modulate the
resource—allele relationship) is still a major challenge
(Palumbi et al. 2019; Hu et al. 2020; Zeng et al.
2020).

To date, genetic studies of native M. galloprovin-
cialis populations in the Mediterranean Sea are local
in nature, having covered only certain regions (e.g.,
Ahmad & Beardmore 1976; Edwards & Skibinski
1987; Karakousis & Skibinski 1992; Quesada et al.
1995a, 1995b; Comesana et al. 1998; Daguin &
Borsa 1999; Giantsis et al. 2012, 2014a, 2014b;
Bierne et al. 2003; Sammer et al. 2010; Vera et al.
2010; Lourenco et al. 2015; Fraisse et al. 2016;
Paterno et al. 2019). No genetic research has yet
been undertaken at the pan-Mediterranean Sea
scale. The aim of the present study was to test for
genetic differentiation of M. galloprovincialis popula-
tions throughout its entire native range. We also
tested if and how much environmental variables
explained the population genetic diversity of M.
galloprovincialis. By including key environmental
variables in our testing we seek to explore links
between patterns of environmental and genetic
variability of the mussel populations. A strong
match between genetic and environmental variation
and the presence of clear genetic differentiation
according to present day environmental gradients
may indicate the importance of local adaptation
processes in Mediterranean Sea M. galloprovincialis

or barriers to gene flow. Alternatively, a relationship
between environmental variation and subtle regional
genetic differentiation may reflect the complex geo-
logical history of the region and the evolutionary
history of the mussel populations.

Materials and methods
The environment

The Mediterranean Sea is a land-locked, semi-
enclosed marginal sea of the Atlantic Ocean. The
Mediterranean Sea is a very complex marine envir-
onment and is oceanographically diverse with a
number of distinct sub-seas. Sea surface tempera-
ture exhibits strong seasonality and pronounced spa-
tial gradients from west to east and north to south.
The Mediterranean Sea is microtidal with a typical
tidal range of less than 50 cm. The salinity of the
Mediterranean Sea is high throughout the basin
from 35 PSU on the West to 39 PSU on the East,
but is brackish in the Black Sea and Sea of Azov.
The Mediterranean Sea has very low nutrient con-
centrations, especially in its eastern parts, which is
reflected in the patterns of primary productivity.
Locally, riverine nutrient input can be significant;
however, most river systems discharging into the
Mediterranean Sea are small by global standards
(Uitz et al. 2012; Goffredo & Dubinsky 2014).

Sampling and isolation of genomic DNA from mussel
samples

Mytilus spp. samples, consisting in total of 1004
individuals of mixed ages (not quantified) and sizes
(5 to 50 mm shell length) were collected from 36
sites (nominally “populations”) situated along the
coasts of the Atlantic Ocean, the Mediterranean
Sea and the Black Sea between 2004 and 2016
(Table I; Figure 1). DNA was isolated from mantle
tissue that had been stored in 96% ethanol or at
—70°C, using a modified CTAB method (Hoarau
et al. 2002). Eleven reference site samples of M.
galloprovincialis from the Atlantic Ocean coast of
Spain and Portugal, the Mediterranean Sea and
the Sea of Azov, M. edulis from France and M.
trossulus from Canada, consisting of 316 specimens,
were also included (Table I). Fifty three single
nucleotide polymorphisms (SNPs) differentiating
Mynlus taxa, and with the ability to identify hybridi-
sation, were employed to assay genetic variation
(Zbawicka et al. 2012, 2018; Gardner et al. 2016).
Samples were genotyped using the Sequenom
MassARRAY iPLEX genotyping platform (Gabriel
et al. 2009).
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Data analysis

Year
2015
2004
2015
1996

Genetic diversiry. Population genetic variation was
analysed in Arlequin v. 3.5.1.2 (Excoffier & Lischer
2010) to estimate: locus-specific allele frequencies,
proportion of polymorphic SNPs (Pp), minor allele
frequencies (MAF for bi-allelic), observed (Hp) and
expected (Hp) heterozygosities, genetic diversity and
differentiation (pairwise Fst), inbreeding coefficient
(Fis) and departures from Hardy-Weinberg equili-
brium (HWE). An analysis of molecular variance
(AMOVA) with 1000 permutations to estimate var-
iance components among Myrnlus populations was
also conducted in Arlequin. The most informative
loci were identified by calculating Fst outlier loci
using the approach of Excoffier et al. (2009) imple-
mented in Arlequin. The upper limits of the 95%
confidence intervals were identified with 20,000 itera-
tions and characterised by estimating the 0.05 and
0.95 and 0.99 quantiles of the distribution. The false
discovery rate (FDR-BY) was applied to correct sig-
nificance (P) values after multiple testing (Benjamini
& Yekutieli 2001; Narum 2006).

1° 1'55.20”W
2°13'48.88”W
1°31'40.26”W
63°29'24.91”W

Coordinates
45°56'60.00”N
47°14'43.83”N
48°39'0.06”N
44°30'33.79”N

Country
France
France
France
Canada

Population generic differentiation and structure. Fgt
measures in the Newick format, obtained in
POPTREEW (Takezaki et al. 2014), were used to
construct a neighbour-joining (NJ]) tree illustrating
the differentiation among populations (all M. gallo-
provincialis and M. edulis, but not the reference M.
trossulus) and visualised in MEGA version 6
(Tamura et al. 2013). Two methods were used for
the population structure analyses. First, correspon-
dence analysis (CA; Benzécri 1992), implemented
in GENETIX (Belkhir et al. 2003), was used to
visualise genetic structure among populations.
The results are presented as a scatter plot, with the
axes representing the contribution of inertia of the
data matrix in a way that can be considered analo-
gous to the total variance in allelic frequencies
(Benzécri 1992). Second, clustering and assignment
testing were performed using the Bayesian-based
method implemented in STRUCTURE v. 2.3.4.
STRUCTURE was employed using the model
assuming admixture, ignoring population affiliation
and allowing for the correlation of allelic frequencies
between clusters. This admixture model allows for
individual structure with mixed ancestry, meaning
that fractions of the genome could have come from
different ancestors (Pritchard et al. 2000; Falush et
al. 2007). The most appropriate number of genetic
clusters (K) was determined by a diagram-based
comparison of log-likelihoods for values of K. At
least five runs were used to calculate each K value,
following the method described by Evanno et al.

Mont Saint Michel Bay

Charente
Halifax

Loire

Location

Sample
CHA®
LOI¢
MSMAS®
KKAT?

Reference samples are marked in bold (*M. galloprovincialis Mediterranean: sample 37 - Wenne et al. 2020, 38 -, 2016, 39 - Zbawicka et al. 2018; °M. galloprovincialis Atlantic: 40 -, 2018, 41

and 42 -; Wenne et al. 2020, 43 -, 2016; M. edulis: 44 - Simon et al. 2021, 45 - Wenne et al. 2016, 46 - unpublished data; M rrossulus: 47 - Zbawicka et al. 2018).

