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Abstract
Background: The altered balance between oxidants/antiox-
idants and inflammation, changes in nitric oxide (NO) re-
lease, and mitochondrial function have a role in skin aging 
through fibroblast modulation. Tocopherol is promising in 
counteracting the abovementioned events, but the effective 
mechanism of action needs to be clarified. Objective: The 
aim of this study was to examine the effects of α-tocopherol 
on cell viability/proliferation, NO release, mitochondrial 
function, oxidants/antioxidants, and inflammation in human 
dermal fibroblasts (HDF) subjected to oxidative stress. Meth-
ods: HDF were treated with H2O2 in the presence or absence 
of 1–10 μM α-tocopherol. Cell viability, reactive oxygen spe-
cies (ROS), NO release, and mitochondrial membrane poten-
tial were measured; glutathione (GSH), superoxide dis-
mutase (SOD)-1 and -2, glutathione peroxidase-1 (GPX-1), 

inducible NO synthase (iNOS), and Ki-67 were evaluated by 
RT-PCR and immunofluorescence; cell cycle was analyzed 
using FACS. Pro- and anti-inflammatory cytokine gene ex-
pression was analyzed through qRT-PCR. Results: 
α-Tocopherol counteracts H2O2, although it remains unclear 
whether this effect is dose dependent. Improvement of cell 
viability, mitochondrial membrane potential, Ki-67 expres-
sion, and G0/G1 and G2/M phases of the cell cycle was ob-
served. These effects were accompanied by the increase of 
GSH content and the reduction of SOD-1 and -2, GPX-1, and 
ROS release. Also, iNOS expression and NO release were in-
hibited, and pro-inflammatory cytokine gene expression 
was decreased, confirming the putative role of α-tocopherol 
against inflammation. Conclusion: α-Tocopherol exerts pro-
tective effects in HDF which underwent oxidative stress by 
modulating the redox status, inflammation, iNOS-depen-
dent NO release, and mitochondrial function. These observa-
tions have a potential role in the prevention and treatment 
of photoaging-related skin cancers. © 2021 S. Karger AG, Basel

L.C. and E.G. contributed equally to the manuscript.
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Introduction

Skin exposure to chemical and physical pollutants 
generates reactive oxygen species (ROS), inducing pre-
mature skin aging through DNA and mitochondrial 
damage, lipid peroxidation, inflammatory signaling path-
way activation, and protein adducts formation [1]. Skin 
developed various defense systems against ROS, but their 
continuous production overcomes the enzymatic and 
nonenzymatic antioxidant systems, causing the disrup-
tion of the extracellular matrix and changing its function 
and structure. ROS release is physiologically counterbal-
anced by endogenous defensive micronutrients and en-
zymes, such as vitamins A, C, and E [2–5], glutathione 
(GSH) [6], catalase, glutathione peroxidase (GPX), and 
superoxide dismutase (SOD), which are present in quite 
high concentration in the skin [7, 8].

Vitamin E, and in particular α-tocopherol, plays a 
central role since it is involved in stopping lipid peroxi-
dation. The cutaneous application of vitamin E not only 
ameliorates photoaging but also can hinder photocar-
cinogenesis [9]; the activation of antioxidant enzymes 
and the inhibition of apoptosis play a central role in these 
protective effects [10, 11]. Also, the antiaging properties 
of α-tocopherol are related to the inhibition of inflamma-
tion and the release of inducible nitric oxide synthase 
(iNOS)-dependent nitric oxide (NO) [12–14]. This is a 
Janus-faced molecule, playing either beneficial or harm-
ful effects on the skin. The production of endogenous 
NO is regulated by 3 isoforms of NOS, namely, (i) con-
stitutively expressed neuronal NOS and (ii) endothelial 
NOS, which produce small amounts of NO over brief 
periods, and (iii) iNOS, which is activated in pathological 
conditions and generates large quantities of NO [15]. 
Notably, iNOS is overactivated in response to UV irra-
diation in human endothelial cells [16] and cutaneous 
fibroblasts [17] and also in response to hydrogen perox-
ide (H2O2) [18]. Its inhibition represents a protective 
mechanism against senescence exerted by endogenous 
or exogenous antioxidants [19, 20].

