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Abstract: Proteomic analysis of extracellular vesicles presents several challenges due to the unique
nature of these small membrane-bound structures. Alternative analyses could reveal outcomes
hidden from standard statistics to explore and develop potential new biological hypotheses that
may have been overlooked during the initial evaluation of the data. An analysis sequence focusing
on deviating protein expressions from donors’ primary cells was performed, leveraging machine-
learning techniques to analyze small datasets, and it has been applied to evaluate extracellular vesicles’
protein content gathered from mesenchymal stem cells cultured on bioactive glass discs doped or
not with metal ions. The goal was to provide additional opportunities for detecting details between
experimental conditions that are not entirely revealed with classic statistical inference, offering further
insights regarding the experimental design and assisting the researchers in interpreting the outcomes.
The methodology extracted a set of EV-related proteins whose differences between conditions could
be partially explainable with statistics, suggesting the presence of other factors involved in the
bioactive glasses’ interactions with tissues. Outlier identification of extracellular vesicles’ protein
expression levels related to biomaterial preparation was instrumental in improving the interpretation
of the experimental outcomes.

Keywords: proteomics; distance function; mass spectrometry; isolation forest; anomaly detection

1. Introduction

Mass spectrometry (MS, Appendix B.1) is an analytical technique used in proteomics
to identify and quantify proteins within a biological sample. It generates complex data,
and bioinformatics tools are essential for processing, analyzing, and interpreting this
information. Integrating both numeric outcomes and advanced computational meth-
ods is crucial for extracting meaningful insights from MS data; for example, anomaly
detection techniques have implications for identifying proteins with outlier levels or
detecting defective proteins [1,2]. For anomaly detection, software programs like Ens-
MOD (https://github.com/niaid/EnsMOD, accessed on 21 December 2023) can be used
to analyze any omics dataset with normally distributed variance, including proteomics
datasets [3]; it can remove abnormal protein levels before running statistics on the data
to purge outliers. AnomalP is an anomaly detection approach for detecting anomalous
protein folding, which is crucial for determining defective and dysfunctional proteins [4];
this program leverages deep autoencoders for reconstructing information about the struc-
tural similarity. Additionally, anomaly detection in proteomics datasets has been studied
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in the context of mixed high-dimensional molecular data, where most anomaly detection
algorithms identify complete samples as outliers or anomalies [5]. Furthermore, robust
subspace methods have been developed for outlier detection in genomic data, which can
also be applied to proteomics datasets [6]. Overall, anomaly detection in proteomics is
a complex and essential area of research that has implications for understanding protein
structure, protein–protein interactions, and identifying defective proteins; the literature
encloses benchmarks and ad hoc analysis sequences for this task [7–9]. However, identi-
fying anomalies of protein expression levels within small-dimensional datasets presents
additional difficulties because the dataset is more susceptible to variability and noise,
making it challenging to distinguish between actual biological variations and random
fluctuations; anomalies may be masked by inherent variability [10]. Adopting specific
solutions to match the characteristics of the data under exam could ensure the reliability of
anomaly detection in small datasets; indeed, small datasets may not adequately represent
the diverse biological conditions, making it challenging to distinguish between normal
variation and true anomalies. Also, traditional statistical methods may be less robust when
dealing with small datasets hiding outliers that may not reach significance [11].

1.1. Notes on Small Sample Inference

In general, during proteins’ expression levels analysis, statistics based on p-values are
commonly used to assess significant differences in their expression levels between experi-
mental conditions. Through statistics, the goal is to demonstrate whether any observed
difference is statistically significant or could have occurred due to random chance. The
p-value is the probability of observing a test statistic as extreme as, or more extreme than,
the one calculated from the actual data, assuming the hypothesis of no real difference be-
tween the groups being compared [12]. In other words, it informs how likely the observed
differences in protein expression could have occurred due to random chance alone [13].
In the case of small p-values (typically below a predetermined significance level, often
denoted as α, such as 0.05), statistics suggest that the observed differences are unlikely to
be due to chance and are more likely due to a natural effect. A small p-value does not prove
a significant difference between the groups being compared; it simply indicates that the
observed data are unlikely under the assumption of the null hypothesis (no difference in
protein expression between the Control and Treatment groups) [14]. Additionally, p-values
are subject to factors such as sample size and experimental design [15–17], which preju-
dice their interpretation, and, in general, proteomics studies often involve relatively small
sample sizes compared to genomics studies. The choice of small samples could be due to
several factors: large samples can be resource-intensive in terms of time, cost, and data
processing, manage the biological variability, or experimental design of proteomics studies,
which may focus on the in-depth characterization of a few samples. However, running
statistics on small samples might be sub-optimal [18–20]. Findings may not generalize well
to the larger population, leading to imprecise results: attempting complex analyses with
insufficient data may drive unreliable conclusions [21]. Small sample sizes often result
in low statistical power, which is the probability of detecting a true effect when it exists.
Low power increases the likelihood of Type II errors, where one may fail to detect a real
effect even if it is present. Also, the probability of making a Type I error (rejecting a true
null hypothesis) is inflated with small samples: small datasets are more likely to produce
spuriously significant results due to random variability [22]. With small samples, individ-
ual data points can significantly impact the overall results: the increased variability can
generate less-stable estimates of parameters and unreliable statistical inferences, not gener-
alizing well to the larger populations [23]. The risk of obtaining results specific to particular
individuals or conditions when working with a small sample is higher, and these findings
may not be applicable to a broader context. Additionally, small samples are more sensitive
to the influence of outliers or extreme values: a single outlier can disproportionately affect
the results. Small sample sizes make detecting small or subtle effects challenging: even if a
true effect exists, it may be difficult to distinguish from random variability when dealing
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with a small dataset. For all these reasons, describing the results obtained on a small sample
might be better than extracting a general rule through statistics applicable to a population,
and machine-learning methods might offer instruments suitable for this aim. Outliers, or
anomalies, are data points that deviate significantly from most of the data, and several
machine-learning techniques and algorithms have been specifically designed for this pur-
pose [24–26]. The possibility of detecting proteins whose expression levels show diverging
behavior between experimental conditions, even in a small dataset, might support and offer
further insights into the laboratory outcomes. The example in Appendix A.1 highlights
the following aspect: while it is technically possible to conduct a t-test with a small sample
size (e.g., less than five), there are several important considerations and potential issues
associated with doing so [27]. The t-test assumes that the data are approximately normally
distributed, and with very small sample sizes, the distribution of the data becomes critical.
It should be considered how small sample sizes reduce the statistical power of a study:
the power of a statistical test is the probability of detecting a true effect if it exists. With
low power, there is a higher chance of making a Type II error (failing to reject a false null
hypothesis) because Type II errors are inversely related to statistical power. Additionally,
while a t-test may be more robust to violations of normality with larger sample sizes, a small
sample size necessitates a very large effect size for the test to have reasonable power [28].
Another aspect is the generalizability of the results. Findings from studies working on few
samples are often less generalizable to the broader population: it is essential to consider
whether the results can be extrapolated beyond the specific sample studied [29]. For this
reason, considering supplementary methods to accompany standard statistical approaches
may be appropriate for small samples. A last remark pertains to the specific concepts of
statistical significance and biological (or clinical) significance [30]. Statistical significance
measures whether the results observed in a study are likely to be due to a natural effect
or if they could have occurred by chance employing a threshold. Achieving statistical
significance does not necessarily mean that the observed effect is practically or clinically
significant; it only indicates that the observed differences are unlikely to be due to random
chance. Clinical significance, on the other hand, is concerned with the practical importance
or relevance of the study findings in real-world terms. It focuses on whether the observed
effects are large enough to be meaningful or impactful in a clinical or practical sense. Even if
a study produces statistically significant results, the effect size (magnitude of the difference)
could be considered to determine if it has clinical relevance.

1.2. Observations on Distance Functions

Distance functions can be a valuable complementary approach to statistical signifi-
cance in specific contexts, especially when dealing with non-parametric or distribution-free
methods. Distance-based measures focus on quantifying the similarity or dissimilarity
between data points rather than relying on assumptions about the underlying data distri-
bution. Distance functions often operate at the level of individual data points, and in some
cases, statistical significance testing and distance functions can complement each other.
The detection of data points with extreme behavior could be simplified through distance
functions. These points, which could be labeled as rare or anomalies (also called outliers,
Appendix B.2), can stem from many factors, ranging from natural fluctuations in the data
and inaccuracies in the measurement process to infrequent and unusual occurrences during
the data collection phase. Indeed, outliers can manifest in various ways, and different
types of outliers are conceivable based on their characteristics and impact on the data.
Euclidean distance is sensitive to the numeric values of protein abundances: being the
absolute differences between expression values also measured by t-test statistics, it could
be the natural choice to select for connecting the results to t-statistics. Among the various
functions applicable to independent experiments, Euclidean distance proved practical in
reducing false positives compared to the rank product method in small samples [31]. Also,
in a series of works [32–35], the association between Euclidean distances and Spearman
correlations proved to be effective in building clusters for anomaly detection in proteomics
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data. When studying intensities profiles of MS spectra for shape similarity search, cosine
distance might be a common choice [36]. Cosine distance measures the cosine of the angle
between two vectors, focusing on the direction rather than the magnitude of the vectors. It
is robust to differences in overall magnitude and is suitable when measuring directional
changes in protein expression. Another advantage of cosine distance is the applicability to
sparse data. Instead, Euclidean distance considers both the direction and magnitude of the
vectors; thus, the focus is on magnitude rather than direction. In the proposed investigation,
the Euclidean distance sensitivity to the numeric values of protein abundances looks suited
to spotting differences between experiments. The application of the Euclidean distance over
the example in Appendix A.1 has been demonstrated in Appendix A.2, showing proteins
that have close distances despite one of them not being statistically significant between
theoretical experiments.