Table I. (Continued).

No
44
45
46
47
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Figure 1. Locations of 36 sampling and 10 reference sites in the Mediterranean Sea and Atlantic Ocean (KKAT from Halifax, Canada,
Northwestern Atlantic Ocean is not shown). Sample site names and geographical coordinates are detailed in Table I.

(2005). Threshold g-values of 0.2 were used as a
criterion to separate hybrid and pure mussels (Viha
& Primmer 2006). Individuals were considered resi-
dents if q > 0.8 for the area where they were
sampled. Individuals with g-values from 0.2 to 0.8
were considered to be potentially admixed, as they
could not be readily assigned as residents or
migrants (Lecis et al. 2006). Individuals with an
assignment probability of q> 0.8 were defined as
belonging to the wild population (cf. Jonker et al.
2013), whilst those with q<0.8 were labelled as
admixed. A Monte Carlo Markov Chain was run
for 100,000 iterations following a burn-in period of
50,000 iterations.

Linking genetic and environmental variation. Regional-
scale proxies for weather and local environmental con-
ditions were obtained from online databases for 13
environmental variables (Table S1). As a proxy for the
global climate and weather (air and water temperature,
cloud, wind speed, waves) we used ERA5 reanalyses
(for all methodological details of environmental vari-
ables and modelling see references in Table S1).

Reanalysis combines model data with observations
from across the world into a globally complete and
consistent dataset. ERA5 provides hourly estimates
for a large number of atmospheric, ocean-wave and
land-surface variables. To characterise biogeochemical
patterns (concentrations of chlorophyll a, nitrate and
phosphate, as well as marine primary production) we
used the CMEMS global biogeochemical multi-year
hindcast product GLOBAL REANALYSIS BIO 001
029. CMEMS provides daily estimates for all biogeo-
chemical variables. Model inputs for the physical con-
ditions (salinity, mixed layer thickness) were obtained
from the CMEMS global ocean eddy-resolving reana-
lysis product GLOBAL REANALYSIS PHY-001-
030. Data for the global distribution of photosyntheti-
cally available radiation at the sea surface and on the
seafloor were obtained from Gattuso et al. (2020).
Relationships between environmental variables
and genetic variation of M. galloprovincialis popula-
tions from the Mediterranean Sea (i.e., excluding
populations CHA, LOI, MSMA and KKAT) were
tested using two complementary seascape genetics
approaches. First, following Wei et al. (2013), we
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used population-specific Fgt values (the response
variable and where negative Fgt values were set to
zero) and the 13 environmental variables in a GLM
(the GLZ routine in Statistica v. 12). We employed
a normal distribution and a log link function. To
minimise Type I error that may be associated with
stepwise (forward or backward) model building we
employed the “all effects” model. Second, following
Silva and Gardner (2016), we used population-spe-
cific allelic frequencies (the response variables) and
the 13 environmental independent variables in a
distance-based linear model (DistLM in the
PRIMER + PERMANOVA v. 6 software package -
Anderson et al. 2008). This test is a permutational
equivalent to partial redundancy analysis (Legendre
& Anderson 1999). DistLM was used to perform an
ordination of fitted values from a given model and is
constrained to find linear combinations of predictor
variables (environmental data) that explain the
greatest variation in the data cloud (population-spe-
cific allele frequencies). Permutation of residuals
was carried out under a reduced (or partial) model
and because this is a permutational test, there are no
assumptions about data normality (Anderson et al.
2008). Marginal tests (one independent variable at a
time) and sequential tests (all independent variables
entered into the model based on their relative
importance (most significant first) in the marginal
tests) were employed to identify the environmental
variables that explained the greatest variation in the
genetic dataset. Model fit was tested using adjusted
R? (i.e., adjusted for the number of terms in the
model), the AIC value and the BIC value. Note
that these two seascape genetic analyses use the
same environmental dataset but test for popula-
tion-specific variation in different dependent vari-
ables: for the GLM this is population-specific Fst
values (a summary metric of population differentia-
tion) whereas for the DistLM this is locus-specific
allele frequencies (i.e., the raw genetic data).

Results
SNP validation and Hardy-Weinberg equilibrium

Fifty-three SNPs were genotyped (Table II). ORF
identification was not possible for only five SNPs.
Forty-four SNPs (83.01%) were located in coding
regions, of which only three (5.66%) were not
synonymous. Four SNPs (7.54%) were located in
non-coding regions. The MAF ranged from 0.000
(7 different loci) to 0.404 (1 locus) (Table II).
The vast majority of loci were in Hardy-
Weinberg equilibrium (HWE) in all populations.

No SNPs with departures from HWE were
observed in 10 populations (AGA, BLS, CHW,
CIRP, MOM, ORAW, SBRB, TURK and refer-
ence CAS and LOI). Only one population (VAL)
had three SNPs that were not in HWE (P < 0.01).
In the remaining samples the fraction of SNPs
showing significant departures from HWE was
one or two for 20 and 14 populations, respectively
(Table III).

Detection of outlier loci and highly informative SNPs

Eighteen of the 53 SNDPs differentiated M. trossulus
(Halifax, Nova Scotia, Canada) from other taxa
(BM33B, BM44B, BM30C, BM201B, BMI12A,
BM103B, BM10B, BM30A, BMI11A, BM2G,
BM101A, BM116A, BM64A, BM202B, BM202A,
BMO92B, BM203D, BM62A). When the M. trossulus
reference sample was excluded from the analysis
seven outlier SNPs differentiating M. edulis from
M. galloprovincialis (BM101A, BM12C, BM17B,
BM21C, BM201C, BM57A, BM67C) were identi-
fied (Fig. S1). After excluding reference samples of
M. edulis and the Atlantic Ocean lineage of M. gal-
loprovincialis an analysis was performed of the sam-
ples from the Mediterranean Sea and the Black Sea
(including the Sea of Azov, the Marmara Sea and
the Straits of Dardenelle). Two outlier SNPs differ-
entiating Mediterranean Sea from Black Sea/Sea of
Azov M. galloprovincialis populations (BM105A,
BM106B) were identified (Fig. S2).

Genetic diversity

The percentage of polymorphic loci (Po) in all M.
galloprovincialis populations ranged from 45% in the
Morocco (AGA) and Turkey (TURK) samples to
56.60% in the Croatia (DUB) and reference IMC
(Italy) samples (Table III). Observed heterozygosity
(Ho) for 53 loci across 47 populations was lower than
expected (Hp), except for two samples: ORAE and
BLS (Table III). The highest H, values ranged from
0.310 to 0.327 and were recorded at TURK, ORAW,
AGA and ORAE. The highest values of the expected
heterozygosity (Hg) were observed at SET, TURK
and AGA (0.327, 0.328 and 0.341, respectively),
whilst the lowest values were observed at PIST and
TES (0.278 and 0.287, respectively). The mean
within-population fixation index Fis (averaged over
all polymorphic loci in 47 populations) was 0.069.
For seven samples (GRM, SIS, CIRP, GAR, BAN,
VAL and reference M. trossulus KKAT) significant Fig
values indicated an excess of homozygotes (Table III),
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which may indicate a relationship between individuals
within a population, resulting from the collection of
related individuals from a small area.