In addition, mitochondria play a central role in skin 
aging, by acting as a possible source for ROS [21]. Any 
alteration of the mitochondrial electron transport chain 
caused by UV radiation and peroxidative stress leads to 
inadequate energy production in dermal fibroblasts and 
to functional and structural skin alterations [22]. Herein, 
we provide a complete study about the role of α-tocopherol 
on NO release modulation, mitochondrial function, oxi-
dants/antioxidants balance, and inflammation in human 
skin fibroblasts.

Materials and Methods

Isolation of HPFs
Human primary fibroblasts (HPFs) were isolated from the per-

ilesional skin of nonmelanoma skin cancer (NMSC) patients, after 
obtaining informed consent. Skin biopsies were washed thrice 
with ethanol 70% and physiological solution and incubated with 
Dispase II 2 mg/mL (Merck KGaA, Darmstadt, Germany) over-
night at 4°C. The dermis was separated using sterile tweezers, cut 
in small pieces (2–4 mm), and plated on a 6-well microplate. A 
squared sterile glass was placed above, and 1 mL of DMEM 20% 
FBS (Euroclone, Pero, Milano, Italy) was added to each well. After 
3 weeks, the dermis and glasses were removed, and fibroblasts were 
detached with 0.25% trypsin/0.02% EDTA (Euroclone) and plated 
in 25 cm2 flasks. Cell media were changed with DMEM 10% FBS 
every 2 days.

Cell Treatment
HPFs were treated with 1 and 10 μM α-tocopherol given for 24 

and 48 h alone (physiological condition) or before 200 μM of H2O2 
(Merck) for 30 min. The antioxidant N-acetyl-cysteine (NAC; 200 
μM; Merck), administrated for 24 and 48 h before 200 μM H2O2, 
was used as a positive control.

Cell Viability (MTT Assay)
0.2 mg/mL MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide; Merck) solution was added, and cells were 
incubated for 3 h at 37°C, 5% CO2, protected from light. Formazan 
crystals were solubilized with dimethyl sulfoxide (Merck), and ab-
sorbance was measured at 570 nm using Victor X multilabel plate 
readers (PerkinElmer, Milano, Italy).

Intracellular ROS Quantification
The DCFDA-Cellular ROS assay kit (Abcam, Cambridge, UK) 

was used following the manufacturer’s instructions. HPFs (2.5 × 
104 cells/well) were seeded into a 96-well microplate and treated as 
described above. At the end of all treatments, cells were washed 
twice with PBS and incubated with 1 μM DCFDA solution for 45 
min. Cells were washed with fresh PBS, and 100 μL of PBS was 
added to each well. Fluorescence was read with Victor X multilabel 
plate readers (PerkinElmer) at 495/529 nm.

Intracellular NO Quantification
The Measure-IT High-Sensitivity Nitrite Assay Kit (Thermo 

Fisher, Waltham, MA, USA) was used following the manufactur-
er’s instruction. HPFs (4 × 104 cells/well) were seeded into a 24-
well microplate and treated as described above. Cells were washed 
twice and lysated with 200 μL of double-distilled water. Mean-
while, a 96-well microplate was prepared with 100 μL of working 
solution where 10 μL of the cell supernatant was resuspended and 
incubated at room temperature (RT) for 10 min. Five microliters 
of quantification developer was added to each sample, and the 
plate was read at 365/450 nm using Victor X multilabel plate read-
ers (PerkinElmer).

Quantitative Real-Time RT-PCR
HPFs were treated as described above; then, they were detached 

and resuspended in 500 μL of Trizol for total RNA isolation. The 
amount and purity of RNA were quantified at the spectrophotom-
eter (Nanodrop-2000; Thermo Fisher) by measuring the optical 
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density at 260 and 280 nm. Reverse transcriptase and cDNA syn-
thesis were performed using a high-capacity cDNA reverse tran-
scription kit (Applied Biosystems, Foster City, CA, USA) accord-
ing to the manufacturer’s instructions. A 2-step cycling quantita-
tive real-time PCR was performed in a volume of 10 μL per well in 
a Multiply Optical Strip (Sarstedt, Nümbrecht, Germany) contain-
ing SensiFast SYBR No-ROX kit (Bioline, London, UK), forward 
and reverse primer 400 nM, and 1 μL of the cDNA template. Prim-
ers used are indicated in online suppl. Table 1S (for all online sup-
pl. material, see www.karger.com/doi/10.1159/000517204). GAP-
DH was used for data normalization, and the relative quantifica-
tion was determined by the 2ΔCT method.