1.3. Remark for Statistical Analysis on Primary Cell Data

Primary cells, directly isolated from living organisms or tissues, tend to be less stable
than established cell lines. The reasons for this are the limited proliferative capacity
(primary cells have a finite lifespan and can only divide a certain number of times before
they undergo senescence or cell death), heterogeneity, increased sensitivity to variations
in culture conditions compared to cell lines, genetic instability, and different response to
experimental treatments or conditions [37]. Compared to cell lines, primary cells closely
resemble in vivo conditions and are often used to study specific biological processes,
conduct drug testing, or investigate disease mechanisms. Statistical analysis of primary cell
data presents challenges compared to cell lines: the analysis of primary cell data may need
to account for and manage their inherent variability [38]. Obtaining primary cells usually
involves working with a limited number of samples, especially when dealing with human
or animal tissues; indeed, small sample sizes can affect the statistical power of experiments
and increase the risk of obtaining results that may only be representative of some of
the population. Also, if primary cells are collected from different donors, there can be
significant donor-to-donor variation regarding genetic background, health status, and other
factors. Another difficulty pertains to temporal variability: primary cells might change their
behavior over time in culture, reflecting temporal dynamics that can complicate statistical
analyses. Finally, primary cells often have limited proliferative capacity, which can restrict
the number of replicates available for experiments. This limitation can impact the reliability
of statistical analyses, particularly for complex experimental designs or when investigating
subtle effects [39].

1.4. Aim of the Study

Proper identification of outliers allows the development of novel biological hypotheses
that are not considered when experimental data are initially evaluated [40]. The present
research aims to test a data mining pipeline to identify proteins that exhibit abnormal
behavior on biomaterial datasets with the following characteristics:

1. The procedure is studied for small-dimensional datasets
2. The procedure should support researchers in obtaining additional information on the

data under analysis, marking expression levels in actual sample space rather than
considering average values

3. It leverages Euclidean geometry isomorphism, taking into account the magnitude and
direction of the protein level changes

4. It exploits existing and already verified methods for novel and augmented interpreta-
tion of the experimental variables

5. Verify the procedure on data coming from primary cells directly collected from donors

The aim was to exploit a specific anomaly detection analysis to evaluate abnormal
extracellular vesicles’ protein content connected to the preparations of bioactive glasses.
Whether protein expression levels reach statistical significance, anomaly detection offers
evidence about the sample under analysis because it can measure actual donors’ values.
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This descriptive approach to the dataset under investigation might avoid assumptions
regarding the behavior of the protein levels inside a population and report the actual
findings when few samples are involved in laboratory experiments. Identified proteins
might be marked as anomalies and further evaluated in light of the experimental design
and research question.

The suggested computational sequence has been tested on an experimental setting
involving extracellular vesicle protein expression levels obtained by culturing mesenchymal
stem cells over different biomaterials. The goal is to detect a restricted set of proteins whose
activation could follow over- or under-expression patterns in different donors without
comparing the average levels but actual values. Moreover, this alternative approach might
offer insights regarding proteins with aberrant levels in small datasets whose effect size
might not be adequate for correctly interpreting some statistical outcomes.

1.5. Proteomics of Extracellular Vesicles

Extracellular vesicles (EVs) play a crucial role in various physiological and patho-
logical processes. However, the protein content of these vesicles can create obstacles in
their detection and analysis [41]. For instance, EVs contain a limited number of proteins
compared to the parent cells: many proteins are present at low concentrations, making their
detection challenging, especially when using mass spectrometry-based techniques [42].
Additionally, EVs are a heterogeneous population consisting of different subtypes such as
exosomes, microvesicles, and apoptotic bodies: each subtype may have distinct protein
profiles, making it challenging to obtain a comprehensive analysis [43]. Moreover, isolation
methods may not separate each subtype; EVs have a broad size range (30 nm to several
micrometers), and traditional proteomic techniques may not be sensitive enough to detect
proteins in the lower size range. Furthermore, larger contaminants may interfere with
the analysis because contamination with proteins from the culture medium or other cel-
lular components can occur during the isolation of EVs, thus confounding the proteomic
results [44]. Also, the protein composition of EVs can change dynamically in response to
various stimuli or cellular conditions; this dynamic nature makes it challenging to capture
a static snapshot of the EV proteome [45]. Other factors include the lack of standardized
protocols (different isolation methods may yield different results impacting proteomic
analysis) and post-translational modifications, affecting protein function, stability, and
interactions [46].

To better understand the physiological and pathological functions of extracellular
vesicles and their clinical applications, it is essential to know the cellular processes that
govern their biology. The inherent properties of native/biological extracellular vesicles
offer stability and enable them to cross biological barriers; this makes them an effective
means of intercellular communication that can regulate function and phenotype. However,
scalability and standardization of generation, molecular characterization for design and
regulation, therapeutic potency assessment, and targeted delivery must be improved to
realize their therapeutic potential fully. These limitations can be overcome by utilizing
advanced technologies to analyze extracellular vesicles quantitatively.

1.6. Biomaterials Dataset Analyzed for Protein Anomaly Detection

The dataset under analysis explored the protein content of extracellular vesicles de-
rived from mesenchymal stem/stromal cells (MSCs) from three donors cultured in contact
with bioactive glasses. Mesenchymal stem cells are a type of adult stem cell found in vari-
ous tissues, such as bone marrow, adipose tissue, and umbilical cord. They can uniquely
differentiate into multiple cell types, including bone, cartilage, fat, and muscle cells. This dif-
ferentiation potential makes MSCs promising for tissue repair, regeneration, and cell-based
therapies. In addition to their differentiation capacity, MSCs exhibit immunomodulatory
and anti-inflammatory properties: they can secrete various bioactive molecules that influ-
ence the immune response. Extracellular vesicles are small membrane-bound structures
released by cells. They include exosomes and microvesicles, and they play a crucial role in
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cell-to-cell communication by transferring bioactive molecules, such as proteins, nucleic
acids (RNA and DNA), and lipids, between cells [47]. EVs have gained considerable at-
tention for their potential as therapeutic agents due to their ability to convey signaling
molecules and therapeutic cargo to target cells. EVs derived from MSCs (MSC-EVs) have
garnered particular interest because they can carry their parent cells’ regenerative and im-
munomodulatory properties. The therapeutic potential of MSC-EVs for tissue regeneration
involves promoting tissue repair and regeneration by delivering growth factors and signal-
ing molecules to damaged tissues. Furthermore, biomaterials have been extensively used
to enhance tissue healing, particularly in the musculoskeletal system. Either as scaffolds
or hydrogels that also act as physical support for cells or in the form of nanoparticles as
delivery and protection vehicles, metallic alloys, ceramics (particularly bioactive glasses),
and polymers present a promising strategy to improve treatment efficacy. For that, MSC
and MSC-EVs are being increasingly studied in conjunction with different biomaterials for
bone [48] and cartilage regeneration [49]. The laboratory approach consisted of culturing
MSCs on top of bioactive glass discs supplemented with different metallic ions, namely
silver, copper, and tellurium, which can improve the biomaterials’ osteogenic properties
and accelerate the tissue regeneration process. EVs released by these preconditioned MSCs
were isolated, and their protein content was investigated by mass spectrometry and then
analyzed using the suggested machine-learning method.

2. Results

The proteins displaying Euclidean distance above the average plus one standard
deviation of the whole set of proteins (empirical threshold) were considered extremely
changing and collected for the Control versus Doped bioactive glasses conditions in the
following tables (Tables 1–3). The tables highlight proteins with p < 0.05, which reject
the null hypothesis, considering that the null hypothesis of the t-test asserts that, on
average, there is no systematic difference between the two groups; conversely, any observed
difference is attributed to random variation or sampling error. The tables also marked
proteins whose p-values were between 0.05 and 0.1 as a reference because the lack of
significance might be due to the small sample size, and increasing the dimension of the
subjects involved might affect the statistical outcomes [50].

Table 1. Most expressed proteins in Control or Silver doped bioactive glass.

Accession Number Gene Name Protein Name

P02458 COL2A1 Collagen alpha-1(II) chain
P19338 NCL Nucleolin
P14923 JUP Junction plakoglobin
Q9Y4Z0 LSM4 U6 snRNA-associated Sm-like protein LSm4

Table 2. Most expressed proteins in Control or Copper-doped bioactive glass.

Accession Number Gene Name Protein Name

P02656 APOC3 Apolipoprotein C-III
P38571 LIPA Lysosomal acid lipase/cholesteryl ester hydrolase
Q9P2E9 ** RRBP1 Ribosome-binding protein 1
P02765 AHSG Alpha-2-HS-glycoprotein
P49720 PSMB3 Proteasome subunit beta type-3
P46940 IQGAP1 Ras GTPase-activating-like protein IQGAP1
P59665 DEFA1 Neutrophil defensin 1

** More than 95% probability the observed data are inconsistent with the null hypothesis (t-test p < 0.05).

The most relevant protein changes discovered by the suggested procedure on Plastic
or Doped bioactive glasses are shown in Tables 4–6. For example, in Tables 4 and 5, most
keywords are related to keratin, a fibrous structural protein that plays a crucial role in the
regeneration and maintenance of various tissues, especially epithelial ones.
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Table 3. Most expressed proteins in Control or Tellurium-doped bioactive glass.