Estimates of average pairwise differences within-
population diversity among the M. galloprovincialis
populations revealed that the most diverse popula-
tion was BLT from Tunisia and the least diverse was
CHW from Croatia. In the reference samples the
greatest diversity was observed in the Atlantic M.
galloprovincialis BID population from Spain and the
lowest in the M. edulis MSMA population from
France. The same samples exhibited the greatest
and the least gene diversity (Table III).

Allelic frequencies were calculated for 53 SNPs
and minor allele frequency (MAF) was determined
for 51 bi-allelic SNPs (Table S2). Across all 47
populations the MAF values ranged from 0.075 to
0.124. MAF values in the M. galloprovincialis popu-
lations ranged from 0.087 to 0.124, and were gen-
erally low, but higher than for M. edulis reference
populations: CHA (0.075), LOI (0.083) and
MSMA (0.083). MAF values for the M. galloprovin-
cialis samples from the Black Sea (0.087) and the
Aegean Sea (0.094) were low in comparison to other
M. galloprovincialis samples. The MAF values for
Atlantic M. galloprovincialis were higher (0.110,
0.119, 0.122 and 0.124 for CAS, CAM, BID and
VIG, respectively - Table III) than for the
Mediterranean Sea populations of M.
galloprovincialis.

Genetic differentiation among populations

Pairwise comparisons of Fgr values among all 47
populations for the 53 SNDPs indicated that many
pairs of populations were significantly different
from one another (P < 0.05 after Benjamini-
Yekutieli correction) (Table S3). As expected, sta-
tistically significant genetic differentiation was
observed for most of the pairwise comparisons invol-
ving reference M. trossulus (KKAT), reference
Atlantic Ocean M. galloprovincialis (BID, VIG,
CAS and CAM) and reference M. edulis (MSMA,
LOI and CHA). The M. galloprovincialis populations
AGA, MOM, ORAW and BLS exhibited the great-
est numbers of statistically significant values of Fgr.
Low but statistically significant levels of differentia-
tion were observed between pairs of populations
from the Aegean Sea and the Black Sea. The highest
Fgt values were observed in the pairwise compari-
sons of SBRB (the Black Sea) with SAR (0.077) and
TURK (0.073), both in the Aegean Sea, as well as
between AZO (the Sea of Azov) and TURK
(0.075). The pairwise Fst values for the Aegean
Sea and the Black Sea populations were also

statistically significant when compared to other
Mediterranean Sea populations: the highest value
was observed for the TURK and SGL pair (Santa
Giusta Lagoon, Italy) and was 0.061. Most other
pairwise Fgt values were <0.03 and were not signif-
icantly different from zero. There was no statistically
significant differentiation for MOM (Dardanelle
Strait) and populations from the Black Sea (SBRB,
BLS, AZO), but differentiation between MOM and
most populations from the Aegean was observed:
MOM-HER (0.047), MOM-SAR (0.048), MOM-
TES (0.040) and MOM-TURK (0.047). For the
pairwise comparison of MOM-EGE the Fgst value
was not-significantly different from zero, indicating
the absence of genetic differentiation. No significant
genetic differentiation was observed for the CHW
(northern Adriatic Sea) — BLS (Black Sea) pair.
AMOVA was performed comparing groups of
samples for five different scenarios where popula-
tions were defined a prior: (details in Table IV).
The estimated values of the F-statistic were signifi-
cant for all five scenarios, and the greatest variance
was exhibited within individuals for all scenarios.
Considering samples from the Mediterranean Sea
as one group the percent of variation was the great-
est (~21%) among populations in comparison not
with other scenarios (range ~1.2 to 3.2%). The
levels of percent variance were quite similar when
the samples from the Mediterranean Sea basin were
divided into 2 or 4 groups. AMOVA analysis with
the division into two groups (the Atlantic Ocean and
the Mediterranean Sea with the Black Sea and the
Sea of Azov) showed a significant increase of the
variance component value among populations
within groups. The inclusion of the ORAW popula-
tion from the Alboran Sea in both the Atlantic
Ocean and Mediterranean Sea groups did not affect
the differences in proportions of genetic variability.
Neighbour-joining (N]) tree analysis with M. edu-
lis as the outgroup revealed relationships among M.
galloprovincialis populations (Figure 2). A separate
group with 97% bootstrap support consisted of
reference samples of Atlantic Ocean M. galloprovin-
cialis (BID, CAM, CAS and VIG), with the
Moroccan Atlantic Ocean sample (AGA) plus the
ORAYW (inside the Mediterranean Sea) sample. This
group was clearly separated from all other M. gallo-
provincialis populations. Within the M. galloprovin-
cialis from the Mediterranean Sea, two main
branches of the tree were distinguished: the first
encompassed populations from the Sea of Azov,
the Black Sea, and the Marmara Sea (MOM,
SBRB, BLS, AZO), and the second from around
the Aegean Sea (EGE, HER, SAR, TURK, TES
and BRI). Between these two clusters several
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Table III. Genetic diversity indices of the 47 Myrilus populations.