Indirect Immunofluorescence
HPFs (2 × 104 cells/well) were plated on a 12-mm Ø sterile glass 

and treated as described above. Cells were fixed with 4% parafor-
maldehyde for 10 min at 4°C and incubated with a blocking buffer 
(5% BSA, 0.1% Tritron X-100, and PBS 1X) for 1 h at RT; then, they 
were incubated with primary antibody anti-iNOS (1:250; Thermo 
Fisher) for 2 h at RT in 3% BSA, 0.1% Triton X-100, and with sec-
ondary antibody (anti-rabbit Alexa Fluor 488 antibody) for 45 min 
protected from light.

Evaluation of Mitochondrial Membrane Potential
It was measured in HPFs by using 5,51,6,61-tetrachlo-

ro-1,11,3,31 tetraethylbenzimidazolyl carbocyanine iodide (JC-1; 
Cayman, Ann Arbor, MI, USA), as previously performed [23–26]. 
HPFs (10,000 cells/well in 96 wells) were treated as described 
above. After stimulations, the medium was removed, and cells 
were incubated with JC-1 diluted in Assay Buffer 1X for 15 min at 
37°C. After incubation, Assay Buffer 1X was used to wash cells 
twice, and then the mitochondrial membrane potential was deter-
mined by measuring the red (535/595 nm excitation/emission) 
and green (485/535 nm excitation/emission) fluorescence with 
Victor X multilabel plate readers (PerkinElmer). The data have 
been normalized versus control cells.

GSH Quantification
The GSH quantification kit (Cayman Chemical) was used as 

previously described [23, 27, 28]. HPFs (400,000 cells/well in 6 
wells) were treated as described above. After treatments, cells were 
lysed and incubated with an equal volume of metaphosphoric acid 
(5%; Merck) for 5 min and then centrifuged at 2,000 g for at least 
2 min. Supernatants were collected, and 50 μL per mL of trietha-
nolamine (Sigma Aldrich) 4 M was added to each sample. Fifty 
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Fig. 1. Effects on cell viability (a) and Ki-67 
expression (b) in HPFs cultured with 1 and 
10 μM α-tocopherol for 24 and 48 h in phys-
iological and peroxidative conditions (200 
μM H2O2). Cell viability was evaluated 
through MTT assay, while Ki-67 genomic 
expression was evaluated through qRT-
PCR. Reported data are expressed as means 
± SD of 7 independent experiments. *p < 
0.05 versus Ctrl; ○○p < 0.01 versus H2O2. 
HPFs, human primary fibroblasts.
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microliters of the sample was transferred into a 96-well plate; GSH 
was detected through Victor X Multilabel Plate Readers (Perki-
nElmer) at 405/414 nm excitation/emission wavelengths. GSH 
concentration (μM) was determined using the GSH standard 
curve.

Cell Cycle Analysis
Flow cytometry was used for cell cycle analysis [29]. HPFs 

(400,000 cells/well in 6 wells) were treated as described above. Cells 
were detached from the plate, centrifuged at 900 g for 5 min, and 
fixed in 70% ethanol (Merck) for 1 h at −20°C. Then, ethanol was 
discarded, and cells were washed with PBS and centrifuged. Cells 
were resuspended in 200 μL propidium iodide buffer (3.4 mM tri-
sodium citrate, 9.65 mM sodium chloride, and 0.003% tergitol), 25 
μL RNasi A (10 ng/mL; Cabru, Arcore, Milan, Italy), and 10 μL 
propidium iodide (1 mg/mL; Cabru). Fifty microliters of each sam-
ple was transferred to a 96-well plate in triplicate and incubated for 
15 min at 37°C protected from light. Fluorescence was quantified 
using Attune NxT (Life Technologies, Monza, Italy) flow cytom-
etry.