Accession Number Gene Name Protein Name

P24821-4 TNC Isoform 4 of Tenascin
P26583 HMGB2 High mobility group protein B2
P22234 * PAICS Multifunctional protein ADE2
P35555 ** FBN1 Fibrillin-1
P24821 * TNC Tenascin
Q9P2E9 ** RRBP1 Ribosome-binding protein 1
P13611 VCAN Versican core protein

** More than 95% probability the observed data are inconsistent with the null hypothesis (t-test p < 0.05). * Between
90% and 95% probability, the observed data are inconsistent with the null hypothesis (p-values of the t-test between
0.05 and 0.1).

Table 4. Most expressed proteins in Plastic or Silver doped bioactive glass.

Accession Number Gene Name Protein Name

P35908 ** KRT2 Keratin, Type II cytoskeletal 2 epidermal
P35527 ** KRT9 Keratin, Type I cytoskeletal 9
P04264 ** KRT1 Keratin, Type II cytoskeletal 1
P13645 ** KRT10 Keratin, Type I cytoskeletal 10
P60985 * KRTDAP Keratinocyte differentiation-associated protein
P12111 ** COL6A3 Collagen alpha-3(VI) chain
P08493 MGP Matrix Gla protein

** More than 95% probability the observed data are inconsistent with the null hypothesis (t-test p < 0.05). * Between
90% and 95% probability, the observed data are inconsistent with the null hypothesis (p-values of the t-test between
0.05 and 0.1).

Table 5. Most expressed proteins in Plastic or Copper-doped bioactive glass.

Accession Number Gene Name Protein Name

P00734 ** F2 Prothrombin
P12111 * COL6A3 Collagen alpha-3(VI) chain
P35908 ** KRT2 Keratin, Type II cytoskeletal 2 epidermal
P35527 ** KRT9 Keratin, Type I cytoskeletal 9
P13645 ** KRT10 Keratin, Type I cytoskeletal 10
P04264 ** KRT1 Keratin, Type II cytoskeletal 1

** More than 95% probability the observed data are inconsistent with the null hypothesis (t-test p < 0.05). * Between
90% and 95% probability, the observed data are inconsistent with the null hypothesis (p-values of the t-test between
0.05 and 0.1).

Table 6. Most expressed proteins in Plastic or Tellurium-doped bioactive glass.

Accession Number Gene Name Protein Name

O94985 ** CLSTN1 Calsyntenin-1
P22234 ** PAICS Multifunctional protein ADE2
P02545 * LMNA Prelamin-A/C
P04264 ** KRT1 Keratin, Type II cytoskeletal 1
P35527 ** KRT9 Keratin, Type I cytoskeletal 9
Q16363 LAMA4 Laminin subunit alpha-4
P13645 ** KRT10 Keratin, Type I cytoskeletal 10
P35908 ** KRT2 Keratin, Type II cytoskeletal 2 epidermal
P00734 ** F2 Prothrombin
P26022 * PTX3 Pentraxin-related protein PTX3
P60985 ** KRTDAP Keratinocyte differentiation-associated protein

** More than 95% probability the observed data are inconsistent with the null hypothesis (t-test p < 0.05). * Between
90% and 95% probability, the observed data are inconsistent with the null hypothesis (p-values of the t-test between
0.05 and 0.1).

Venn diagrams were created to summarize the proteins that are common to multiple
experiments or those that are unique to specific conditions [51]. Venn diagrams can be used
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to represent the relationships between different protein sets, aiding in the identification of
unique and shared proteins. In Figure 1, the two diagrams are valuable for understanding
the commonalities and differences in protein expression of the identified “anomalies”
across biomaterials.

Figure 1. Venn diagrams of extremely changing proteins as identified by Isolation Forest and
Euclidean distances. On the (left), the Control versus Doped bioactive glass shows only one protein
in common between “SBA3” and “ST”. On the (right), the Plastic versus Doped conditions sharing
several proteins.

The comparative analysis of the Control versus Doped condition showed only one
protein whose Euclidean distance was classified as an anomaly in the presence of metal
ion doping, meaning each doped biomaterial activated a peculiar set of rare proteins with
specific characteristics. Instead, the Plastic versus Doped condition shared several proteins,
with four highly over- or under-expressed in all laboratory preparations. The interpretation
could be that shared proteins may represent core biological processes, while unique proteins
may indicate context-specific EV-related biological responses.

2.1. Relation between Euclidean Distances and Fold Change

In proteomics, fold change refers to the ratio of the abundance or expression levels
of a particular protein in two different conditions or experimental groups. In Figure 2,
the logarithmic fold change was plotted on the x-axis and the most evident Euclidean
distances over the y-axis. As a reference, a green vertical line marked the value of the
x-axis, defining no change in protein abundance between conditions, while a positive log
fold change indicates an increased expression and a negative log fold change indicates a
decrease. When analyzing such scatter plots, it is important to look for patterns that may
reveal trends in the data. For instance, if there are proteins that show large fold changes but
have low Euclidean distances, this could suggest coordinated changes in their expression.
On the other hand, if there are proteins that have high Euclidean distances, it may indicate
significant differences between the experimental conditions being compared. Therefore,
examination of scatter plots can help identify patterns and trends in the data, which can
inform further analysis and interpretation.

In Figure 2, the quadratic fit (U-shaped blue line) between the two variables was in-
cluded to emphasize the presence of a nonlinear pattern in the fold change versus Euclidean
metric relationship that cannot be adequately captured by a linear model (a straight line).

The same type of relation was encountered in the distances between the plast and
doped conditions, as shown in Figure 3.
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Figure 2. The blue line is the quadratic fit of the log fold change and Euclidean distances (ctrl versus
doped distances).

Figure 3. The blue line is the quadratic fit of the log fold change and Euclidean distances (plast versus
doped distances).

Fold change provides information about the magnitude of differences in protein
expression, and the aberrant proteins detected as anomalies match a U-shaped fit in most
experiments. These graphs help define the direction of the change (increase or decrease) to
aid the interpretation of the results.

2.2. Within-Group Variation

Within-group variation, also known as within-group variability or intra-group varia-
tion, is a measure of the dispersion or spread of individual data points within a specific
experimental condition. The variance for the Control and Doped experimental sessions is
shown in Table 7, with the last column reporting the absolute difference.

Table 7. Within-group variance in the ctrl and doped experimental conditions.

Experiment Protein p-Value Ctrl Var. Doped Var. Abs Var. *

SBA2 P02458 0.77209 1.27 2.26 0.99
SBA2 P19338 0.7934 2.76 0.16 2.6
SBA2 P14923 0.90066 3.85 1.55 2.3
SBA2 Q9Y4Z0 0.37355 13.0 0.72 12.28
SBA3 P02656 0.19829 0.73 0.18 0.55
SBA3 P38571 0.85016 0.21 2.61 2.4
SBA3 Q9P2E9 0.03166 0.22 0.08 0.14
SBA3 P02765 0.51954 1.8 0.2 1.6
SBA3 P49720 0.80732 1.44 1.55 0.11
SBA3 P46940 0.67908 0.51 1.66 1.15
SBA3 P59665 0.40182 8.47 2.79 5.68

ST P24821-4 0.4643 1.02 1.73 0.71
ST P26583 0.20189 0.1 0.71 0.61
ST P22234 0.08797 0.5 0.17 0.33
ST P35555 0.04938 0.22 0.34 0.12
ST P24821 0.05846 0.13 0.96 0.83
ST Q9P2E9 0.03078 0.32 0.23 0.09
ST P13611 0.16264 1.83 5.37 3.54

* Absolute difference between variances.
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The SBA2 Q9Y4Z0 protein had the highest difference in variances ctrl versus doped.
Other relevant changes were spotted on P59665 in SBA3 and P13611 in ST conditions.
Comparing the three biomaterials, mean variances after metal doping are quite stable
(Table A3). The variance for the plast and doped experimental session is shown in Table 8.
In such a situation, the variance is relatively stable.

Table 8. Within-group variance in the plast and doped experimental conditions.

Experiment Protein p-Value Ctrl Var. Doped Var. Abs Var. *

SBA2 P35908 0.00245 0.07 0.28 0.21
SBA2 P35527 0.00029 0.02 0.14 0.12
SBA2 P04264 0.00015 0.01 0.25 0.24
SBA2 P13645 0.00041 0.02 0.35 0.33
SBA2 P60985 0.08047 0.27 0.84 0.57
SBA2 P12111 0.00145 0.54 0.04 0.5
SBA2 P08493 0.10463 2.05 1.65 0.4
SBA3 P00734 0.0291 0.25 0.01 0.24
SBA3 P12111 0.05029 0.54 0.63 0.09
SBA3 P35908 0.00252 0.07 0.57 0.5
SBA3 P35527 0.00038 0.02 0.53 0.51
SBA3 P13645 0.00059 0.02 0.79 0.77
SBA3 P04264 0.00018 0.01 0.66 0.65

ST O94985 0.02078 0.01 0.26 0.25
ST P22234 0.03636 1.17 0.17 1.0
ST P02545 0.08999 2.02 0.17 1.85
ST P04264 0.00015 0.01 0.07 0.06
ST P35527 0.00079 0.02 0.29 0.27
ST Q16363 0.25842 2.89 1.69 1.2
ST P13645 0.00037 0.02 0.07 0.05
ST P35908 0.00244 0.07 0.16 0.09
ST P00734 0.02785 0.25 0.03 0.22
ST P26022 0.08427 0.41 2.51 2.1
ST P60985 0.04855 0.27 0.69 0.42

* Absolute difference in variance.