Av. gene diversity  Average no. pairwise differences  No. loci with departure

Sample Po Hp Hpg MAF over loci within population from HWE; P < 0.01 Fis
AGA 45.28 0.318 0.341 0.110 0.144 7.544 0 0.030
ALC 50.94 0.268 0.311 0.103 0.141 7.912 2 0.117
BAN 50.94 0.261 0.316 0.105 0.147 8.056 2 0.157
BGT 54.72 0.291 0.316 0.110 0.155 8.575 2 0.048
BLT 54.72 0.293 0.319 0.113 0.167 8.950 2 0.066
BLS 49.06 0.295 0.289 0.087 0.136 7.246 0 —-0.040
BRI 52.83 0.276 0.298 0.105 0.146 7.879 2 0.053
CAT 50.94 0.275 0.309 0.100 0.141 7.674 2 0.076
CHW 50.94 0.284 0.292 0.097 0.137 6.867 0 —-0.032
CIRP 49.06 0.261 0.311 0.097 0.137 7.681 0 0.147
DUB 56.60 0.254 0.277 0.102 0.136 7.434 2 0.027
EGE 50.94 0.254 0.286 0.094 0.131 7.198 1 0.086
GAE 52.83 0.295 0.319 0.111 0.151 8.347 2 0.042
GAR 52.83 0.251 0.305 0.102 0.144 7.938 1 0.150
GRK 52.83 0.263 0.297 0.100 0.151 8.045 1 0.102
GRM 50.94 0.263 0.314 0.104 0.144 7.890 2 0.136
HER 54.72 0.272 0.301 0.116 0.153 8.446 1 0.082
IMC 56.60 0.257 0.285 0.108 0.161 8.508 1 0.097
LAMW 52.83 0.265 0.293 0.095 0.144 7.633 1 0.067
LAS 52.83 0.261 0.301 0.101 0.148 8.028 1 0.124
MAK 50.94 0.288 0.308 0.101 0.151 7.903 1 0.040
MOM 52.83 0.252 0.290 0.094 0.137 7.622 0 0.110
NEA 52.83 0.291 0.317 0.114 0.160 8.556 1 0.066
ORAE 52.83 0.327 0.318 0.110 0.156 8.376 1 —-0.060
ORAW 5094 0.316 0.317 0.109 0.145 8.075 0 -0.025
ORB 50.94 0.268 0.300 0.102 0.141 7.523 1 0.076
PIST 54.72 0.255 0.278 0.095 0.146 7.755 1 0.065
PSL 50.94 0.284 0.322 0.101 0.154 8.301 1 0.111
SAR 50.94 0.276 0.302 0.104 0.143 7.741 1 0.067
SBRB 47.17 0.277 0.307 0.091 0.124 6.969 0 0.056
SET 50.94 0.296 0.327 0.119 0.151 8.161 1 0.064
SGL 52.83 0.276 0.316 0.108 0.162 8.564 1 0.114
SIS 52.83 0.247 0.295 0.103 0.147 7.840 1 0.142
TES 50.94 0.255 0.287 0.096 0.137 7.412 2 0.088
TURK  45.28 0.310 0.328 0.095 0.138 7.337 0 0.032
VAL 54.72 0.231 0.281 0.100 0.141 7.700 3 0.161
AZO 50.94 0.274 0.275 0.087 0.138 7.293 1 —-0.006
LID 54.72 0.275 0.309 0.114 0.145 8.102 2 0.072
ORI 49.06 0.289 0.310 0.102 0.131 7.508 1 0.032
CAM 47.17 0.318 0.341 0.119 0.149 8.108 1 0.044
CAS 52.83 0.270 0.298 0.110 0.152 8.004 0 0.077
VIG 54.72 0.279 0.309 0.124 0.155 8.644 2 0.084
BID 50.94 0.319 0.338 0.122 0.158 8.713 1 0.035
CHA 39.62 0.257 0.281 0.075 0.112 5.954 2 0.061
LOI 49.06 0.224 0.244 0.083 0.114 5.978 0 0.061
MSMA 50.94 0.226 0.245 0.083 0.075 5.630 1 -0.007
KKAT 62.26 0.199 0.245 0.110 0.135 7.343 2 0.146

Py, % of polymorphic loci; Hp, observed heterozygosity; Hg, expected heterozygosity; MAF, minor allele frequency; Fis, inbreeding
coefficient; values with P < 0.05 after Benjamini—Yekutieli correction are marked in bold.
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populations from the Adriatic Sea region formed a
separate, but not well supported, sub-group. The
remaining M. galloprovincialis populations fell out-
side these two main clusters with little or no evi-
dence of groupings based on geography.

Correspondence analysis (CA) of 43 M. gallopro-
vincialis populations (of which 7 are reference popu-
lations) revealed clear separation of an Atlantic
Ocean grouping, a Black Sea plus Sea of Azov
grouping, and a third grouping consisting of all
other populations, except the ORAW population
that was located between the Atlantic Ocean and
the Mediterranean Sea groups (Figure 3). After
removal of Atlantic Ocean and African samples a
CA carried out on 33 populations and including 3
reference populations (LID, ORI, AZO) resolved
three groups: the M. galloprovincialis from the
Black Sea and the Sea of Azov, M. galloprovincialis
from the Mediterranean Sea, and M. galloprovincialis
from the Aegean Sea (Figure 4).

STRUCTURE analysis of 46 Myrlus populations
(i.e., excluding the reference M. trossulus) revealed that
the largest increase of LnP (D) was for K= 2 and then
for K = 3. The greatest subdivision was detected at
K = 2 where the clusters corresponded to the separa-
tion of the M. edulis and M. galloprovincialis popula-
tions (Figure 5). At K = 3, the clusters corresponded to
M. edulis, and two groups of M. galloprovincialis, with a
general division into lineages from the Mediterranean
Sea and the Atlantic Ocean because individuals are
potentially admixed. Division between the M. gallopro-
vincialis groups was most apparent at the population
level because the frequency of one of the clusters char-
acteristic of M. galloprovincialis was >77% (average
80%) in Atlantic Ocean populations, whereas the fre-
quency of the second cluster was >50% (average 61%)
in M. galloprovincialis from the Mediterranean Sea
populations (Fig. S3). From the STRUCTURE ana-
lysis when K = 3 most of the 1292 individuals (97.2%)
were correctly assigned to their original sample taxon
(one of the three clusters) with q > 0.8. Mussels col-
lected from Morocco (AGA, Atlantic Ocean) and
Algeria (ORAW, Mediterranean Sea) showed gene
admixture characteristic of M. galloprovincialis refer-
ence groups from the Atlantic Ocean (BID, VIG,
CAS and CAM). A second sample from Algeria
(ORAE), located east of the Alboran Front, showed
gene admixture characteristic of M. galloprovincialis
populations from the Mediterranean Sea.

Linking genetic and environmental variation

The GLM testing of the “All effects” model was
significant (P < 0.05), with Mixed Layer thickness
(P < 0.0001), PAR at surface (P < 0.004), PAR on

seafloor (P < 0.011), Cloud cover (P < 0.03) and
SST (P < 0.036) as significant terms. The other
eight environmental variables did not explain signif-
icant variation in the population-specific Fst values
(P > 0.05). For the DistLM analysis the best-fit
models built using adjusted R?, AIC and BIC gave
the same results so we report here only the results
for AIC. The marginal test results (Table V) indi-
cated that seven of the 13 environmental variables
explained significant variation in population-specific
SNP locus allele frequencies. These seven variables
explained a total of 75% of the variation in the SNP
dataset. In the sequential testing the best-fit model
contained all 11 environmental variables, of which
five variables were statistically significant (Wave Ht,
PO,, SST, PAR at surface, Mixed layer) in a 13-
term model that explained 61.4% of the variation in
the SNP dataset (Table V).