Statistical Analysis
All data were recorded using the institution’s database. Statisti-

cal analysis was performed by using GraphPad Prism 6 (San Diego, 
USA). Data were checked for normality before statistical analysis, 
and one-way ANOVA followed by Bonferroni post hoc tests were 

used. All data are presented as means ± SD of n independent ex-
periments for each experimental protocol. A value of p < 0.05 was 
considered statistically significant.

Results

Effects of α-Tocopherol on Cell Viability and 
Proliferation
The stimulation of HPFs with α-tocopherol alone did 

not affect cell viability or the gene expression of the cell 
proliferation marker Ki-67 (shown in Fig. 1a, b). In the 
presence of peroxidative stimuli, only 10 μM α-tocopherol 
given for 24 h has improved cell viability. Moreover, 1 and 
10 μM α-tocopherol given for 48 h and NAC were able to 
counteract the reduction of the gene expression of Ki-67 
caused by the H2O2 stimulation.

Effects of α-Tocopherol on Cell Cycle
In HPFs cultured in physiologic conditions, 

α-tocopherol did not cause any significant effect on the 
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Fig. 2. Effects on the cell cycle in HPFs cultured with 1 and 10 μM α-tocopherol for 24 and 48 h in physiological 
(a, b) and peroxidative (200 μM H2O2) (c, d) conditions evaluated using propidium iodide staining through flow 
cytometry. Histograms represent quantitative analysis of apoptosis, G0/G1, synthesis, and G2/M phase. Report-
ed data are expressed as means ± SD of 5 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p 
< 0.0001 versus Ctrl; ○○○p < 0.001 and ○○○○p < 0.0001 versus H2O2; #p < 0.05 and ##p < 0.01 significance between 
groups. HPFs, human primary fibroblasts.
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cell cycle, except for 48-h stimulation, where a reduction 
of synthesis was observed with 1 μM α-tocopherol (shown 
in Fig. 2a, c). In peroxidative conditions, both α-tocopherol 
doses were able to protect fibroblasts against the H2O2-
induced oxidative stress. Hence, apoptosis was reduced, 
whereas G0/G1, synthesis, and G2/M were increased, at 
both 24- and 48-h stimulation (shown in Fig. 2b, d).

Effects of α-Tocopherol on ROS and GSH Production 
and Mitochondrial Function
In HPFs cultured in physiological conditions, 

α-tocopherol did not affect ROS production; however, in 
the presence of peroxidative stimuli, both concentrations 
given for 24 and 48 h were able to decrease ROS produc-
tion, as well as NAC (shown in Fig. 3a). It is to note that 
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Fig. 3. Effects of α-tocopherol on ROS pro-
duction (a), GSH (b), and mitochondrial 
membrane potential (c) in HPFs cultured 
in physiological and peroxidative condi-
tions (200 μM H2O2) with 1 and 10 μM 
α-tocopherol for 24 and 48 h. Reported 
data are expressed means ± SD of 5 inde-
pendent experiments. *p < 0.05, ***p < 
0.001, and ****p < 0.0001 versus Ctrl; ○p < 
0.05, ○○p < 0.01, ○○○p < 0.001, and ○○○○p 
< 0.0001 versus H2O2; #p < 0.05 and ##p < 
0.01 significance between groups. ROS, re-
active oxygen species; GSH, glutathione; 
HPFs, human primary fibroblasts.
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Fig. 4. Effects on GPX-1 (a), SOD-1 (b), 
and SOD-2 (c) expression in HPFs cultured 
with 1 and 10 μM α-tocopherol for 24 and 
48 h in physiological and peroxidative (200 
μM H2O2) conditions. Genomic expression 
was evaluated through qRT-PCR. Report-
ed data are expressed as means ± SD of 7 
independent experiments. **p < 0.01 and 
***p < 0.001 versus Ctrl; ○p < 0.05 and ○○p 
< 0.01 versus H2O2. GPX-1, glutathione 
peroxidase-1; SOD, superoxide dismutase; 
HPFs, human primary fibroblasts.

