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Abstract
Multiple systems estimation using a Poisson loglinear model is a standard approach to quantifying hidden populations where
data sources are based on lists of known cases. Information criteria are often used for selecting between the large number
of possible models. Confidence intervals are often reported conditional on the model selected, providing an over-optimistic
impression of estimation accuracy. A bootstrap approach is a natural way to account for the model selection. However,
because the model selection step has to be carried out for every bootstrap replication, there may be a high or even prohibitive
computational burden.We explore the merit of modifying the model selection procedure in the bootstrap to look only among a
subset ofmodels, chosen on the basis of their information criterion score on the original data. This provides large computational
gains with little apparent effect on inference. We also incorporate rigorous and economical ways of approaching issues of the
existence of estimators when applying the method to sparse data tables.

Keywords Bias-corrected bootstrap · Computational economy · Human trafficking · Information criterion/criteria · Multiple
systems estimation

1 Introduction

Multiple systems estimation has been used as an approach
for quantifying hidden populations of many different kinds.
It has been used specifically for human trafficking popu-
lations based on source data such as police records, non-
governmental agencies, and outreach services. For an overall
survey taking a view both of the range of applications and
of methodology, see Bird and King (2018). For a recapitu-
lation of a number of multiple systems estimation methods
in policy contexts along with a survey of relevant data sets,
see Silverman (2020). With administrative data sets becom-
ing more publicly available over time, and data collection
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procedures reaching a wider and larger part of human traf-
ficking populations, computationally stable and inexpensive
multiple systems estimation procedures are desired for both
researchers and practitioners.

Poisson loglinear regression (Cormack 1989) is one of the
standard approaches. Recent developments include various
approaches to model selection, and procedures tailored for
sparse overlap in combinations of lists (Cruyff et al. 2017;
Chan et al. 2021).

The loglinearmethod requires the choice of amodel, spec-
ifyingwhich terms are actually fitted to the data, and typically
(Baillargeon and Rivest 2007; Silverman 2014) estimation is
then conditional on the model selected for inference. What-
ever approach is used in the frequentist paradigm, inference
conditional on the selected model is likely to result in con-
servative standard errors and confidence intervals.

A bootstrap approach, for example as set out in Chan
et al. (2021, Sect. 3.3), makes it possible in principle to
account for the model choice step in the inference procedure.
A stepwise model choice method may be sufficiently fast
computationally to make the bootstrap feasible. However,
a longer established approach to model choice (Baillargeon
andRivest 2007;Bales et al. 2015) is to choose among all pos-
siblemodels using the Bayes information criterion (BIC) and
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the first aim of this paper is to extend the bootstrap method-
ology to this method. The focus on the BIC is intended as
illustrative not prescriptive; a topic for futureworkwould be a
comparison with other model choice criteria in the bootstrap
context.

If there are several lists, then the number of possible
models is large and, as the BIC-based approach considers
every possible model, the bootstrap approach leads to a com-
putationally expensive and time-consuming procedure. In
response to this limitation, we develop a modified bootstrap
procedure that, for each bootstrap replication, only consid-
ers models that have high-ranking BIC scores on the original
data. We also give some consideration to other notions of
closeness to the best-fitting model. While we have only con-
sidered data sets which do not have concomitant information
such as time dependence, the basic principles of our approach
can be extended if such information is available and one
wishes to choose between a large number of models. It is
unfortunate that there are, to our knowledge, no publicly
available data sets of that kind.

The current paper has been written from a frequentist
viewpoint to encourage model selection to be taken into
account when assessing estimation accuracy. There are sev-
eralBayesian approacheswhich, of their nature, avoid a focus
on a single selected model. King and Brooks (2001) pio-
neered the use of a Markov Chain Monte Carlo approach to
model fitting and averaging in this context. A comparison of
a number of frequentist and Bayesian methods, including an
MCMC approach, is given by Silverman (2020).

A second focus of this paper is on dealing rigorously and
economically with issues that arise when some combinations
of lists are not represented in the observed data. This sparse-
ness of data is typical in the human trafficking context. This
part of the work builds on the results of Fienberg and Rinaldo
(2012a, b), which deserve greater attention in this area.