Discussion

The Mediterranean Sea is characterised by a high
biodiversity of marine organisms and a large number
of endemic species (Coll et al. 2010; Danovaro et al.
2010). Despite the connection with the Atlantic
Ocean via the Strait of Gibraltar and the possibility
of transport of planktonic larvae and motile adults,
many species show genetic distinctiveness of their
Mediterranean Sea populations (Patarnello et al.
2007; Pascual et al. 2017). These species include
the cirriped Chthamalus montagui (Shemesh et al.
2009; Pannacciulli et al. 2017), the shrimp
Palaemon elegans (Reuschel et al. 2010) and the
blue mussel Myulus galloprovincialis (Varvio et al.
1988; Quesada et al. 1995b; Kijewski et al. 2011;
Zbawicka et al. 2012; Del Rio-Lavin et al. 2022).
The location of the Almeria-Oran Front is the
area where two circular sea currents meet and flow
from north to south-east into the Mediterranean Sea
and then south-west, which directs water of Atlantic
Ocean origin into the Alboran Sea. This is consid-
ered to be an isolating factor (Millot & Taupier-
Letage 2005; Millot 2013; Pascual et al. 2017) for
some marine species between the Atlantic Ocean
proper and the Mediterranean Sea. Abrupt changes
of allele frequencies in M. galloprovincialis popula-
tions related to this front have been reported for a
range of difference genetic marker types, including
allozymes (Sanjuan et al. 1994; Quesada et al.
1995a), mtDNA (Quesada et al. 1995b), microsa-
tellites (Diz & Presa 2008; Ouagajjou et al. 2010;
Ouagajjou & Presa 2015) and a few nuclear DNA
markers (El Ayari et al. 2019). In addition to envir-
onmental factors, El Ayari et al. (2019) also high-
light the possibility of intrinsic mechanisms, such as
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Figure 2. Neighbour-joining tree of Myrilus galloprovincialis populations from the Mediterranean Sea, Black Sea and the Sea of Azov, and reference
populations of M. edulis and M. galloprovincialis based on the Fgt distance measures obtained with POPTREEW and visualised with MEGA
version 6. The numbers at the nodes represent percent bootstrap values estimated from 10,000 replicates (only values above 30 are shown).

pre- or post-zygotic isolation, in the maintenance of
the blue mussel hybrid zone on the Algerian coast of
the Mediterranean Sea, just east of Oran. Our SNP
results confirm the occurrence of the Atlantic Ocean
lineage of M. galloprovincialis on the Alboran African
coast (sample ORAW) and the Mediterranean Sea
lineage east of Oran (ORAE).

In the present study, significant differentiation
between mussel populations of the Sea of Azov and
the Black Sea from the Mediterranean Sea popula-
tions was identified with two of the 53 SNP loci. No
statistically significant differences were observed
among populations from the Black Sea and the Sea
of Azov and the Dardanelle Straits. Most genotypes
were common to the Mediterranean, Black and

Azov Seas and what differences existed are attribu-
table to genotype frequency differences among the
populations. A few SNP loci with alleles rare in the
Black Sea and Sea of Azov populations were more
frequent in the Mediterranean Sea populations (e.g.,
BMI102A “C”, BM105A “G”, BM26B “T”), or
those that did not occur in the Black Sea and Sea
of Azov, for example, BM106B “G”. Only two gen-
otypes were more frequent in the Sea of Azov than
in Black Sea populations: BMI147A “C” and
BM32A “A”. Significant differentiation between
mussel populations from the Mediterranean and
Black Seas has also been found using as many as
512 SNP loci (Paterno et al. 2019) although no
significant genetic structuring was noted within the
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Figure 3. The first two axes of the correspondence analysis (CA) computed from the SNP locus variation among 36 M. galloprovincialis
populations from the Mediterranean Sea, Black Sea and Atlantic Ocean and seven reference populations of M. galloprovincialis). Samples
from Morocco (AGA - Atlantic Ocean) and Algeria (ORAE and ORAW - Mediterranean Sea) are shown as red filled triangles. Samples
from the Aegean Sea region (EGE, HER, SAR, TES, Turk) are shown as red unfilled triangles. Each point or triangle is one of the studied
populations. LID and ORI (blue filled triangles), AZO (yellow filled triangle) and BID, CAM, CAS and VIG (grey filled triangles) are

reference samples.

Black Sea populations using genotyping of 998 SNP
loci (Paterno et al. 2019). Genetic divergence has
also been reported for M. galloprovincialis from
Mediterranean Sea and Black Sea populations at
the mtDNA level (Ladoukakis et al. 2002). RFLP
analysis of COIII gene polymorphism in M. gallo-
provincialis populations revealed that almost all
Black Sea haplotypes also occur in the
Mediterranean Sea populations, that is, the Black
Sea populations are a sub-set of the Mediterranean
Sea populations. In addition, no significant differ-
ences in allele frequencies have been reported
between populations of M. galloprovincialis from
the southern Black Sea, Bosphorus Strait and Sea
of Marmara by assessment of variation in the COIII
mtDNA region and six microsatellite loci (Kalkan et
al. 2011). It has been suggested that a shift from
Black Sea-like to Mediterranean Sea-like genetic
structure occurs at a location in the Dardanelle
Strait, which is supported by our SNP data. The
most common mtDNA haplotype identified by
RFLP analysis of ND2-COIII in a population from
the Sea of Azov was also present in a sample from
Villafranche-sur-Mer, northwestern Mediterranean
Sea (Smietanka et al. 2004). However, a few rare

haplotypes were unique. Genotyping-by-sequencing
of the same region of mtDNA revealed haplotype
frequency differences between populations from the
Sea of Azov and Black Sea, but most common hap-
lotypes were also present in the northwestern
Mediterranean Sea (Gerona, Banylus sur Mer and
Gulf of Oristano) (Smietanka et al. 2009, 2014).
Because the timing of onset of the flow of
Mediterranean Sea waters into and possible coloni-
sation by euryhaline bivalve populations of the Black
Sea has not been defined precisely (Nikula &
Viinold 2003; Sromek et al. 2019), we have
reviewed in detail here the information available. It
is estimated that Mediterranean Sea water from the
Aegean Sea filled the Sea of Marmara and replaced
freshwater originating from the Black Sea approxi-
mately 12 K ybp (Algan et al. 2001). The outflow of
lacustrine water from the present area of the Black
Sea probably occurred between 10 to 8.4 K ybp,
which was followed by pulses of Mediterranean
Sea seawater entering the Black Sea (Hiscott et al.
2007). Connection of the Black Sea to the
Mediterranean Sea may have taken place 9.4 k
ybp, as indicated by strontium/oxygen ratio changes
in molluscan shells (Major et al. 2006). Transition
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Figure 4. Correspondence analysis (CA) plot computed from the SNP locus variation among 34 populations of M. galloprovincialis from
the Mediterranean Sea, Aegean Sea and Black Sea. Each point or triangle is one of the studied populations. LID and ORI (blue filled

triangles) and AZO (yellow filled triangle) are reference samples.