Fig. 5. Effects on intracellular NO production (a) and iNOS ge-
nomic (b) and proteomic (c) expression in HPFs cultured with 1 
and 10 μM α-tocopherol for 24 and 48 h in physiological and per-
oxidative (200 μM H2O2) conditions. Intracellular NO production 
was measured by using the Measure-IT high-sensitive kit, iNOS 
genomic expression through qRT-PCR, and proteomic expression 
by indirect IF. Reported data are expressed as means ± SD of 7 in-
dependent experiments. Indirect IF quantification at 24 h (d) and 
48 h (e) of α-tocopherol stimulation in peroxidative conditions 

was performed using ImageJ software, and data are expressed as 
CTCF. Data are expressed as means ± SD of 12 different measured 
cells of 3 independent experiments. *p < 0.05, **p < 0.01, ***p < 
0.001, and ****p < 0.0001 versus Ctrl; ○p < 0.05, ○○p < 0.01, ○○○p 
< 0.001, and ○○○○p < 0.0001 versus H2O2; #p < 0.05 and ##p < 0.01 
significance between groups. NO, nitric oxide; iNOS, inducible 
NO synthase; HPFs, human primary fibroblasts; CTCF, corrected 
total cell fluorescence.

(For figure see next page.)
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the antioxidant GSH was increased by 10 μM α-tocopherol 
given for 48 h to fibroblasts cultured in physiologic con-
ditions. Also, in the presence of peroxidative stimuli, 
GSH levels were increased by both 1 and 10 μM 
α-tocopherol given for 24 or 48 h (shown in Fig. 3b).

The protective effects elicited by α-tocopherol were 
confirmed by the analysis of mitochondrial membrane 
potential. This parameter was increased by 10 μM 
α-tocopherol given for 48 h to fibroblasts cultured in 
physiologic conditions. Also, the effects of H2O2 were 
counteracted by both concentrations of α-tocopherol giv-
en for 24 and 48 h (shown in Fig. 3c).

Effects of α-Tocopherol on Antioxidant Enzyme 
System Expression
The expression of GPX-1, SOD-1, and SOD-2 was 

evaluated in HPFs stimulated with α-tocopherol in HPFs 
cultured in physiological and peroxidative conditions. 

GPX-1 gene expression (shown in Fig. 4a) was affected by 
H2O2 stimulation; however, both 1 and 10 μM α-tocopherol 
given for 24 and 48 h in peroxidative condition, as well as 
NAC, decreased GPX-1 gene expression. Also, SOD-1 
(shown in Fig. 4b) and SOD-2 (shown in Fig. 4c) gene 
expression was increased by peroxidative stimuli, and 
both α-tocopherol concentrations counteracted H2O2 ef-
fects, as well as NAC, given for 24 and 48 h.

Effects of α-Tocopherol on Intracellular NO 
Production and iNOS Expression
As shown in Figure 5a, in peroxidative condition, 

α-tocopherol given for 24 h to HPFs was able to counter-
act H2O2 effects, as well as NAC. On the contrary, at 48 h 
of treatment, only NAC was able to reduce the NO pro-
duction.

iNOS expression was evaluated at both gene (shown in 
Fig. 5b) and protein (shown in Fig. 5d) levels. H2O2 great-
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ly increased protein and mRNA expression; conversely, 
α-tocopherol stimulation counteracted H2O2 effects at 
both gene (shown in Fig. 5b) and protein levels after 24 
and 48 h (shown in Fig.  5d, e) of treatment, as well as 
NAC. Immunofluorescence staining showed a dose-de-
pendent decreased expression of iNOS after 24 h of stim-
ulation (shown in Fig. 5d).