The two tables reflect a peculiar degree of variability among individual observations
within each outlier protein. The difference in variance on selected proteins is more evident
in the ctrl versus doped experiments (especially on Silver material). A low within-group
variation suggests that the individual observations within each group are relatively similar
or homogeneous; this indicates that the experimental conditions have a consistent effect.
Instead, some proteins of the ctrl versus doped experiment differ greatly between exper-
imental conditions (i.e., Q9Y4Z0, P59665, and P13611), which might have also affected
t-test outcomes. While variance measures absolute variability, the coefficient of variation
(CV) provides a measure of relative variability by normalizing the standard deviation
with respect to the mean. Table A4 confirms a trend of inconstancy involving the Silver
biomaterial compared to the doped one. Perhaps silver glass has a more pro-apoptotic effect
and might stabilize cell proliferation, at least in the first days of culture, until the silver is
almost all released from the glass surface [52]. The analysis sequence proposed in this study
highlighted this aspect in the identified abnormal proteins, suggesting that the researchers
should carefully evaluate the experimental outcomes considering the factors (biological
and technical) that might have determined the increased variability. For example, it is
worth noting that the technical variation in the process of two-dimensional electrophoresis
results in a CV of 20–30%. [53].

3. Discussion

Machine-learning anomaly detection is a technique used to identify patterns or in-
stances that deviate from the expected behavior in a given dataset. The present study
proposed a sequence of operations to perform anomaly detection on a proteomic dataset
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employing primary cells from three donors targeting EV protein content of experiments
involving doped or not biomaterials. The objective is to detect unusual or abnormal points
that could indicate potential rare occurrences: anomalies are data points that differ from
most of the data, making them stand out. For anomaly detection, the Isolation Forest
algorithm finds anomalies by randomly selecting a feature and then choosing a split value
between the maximum and minimum values of that feature [54].

Biomaterials play a crucial role in tissue engineering because they provide a scaffold or
framework for developing, repairing, or replacing tissues in the human body. Applying the
suggested analysis sequence data could help researchers identify a restricted set of proteins
with a peculiar role in tissue engineering by assisting in evaluating experimental outcomes.
Usually, verifying if a protein’s expression is magnified or not by an experimental condition
is performed through statistics or by thresholding the fold change. Although anomalies,
also known as outliers, are data points that differ from most of the dataset, statistical
significance testing is often used to determine whether observed effects or differences in
data are likely genuine or could have occurred by chance. Technically speaking, the two
approaches are different: ML-based anomaly detection often involves training models
to learn the expected behavior of a system and then identifying instances that deviate
from this learned normal behavior. On the contrary, statistical significance testing relies
on mathematical models and statistical techniques to assess whether observed differences
or effects in a sample are likely to be representative of the broader population or if they
might result from random variability [55]. Also, the assumptions of the two methods
are different. Anomaly detection methods typically make fewer assumptions about the
underlying distribution of the data because they focus on learning patterns directly from
the data and can be effective in scenarios where the distribution is complex or unknown.
Statistical tests assume a specific distribution for the data, and the validity of the results
can be influenced by the appropriateness of these assumptions.

The most frequent statistical outcome considered in research is the p-value, which
is a measure that helps researchers assess the evidence against a null hypothesis. The
relationship between sample size and p-values is crucial to statistical analysis [56,57]. As
the sample size increases, statistical tests become more sensitive to detecting differences or
effects. This increased sensitivity can be attributed to the reduction in sampling variability,
leading to more precise estimates of population parameters. Also, effect size matters
because a larger sample size could be needed to achieve statistical significance in situations
where the effect size is small [58,59]. Another consideration regarding sample size involves
the issue that a larger sample size might reduce the risk of Type II errors (false negatives),
as the increased power improves the ability to detect true effects, but researchers should
be cautious about the increased risk of Type I errors (false positives) when interpreting
small p-values [60]. In this situation, the clinical or practical significance of the findings
should be considered. Non-parametric or noncentral t-distributions could indeed be
employed in case of violation of normality when dealing with few samples; however, the
significance computed through a t-test is still commonly used because the Welch t-test or
rank transformation before running a t-test might pose other challenges when dealing with
small samples (reduced statistical power or increased false positives) [27]. The analysis
sequence proposed in the current study could support researchers in identifying proteins
that are not completely detected by statistics in situations where only a few data are
available. A restricted number of samples not only affects p-values but also the correct
identification of the confidence intervals or the reproducibility of the experimental results,
which has already been observed in the literature [20,27,61,62]. However, increasing the
sample size might only sometimes be possible. Working with human cells, especially
primary ones, can be resource-intensive in terms of time and resources; using a smaller
number of samples can help streamline experiments, making them more manageable
within budgetary and time constraints [63]. With few samples, it may be easier to maintain
consistent conditions across experiments and design experiments that directly test biological
hypotheses without unnecessary complexity. Considering that using a limited number of
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samples, including three, is a common practice, new tools for analyzing and interpreting
the results might help researchers support their findings. The proposed analysis pipeline
evaluates donors’ cell profiles without assuming any distribution. Another aspect to
consider when working on data from few donors relates to the variability in the findings:
biological variability between different cultures can be substantial. One could assume
that with few samples, the inherent experimental variability might be reduced, making it
easier to detect experimental effects. However, this might only be true sometimes, and high
variability in a few sample experiments might pose challenges and affect the convertibility
of the outcomes to the human population. The current study provides further evidence on
a dataset under investigation because descriptive ML-based analysis on actual data might
support statistical inference or help researchers focus their attention on specific results,
being more careful in interpreting the outcomes.

It could be possible that the aberrant behavior identified by the procedure might not
have a solid biological explanation. However, the information provided should not be
ignored because it could allow researchers to evaluate the single-subject variability of the
proteins under investigation more carefully. Tables 7 and 8 report the variance within
subjects. If proteins have high within-group variation, it may indicate that individual
samples within a group are responding differently, making it more challenging to attribute
observed differences to specific experimental factors. Proper randomization, replication,
and control of confounding variables can contribute to reducing within-group variation.
The current procedure might attract the researcher’s attention to the results found in this
situation, also in the light that one assumption of the t-test is the homogeneity of the vari-
ances [64]. Slight within-group variation is desirable, as it indicates that the observations
within each group are relatively consistent. Sources of variability could be biological or
technical due to laboratory procedures. Biological variability could arise from the cell cycle
stage, influencing protein expression or due to genetic variations among individuals. Cell
lines are generally homogeneous and genetically stable, meaning the cells in the population
are very similar in terms of genetic makeup and cellular characteristics; however, in the
case of primary cells, as in our study, donor-specific features, such as age, gender and
effects associated with pathologies, strongly contribute to the variable protein expression
commonly detected [65]. External sources of variability could be introduced by external
stimuli, stressors, or environmental changes that alter cells’ protein expression profiles [66].
Regarding environmental factors, changes in the availability of nutrients and growth factors
in the cell culture environment can impact protein expression. Also, variations in oxygen
levels (hypoxia or normoxia) can affect cellular metabolism and protein expression, and
together with other environmental conditions, such as temperature and pH, they can influ-
ence protein stability and expression [67]. Post-translational modifications are chemical
modifications that occur on proteins after they are synthesized during translation: these
modifications play crucial roles in regulating protein structure, function, localization, and
interactions. These modifications can introduce variability: changes in the extent or pattern
of modifications can influence protein function and detection. Other sources of variability
in pharmacological studies are exposure to drugs or other perturbations that can lead to
changes in protein expression. Technical sources of variability pertain to experimental
design and execution. Variability can be introduced during sample collection, handling,
and preparation; differences in sample processing techniques can lead to protein extraction
and quantification variations [68]. Also, experiments conducted in different batches or on
different days may exhibit batch effects, causing variations in protein profiles. Inconsisten-
cies in technical procedures, such as variations in mass spectrometry or other analytical
techniques, can contribute to variability.

As the Section 1.5 mentions, traditional proteomic techniques may not be optimized
for EVs’ unique characteristics [69], and enriched analysis could support deeper biological
understanding. Also, newer technologies and methodologies, such as improved mass
spectrometry approaches to recognize molecular networking from MS data [70], which
can reveal interactions or regulatory processes, and single-vesicle analysis techniques, are
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continually being developed to address these challenges [71]. Ongoing research efforts are
focused on refining protocols and producing innovative techniques to improve the accuracy
and reproducibility of proteomic analysis of extracellular vesicles, such as performing ex-
tensive quantitative analysis to compare populations of proteins with different features [72].
Advances in the field will likely lead to a better understanding of the role of EVs in various
biological processes and their potential applications in diagnostics and therapeutics [73].

A final clarification is about the concept of anomaly, which does not imply statistical
significance in protein expression. The procedure shown in the current manuscript defines
proteins with abnormal behavior based on Euclidean distance metric targeting experiments
involving biomaterials’ protein expression levels in primary cells. Abnormally expressed
proteins (i.e., far from the normal) could be statistically significant in different experimental
conditions, but it is not mandatory. As shown in Tables 7 and 8, some identified proteins
display high variance between conditions, suggesting considering this aspect when dis-
cussing the results. The goal of this methodology is to attract the attention of the researchers
to specific proteins, offering further support in understanding the experimental conditions
and insights into the experimental design. The supportive methodology developed in
the current manuscript is not conceived as a replacement for statistics but as assistive
technology to gather additional insights on a dataset under investigation.

