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Abstract: Bacterial leaf blight (BLB) is a devastating disease caused by Xanthomonas oryzae pv.
oryzae (Xoo), which poses a significant threat to global rice production. In this study, a genome-
wide association study (GWAS) was conducted using the genotyping-by-sequencing (GBS) approach
to identify candidate single nucleotide polymorphisms (SNPs) associated with BLB resistance genes.
The study utilized 200 indica rice accessions inoculated with seven distinct Xoo isolates and filtered
highly significant SNPs using a minor allele frequency (MAF) of >5% and a call rate of 75%. Four
statistical models were used to explore potential SNPs associated with BLB resistance, resulting in
the identification of 32 significant SNPs on chromosomes 1–8 and 12 in the rice genome. Additionally,
179 genes were located within ±100 kb of the SNP region, of which 49 were selected as candidate
genes based on their known functions in plant defense mechanisms. Several candidate genes were
identified, including two genes in the same linkage disequilibrium (LD) decay as the well-known BLB
resistance gene (Xa1). These findings represent a valuable resource for conducting further functional
studies and developing novel breeding strategies to enhance the crop’s resistance to this disease.

Keywords: genome-wide association; bacterial leaf blight; Xanthomonas oryzae pv. oryzae; resistance
gene; indica rice

1. Introduction

Rice (Oryza sativa L.) is one of the world’s most popular staple foods and is consumed
by more than half of the world’s population. In 2021, almost 780 million tons of rice were
produced, with about 90% of the production occurring in Asia [1]. However, current
production levels are still insufficient to meet the demand for rice in Asia. Food security
can be assured by preventing the impacts of climate change, such as pathogen spread.
This is one of the fundamental problems in rice production resulting from biotic stresses,
which were identified as a major problem [2–4]. World rice production is estimated to incur
losses due to pests and pathogens, with bacterial leaf blight (BLB) being among the top five
pathogens responsible for these losses [5].

BLB disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious
diseases affecting rice production worldwide. In the past, there was confusion between
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two diseases: leaf streak and bacterial leaf blight. This was the case until 1957, when they
were clearly classified. In 1978, Xanthomonas campestris pv. oryzae was identified as the
causal agent of both diseases. However, in 1990, to alleviate confusion, the pathogen was
renamed Xanthomonas oryzae pv. oryzae. [4,6]. The first report of BLB in rice was published
in Japan in 1884 [5,7]. The disease then spread to other parts of Asia, including China,
Korea, India, Indonesia, the Philippines, Taiwan, Thailand, and Vietnam, before spreading
worldwide [6]. The first report of Xoo in Thailand was found in Bangkok, where it infected
several Thai rice varieties, including Hom Set Ti, Khao Ta Hang, and Niew Kan Plu [8]. As
a vascular disease, BLB can adversely affect rice yields. The losses could depend on the
variety of rice, environmental conditions, and rice development stage [9–11]. The infection
resulted in a systemic condition in which the plant leaves presented a tannish grey-to-white
appearance with lesions occurring along their veins. The symptoms can be divided into
three phases based on their characteristics, including the leaf blight phase, kresek phase,
and pale-yellow phase, each with its own infection stage. Leaf blight is the most common
symptom observed after plant transplanting and usually appears within the first 4–6 weeks
following planting. The lesions appear as yellow or straw-colored stripes along the leaf
veins, and the leaf edges are also affected, forming a curved margin from the tips to the leaf
bases [11]. A small yellow droplet of bacterial ooze may be observed at the beginning of the
blight phase. The second phase of seedling infection is known as the kresek phase, causing
wilting of young plants during the early stages of infection. Once leaves become infected,
they turn yellow or green and begin to roll up. Another phase involves pale-yellow leaves
on the youngest parts of the plant, which become white or pale yellow in color [11]. As a
result of the lesions on the leaf blade or leaf tips, BLB symptoms, such as yellowing, wilting,
and drying, were easily identified.