Detailed consideration is given to the UK Home Office
data set on human trafficking victims (Home Office 2014), a
data set on human trafficking in the New Orleans area (Bales
et al. 2020), a data set on death occurrences in the Kosovo
conflict from the late 1990s (Ball andAsher 2002), and a data
set on sex-trafficked women in Korea (Ball et al. 2018). The
results indicate that our modification of the bootstrap pro-
cedure provides significant computational savings without
altering the inference substantively. The newly-developed
bootstrap procedure is applied tomultiple systems estimation
data sets, but the broad approachhas obvious utility and appli-
cation to other contexts where a statistical procedure involves
the choice between a large number of candidatemodels using
some numerical criterion and a bootstrap approach is used to
carry out inference taking into account the effect of model
selection.

The paper is outlined as follows. Section2 details the Pois-
son loglinear model, and sets out and develops the proposed

bootstrap approach. Section3 considers the construction and
existence of estimators when the model is applied to sparse
multiple systems estimation data sets. Section4 presents
results based on empirical applications. Section5 explores
further ideas for searching for optimal models within boot-
strap resamples. Software to implement the methods of the
paper and to reproduce the results is available in the most
recent version of the SparseMSE R package (Chan et al.
2023).

2 Themodel and bootstrap

This section presents the Poisson loglinear model, sets out
how a bootstrap approach can take account of model selec-
tion, and develops the idea of substantially reducing the
computational burden by restricting the models considered
in the bootstrap step.

2.1 The Poisson loglinear model

Suppose that there are t lists on which observed cases may
fall. The set of lists on which a case is present is called its
capture history ω, a subset of {1, . . . , t}. Define the order of
a capture history to be the order of this subset. Define the
capture count Nω to be the number of cases with capture
history ω.

Let N obs be the vector of the 2t − 1 observable capture
counts {Nω : ω �= ∅}. Define Ntotal = ∑

ω �=∅ Nω, the number
of cases actually observed. The count N∅, not included in
N obs, is the ‘dark figure’ of cases that do not appear on any
list.

Amodel is defined by specifying a collection� of capture
histories, always including the capture history ∅ and the t
capture histories of order 1. The model has parameters αθ

indexed by the capture histories in �, and the capture counts
are modelled as independent random variables with

Nω ∼ Poisson(μω); logμω =
∑

θ⊆ω,θ∈�

αθ . (1)

Note that both the capture counts Nω and the model param-
eters αθ are indexed by capture histories. Wherever possible
we useω as a suffix when the capture history refers to a count
and θ when it indexes a parameter.

The parameters can be estimated by a generalized linear
model approach, yielding parameter estimates α̂θ and hence
expected capture count estimates μ̂ω. The dark figure N∅
has expected value expα∅ and so an estimate of the total
population size M is exp α̂∅ + ∑

ω �=∅ Nω.
It is natural to restrict attention to hierarchical models

defined to have the property that if θ is in � then so are all
θ ′ that are subsets of θ . This can still leave a large number of

123



Statistics and Computing            (2024) 34:44 Page 3 of 10    44 

possible models. For example, for five lists, there are 6893
possible hierarchical models, excluding the non-identifiable
model including all capture histories. In general, let Ht,l be
the set of all hierarchical models for t lists allowing parame-
ters/interaction effects of order up to l. If l is omitted it will
be assumed that l = t − 1.

2.2 The Bayes information criterion

The Bayes information criterion or BIC (Schwarz 1978) is
one of the approaches to model choice implemented by Bail-
largeon andRivest (2007), and is one of the standardmethods
for multiple systems estimation (Cruyff et al. 2017; Chan
et al. 2021). For any particular model �, the BIC value bic�

is defined as

bic� = |�| log Ntotal

+2
∑

ω �=∅
(μ̂ω − Nω log μ̂ω + log Nω!). (2)

To apply the BIC method, for t lists allowing for models of
order up to l, the model inHt,l with smallest bic� is chosen.

There is some ambiguity about the appropriate sample
size to use in the definition. Baillargeon and Rivest (2007)
consider the sample size to be the case sample size Ntotal, the
total number of cases observed. On the other hand another
possibility, regarding the table of capture counts as the data, is
to use the capture sample size2t−1, the number of observable
capture counts. There appears to be no strong argument of
principle to determine which of these should be used.We use
the case sample size because it has become standard in this
field; however our general approach is equally applicable for
the capture sample size, as well as for other scoring criteria
for model choice.

2.3 The bootstrap

The bootstrap is a natural approach to take account of model
selection when assessing the accuracy of estimation. The
whole estimation procedure, including the choice of model,
is carried out on each bootstrap replication. We focus atten-
tion on the bias-corrected and accelerated method set out by
Efron and Tibshirani (1986). This method is second-order
accurate and is invariant under transformation of the param-
eter space.