of the Black Sea from a freshwater lake to a marine
environment most probably occurred between 8.9
and 8.5 K ybp (Tyuleneva et al. 2014). Outflow of
freshwater or isolation lasted until 8 K ybp (Soulet
et al. 2011) and was followed by establishment of
today’s hydrographic system with surface outflow of
low salinity Black Sea water and inflow at depth of
Mediterranean Sea high salinity waters (Kokkos &
Sylaios 2016) via the Bosphorus Strait (Hiscott et al.
2007). The first representatives of the
Mediterranean mollusc fauna appeared in deposits
in the Bosphorus region 5.3 K ybp, whilst Myzlus
sp. appeared for the first time ~4.4 K ybp (Algan et
al. 2001). In a core from the southwest Black Sea,
M. galloprovincialis has been found in layers dated to
5.9-2.4 K ybp (Hiscott et al. 2007). Filipova-
Marinova et al. (2013) observed the occurrence of
a M. galloprovincialis shell layer in deposits of Varna
Lake (Bulgarian Black Sea) that were radiocarbon
dated to 7,776 to 6,183 ybp. According to
Tyuleneva et al. (2014) timing of the arrival of M.
galloprovincialis in the northwestern Black Sea (esti-
mated without '*C dating) was from the Bugazian at
10.5-8.4 K ybp, Kalamitian beds at 7.1 to 4 K ybp
and Dzhemetinian beds at 4.1 K ybp to the present
in sediments containing marine euryhaline species.
A discrepancy in time estimation of the earliest
appearance of Myrlus in Black Sea deposits may be

related to elution and displacement of some sedi-
ment layers. It can be assumed that Myzilus popula-
tions settled the Black Sea sometime since 8 K ybp
as a result of post-glacial expansion from refugia.
Time of divergence of mtDNA haplotypes in the
Black Sea and Mediterranean Sea mussel popula-
tions has been estimated as a few hundred thousand
years ago (Smietanka et al. 2014), which is much
earlier than the origin of the mussel population in
the Black Sea. Therefore, euryhaline M. galloprovin-
cialis populations evolved in the Mediterranean Sea
and the Aegean Sea (possibly including the
Levantine Sea) long before the contemporary mar-
ine phase of the Black Sea. Similar to the Black Sea
situation, the Baltic Sea in northern Europe was a
freshwater lake and became connected with the
Atlantic Ocean and newly developing North Sea
approximately 8-9 ybp (Berglund et al. 2005;
Behre 2007). For comparison, Kostecki and
Janczak-Kostecka (2011) have reported the onset
of the marine water environment in Pomeranian
Bay, southwest Baltic Sea, to be 8.9-8.3 ybp as
determined using geochemical estimators. The
Baltic Sea is characterised by lower marine species
diversity in comparison to the present-day North
Sea (Johannesson & Andre 2006; Wennerstrom et
al. 2017). Genetic divergence of Myrlus populations
in both regions (i.e., the Black Sea from the
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Figure 5. Plot from STRUCTRE analysis for 46 populations (i.e., excluding reference KKAT M. rrossulus) at K = 2 and K = 3. Each
individual is represented by a single vertical line broken into two or three coloured segments, with lengths proportional to each of the K

inferred clusters. Site abbreviations of the samples are provided in Table I. Vertical black lines separate the samples.

Mediterranean Sea and the Baltic Sea from the
North Sea) is recent in evolutionary time and can
be related to a bottleneck effect, subsequent expan-
sion of populations and selection factors acting via
brackish water conditions. A characteristic of the M.
edulis and M. rrossulus SNP allele BM105A “A” is its
increased frequency among mussels in the Black Sea
and Sea of Azov and its decreased frequency among
mussels in the Mediterranean Sea. Nevertheless, the
absence of M. edulis and M. trossulus genotypes, as
determined from our studies and other published
research, excludes the possibility that Myzilus popu-
lations from areas such as the White Sea and/or the
Barents Sea have invaded the Black Sea from north-
east European seas via routes now closed to them.
Mitochondrial DNA genetic analyses of M. gallo-
provincialis from northern, central and southern
Greek coasts of the Aegean Sea revealed that these
populations were homogeneous (Ladoukakis et al.
2002; Giantsis et al. 2014b). Moreover, Giantsis et
al. (2014b) reported that the population from the
area closest to the Dardanelle Strait (Sea of

Marmara, Turkey) differed significantly from the
Aegean Sea populations, whereas differences
between samples from the Aegean, Ionian and
North Adriatic Seas were weak with the exception
of one sample from the area of Zadar (Croatia).
MtDNA sequence analyses revealed genetic homo-
geneity among all Greek populations and the clear
differentiation of the only Turkish sample
(Canakkale, Dardanelle Strait, Sea of Marmara)
from the Aegean populations (Giantsis et al.
2014b). On the other hand, microsatellite data sug-
gested significant differentiation of Italian samples
(from the North Adriatic Sea and Ligurian Sea,
respectively) from Aegean samples (Giantsis et al.
2014a). Genotyping with a large number of SNPs in
a more local study revealed population variation in
the northern and southern Adriatic Sea different
from that in the northern Ionian Sea (Paterno et
al. 2019). The results of the present study are in
agreement with the findings of these different stu-
dies and extend the microstalite DNA analyses
(Giantsis et al. 2014a) concerning the genetic



R. Wenne et al.

774

‘[[oMS PUE SIABM PUIM

pauIquiod Jo 1y3aY 1uedYIuSIQ - 1H 4B\ fdanieroduwal aoelIns IS - 1SS ‘Arures — NSd ‘uononpoid Arewnid uoiue[dolfyJ - UpoiJ WL ‘UONBIIUDU0D AeydsoyJ — YO 908JIns ueado
1B UONEBIPRI J[qB[IBAR A[[BOTIAUIUASOIOYJ - 0BJINS 1B Y J ‘UBID0 Y1 JO JOOY Y1 UO UOHEBIPEI J[B[IBAR A[[BOTIQUIUASOIOYJ - JOOPBIS 1B YV J ‘UONBIIUDUO0D ABNIN — QN SSOUNOIY IoAe]
PIXIIN - 1948 PIXIP {I9A0D PNO[D [B10 ], - 19400 pnol)) AYdoio[yd [e10], - [YD {Paads puim a119wW ()] - pPUImM W (] inierodwual J1e dnow ¢ - dwal a1 w g :([S 9[qe], 01 19JI) SWERU J[qBLIBA
UuMOSs I9PIO 91 Ul PIappe Sureq SS[qBLIBA ‘[OPOUI [[NJ Y3 OIUT ULId] USAIS B JO UONIPPE 31 SAIBJIPUI +