3.1. Biological Interpretation of the Outcomes

When working with primary cells, it is essential to consider the common inter-donor
variability often detected: it reflects the different physiological states of the subjects, which
are derived from their age, gender, lifestyle, pathological condition, etc. [74]. With that,
protein expression may become highly variable among donors, impairing the typical
p-value analysis. However, an opposite response to treatment between individuals, or in
this case of cell-cultured with a biomaterial, in terms of protein expression, can be pretty
relevant because it can allow for the categorization of patients in groups (responders and
non-responders, for example) and a better treatment selection.

In the scope of our study, comparing the bioactive glasses doped with metal ions
with the respective undoped conditions, several proteins were detected as extremely
changing. However, only one was in common between different conditions: Ribosome-
binding protein 1 (Q9P2E9). In particular, Q9P2E9, which was altered in both copper-
and tellurium-doped bioactive glass conditions, was reported to be upregulated in MSCs
undergoing osteoblastic differentiation [75], which can indicate that the doping with these
ions could modulate this pathway. By checking the raw data and considering the classical
analysis based on p-value, we verified that MSC culture in contact with CuSBA3 and STe5
leads to an overexpression of Q9P2E9 encapsulated in EVs, therefore indicating a possible
osteogenic-promoting effect of the ion doping.

Despite no other proteins in common between conditions, comparing the STe5 with its
undoped counterpart revealed three other proteins simultaneously differentially expressed
according to p-value analysis and extremely changing as detected by our method. Two are
directly associated with the bone remodeling process: Tenascin (P24821), an extracellular
matrix protein, is upregulated in MSCs undergoing osteogenic differentiation [75] and
contributes to extracellular matrix homeostasis through transforming growth factor beta
(TGF-β) pathway [76], while Fibrillin-1 (P35555) promotes osteoblast differentiation, also by
interacting with TGF-β and bone morphogenetic proteins (BMPs) [77], and impairs osteo-
clastogenesis by sequestering TNF Superfamily Member 11 (TNFSF11/RANKL) [78]. On
the other hand, PAICS (P22234) seems to be involved in de novo purine synthesis [79], and
its specific role in bone homeostasis is still unclear. Interestingly, PAICS was the only pro-
tein also detected as extremely changing when comparing a doped bioactive glass, namely
STe5, with the basal condition (i.e., no biomaterial also known as “plastic”), which might
guide future research towards elucidating its effects related to biomaterial implantation.

Our method also identified some extremely changing proteins that are not detected
through the classical analysis based on the p-value. While some showed no reported
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connection with biological processes explicitly associated with MSCs or the bone microen-
vironment, others might be of interest due to their known role in bone homeostasis. In
particular, comparing STe5 with its undoped control, a TNC (P24821) and an isoform
(Accession Number P24821-4) were detected as extremely changing, which are extracellular
matrix components, together with Versican core protein (P13611) [80] that can bind TNC
and regulate osteoblast differentiation [75], and inflammation or immunity [81]. Also, high
mobility group protein B2 (P26583), involved in the osteoclastogenesis process and immune
cell recruitment [82], was marked as displaying rare behavior. Similarly, comparing the
content of EVs released by MSCs cultured in contact with AgSBA2 in comparison with
the Control condition (Table 1), the expression of Type II collagen, present in cartilagi-
nous matrix [83], was identified as extremely changing, while in the CuSBA3 vs Control
(Table 2), alterations in Alpha-2-HS-glycoprotein (P02765), responsible for bone mineral-
ization mostly in fetal tissues [84], was also evident in our analysis. Considering that
the classical analysis could not highlight the aforementioned proteins as being relevant
for further investigation, coupling both methods might lead to a more comprehensive
overview of each biomaterial’s impact on MSC-EVs’ content.

In parallel, analyzing the differences in protein expression when comparing each one
of the doped bioactive glasses with the basal condition “plastic” shows four proteins in com-
mon, all from the keratin family (KRT1, KRT2, KRT9, and KRT10). Generally, keratins are
produced by epithelial cells, most often by keratinocytes present in the epidermis [85]. In
fact, because MSCs can differentiate into keratinocytes in vitro [86], it has been exploited in
concomitance with decellularized matrix from ovine small intestine submucosa tissue [87].
Our results show that the MSCs cultured in contact with any bioactive glass secrete EVs
with a significantly inferior number of keratins than the basal condition, which can repre-
sent a lower tendency for differentiation into keratinocytes. Instead, given the increased
expression of collagen IV α3 chain in the silver- and copper-doped conditions, essential for
cell-matrix binding in cartilage, but also skeletal muscle and bone in development [88,89],
together with the upregulation of prelamin-A/C in tellurium-doped condition, are indica-
tive of osteogenic differentiation [90].

Also, some identified proteins were not yet directly associated with the bioactivity
of the musculoskeletal system; however, they might still be relevant in the context of
biomaterial implantation. In the case of PTX (P26022), which is mostly known as a pro-
inflammatory molecule released by several immune cell types, endothelial cells, and
fibroblasts in response to interleukin (IL)-1 and tumor necrosis factor (TNF)-α, it appears to
be downregulated in the tellurium-doped condition, which could indicate a differential
immunomodulatory effect of MSCs depending on the presence of this bioactive glass.
On the other hand, MSC culture in contact with STe5 leads to the release of EVs with
higher content of CLSTN1, a regulator of axon branching and amyloid precursor protein
trafficking and processing [91], in comparison with the basal condition, which might lead
to neurogenesis stimulation (O94985).

Nevertheless, although the machine-learning method presented at this moment can
provide complementary information to the classical analysis due to the pleiotropic nature
of proteins, it is still essential to validate the postulated hypotheses through additional
functional assays. Additional tables in Appendix C provide a functional context for the
identified proteins.

3.2. Limitations of the Study

The methodology proposed in the current study presents some limitations because
evaluating an anomaly involves selecting and adjusting a threshold for classifying instances
as anomalies based on the characteristics of the specific problem. In this study, a statistical
threshold has been selected, but this cut-off level might be adjusted according to the
scientific goals and the nature of the research question.

Another consideration pertains to the usage of the Euclidean distance as a metric.
Euclidean distance might be an appropriate choice in the case of a three-donor space, but
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it should be replaced when dealing with experiments involving more cell lines because it
does not perform well on multidimensional spaces [92]. Also, the generalizability of the
results should be managed carefully as it only refers to the actual donor space.

4. Materials and Methods

In the current investigation, the proposed analysis sequence summarized by Figure 4
is applied to evaluate three subject’s EV protein content of MSC cells cultured on top of
different bioactive glasses detected through mass spectrometry. The MS dataset under
investigation evaluated the normalized area reflecting the intensity of a mass spectral
peak, which summarizes the number of ions contributing to that peak. It is proportional
to the abundance of the ions with a specific mass-to-charge ratio in the sample, allowing
for quantitative analysis. A larger peak area indicates a higher abundance of ions with
that particular mass-to-charge ratio in the sample, while a smaller peak area indicates a
lower abundance. The application of the suggested pipeline to a small sample real-world
proteomic dataset with data coming from three donors will, on one side, demonstrate the
usage of the methodology and, on the other, provide identification of unusual patterns
indicative of protein activation on biomaterials.
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4.1. Bioactive Glasses Preparation

In the present study, silica-based bioactive glasses were prepared following the de-
scriptions in [93–95]. The composition of SBA2 and SBA3 (undoped controls) are shown in
Table 9.

Table 9. Composition of SBA2 and SBA3 control bioactive glasses.

Components SBA2 % mol SBA3 % mol

SiO2 48 48
Na2CO3 18 26
CaCO3 30 22

Ca3(PO4)2 3 3
H3BO3 0.43 0.43
Al2O3 0.57 0.57

Both SBA2 and SBA3 were prepared using a melt and quenching process. In short, all
the components listed above were melted in a platinum crucible at 1450 ◦C for 1 h, after
which the melt was cooled in a brass mold to obtain glass bars with a diameter of 1 cm2,
which were then annealed at 500 ◦C for 13 h and cut into discs of 2 mm thickness. The
discs were polished with SiC abrasive papers up to 1200 grit to level the surfaces. For
the ion-doping procedure, silver (Ag+) and copper (Cu+) ions were incorporated onto
the surface of SBA2 and SBA3, respectively, through ion-exchange process consisting of
submerging them in an aqueous solution of AgNO3 (0.03 M) or Cu(CH3COO)2 (0.001 M)
for 1 h, at 37 ◦C.
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Additionally, the composition of ST with 5% molar tellurium or without is described
in Table 10.

Table 10. Composition of the ST control bioactive glass and ST after ion doping.

Components ST 0% mol ST 5% mol

SiO2 48.6 43.6
Na2CO3 16.7 16.7
CaCO3 34.2 34.2

Ca3(PO4)2 0.5 0.5
TeO2 0.0 5.0

Likewise, ST bioactive glasses were also prepared by melt and quenching process,
with a slightly modified protocol. In this case, the melting was done at 1500 ◦C for 1 h,
while the annealing was performed at 550 ◦C for 13 h. All the samples were sterilized by
heating at 100 ◦C for 3 h.