The multiple systems estimation context allows for vari-
ous computational economies. The B bootstrap replications
are obtained by simulating from a multinomial distribution
with Ntotal trials and event probabilities proportional to the
individual Nω. For i = 1, . . . , B, let M̂boot

i be the estimate
of the total population obtained from the i th bootstrap repli-
cation, and let M̂ be the estimate from the original data.

The bias-corrected and accelerated method makes use of
two control parameters, the bias-correction parameter and
the acceleration parameter. The bias-correction parameter ẑ0
is defined such that �(ẑ0) is the proportion of the M̂boot

i that

are less than M̂ .
Estimating the acceleration parameter â involves a jack-

knife step, leaving out each of the original cases in turn
and calculating an estimate of the population size from the
resulting data. The following approach only requires the cal-
culation of at most 2t −1 estimates. Let �1 be the collection
of all capture histories for which Nω > 0. For each ω in
�1, let M̂(ω) be the estimate of the population size from the
original sample but with Nω replaced by Nω − 1. The num-
ber of estimates M̂(ω) is equal to |�1| ≤ 2t − 1. Once these
have been calculated, the average of the jackknife estimates
is given by

M̂(·) = N−1
total

∑

ω∈�1

Nω M̂(ω)

and the acceleration factor by

â = (1/6)S−3/2
2 S3

where

Sk =
∑

ω∈�1

Nω(M̂(·) − M̂(ω))
k .

As set out byEfron and Tibshirani (1986), the bias-
corrected and accelerated upper end-point of a one-sided
β-confidence interval is the β̃ quantile of the {M̂boot

i }, where

�−1(β̃) = ẑ0 + {ẑ0 + �−1(β)}[1 − â{ẑ0 + �−1(β)}]−1.

Note that, as is the case for the nonparametric bootstrap gen-
erally, the bootstrap replications are drawn with replacement
from the original data, and therefore only the capture histories
observed in the original data can be represented in the boot-
strap samples. The possibility of drawing from a smoothed
version of the original datawhen using the bootstrapwas con-
sidered in somedetail by Silverman andYoung (1987).While
in some circumstances smoothing can yield an improvement
in the accuracy of estimation of a particular property of the
underlying distribution, it can also possibly make matters
worse. The details of any particular case are technical and
somewhat obscure, and so it is safest to make the more con-
servative approach of sampling from the observed data only,
though this is a possible topic for future research.

2.4 Restricting themodels

Unfortunately the bootstrap computation can become pro-
hibitive. If t = 5 and l = 4 then the model choice for
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each data set requires the solution of 6893 generalized linear
model problems. So if there are B bootstrap replications, the
bootstrap process would involve fitting 6893B models, and
therefore is computationally burdensome even with modern
computing speeds.

To reduce the computation tomanageable proportions, we
approximate the bootstrap by restricting to a smaller number
of models. Fix a value ntop, for example ntop = 50. Apply the
Bayes information criterion approach to the original data, and
let Ht,l [ntop] be the set of � in Ht,l giving the ntop smallest
values ofbic�. Then restrict the bootstrap and jackknife steps
to the models in Ht,l [ntop]. Each bootstrap and jackknife
choice will only involve ntop models rather than the much
larger number of all hierarchical models. The motivation is
that even though a bootstrap or jackknife replication may
result in a different choice of model from the original data,
it is intuitively unlikely that a model that scored extremely
badly on the original data would have the best score on the
replication.

2.5 Varying themodels considered

In assessing the effect of choice of ntop we calculate the
bootstrap confidence intervals based on a range of values of
ntop. This can be donewithout performing the full calculation
for each value separately.

1. Fix the largest value nhightop to be considered.
2. For each bootstrap replication i and for each model j in

Ht,l [nhightop ] find the population size estimate and the BIC.

This gives B × nhightop arrays of population size estimates

M̂ ′
i j and of BIC values βi j .

3. For each bootstrap replication i , find the indices of the
record values of the vector −βi j with i fixed. Working

recursively, let j0 = nhightop + 1 and, as long as jk > 1,
define jk+1 = arg min j< jkβi j . This gives a decreasing
sequence jk . Finally construct a sequence of estimates
M̂i j by setting M̂i j = M̂ ′

i jk
for all j ∈ [ jk, jk−1).

4. The array M̂i j gives the bootstrap estimates for each value
of ntop and for each bootstrap replication i . The same
process can be carried out for the jackknife estimates.
The bootstrap confidence intervals for every value of ntop
can then be found.