61719 <00 0696°0 LO%'0 01°0 18507 1oogess 18 Yvd+
8.8°09 0’1 ¥Le9°0 ¢8L°0 0C'0 ce8'8Y— "o+
868°6S 08'C 8620°0 ¥o1°¢C ¥<'0 9CL 6V — IaKe] PAXTN+
960°LS 66°0 L069°0 8¢L'0 61°0 78 8v— UpOIJ W+
690'9¢ 9¢°¢ S0L00 CLL'T Sv°0 £v8 67— ON+
90L°¢S or'r1 1919°0 908°0 12°0 S6S 67— pumm w o1+
609°CS 6C'G 1100°0 806'¢ 0’1 L8G 05— 90BJINS 1B YV I+
LIC' LY L1 L08C0 0LT'T €e0 Ge0'8Y— 19403 Pno[H+
¥09°¢¥y 0¢'8 90980 G960 91°0 099°8%— dwoy e w g+
VLL'VY 1L 9606°0 96%°0 v1I'o 800°06— nSsd+
vSs0'vy 699 ¥000°0 c99'% 6C'1 ISy 16— LSS+
Go¢’Le 86 1000°0 cLT9 681 G65°'87— Yod+
vPeLe ve'Le 1000°0 986°GI I¢’¢ ceevr— 1H 2B \+
doad ‘mmwn) ~doxJe, d J-opnasg (odem)SS IV JIqeLIBA
1891 [enuanbag

181 €0sS°0 vSL 0 8¥¢'0 Joogess 18 Yvd

99°C cL6T0 0cr't €160 O

oLe 9Pr1I'0 LLG'T VILO IoKe] PIXIN

cry I1S01°0 T19L°1 76L°0 upold Wi

1§74 7% €6L0°0 068’ 0S80 ON

IS c¥90°0 scee £€66'0 pumm w Q[

09 cre0’0 8¢9'C (A2 0! 90BINS 1B YV

01’9 €re00 LL9'C e8Il 19405 POy

9¢'9 L0¢0°0 c8L'C 9¢C'1 dway are w g

1¢°6 ¢I10°0 (A7 008°I nsd

C6'6 L€00°0 Ies'v 616'L LSS

crot 0600°0 L19'¥Y (4" 'od

vs'LT 1000°0 98¢°¢GI clIes 1H 2AB\

‘do1d o, d J-opnasg (90en)SS JqeLIBA

§182] [eUISIBN

‘SIsA[eue A TISI(] 93 WO s1nsai 1891 (Wonoq) [enuanbas pue (dol) [ewiSiey “A d[qe],



structure of East-Central Mediterranean M. gallo-
provincialis populations. No differences between
northern and southern Adriatic Sea M. galloprovin-
cialis populations were observed in our study by
genotyping with 53 SNPs. However, the Canakkale
(Sea of Marmara) population differed from the
Aegean Sea samples and the Canakkale sample is
representative of the Black Sea mussel population
genetic variation. A very rare allele (BM5B “G”)
was more frequent in Aegean Sea mussels than in
all other M. galloprovincialis, M. edulis and M. tros-
sulus populations. Such subdivision of populations
within the Eastern versus Western basins of the
Mediterranean Sea has also been reported for other
species, for example, the marbled goby
Pomatoschistus marmoratus (Mejri et al. 2011), the
sea star Astropecten aranciacus (Zulliger et al. 2009)
and the cockle Cerastoderma glaucum (Nikula &
Viinéla 2003).

We did not observe significant genetic differentia-
tion among populations of M. galloprovincialis in the
Western Mediterranean Basin, east of the Alboran
Front to the coasts of Italy and Tunisia. Similarly,
analysis of samples from Banyuls (France) and
Haouaria (Tunisia) using 512 SNP loci did not
identify differences (Paterno et al. 2019). Lack of
genetic differentiation among M. galloprovincialis
populations within the Western Basin can be partly
explained by natural reasons, such as extensive gene
flow and a common paleogeographic history of this
Basin including the Balearic, Ligurian and
Tyrrenian Seas separated from the Eastern Basin
by the Siculo-Tunisian Strait. After each glacial
phase since the Pleistocene (cycles of 41 K years
prior to and 100 K years after the Mid Pleistocene
Transition), M.  galloprovincialis  populations
expanded into newly flooded areas as a result of
sea level rising and then retreated with sea level
falling (repeated interglacial colonisation and expan-
sion, and retreat during glaciations). However, the
biggest drop in sea level occurred 24-19 K ybp
during the Last Glacial Maximum (Boavida et al.
2019). Surface waters in the central Mediterranean
Sea (in the vicinity of the Siculo—Twunisian Strait)
were most probably much colder in spring during
glacial periods in comparison to interglacial periods
(Rouis-Zargouni et al. 2010), which suggests much
colder winter temperatures in comparison to the
present. Strong meltwater discharge also probably
influenced cooling (lower temperatures) and
increased variability of the salinity of coastal
Mediterranean Sea waters. Increase in rainfall dur-
ing the past interglacial/glaciation periods resulted in
a decrease of sea surface salinities e.g., in the north-
ern Tyrrhenian Sea (Dixit et al. 2020) and increased
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suspended matter concentrations, and intensified
the flux of nutrient and organic matter in the
Mediterranean Sea causing deposition of sapropels
(Toucanne et al. 2015) in both the Eastern and
Western basins (Rohling et al. 2015). Thus, a com-
bination of physico-chemical changes in sea water
composition may explain genetic differentiation
observed in contemporary Western and Eastern
Mediterranean Sea populations of M. galloprovincia-
lis. A separation of western and eastern
Mediterranean populations by a possible barrier of
periodically shallow water in the central
Mediterranean Sea (the Siculo—Tunisian Strait) has
been indicated by Chefaoui et al. (2017). A diver-
gence between western and eastern Mediterranean
Sea populations has also been found for species such
as the sea bass Dicentrarchus labrax (Bahri-Sfar et al.
2000), the sea cucumber Holothuria polii (Valente et
al. 2015), the crab Carcinus aestuarii (Ragionieri &
Schubart 2013), the hermit crab Diogenes pugilator
(Almon et al. 2021), and the cockle Cerastoderma
glaucum (Sromek et al. 2019).