Effects of α-Tocopherol on Inflammation
The gene expression of pro- and anti-inflammatory 

cytokines was evaluated in HPFs stimulated with 1 and 10 
μM of α-tocopherol in physiological and peroxidative 
(200 μM H2O2) conditions. Pro-inflammatory cytokine 
gene expression of IL-1β, IL-6, and IL-8 (shown in 
Fig. 6a–c) was enhanced by oxidative stress stimuli, but 
both α-tocopherol concentrations (1 and 10 μM) given for 
24 and 48 h counteracted H2O2 effects, as well as NAC. 
IL-4 cytokine gene expression (shown in Fig. 6d) was de-
creased by H2O2 exposure, while both α-tocopherol con-
centrations, given for 24 and 48 h, enhanced the anti-in-
flammatory cytokine expression, as well as NAC.

Discussion

Our results showed for the first time the protective 
effects elicited by α-tocopherol in HPFs which under-
went H2O2 exposure; these occurred by the modulation 
of mitochondrial function and NO release, the keeping 
of antioxidant systems, and the modulation of inflam-
mation. We focused our attention on fibroblasts since 
these are the main cell components involved in skin re-
pair and aging processes. While in physiologic condi-
tions, they are almost resting, in the presence of any 
skin injury, they show abnormalities in the metabolism 
and proliferation, which can be at the basis of aging skin 
structure changes [30, 31]. Even more relevant is the 
involvement of the senescent fibroblasts not only in the 
early stages of skin carcinogenesis [32] but also in can-
cer cell migration and metastasis, both in melanoma 
[33] and in NMSC [34]. Therefore, the preservation of 
their functionality can be a strategy in the prevention of 
intrinsic and extrinsic skin aging and even cutaneous 
carcinogenesis [35, 36].

α-Tocopherol is the most active form of vitamin E 
[37] and is widely considered as the major membrane-
bound antioxidant employed by cells [38], being able to 
scavenge acylperoxyl radicals, hydroxyl radicals, and O2− 
generation caused by oxidants like UVA and UVB [39]. 
It is well known that this molecule has a role not only in 

the reparation but also in the protection of the skin from 
exogenous stress factors. The treatment of HaCaT cells 
before UVA exposure with α-tocopherol showed in-
creased cell viability and decreased intracellular GSH de-
pletion, ROS generation, and lipid peroxidation [40]. In 
our study, we confirm its potential role in counteracting 
the oxidative stress induced by H2O2 in human fibro-
blasts too. We have chosen this stimulus for our experi-
mental conditions because it is one of the main ROS re-
leased by UVB exposure and may represent one of the 
possible causes of skin photodamage [41]. In particular, 
previous studies showed that H2O2 can lead to several 
forms of cellular damages involved in skin aging, includ-
ing protein oxidation and intrinsic apoptosis, as well as 
impairment of mitochondrial antioxidant defense [42]. 
In addition, in fibroblasts, the oxidative potency of H2O2 
was found to be similar to UVB and significantly stron-
ger than UVA [43]. Furthermore, both UVB and H2O2 
elicited similar stimulating effects on aging-related bio-
logical markers, like β-galactosidase, p53, and p21, in 
HS68 fibroblasts [44]. However, in our experience, 
α-tocopherol was able to exert any significant protective 
effect in human skin fibroblasts only in the presence of 
harmful conditions; this finding could be explained by 
the low-grade “reactivity” of fibroblasts in the absence of 
any stimulation.

Hence, the treatment of fibroblasts with α-tocopherol 
at concentrations similar to those previously proposed in 
other human skin models [45] was able to counteract the 
reduction of mitochondrial membrane potential caused 
by H2O2. Moreover, we demonstrated a reduction in ROS 
and NO release. The modulation of the fibroblast redox 
state by α-tocopherol was also confirmed by the analysis 
of GSH content, which was increased in the presence of 
the abovementioned agent. These findings are similar to 
the ones previously observed by our group about the ef-
fects elicited by genistein and 17-β estradiol when admin-
istrated in the same cellular model cultured in the pres-
ence or absence of H2O2 [20]. Notably, also the modula-
tion of iNOS expression was similar to those observed in 
aged fibroblasts and keratinocytes treated with genistein 
and 17-β estradiol.