The main computational burden is in the calculation of the
individual M̂ ′

i j and βi j , so this approach allows for the effect

of all ntop up to a given value nhightop to be calculated for

little extra effort than for the single value nhightop . The maxi-

mum possible value for nhightop is |Ht,l |, the total of all models

considered. Increasing nhightop beyond this value will make no

difference, so we can equally consider this to correspond to
nhightop = ∞, and this is the natural value to use for a general
investigation of the approach.

3 Sparse data

3.1 Constructing estimators

In the context of modern slavery, particularly, it is common
to observe data sets that are sparse in the sense that some
of the Nω are zero. For any capture history ω, define N∗

ω =
∑

ψ⊇ω Nψ , the number of cases observed in the intersection
of the lists inωwhether or not in conjunction with other lists.
Define the parameter θ to be N obs-empty if N∗

θ = 0.
Chan et al. (2021, Section 2.4) set out an algorithm for

sparse tables with models whose parameters have maximum
order 2. The following algorithm is the natural generalization
to N obs-empty parameters of any order.

1. Initially define �† to be the set of all non-null capture
histories and �† = �.

2. For each θ in � for which N∗
θ = 0, record the maximum

likelihood estimator of αθ as −∞ and remove αθ from
the set of parameters �† yet to be estimated.

3. For each such θ also remove from �† all ω for which
ω ⊇ θ (because N∗

θ = 0 the corresponding Nω will all
be zero).

4. Use the standard generalized linear model approach to
estimate the parameters with indices in �† from the
observed counts of the capture histories in �†. The set
�† comprises all the parameters in the model that are not
estimated to be −∞.

This approach allows the parameters to take values in the
interval [−∞,∞), extending the real line only at the neg-
ative end. The value +∞ would not correspond to a finite
parameter in the Poisson distributions of the observations,
but −∞ does make sense because these are parameters in
a loglinear model, where a negative infinite parameter will
correspond to a value of zero in the expected value, and hence
the value, of the observed variable. Following Fienberg and
Rinaldo (2012a, b) we use the term extended maximum like-
lihood for estimates where the value −∞ is allowed. Far
et al. (2021) provide additional information on determining
parameter redundancy for a loglinear model along with a
method for deriving the estimable parameters.

3.2 Existence of estimates

Fienberg and Rinaldo (2012b) show that the existence of the
extended maximum likelihood estimate can be checked by
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Table 1 Four possible observed
data tables for a four list
scenario

A B C D n1 n2 n3 n4

x 13 13 13 13

x 16 16 16 16

x 12 12 12 12

x 11 11 11 11

x x 3 3 3 0

x x 4 4 4 4

x x x 2 2 0 2

x x x 1 0 0 0

x x x 1 0 0 0

the following linear programming problem. For θ ∈ �† and
ω ∈ �† as obtained in the algorithm set out above, define
Aωθ = 1 if θ ⊆ ω and 0 otherwise. Let ν be the vector of
values N∗

θ for θ ∈ �†. Let s∗ be themaximum value of s over
all scalars s and all real vectors x = (xω, ω ∈ �†) satisfying
the constraints

AT x = ν and xω − s ≥ 0 for all ω ∈ �†. (3)

A necessary and sufficient condition for an extended max-
imum likelihood estimate of the parameters to exist is that
s∗ > 0. We will then say that the Fienberg–Rinaldo criterion
is satisfied. For any model where the criterion is not satisfied,
we will define, by convention, bic� = ∞, and so that model
will not be chosen.

The criterion can only fail if there are zeroes in the data
table. If there are no zeroes then setting xω = Nω for all ω

will yield a feasible solution with s = minω∈�† Nω > 0 and
so the criterion will automatically be satisfied.

There is no obvious hierarchical relationship to the pat-
tern of zeroes in the data that will lead to a model failing the
criterion. Consider the example set out in Table 1. The data
vector n2 has two zeroes in positions where n1 is non-zero,
while n3 and n4 each have one more zero than n2. For the
model [123, 14] (A*B*C + A*D in standard R generalized
linear model notation) the Fienberg–Rinaldo criterion is sat-
isfied for n1 and n3 but not for n2 and n4. So while removing
two cells from the support of n1 to get n2 means that the con-
dition becomes violated, removing one more cell from the
support may or may not restore the existence of the extended
maximum likelihood estimate.

In conclusion, it seems advisable always to check the
Fienberg–Rinaldo criterion if the data are sparse. We will
discuss possible economies in this process in Sect. 3.3.