4.2. Mesenchymal Stem/Stromal Cell Isolation

MSCs were isolated from bone marrow samples of 3 donors affected by osteoarthritis
who underwent joint replacement surgery. The samples were thoroughly mixed with
5–10 mL of Dulbecco’s Modified Essential Medium (DMEM) and passed through a 100 µm
cell strainer into a 50 mL Falcon tube to remove any debris. Then, the cell mix was
carefully overlaid in Lympholyte® (Cedarlane, Burlington, ON, Canada) and centrifuged at
1100× g, for 30 min, with minimum acceleration and no brake. Then, the ring present in
the interface was collected and washed with DMEM, centrifuging at 900× g, for 10 min.
The cells were counted and plated at a concentration of 180,000 cells/cm2 in MSC growth
medium (DMEM with low glucose supplemented with 10% heat-inactivated fetal bovine
serum (FBS), 1% Penicillin/Streptomycin (P/S) and 0.5% Gentamycin). The cells were
incubated at 37 ◦C, and the medium was changed twice per week until the cells reached
approximately 80% confluence. For expansion, cells were treated with trypsin, counted,
and transferred to a T75 tissue culture flask at a concentration of 2000 cells/cm2. Isolated
cells were characterized according to the guidelines provided by the International Society
for Cell and Gene Therapy (ISCT) [96]. MSCs between passages 3 and 6 were used for
the experiments.

4.3. Wet-Lab Experimental Conditions

The experimental setup consisted of MSC culture obtained from three independent
donors on several different bioactive glasses (and the respective Control conditions), using
5000 cells per disc at 37◦C, 5% CO2, for seven days. At the endpoint, the supernatants
were collected for EV isolation through ultracentrifugation at 100,000× g for 2 h at 4 ◦C.
The pellet enriched in EVs was then resuspended in 500 µL of Phosphate Buffer Saline
(PBS 1×), and the EV protein content was evaluated through mass spectrometry. The initial
data belonging to three donors contained the mass spectrum peak area from the samples of
each participant. The following experimental conditions were tested:

• cell cultures on “SBA2”, “SBA3”, and “ST”, which are undoped bioactive glasses
(i.e., controls or abbreviated as ctrl). Their composition was reported in Tables 9 and 10.

• cell cultures on “SBA2”, “SBA3”, and “ST” modified bioactive glasses doped with
silver, copper, and tellurium, respectively (i.e., doped).

• cell culture on “Plastic”, a baseline condition without the presence of biomaterials
(i.e., plast)

The laboratory experiments aimed at establishing protein content modifications: those
occurring between the doped glasses and the “plastic” condition could be a consequence of
the presence of the bioactive glass. Furthermore, protein expression altered between the
doped glasses and the respective control glass should be due to the metal ion doping [97].
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Also, in vitro, the “Plastic” condition represents the absence of biomaterial, i.e., the phys-
iological condition. Thus, comparing the doped conditions and the plastic parallels the
comparison between normal tissue and implant. It should be remarked that there were no
experimental differences between donors (culture conditions, number of wells, time-point,
cell density, etc.).

4.4. Mass Spectrum Summary

Sample processing for MS analysis and data collection was conducted at the Mass
Spectrometry unit of the University of Piemonte Orientale (Novara, Italy). EVs were
lysed with RIPA buffer and sonicated. Proteins were precipitated with cold acetone,
reduced in 25 µL of 100 mM NH4HCO3 with 2.5 µL of 200 mM DTT (Merck, Rahway,
NJ, USA) at 60 ◦C for 45 min and then alkylated with 10 µL 200 mM iodoacetamide
(Merck) for 1 h at RT in dark conditions. Digested peptides were analyzed with a UHPLC
Vanquish system (Thermo Scientific, Rodano, Italy) coupled with an Orbitrap Q-Exactive
Plus (Thermo Scientific, Rodano, Italy). Peptides were separated by a reverse phase column
(Accucore™RP-MS 100 × 2.1 mm, particle size 2.6 µm). The column was maintained at
a constant temperature of 40 ◦C at a flow rate of 0.200 mL/min. Mobile phase A and B
were water and acetonitrile, respectively, both acidified with 0.1% formic acid. The analysis
was performed using the following gradient: 0–5 min from 2% to 5% B; 5–55 min from
5% to 30% B; 55–61 from 30% to 90% B and hold for one minute, at 62.1 min the percentage
of B was set to the initial condition of the run at 2% and hold for about 8 min in order to
re-equilibrate the column, for a total run time of 70 min. The mass spectrometry analysis
was performed in positive ion mode. The ESI source was used with a voltage of 2.8 kV.
The capillary temperature, sheath gas flow, auxiliary gas, and spare gas flow were set at
325 ◦C, 45 arb, 10 arb, and 2, respectively. S-lens was set at 70 rf for the acquisition of
spectra, and a data-dependent (ddMS2) top-10 scan mode was used. Survey full-scan MS
spectra (mass range m/z 381 to 1581) were acquired with resolution R = 70,000 and AGC
target 3 × 106. MS/MS fragmentation was performed using high-energy c-trap dissociation
(HCD) with resolution R = 35,000 and AGC target 1 × 106. The normalized collision energy
(NCE) was set to 30. The injection volume was 3 µL. The acquired raw MS data files were
processed and analyzed using Proteome Discoverer with Chimerys (v3.0.0.757, Thermo
Fisher Scientific). SequestHT was used as a search engine, and the following parameters
were chosen. Database: Homo sapiens (Uniprot, downloaded on 1 February 2018) enzyme:
trypsin; max. missed cleavage sites: 2; static modifications: carbamidomethyl (C); dynamic
modifications: oxidation (M); precursor mass tolerance: 10 ppm; fragment mass tolerance:
0.02 Da. Only peptides and proteins with FDR value < 0.01 were reported (fixed cut-off).
An abundance of identified peptides was determined by label-free quantification (LFQ)
using match between runs.

4.5. Computational Resources

All numerical experiments of the proposed analysis pipeline were demonstrated on
commodity hardware: a Dynabook (Tokyo, Japan) laptop computer equipped with an Intel
i5 CPU and 16 GB RAM. This choice ensured the reproducibility of the current analysis
sequence by other groups or researchers because it does not require intensive resources
such as cloud or cluster computing.

4.6. Dry-Lab Experimental Sequence

The proposed workflow, starting from the raw mass spectrum peak area, involved the
following steps:

1. The raw values from the three donors were log-transformed
2. The log-transformed values were clustered, and the values of the same cluster were

taken to ensure analysis of similar data representing the same biological phenomena
3. Each value was labeled as outlier (potential “anomaly” or extreme variation) or not

applying Isolation Forest
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4. Computed the distance between outlier proteins in the donors’ 3D space to identify
abnormal variations in the EV-related protein expression

4.6.1. Proposed Sequence: Log-Transformation Preprocessing

The log transformation of the raw peaks was performed because mass spectrometry
data can have a wide range of intensities, and some peaks might be much larger than others
due to various factors such as instrument variability, sample concentration, and ionization
efficiency. Indeed, log transformation helps normalize the data by compressing the dynamic
range and making smaller peaks more visible. Additionally, log transformation can reduce
the impact of random noise in the data. Noise often contributes more to the lower intensity
peaks, and by taking the logarithm, the noise is dampened, making it easier to distinguish
valid signals from noise.

4.6.2. Proposed Sequence: Clustering

OPTICS (Ordering Points To Identify the Clustering Structure) is a data clustering
algorithm used in machine learning to identify natural clusters and their hierarchies in a
dataset [98]. It is handy for datasets with varying densities, irregular shapes, and noise.
OPTICS is an extension of the DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) algorithm [99], which aims to discover clusters based on the density of
data points.

In OPTICS, two main parameters are to be evaluated: core (minPts) and reachability
distances (also called ϵ parameter). The concept of “reachability distance” means that for a
data point P, the reachability distance to another data point Q is defined as the maximum
distance between P and Q, such that P can be directly reached from Q while staying within
a predefined neighborhood size. Instead, a data point’s core distance is the smallest such
that there are at least a certain number of points within that distance, forming a dense
region around the point. In the current investigation, a reachability parameter of 0.05 and a
minPts parameter of 50 were applied.

The effect of clustering all log-transformed peak values is shown in Figure 5. By
employing only values found in the blue cluster, the analysis focused on finding aberrant
proteins inside a group with similar expression profiles, excluding proteins markedly
belonging to other clusters that probably portray different biological phenomena. Indeed,
among the different biological activities depicted in Figure 5, the values inside the blue
cluster might represent the most relevant biological organization, also because peak areas
were positive in all three donors (Figure A5). When negative peaks appear in the mass
spec chromatogram, particularly in the total or extracted ion chromatogram, it could be
attributed to various factors. One possible explanation could be compounds with higher
proton affinity co-eluting.

Figure 5. Cont.



Int. J. Mol. Sci. 2024, 25, 3560 19 of 33

Figure 5. All data from the three donors and each experimental condition underwent automatic labeling
to store only uniformly distributed values: the points in the blue cluster were retained in the next steps
of the experimental sequence. The other colors represent the additional clusters identified by OPTICS.

In proteomics, clustering methods such as hierarchical clustering or k-means clus-
tering are often applied to identify groups of proteins with similar expression patterns
or functional relationships. However, on our dataset, OPTICS performed better than
classic clustering methods; this tendency is also confirmed in other sources from the
literature [100].

4.6.3. Proposed Sequence: Outlier Detection by Isolation Forest

Isolation Forest is a machine-learning algorithm for anomaly detection and outlier
identification [101]. Isolation Forest conceptualizes that anomalies are usually rare instances
that can be “isolated” more quickly than regular instances. The algorithm constructs a
binary tree-like structure in which each internal node represents a feature and a split
point. In contrast, each leaf node represents an isolated instance or an anomaly. To detect
anomalies, the algorithm calculates the path length from the root of the tree to the leaf
where a data point resides. Anomalies are expected to have shorter paths because they
are isolated more quickly. The average path length of a data point across all trees in the
forest is used as a score of atypical expression. Smaller average path lengths indicate higher
anomaly scores.