The simplest method of preventing BLB is using chemical pesticides; however, widespread
application of these chemicals poses a threat to rice food safety. Additionally, any chemical
control implemented in a monsoon climate would be completely ineffective. In order to
control this disease and ensure food security, resistant rice cultivars containing R genes must
be developed and implemented [12–14]. According to reports in recent years, there have been
more than 45 genes that confer resistance to BLB, which has increased over the years [15,16].
As far as R genes are concerned, they are mostly found on chromosome 11 [17–20]. However,
R genes are also present on other rice chromosomes except for 9 and 10 [19,21–24]. Overall,
several GWAS studies have been conducted to identify genes associated with BLB resistance
in rice. Shu et al. [25] identified 58 candidate genes on chromosome 7, and a GWAS using
259 rice accessions revealed significant single nucleotide polymorphisms (SNPs) near several
known resistance genes including xa25, Xa26, Xa21, Xa23, Xa33, xa13, and Os-11N3 genes.
Dilla-Ermita et al. [17] conducted a GWAS on 285 rice accessions and identified novel SNPs
linked to known Xa genes. The results found that five genes (xa5, Xa7, xa13, xa24, and xa34)
originate from the aus genotype, while ten genes (Xa2, Xa4, Xa11, Xa14, Xa16, Xa18, xa25,
Xa26, xa28, and Xa39) are derived from indica. Furthermore, a novel BLB resistance gene was
identified on chromosome 11, designated as Xa43(t) within the 27.83–27.95 Mbp region by Kim
and Reinke [23]. Moreover, Korinsak et al. [18] identified 147 genes on chromosome 1–6, 8, 9,
and 11 using GWAS by phenotypic testing against 20 Xoo isolates. Among the identified genes,
ten genes on chromosome 11 were found to be located close to well-known genes within the
17–29 Mb region.

Genotyping-by-sequencing (GBS) is a well-established method for generating geno-
typic information for GWAS. This technique provides a large number of SNPs for species
diversity classification, haplotype map construction, the performance of GWAS, and the
discovery of candidate SNPs [24–26]. Due to its effectiveness and low cost, this technique
has been successfully incorporated into rice using restriction enzymes as the primary
method for reducing the complexity of DNA samples and generating high-quality mark-
ers [25,27,28]. Many research studies of rice have incorporated this technique into their
GWAS methods [17,29–32]. GWAS has become a powerful approach for unraveling the
molecular genetics associated with natural phenotypic variation in rice. Various traits have
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been investigated using this technique, including agronomic traits, quality, and resistance
to biotic and abiotic stresses [26,33–36]. Data collected from a variety of populations, plant
growth stages, and different Xoo variations have been utilized in GWAS for gene mining,
QTL mapping, and searches for candidate SNPs for BLB resistant traits in rice. In 2021, Shu
et al. [25] conducted 259 rice lines including 240 indica and 19 japonica rice lines against
two Xoo races (P3 and P6 races) and then discovered 2 NLR protein-encoding genes that
exhibited a significantly high expression in the rice resistance lines. In 2022, Lu et al. [37]
identified 13 quantitative trait loci (QTL) associated with BLB resistance (eight novel QTLs
and five QTLs harboring known genes) located on chromosomes 5 and 11.

According to the World Agricultural Outlook Board’s report on rice from the US
Department of Agriculture, Thailand ranks sixth worldwide in rice production and second
in rice exports [38,39]. In 2018–2022, Thailand exported more than 35 million tons of
rice [40]. In this regard, Thailand is one of the principal production regions for rice in the
world. It has abundant rice genetic resources and a diversity of ecologies such as irrigated,
rain-fed lowland, deep water, and upland ecosystems [41,42]. Thailand’s rice germplasm
consists of improved cultivars, landraces, and local cultivars [43]. However, only one
report has described the identification of a BLB resistance gene in Thailand’s germplasm
using GWAS [18]. Therefore, the objective of this study is to identify candidate SNPs for
BLB resistance genes in 200 accessions of Thailand’s local indica rice at the tillering stage
against Thai Xoo isolates. To achieve this, we conducted a GWAS analysis and phenotypic
evaluation by analyzing the average lesion length of rice panels against seven Thai Xoo
isolates, along with genotyping data from 25,338 SNPs using the GBS method.