3.3 Economizing the check

Even after restricting to a smaller number of models, both
the jackknife and the bootstrap steps involve evaluating the

estimate for each particular model for a large number of pos-
sible data vectors. We show below that the existence of the
extended maximum likelihood estimate depends only on the
support of the observed capture counts and not on their actual
values. This leads to the following approach, which allows
for the Fienberg–Rinaldo checks to be carried out economi-
cally.

1. Remove from consideration all models which fail the
check for the original data.

2. For the jackknife, check the condition for replications
where the support is different from the original data, that
is where Nω = 1.

3. For the bootstrap, find all the distinct supports among
the bootstrap replications; this will typically be much
lower than the number of bootstrap replications. For each
support, construct a data vector which takes the value 1
on the support and 0 otherwise, and check the condition
for that data vector. The result will hold for all bootstrap
replications with that support.

Theorem The existence of the extended maximum like-
lihood estimate for a given model and data depends only on
the support of the observed capture counts.

Proof : Suppose N (1) and N (2) are two arrays of observed
capture counts with the same support. Given a model �, �†

and �† only depend on the support of the data.
For the model � and the data N (1), suppose that the

Fienberg–Rinaldo criterion is satisfied, with the vector x1

satisfying (3) with min x (1) = s(1) > 0. Now choose an
integer k such that kN (2)

ω ≥ N (1)
ω for all ω, possible because

the support of both vectors is the same. For ω in �†, define
x̃ω = kN (2)

ω − N (1)
ω . Define s̃ = minω∈�† x̃ω ≥ 0. Then, for

each θ in �†, (AT x̃)θ = kN (2)�
θ − N (1)�

θ = kν(2)
ω − ν

(1)
ω .

Now define x (2) = k−1(x̃ + x (1)). Then AT x (2) = ν(2),
and for each ω ∈ �† we have x (2)

ω ≥ k−1(s̃ + s(1)) > 0.
Hence, for the model� and data N (2), the Fienberg–Rinaldo
criterion is also satisfied. By applying the converse argument
exchanging the roles of N (1) and N (2), we conclude that the
criterion is satisfied for either both or neither of N (1) and
N (2), completing the proof.

4 Empirical applications

We apply our bootstrap procedure to four real data sets. All
analyses are, unless otherwise stated, based on 1000 boot-
strap realizations.
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Fig. 1 Estimates and confidence intervals for the five-list UK data.
Blue lines: maximum order 2; red lines: maximum order 4. Dot-dash
horizontal lines: estimate; short dash lines: 80% confidence interval;
solid lines: 95% confidence interval

4.1 UK data

This five-list data set was studied in connection with the UK
Modern Slavery Act 2015 (HomeOffice 2014) and discussed
in detail in Bales et al. (2015). For other analyses and a fuller
discussion, see for example Silverman (2020) and Chan et al.
(2021). Figure1 shows the estimates and confidence bands
for the estimated abundance based on varying choices for
maximum order and ntop. The value ntop = ∞ is used to
denote the full calculation where all possible models are con-
sidered, 1024 models in the case of maximum order 2 and
6893 for maximum order 4. The interval for ntop = 1 is that
obtained if we condition on the model chosen for the original
data by the BIC criterion.

For both values of the maximum order, the results for
ntop = 60 are virtually the same as those considering all
models, while even ntop as small as 10 gives a result which
is very close. Using ntop = 10 will reduce the computation
time for the bootstrap stage by a factor of more than 100
(considerably more for maximum order 4.) Note also how
much wider the confidence intervals are if allowance is made
for the model choice. As one would expect, the bands are
somewhat wider if models of order 3 and 4 are allowed.

4.2 NewOrleans data

This data set (Bales et al. 2020) comprises 186 cases from
New Orleans, distributed across 8 lists. A five-list version is
produced by consolidating the four smallest lists into one.
The results for maximum orders 2 and 4 are virtually identi-
cal, because themodel with best BIC on the original data is of
order 1, and all the other topmodels considered for ntop ≤ 60
have order 2. All models with order 3 or 4 yield higher BIC
values on the original data. There is a very small difference
in the upper 97.5% confidence limit for ntop = ∞, which
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Fig. 2 Estimates for five-list New Orleans data. Dot-dash horizontal
lines: estimate; short dash lines: 80% confidence interval; solid lines:
95% confidence interval. The results for models of maximum orders 2
and 4 are essentially identical

is 1547 for maximum order 4 and 1544 for maximum order
2. Values of ntop greater than 20 give confidence intervals
that are slightly narrow but not dramatically different from
ntop = ∞. An ntop over about 50 makes the difference even
less.