As depicted in Figure 6, the Isolation Forest identified a set of core values in the
distribution that are close to each other: these values were marked as black dots and could
be considered those with similar peak areas. To find proteins showing extremely changing
behavior between experimental conditions, only the colored values were retained for being
considered outliers by the algorithm. Among the outliers, the possibility of finding proteins
with unusual expression in the three experimental conditions might be high. Please note
that the “plast” condition was the same in all three graphs.

Figure 7 reports only the values of protein expression kept for further analysis.

Figure 6. Values from the three donors marked as black dots were considered inliers, thus close to
each other, in the three experimental conditions (Plast, Control, and Doped) by the Isolation Forest
algorithm, whereas colored points were those showing more relevant changes (aka outliers).
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Figure 7. Retaining only the values considered outliers by Isolation Forest. The three axes represent
the three donors.

4.6.4. Proposed Sequence: Distance Metric

Euclidean distance measures the straight-line distance between two or three points in
Euclidean space; in mathematics, Euclidean space refers to the geometric space of classical
Euclidean geometry, the familiar two- and three-dimensional space where the Pythagorean
theorem holds. Euclidean distance is often used to quantify the similarity or dissimilarity
between two points in space. In machine learning, Euclidean distance is commonly used in
clustering, classification, and nearest-neighbor algorithms to measure the distance between
data points. Figure A6 summarizes all distances between proteins in the Control (x-axis)
versus Doped (y-axis) conditions. Figure A7 shows distances between protein expression in
the Plastic (x-axis) versus Doped (y-axis) conditions. Lighter values display higher distance,
meaning dissimilarity. The variations measured by the Euclidean distance for the same
type of protein are the diagonal of the matrix shown in Figures A6 and A7. These distances
were all gathered and thresholded to classify instances as anomalies. The threshold was the
mean plus a standard deviation. The mean plus one standard deviation is a measure that
provides information about the spread or dispersion of a set of data in a normal distribution.
In a normal distribution, approximately 68% of the data falls within one standard deviation
of the mean [102].

The Figures 8 and 9 collect the sorted Euclidean distances as bar plots. The threshold
is represented by the vertical dashed line. Only the proteins above the threshold were
identified as “anomalies” and kept for final evaluation. During the procedure, a single
threshold has been selected as a boundary rule to classify a protein as aberrant or not based
on Euclidean distance. However, each distance could be evaluated individually because
some appear more prominent than others, and natural gaps are observable in the bars of
Figures 8 and 9.

Figure 8. Euclidean distances between the Control and Doped conditions. The left panel is “SBA2”
condition, the central image the “SBA3”, whereas the right one is “ST”. The statistical threshold is the
red vertical line.
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Figure 9. Euclidean distances between the Plastic and Doped conditions. The left panel is “SBA2”
condition, the central image the “SBA3”, whereas the right one is “ST”. The statistical threshold is the
red vertical line.

It should be remarked that the anomaly detection sequence proposed in the current
study targets three-donor experiments and employs the L2-norm as a metric to judge the
outliers. Experiments involving large cohorts of subjects might replace the Euclidean metric
with a different distance function better suited to address the “curse of dimensionality”,
as it might lead to inconsistencies on high-dimensional data [103]. However, it has been
found that for noncentral t-distributions, the Euclidean distance remains highly effective
even when dealing with higher dimensions.

5. Conclusions

In the case of a limited sample size, statistics should be managed accurately. The
current study proposed an analysis sequence to evaluate protein expression from the actual
values of the subjects involved in an experiment, exploiting machine-learning anomaly
detection techniques. The proposed procedure might support and assist researchers in
assessing findings when employing small experimental datasets by finding abnormal
protein behavior in the data. Attracting the researcher’s attention to individual proteins in
different ways compared to standard statistical testing can provide additional evidence or
reveal hidden aspects of the experimental design. The methodology has been verified in
an experimental setting where the EV protein content of MSC cultured on three bioactive
glasses, doped or not with metallic ions, has been investigated. The procedure identified a
subset of proteins that showed highly changing behavior between experimental conditions:
the effect of ion doping is described by a peculiar set of abnormal proteins each metal
activates. Conversely, comparing doped biomaterials and the baseline plastic scaffold
involved a mutual set of proteins. Some proteins were significant at the t-test, and others
had a high variance pattern between experimental conditions. The additional knowledge
of the data under exam offered by this technique might provide further understanding of
the experimental setting and the outcomes it provides.
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Abbreviations
CPU Central Processing Unit
Ctrl Control bioactive glasses
CV Coefficient of Variation
BMP Bone Morphogenetic Proteins
DMEM Dulbecco’s Modified Essential Medium
EV Extracellular Vesicles
ISCT International Society for Cell and Gene Therapy
ML Machine Learning
MSC Mesenchymal Stem Cells
MS Mass Spectrometry
Plast Experimental condition on Plastic material (baseline)
RAM Random Access Memory
SBA2 Experimental setting involving bioactive glass doped or not with silver
SBA3 Experimental setting involving bioactive glass doped or not with copper
ST Experimental setting involving bioactive glass doped or not with tellurium

Appendix A. Theoretical Proteomic Scenario

This section analyzes theoretical proteomic small sample data, describing the effect
of statistics on the hypothetical proteins called Alpha and Omega. Furthermore, applying
a similarity measure, such as the Euclidean distance, will be shown. For example, one
might use statistical tests in small sample datasets to make inferences about population
parameters. At the same time, distance functions can provide insights into the local
relationships and patterns within the data.

Appendix A.1. A Toy Example on Proteomics’ Small Sample Dataset

This paragraph reports a theoretical case scenario of diverging patterns in protein
expression between experimental conditions to give a practical example of the situations
one could face in the case of a small proteomic dataset from three donors. For instance,
an experimental setup collected data representing the protein expression levels of three
donors (“A”, “B”, and “C”) in two laboratory conditions (Exp. 1 and Exp. 2). A GAMMA
hypothetical protein expression in the two experiments is reported in Table A1.

Table A1. Theoretical protein expression in three donors (Protein GAMMA).

Donor Exp. 1 Exp. 2 ∆ 1

A 1 3.5 2.5
B 2 3.25 1.25
C 1.5 2.9 1.4

1.5 3.2 1.71 Mean (µ)
0.5 0.3 0.68 St. Dev. (σ)

1 Difference between experimental conditions.

According to the Shapiro–Wilk Test (p = 0.3621), both distributions conform to nor-
malcy, and no outliers are detected with the Tukey Fence test (k = 1.5); thus, the next step
in a hypothetical analysis could be verifying statistically if the experimental conditions
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produced diverging outcomes. A usual choice could be the two-tailed t-test attempting to
verify wherever:

• H0 : µ1 = µ2
• HA : µ1 ̸= µ2

using the formula t = µ∆
σ∆√

n
. The H0 represents the null hypothesis (in simple words, “nothing

is going on” [104]), whereas the alternative hypothesis is often the one an investigator
hopes to advance. From the data collected in Table A1, the t-test will appear statistically
significant (p = 0.0489, t = 4.3564, d f = 2), therefore implying the rejection of the H0 and
the acceptance of HA. Figure A1 shows the two hypothetical distributions and highlights
the difference between averages that could be interpreted as not given by chance.
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Figure A1. Distributions of the values from the three donors in Table A1 (Protein GAMMA). There is
a statistically significant difference between experimental conditions, exemplified by the distance
between averages.

During the same theoretical laboratory experiment, the levels recorded in another
protein called OMEGA were collected in Table A2. In this case, donor “C” levels are
markedly under-expressed in the second experimental condition, resulting in a t-test not
significant (p = 0.7060, t = 0.4350, d f = 2). Also, in this theoretical situation, distributions
are assumed to be normal (Shapiro–Wilk Test with p = 0.9101, no outliers found with the
Tukey Fence method).

Table A2. Theoretical protein expression in three donors (Protein OMEGA).

Donor Exp. 1 Exp. 2 ∆ 1

A 1 3.5 2.5
B 2 3.25 1.25
C 2.5 0.5 −2

1.83 2.41 0.58 Mean (µ)
0.76 1.66 2.32 St. Dev. (σ)

1 Difference between experimental conditions.

The theoretical distributions of the OMEGA protein levels in the two experiments
are illustrated in Figure A2. The two shapes overlap consistently with averages close to
each other.

Observing the absolute value difference in the two experimental conditions as shown
in Figure A3, one could argue the under-expression for protein OMEGA was not detected
statistically due to the negative shift caused by donor “C” on the average values of the
second experiment.
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Figure A3. Hypothetical (absolute) differential expression of the proteins GAMMA and OMEGA in
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Statistical power is the probability that a statistical test will reject a false null hypothesis
correctly. In other words, it is the likelihood of detecting a true effect if it exists. In the
context of small samples, statistical power can be particularly challenging because smaller
sample sizes may have less ability to detect actual effects. With such small samples as
found in this toy example, statistical power is typically low, making it difficult to detect
true effects even if they exist. Indeed, the theoretical results of protein GAMMA might
be exaggerated (Cohen’s d = 2.5152) propounding for a cautionary interpretation of the
statistical results, whereas for protein OMEGA Cohen’s d was 0.2511.

Appendix A.2. Proposed Alternative Data Evaluation Method

Another way to study the magnitude of the changes could be by calculating the dis-
tance between observations as shown in Figure A4. The axes represent each subject “A”,
“B”, and “C” expression levels for the proteins GAMMA and OMEGA of Tables A1 and A2.
The lines joining the coordinates are the Euclidean distances between observations. The ad-
vantage of considering distances between actual values is to move from a three-dimensional
subject’s space to a one-dimensional vector of distances describing the shift between values
in the two experimental conditions for each protein.