The role of mitochondria and NO in skin aging is 
widely accepted. Mitochondria could both originate ROS 
or be the target of free radicals. Furthermore, the fall of 
mitochondrial membrane potential could act as an initi-
ating event leading to the activation of apoptotic cell 
death by the release of cytochrome C. Thus, in human 
dermal fibroblasts (HDF), the persistence of mitochon-
drial DNA deletions caused by UV or other stimuli like 
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H2O2 would alter the electron flow of the respiratory 
chain leading to inadequate energy production. These 
events would be followed by oxidative stress and inflam-
mation and altered fibroblast function [22].

NO, as well, can play a key role in regulating the 
skin’s response to external stimuli, like UV. The fact 
that NO could exert protection or damage strongly de-
pends on its concentration and on the activity of NOS 
isoforms. While the constitutive NOS may act as a reg-
ulator of short-term and physiological phenomena and 
is involved in a small amount of NO release, iNOS could 
play a role in longer-lasting cytotoxic and inflamma-
tory immunological functions, by producing NO at 
higher extent [46–48]. Several studies showed that aug-
mented levels of NO would be pro-inflammatory and 
could induce skin changes resembling those caused by 
UV [48].

In our experience, H2O2 was able to increase both NO 
release and iNOS expression by HDF, as previously 
shown [20]. The fact that α-tocopherol could counteract 
the increased iNOS-dependent NO and the fall of mito-
chondria function could, thus, explain the abovemen-
tioned protective effects observed as regarding cell viabil-
ity, cell cycle, and proliferation. The theoretical involve-
ment of other NOS isoforms may explain the absence of 
reduction observed at 48-h stimulation. In further stud-
ies, a deeper analysis of the modulation of the transport 
across membranes of NO and ROS by α-tocopherol 
through the involvement of channels like aquaporins 
(AQPs) could be useful to better define the mechanisms 
of action. In fact, it is well known that dysregulation of 
AQPs can lead to oxidative stress and eventually cell 
death. For those reasons, alterations in AQP-mediated 
ROS and/or NO transport are assuming an increasing 
translational value in physiology and pathophysiology 
with promising nutraceutical and pharmacological im-
plications [49, 50].

Also, the findings about the expression of other anti-
oxidants particularly abundant in the skin, like SOD-1 
and -2 and GPX-1, are of particular interest [21, 51]. In 
fact, SOD can convert superoxide anions into H2O2 and 
O2, and also GPX-1 plays a crucial antioxidant role and 
prevents the harmful accumulation of intracellular H2O2 
by using GSH as a hydrogen donor [52].

In our study, HPFs exposed to H2O2 showed increased 
SOD-1 and 2 and GPX-1 expression, as a putative defen-
sive response toward oxidative stress. About this issue, it 
was shown that both GPX-1 and SOD may be transcrip-
tionally upregulated as part of the cellular response to 
peroxidation [53, 54].

As previously shown [55], H2O2 treatment of human 
fibroblasts led to an accumulation of inflammatory cy-
tokines implicated in the initiation of several age-relat-
ed inflammatory skin damages. Our results showing an 
increase of IL-4 and a decrease of IL-1β, IL-6, and IL-8 
in response to α-tocopherol could highlight its putative 
antiaging role through the modulation of inflamma-
tion.

Vitamin E has been used for >50 years in experimental 
and clinical dermatology due to its antioxidant properties 
[56–58] and photoprotective effects [59]. This potential 
role is confirmed also by recent clinical findings, report-
ing lower tissue concentrations of α-tocopherol in NMSC 
compared with normal skin. Overall, our findings are in 
line with previously published results and add more in-
formation about the mechanisms of action of α-tocopherol 
in HPFs. Also, our results are of clinical relevance, as the 
treatment with α-tocopherol could represent useful pro-
tection for the skin against intrinsic and extrinsic aging 
phenomena and a potential therapeutic intervention in 
NMCS patients.

However, further studies will better examine the rela-
tionship between antioxidant expression cross-reaction 
and free radical release and in the redox state and inflam-
mation cross-reaction. Also, the role of various NOS iso-
forms in mediating the protective effects of α-tocopherol 
and the pathways involved should be better analyzed. Fi-
nally, it could be also of interest to evaluate the protection 
exerted on other skin cell lines, such as keratinocytes, and 
their relationships.
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