4.3 Kosovo data

Probably the first application of multiple systems analysis in
the human rights context was the estimation of the number of
deaths in the Kosovo conflict in the late 1990s in connection
with the trial of Slobodan Milosevich (Ball and Asher 2002;
Ball et al. 2002). From a total of 4400 cases collated between
four lists, themethod arrived at an estimate of 10,356Kosovar
Albanian deaths. The original analysis narrowed down to
models which fitted the original data table well enough to
yield a chi-squared statistic with a p-value of at least 0.05,
but discarded those which fitted too well, placing an upper
cutoff at p = 0.3. Among the models remaining, the choice
was made by minimizing the chi-squared statistic divided
by the residual degrees of freedom. In fact this model also
minimizes the BIC.

The bootstrap 95% confidence interval conditioning on
this model is [9100, 12000], rounding to the nearest 100; this
accords closely with the profile likelihood 95% confidence
interval [9000, 12100] reported by Ball et al. (2002). It is
instructive to construct confidence intervals taking account
of the model choice, and these are displayed in Table 2. Even
a value of ntop as small as 5 makes some allowance for the
model choice; setting ntop = 10 gives the same confidence
levels (within the rounding error) as if all the models were
considered at the bootstrap stage, with more than a tenfold
improvement in computational burden.

We also considered the possibility of applying the boot-
strap to the original method of model choice. Unfortunately,
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Table 2 Bootstrap confidence intervals for the Kosovo data, rounded
to nearest 100

ntop 80% CI 95% CI

1 [9500, 11300] [9100, 12000]

5 [8500, 11500] [8500, 17000]

10 [7400, 12200] [6900, 18000]

113 (∞) [7400, 12200] [6900, 18000]

Table 3 Bootstrap confidence intervals for various values of ntop, for
the Korea data

ntop 80% CI 95% CI

1 [136, 198] [131, 248]

2 [135, 286] [130, 348]

6 (∞) [135, 288] [128, 349]

of the 1000 replications generated, 67 did not yield any mod-
els at all with chi-squared p-values in the specified range.
With these replications excluded, the bootstrap 95% con-
fidence interval is [7000, 15800]; however because of the
exclusion of 67 replications there is no clear justification for
this result.

4.4 Korean data

This data set was presented and analysed by Ball et al. (2018)
in connection with the quantification of Korean women
forced into sexual exploitation in a particular location dur-
ing the Japanese occupation of Indonesia in World War II.
There are three lists, labelled B, C and D. The total number
of cases observed was 123, of which 12 occur on all three
lists, 54 and 6 on the two-list intersections B∩C and B∩D,
and 5, 5 and 41 on the single lists B, C and D respectively.
The authors’ original analysis used aBayesian nonparametric
latent-class model approach (Manrique-Vallier 2016, 2017)
and provided a population estimate of 137, with a 95% cred-
ible interval of (124, 198).

Because there are three lists, there are eight possible mod-
els of order up to 2. Two of these, [12, 13] and [12, 13, 23],
fail to satisfy the Fienberg–Rinaldo criterion on the original
data and are removed from further consideration. The model
[12, 23] has the lowest BIC score and yields a point esti-
mate for the total population of 157.2, considerably higher
than that produced by the method of Ball et al. (2018). The
80% and 95% confidence intervals for various values of ntop,
rounded to the nearest integer and based on 1000 realiza-
tions, are as shown in the table. The confidence intervals are
all shifted upwards relative to the credible interval found by
Ball et al. (2018).

The result for ntop = 1, conditioning on the best fit-
tingmodel, gives considerably narrower confidence intervals

Table 4 For each data set and for each given value of ntop, the number
of bootstrap replications (out of 1000) for which the minimum BIC
value is obtained within the ntop best models on the BIC criterion for
the original data

ntop 1 5 10 50 100

Kosovo 375 929 997 1000 1000

UK (maxorder 2) 216 583 739 930 954

UK (maxorder 4) 156 622 732 898 943

New Orl (maxorder 2) 357 622 698 915 958

New Orl (maxorder 4) 357 621 697 913 956

than those taking the model selection into account. However,
restricting to the two top models gives results virtually iden-
tical with those obtained by considering all six models for
each realization. There is no pressing computational need to
restrict the number ofmodels considered, but even in this case
that number can be substantially reduced without materially
affecting the result.

4.5 Further considerations

The bootstrap runs for ntop = ∞ facilitate a closer exam-
ination of the intuitive assertion that the BIC values from
bootstrap replications are close to those from the original
data. Let ρi be the Spearman rank correlation coefficient
between the BIC values of the original data and the i th
bootstrap replication, considering allmodelswhere both esti-
mates exist. The average of the ρi is around 0.97 for the
Korea, Kosovo and New Orleans data. For the UK data it is
0.86 or 0.88 for models of orders up to 2 and 4 respectively.