A distance metric, also known as a distance function or similarity measure, is a
mathematical function that quantifies the “distance” or “closeness” between two objects
in a space. These descriptors define the similarity or dissimilarity between data points,
providing a basis for comparing and analyzing their relationships. The Euclidean distance
protein GAMMA distance was 3.126, whereas OMEGA was 3.437. Despite the t-test not
finding a significant difference between experimental conditions in OMEGA, the distance
function could report that the changes in three donors merit further attention.
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Appendix B. Additional Definitions and Images

This section collects general definitions, explanations, and additional figures or tables.

Appendix B.1. Mass Spectrometry

Mass spectrometry allows researchers to determine the mass-to-charge ratio of ions,
which provides information about the composition and structure of molecules, including
proteins [105]. To analyze proteins using mass spectrometry, they are typically digested into
smaller peptide fragments, often done using enzymes such as trypsin. Peptides are more
amenable to mass spectrometry analysis because of their smaller size. The digested peptide
fragments are introduced into the mass spectrometer after being converted into gas-phase
ions. The ionization process is typically done through various ionization techniques, such as
electrospray or matrix-assisted laser desorption/ionization. Once ionized, the peptides are
subjected to mass analysis to measure the ions’ mass-to-charge ratio (m/z). The resulting
data are presented as a mass spectrum, showing ions’ intensity at different m/z values.
The obtained mass spectra are compared to databases of known protein sequences to
determine the proteins’ identity in the sample based on the masses of the peptides and their
sequence information (aka peptide identification) [106]. In addition to identification, mass
spectrometry can also be used to quantify proteins by comparing the intensity of peptide
ions between different samples, which can provide insights into the relative abundance of
specific proteins.

Appendix B.2. Outliers

An outlier is an observation or data point that significantly differs from the majority
of other observations in a dataset: outliers are data points that deviate substantially from
the overall pattern or distribution of the rest of the data; they are often located far from
the mean or median of the dataset. Outliers can be found in various data types and
impact the results of statistical analyses. Outliers can strongly influence statistical measures
such as the mean and standard deviation; therefore, outliers can significantly skew these
measures [107]. They also could represent unusual or rare events, errors in data collection,
or extreme values that are genuinely part of the data distribution. Indeed, outliers can
result from genuine variability in the data, but they also could be measurement errors or
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anomalies in the data collection process [108]. For this reason, understanding the causes
of outliers is important for deciding how to handle them [109]. Common types of outliers
could be:

• outliers impacting the entire dataset and characterized by extreme values that deviate
from the overall pattern of the data. They can significantly affect summary statistics
and models being usually referenced as global outliers

• points considered unusual or extreme within a specific subgroup or context may not
be outliers when the entire dataset is considered. Detecting these types of points
requires considering subsets of the data, and are called contextual outliers.

• Positional outliers are outliers that deviate from the typical position within a distribu-
tion. These are identified based on their location in relation to measures such as the
mean, median, or quartiles.

• Outliers that cause the distribution of the data to be skewed; they can have a substantial
impact on the shape of the distribution, making it asymmetrical (aka skewed outliers).

• Groups of observations that collectively deviate from the expected pattern may not
be identified when examining individual data points but become apparent when
considering groups of observations (aka collective outliers).

• In multivariate analysis, observations that deviate from the overall pattern in a multi-
dimensional space may be considered outliers.

• Masked outliers are not immediately apparent in univariate analysis but become
noticeable when considering interactions or relationships between variables. These
outliers may affect the results of statistical models.

• Unexpected events or changes in the underlying process generating the data might
produce novel occurrences that could be marked as outliers (i.e., innovational outliers).

• Points with values higher or lower than the majority of the data significantly impact
the mean and standard deviation (i.e., additive outliers).

Outlier detection is a complex process, as numerous types of outliers may exist in a
dataset; the attributes of the data may have intricate dependencies on each other, and there
is no limit to the possible ways in which they could interact.

Appendix B.3. Protein Expression Points Selected by Clustering

Clustering in proteomic expression levels can be a powerful technique for selecting
data subsets based on similarities or patterns in protein expression. The OPTICS algorithm
identified strictly positive values belonging to one cluster, ensuring an unsupervised data
selection focusing on samples within the blue cluster that could exhibit similar protein
expression patterns or represent closer biological conditions or phenotypes.

Figure A5. Protein expression values from the three subjects belonging to the blue cluster retained
for further analysis.
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Appendix B.4. Matrices of Euclidean Distances

When it comes to generating heatmaps for proteomics, the Euclidean distance is a
widely used method, which is often considered to be a standard. This distance metric
is based on the straight-line distance between two points, and it is used to calculate the
similarity or dissimilarity between different samples or variables. Generally, this measure is
favored because it is easy to compute and interpret, and it provides a good balance between
sensitivity and robustness [110].

Figure A6. Heatmap with Euclidean distances between the Control and Doped conditions. The left
panel is “SBA2” condition, the central image the “SBA3”, whereas the right one is “ST”.

Figure A7. Heatmap with Euclidean distances between the Plastic and Doped conditions. The left
panel is “SBA2” condition, the central image the “SBA3”, whereas the right one is “ST”.

Appendix B.5. Mean Variability in Each Experiment

Table A3. Mean variance on all experiments from Tables 7 and 8.

Biomaterial Mean Var. Ctrl Mean Var. Doped Mean Abs Diff.

SBA2 5.22 1.17 4.54
SBA3 1.91 1.3 1.66

ST 0.59 1.36 0.89

Biomaterial Mean Var. Plast Mean Var. Doped Mean Abs Diff.

SBA2 0.43 0.51 0.34
SBA3 0.15 0.53 0.46

ST 0.65 0.56 0.68

Table A4. Mean CV on all experiments.

Biomaterial Mean CV Ctrl Mean CV Doped Mean Abs Diff.

SBA2 17.563 8.594 8.969
SBA3 8.442 8.394 0.048

ST 5.388 7.591 2.203

Biomaterial Mean CV Plast Mean CV Doped Mean Abs Diff.

SBA2 3.1 4.271 1.171
SBA3 1.555 3.485 1.929

ST 4.359 4.262 0.097
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Appendix C. Gene Ontology Enrichment Analysis

Gene ontology enrichment analysis was included to assess the functional significance
of the sets of abnormal proteins in each experimental condition. The following tables report
the biological processes, molecular functions, and cellular components associated with the
given protein list in homo sapiens.

Table A5. Ctrl or silver doped bioactive glass.

Ontology Accession GO Class

Biological Process - -

Molecular Function GO:0042731 PH domain binding

Cellular Component GO:0001533 Cornified envelope
GO:0099080 Supramolecular complex

Table A6. Ctrl or copper-doped bioactive glass.

Ontology Accession GO Class

Biological Process GO:0071830 triglyceride-rich lipoprotein
particle clearance

Molecular Function - -

Cellular Component - -

Table A7. Ctrl or tellurium-doped bioactive glass.

Ontology Accession GO Class

Biological Process - -

Molecular Function - -

Cellular Component GO:0099535 synapse-associated
extracellular matrix

GO:0005788 endoplasmic reticulum lumen

Table A8. Plast or silver doped bioactive glass.

Ontology Accession GO Class

Biological Process

GO:0051291 protein hetero-oligomerization
GO:0018149 peptide cross-linking
GO:0045684 positive regulation of epidermis development
GO:0045103 intermediate filament-based process
GO:0097435 supramolecular fiber organization
GO:0009888 tissue development
GO:0030855 epithelial cell differentiation
GO:0048513 organogenesis

Molecular Function GO:0005198 structural molecule activity

Cellular Component

GO:0001533 cornified envelope
GO:0099080 supramolecular complex
GO:0045111 intermediate filament cytoskeleton
GO:0062023 collagen-containing extracellular matrix
GO:1903561 extracellular vesicle
GO:0005615 extracellular space



Int. J. Mol. Sci. 2024, 25, 3560 29 of 33

Table A9. Plast or copper-doped bioactive glass.

Ontology Accession GO class

Biological Process

GO:0051291 protein hetero-oligomerization
GO:0018149 peptide cross-linking
GO:0042730 fibrinolysis
GO:0045684 positive regulation of epidermis development
GO:0045103 cytoskeleton intermediate filament process
GO:0097435 supramolecular fiber organization
GO:0008544 epidermis development
GO:0030855 epithelial cell differentiation
GO:0043588 skin development

Molecular Function GO:0005198 structural molecule activity

Cellular Component

GO:0001533 cornified envelope
GO:0099080 macromolecular complex
GO:0045111 intermediate filament cytoskeleton
GO:0005788 endoplasmic reticulum lumen
GO:0062023 collagen-containing extracellular matrix
GO:0043230 extracellular organelle
GO:0031982 extracellular vesicle
GO:0005615 extracellular space

Table A10. Plast or tellurium-doped bioactive glass.

Ontology Accession GO class

Biological Process
GO:0018149 peptide cross-linking
GO:0045103 cytoskeleton intermediate filament-based process
GO:0008544 epidermis development

Molecular Function GO:0005198 structural molecule activity

Cellular Component

GO:0001533 cornified envelope
GO:0099081 supramolecular polymer
GO:0045111 intermediate filament cytoskeleton
GO:0030312 external encapsulating structure
GO:0043230 extracellular organelle
GO:0031982 extracellular vesicle
GO:0005615 extracellular space

The statistical analysis tool selected was PANTHER overrepresentation test (ver-
sion 18.0), whereas the annotation software was https://zenodo.org/records/10536401,
15 November 2023. Fisher’s exact test was performed with FDR correction.
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