Seascape genetics seeks to identify associations
between environmental variation and genetic varia-
tion with the ultimate aim of identifying key envir-
onmental factors that contribute to explanation of
population genetic variation and regional differences
in genetic structure (e.g., Selkoe et al. 2008, 2016;
Riginos & Liggins 2013; Wei et al. 2013; Silva &
Gardner 2016; Zeng et al. 2020). Typically this
approach, which is most often based on variation
of neutral genetic markers, seeks to identify environ-
mental factors that promote (e.g., currents) or retard
(e.g., salinity variation acting as a barrier) gene flow.
Whilst this new approach to understanding connec-
tivity is both powerful and elegant, it is often limited
by data availability - the low numbers of environ-
mental variables that are available for multiple sites
within a region of study. In the present study we
used 13 environmental variables collated from 43
sites within the Mediterranean Sea. The GLM ana-
lysis identified five environmental variables (mixed
layer thickness, PAR at surface, PAR at seafloor,
SST, Cloud cover) that explained variation in popu-
lation-specific Fst values. In contrast, the sequential
tests for the DistLM analysis best-fit model, which
explained 61% of the variation in the raw SNP data
set, included all 13 environmental variables,
although only four variables (Wave height, POy,
SST, PAR at surface) were significant in the multi-
term model. Earlier literature suggests that salinity
and temperature often drive the generic patterns of
hard-bottom intertidal species including Myzlus
spp. (Kaiser et al. 2011) and this result was observed
for SST but not for salinity (PSU) in the M.
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galloprovincialis of the Mediterranean Sea. The
absence of salinity from our significant results may
reflect the fact that the gradient in the
Mediterranean Sea is not great, and certainly not
as great as in other regions (e.g., in the Baltic Sea
— Kijjewski et al. 2019). Overall, our results suggest
that there is a complex mix of environmental vari-
ables that contribute to genetic variation of M. gal-
loprovincialis populations in the Mediterranea Sea,
rather than a simple (one or two variable) explana-
tion as has been reported for several other coastal
and deep-sea marine invertebrates (e.g., Wei et al.
2013; Silva & Gardner 2016; Zeng et al. 2020). The
complexity of the seascape genetics results in the
present study may reflect (1) the reasonably large
number of environmental variables in our data set
(n = 13) and the fact that many different environ-
mental variables are likely to influence gene flow in
any given system (i.e., we might expect to detect a
complex result simply because we have a complex
environmental data set) and/or (2) the complex geo-
logical history of the Mediterranean Sea and the
formation of its waters and the associated sub-basins
of the region leading to complex interactions
between environmental and genetic variation that
may be site-specific or regional rather than basin-
wide. In addition, as noted above, seascape genetic
analyses usually focus on detecting associations
across neutral loci. Many of the SNPs loci employed
here are in coding regions even if they do not exhibit
outlier status (refer to Figs. S1 and S2). Thus, the
detection of an association between genes under
(low) selective pressure and environmental variation
cannot be ruled out. Elsewhere, Sun and Hedgecock
(2017) have highlighted for high gene-flow species
(M. galloprovincialis falls into this group) the need to
better understand the role that temporal genetic
variation may play in contributing to seascape genet-
ics analysis results from a single (snap-shot) version
to a temporal sampling series. Finally, it is worth
noting that the GLLM and DistlLM analyses are both
linear-based methods that do not include interaction
terms. Other analytical approaches, such as boosted
regression trees (Elith et al. 2006, 2008; Leathwick
et al. 2006; Hastie et al. 2009; Kotta et al. 2017)
may prove to be more informative because they are
not constrained to detect only linear relationships
and can examine interactions among variables, but
they require larger (training) data sets than are often
available to most researchers and to us for the pre-
sent study.

The contemporary genetic structure of the
Mediterranean Sea populations of M. galloprovincialis
is the result of a combination of natural and anthropo-
genic factors. The dispersal ability of the species is

expected to result in high gene flow and connectivity
among populations and lead to genetic homogenisation
on a broad spatial scale. Although this could explain the
homogenisation observed within individual basins, it
cannot explain the comparative homogenisation found
among the different basins. For instance, based on the
topography and oceanographic conditions of the
Siculo-Tunisian Strait in the central Mediterranean
Sea, one would expect to observe (at least a degree of)
genetic differentiation between samples from the
Adriatic Sea and the Ligurian Sea, which this study
did not find. Anthropogenic activities, including hull
fouling, transport of ballast water, the movements of
exploration or drilling rigs and unrecorded human-
mediated transplantation of spat for aquaculture may
all have played an important role in overcoming natural
barriers to mussel connectivity and consequently may
have contributed to the shaping of the present patterns
of genetic homogeneity among the Central-Western
Mediterranean Sea mussel populations. For example,
the M. galloprovincialis Atlantic form has been reported
to have been introduced via ballast water and/or hull
fouling to ports in an area from the north of France to
Norway, where it has hybridised with local M. edulis
(Simon et al. 2020). These hybrids have been termed
“dock mussels” (because they are mostly found in docks
associated with shipping activity) and have appeared in
recent decades rather than centuries. In the opposite
direction, Mediterranean ports may also experience
strong pressure from invasive species, including M. edu-
lis. For example, M. edulis specimens have been identi-
fied using molecular genotyping on a barge hull, which
arrived from Middlesborough, northern England, and
was moored near the wreck of the cruise vessel Cosza
Concordia (Isola del Giglio, north Tyrrhenian Sea) in
2012 (Casoli et al. 2016). However, these mussels
experienced a high mortality rate at temperatures over
22°C and did not live long enough to interbreed with
local populations of M. galloprovincialis. Prior to this,
Beaumont et al. (2006) reported anecdotal evidence of
the introduction of M. edulis to the Mediterranean coast
of France for aquaculture.

Development of an aquaculture industry targeted
on Myzlus spp. production and other commercially
important shellfish in the twentieth century contrib-
uted to unintentional introductions and the spread
of many species (Coll et al. 2010) and can also be
considered as a vector of mussel transportation
between basins in the Mediterranean Sea. An excel-
lent example is the case of Chalastra, a culture area
near Thessaloniki, Greece, which serves as the main
mussel culture area in the Aegean Sea. Mussel spat
from this area have been repeatedly translocated to
other mussel farms throughout Greece, Italy and
France for ongrowing. Given that these



Figure 6. Rafting on anthropogenic plastic objects: detached mus-
sel farm bouy on the beach near Gargano (GAR), Adriatic Sea in
2012. Photo by Marta Péttorak.

translocations are unrecorded it is very difficult to
estimate the magnitude of their contribution to the
current lack of geographical structure observed
within Mediterranean Sea M. galoprovinciallis popu-
lations. An example is the similarity of the Adriatic
sample (CHW) to the Black Sea population (BLS).

Growing attention has been paid to the spread of
Mpyunlus spp. by rafting on natural or artificial float-
ing objects, including anthropogenic litter (Miller et
al. 2018; Rech et al. 2018; Zbawicka et al. 2019;
reviewed by Gardner et al. 2021). Plastic debris has
been indicated as a transport vector for Myzilus sp./
spp. on long distances in the North Atlantic and
Arctic Oceans (Kotwicki et al. 2021). The main
contributor to this spread via rafting is maricul-
ture-related gear, including detached bouys
(Figure 6). Interestingly, M. edulis that originated
from market discards, aquaria discharged into the
sea or introduced for aquaculture purposes in
Venezia, Italy (Crocetta 2012), was not observed
in our samples and most probably did not establish
populations on the coast of Italy. In addition, our
results do not confirm the existence of M. edulis
(the so-called rock mussel grown in the Ebro Delta
for aquaculture purposes, Wenne et al. (2022))
among native M. galloprovincialis populations on
the coasts of Spain in the Balearic Sea.
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