Another approach is to count the number of bootstrap real-
izations for which the globalminimumof theBIC is achieved
within the ntop best models on the original data. See Table
4. The best model for the original data is the best model for
only 15% to 38% of the bootstrap replications.

5 Other possible approaches

5.1 Other measures of closeness

The discussion so far has been based on the intuitive idea
that the best model for a bootstrap replication was likely to
be one that scored well on the original data. In this section,
we consider models that are close to optimal on the original
data in a broader sense.

Define thedistance functionbetween twomodels δ(�,�∗)
to be |���∗|, the size of the symmetric difference between
the two sets of parameters. Define � and �∗ to be k-
neighbours if δ(�,�∗) ≤ k.
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Table 5 Bootstrap confidence intervals for various values of ntop, for
the Kosovo data. The approach using the BIC values only is referred to
as degree 1, while degree 2 uses the BIC ranks of degree 2, tie-breaking
using the original BIC ranks

ntop degree 95% CI

1 1,2 [9100, 12000]

5 1 [7900, 17400]

2 [8000, 13500]

10 1 [6900, 18000]

2 [8000, 17700]

113 (∞) 1,2 [6900, 18000]

For any givenmodel�, define theBIC rank r1(�) to be the
rank of the BIC of the fit withmodel� to the original data, so
that the best fitting model has r1(�) = 1. For integers k ≥ 2,
define rk(�), the BIC rank of degree k, to be the smallest
BIC rank of any (k − 1)-neighbour �∗ of �. The BIC ranks
of all degrees up to any given K can be found recursively
using the following algorithm.

1. Find the BIC ranks r1(�) of all models from the estima-
tion process using the original data.

2. For each �, let N (�) be the set of all 1-neighbours �∗
of �, including � itself.

3. Find the BIC ranks of increasing degree recursively, by
finding

rk(�) = min
�∗∈N (�)

rk−1(�
∗) for k = 2, . . . , K .

The BIC ranks can be used in various ways to explore
notions of closeness to the best model. As before, the basic
principle is to narrow down the class of models considered,
and then only to construct the bootstrap estimates on that
smaller set of models. For example, order themodels in order
of their BIC rank of degree 2, splitting ties by reference to
their original BIC rank, and restrict attention to the ntop mod-
els according to this ordering. We refer to this as the “degree
2” approach and the original method as “degree 1”. Because
both approaches will put the best model for the original data
at rank 1, they will give identical results for ntop = 1, while
for ntop = ∞ both approaches will also give identical results.

Table 5 gives results for the Kosovo data. For ntop = 10,
the confidence intervals using only the BIC values are virtu-
ally identicalwith those obtained considering all 113 possible
models; there is a very small difference in the upper limit
which is subsumed in the rounding. However this approxi-
mation is not achieved by the degree 2 method.

See Fig. 3 for the UK and New Orleans data. For the UK
data the degree 2 approach requires a larger value of ntop to
obtain confidence intervals close to those for ntop = ∞,
though once ntop = 60 there is little to choose. For the
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Fig. 3 Estimate and 95% confidence intervals for values of ntop up to
60, and ntop = ∞, allowingmodels up to order 4. Dashed line: estimate;
black continuous: BIC values only used; red dotted: method using BIC
ranks of degree 2. Top: five-list UK data; bottom: five-list New Orleans
data

NewOrleans data the two approaches give virtually the same
results. Restricting tomodels of order 2 has virtually no effect
for either data set.

For another comparison, for each replication j , suppose
that the model which minimizes the BIC over all models is at
position m(1)

j for the degree 1 approach and m(2)
j for degree

2. For any realization j whose best BIC is observed for the
best BICmodel for the original data,m(1)

j = m(2)
j = 1. Com-

parative box plots omitting such realizations are presented in
Fig. 4. The rankings of the individual optimum BIC models
are clearly lower for the degree 1 than the degree 2 method, a
conclusion confirmed by Wilcoxon paired signed-rank tests.
The overall conclusion of this section is that considering
neighbourhood information about models is an unwarranted
complication.

5.2 Greedy search for BICminimum

An exhaustive search for the BIC minimum involves a large
number of models, and is infeasible for more than about five
lists. Evenwith four or five lists, bootstrap approaches require
approximations. Furthermore, if there is a desire to conduct

123



Statistics and Computing            (2024) 34:44 Page 9 of 10    44 

Kos Kos NO2 NO2 NO4 NO4 UK2 UK2 UK4 UK4

2
5

10
20

50
10

0
20

0
50

0
10

00

BI
C

ra
nk

s

Fig. 4 Boxplots of ranks (log scale) on original data of optimal BIC
over bootstrap replications, omitting replications where the ranks are of
value 1. Green plots: ranks of BIC itself; red plots: ranking using BIC
ranks of degree 2. Data sets/models, left to right: Kosovo; New Orleans
with models of maximum order 2 and 4 respectively; UK maximum
order 2 and 4 respectively

simulation studies then the computational burden becomes
even more of an issue.

A possible alternative is a greedy search from one or
more starting points to find at least a local minimum of the
BIC or other criterion of interest. The obvious starting point
is the order one model with no higher-list terms. At each
stage all the neighbours of the current model are considered,
obtained by either adding or removing a capture history from
the parameter list, but only such that the hierarchical model
property is preserved.

Because this method is quick to compute, it is practicable
to repeat the estimation for each bootstrap replication. There
is no longer any need to restrict to only five lists, so for the
UK and NewOrleans data results were also found for the full
data (six and eight lists respectively). Results are presented
in Table 6.

For the UK five-list data the approach gives a lower esti-
mate and narrower confidence intervals than those obtained
from the consideration of all models. To investigate further,

we used the best minimum from five starting models of order
2, each containing five randomly chosen pairs of lists as
parameters. The same starts were used for the jackknife and
bootstrap replications. The point estimates and confidence
intervals are virtually the sameas if allmodels are considered.
A relatively small number of random starts for the five-list
data thus exposes the existence of the second estimate whose
BIC is lower than the original. Silverman (2020) showed that,
if a Bayesian approach is taken, the posterior for the UK five
list data demonstrates an analogous bimodality.

For the UK six-list data, it is no longer feasible to consider
all models. However as a check, downhill searches from ran-
dom starts were also considered. Even using as many as fifty
starting points never resulted in any estimate different from
the one obtained from a single start from the null model.
Although some downhill starts arrive at an estimate of around
21000, the BIC value is noticeably larger than that obtained
by the search from the null model.

The conclusion is that if downhill searches are used, itmay
be worth investigating random starts with the original data as
a check; if no secondaryminimumof the BIC is found, then it
seems safe to proceed with downhill searching only from the
null model. As for the conclusion that should be drawn for
the UK data, working with the six list data suggests a point
estimate of around 12k with a confidence interval of 10k to
28k. The estimate and lower confidence limit are similar to
those obtained by a different model selection approach in the
original paper (Silverman 2014), though the upper limit is
much higher. From a policy point of view, this is reassuring,
because it is widely acknowledged that the original estimate
obtained in Silverman (2014) is conservative.

6 Concluding remarks

Multiple systems estimation can lead to the need to choose
between a very large class ofmodels.The approacheswe have

Table 6 Bootstrap 95%
confidence intervals for various
datasets, comparing the
downhill search approach with
the consideration of all models.
Numbers correct to the nearest
integer

downhill search all models
estimate 95% CI estimate 95% CI

UK5 all models 12262 [9330, 32115] 25311 [11168, 56052]

UK5 maxorder 2 12262 [9332, 28954] 22991 [11456, 43894]

UK all models 12350 [9622, 27889] six lists

UK maxorder 2 12350 [9643, 25508]

NewOrl5 all models 981 [397, 1564] 981 [397, 1511]

NewOrl5 maxorder 2 981 [397, 1564] 981 [397, 1505]

NewOrl all models 1110 [586, 1512] eight lists

NewOrl maxorder 2 1110 [586, 1512]

Kosovo all lists 10357 [7133, 18681] 10357 [6947, 18010]

Kosovo maxorder 2 14342 [12525, 16477] 14342 [12451, 16273]

Korea 157 [128, 349] 157 [128, 349]
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explored show that it is possible, using appropriate approxi-
mations, to use computer-intensive approaches such as the
bootstrap to take account of the model choice in making
inferences from the data. While we have concentrated on
selecting a single model using BIC, our general approach is
more widely applicable, for example if a different informa-
tion or selection criterion is used, or if results are obtained by
an ensemble of models weighted by reference to BIC or sim-
ilar values. In general, inference conditional on the selected
model or models can lead to optimistic statements about the
uncertainty of estimates, and it is hoped that the work pre-
sented here will help to facilitate more robust assessments of
estimation uncertainty.
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