2. Materials and Methods
2.1. Plant Materials

Two hundred Thai landrace rice accessions were utilized to represent the diverse geo-
graphical regions and ecosystems found in Thailand. This comprehensive representation
of rice diversity is crucial for breeding programs, genetic studies, and conservation efforts.
The accessions included lowland, upland, and floating varieties, sourced from various
regions of Thailand, with 70 from the northern region, 39 from the central region, 61 from
the northeastern region, four from the western region, 14 from the eastern region, and six
from the southern region. To grow the accessions for evaluation, the study was conducted
under greenhouse conditions at the Thailand Rice Science Institute (TRSI) from October
2021 to January 2022, where the temperature ranged from 24 to 35 ◦C during the day and
from 17 to 33 ◦C at night. The seed accessions were germinated on tissue paper for 48 h,
and one week later were transplanted into pots containing three plants each, for a total
of six plants per accession. Fertilization of the plants occurred at 15 and 21 days of age,
using a 15-15-15 fertilizer and 46-0-0 fertilizer, respectively [44,45]. In addition to the study
accessions, five standard rice varieties known for their resistance to the disease (DV85,
IRBB5, IRBB21, RD7, and RD31) were included, as well as three susceptible rice varieties
(TN1, IR24, and KDML105) as a comparison for the evaluation of disease resistance.

2.2. Evaluation of Bacterial Leaf Blight Resistance in Rice Plant

Seven Xoo isolates were selected for artificial inoculation of 200 Thai landrace rice
accessions. The isolates are named SK2-3-F, XORE1-1, XONS2-1, 3XOBR2-2, 59XOCRCS7-3,
61XOSPSJ1-10, and 61XOSPSJ2-10 They were selected from a diversity of genetic and
pathotype representations of Xoo. The Xoo cultures were multiplied for 48 h at 28 ◦C on
nutrient agar medium and then suspended in sterilized water to a final concentration of
109 CFU/mL. Each rice accession was inoculated with six plants using the leaf-clipping
method at the tillering stage, with four fully expanded leaves clipped [46–49]. The lesion
length (LL) was measured 14 days after inoculation or until a stable lesion was visible on
the susceptible standard check variety [17,50]. The LL measurement was taken from the
cutting edge of the leaf to the necrotic blight lesion in the middle vein of the leaf with the
unit in centimeters [48]. The scoring was based on the standard method of the International



Agronomy 2023, 13, 1286 4 of 21

Rice Research Institute (IRRI) [17,50–53]. Four groups of scoring were established based on
LL, with lesion lengths ranging from 0–5 cm considered resistant, >5–10 cm moderately
resistant, >10–15 cm moderately susceptible, and more than 15 cm susceptible [17,50,54].
The average value of lesion length was used as the phenotypic data for the GWAS analysis.

2.3. Genotyping Preparation

The study utilized two hundred BAM files, provided by the Ubon Ratchathani Rice
Research Center in the Rice Department of Thailand, to obtain genotypic information
on the rice varieties involved. The DNA library was generated using a ApeKI restric-
tion enzyme, followed by ligation with adaptors specific to the Ion S5TM XL Sequence
(Thermo Fisher Scientific, Waltham, MA, USA). Using E-GelTM SizeSelectTM agarose gels
(Invitrogen, Waltham, MA, USA), 500–300 base pairs of fragments were selected. All
sequence data were aligned to the Nipponbare genome as a reference genome (Nippon-
bare Reference-IRGSP-1.0) using the Ion TorrentTM Suite Software Alignment Plugin ver-
sion 5.2.2 (Thermo Fisher Scientific, Waltham, MA, USA) and then BAM files were auto-
matically generated. Duplicate reads in the BAM format were removed using Picard Tools
version 2.27.0 [55]. The BAM files were created as fastq files using Samtools v1.9 [56] and
realigned with the japonica reference genome using a Burrow–Wheeler Aligner (BWA)
v 0.7.17 [57] and SAMtools. Variant were called using the Genome Analysis Toolkit (GATK)
software v 4.2.3.0 [42,58] where SNPs and insertions-deletions (indels) were named using
the GVCF analysis, and variants were grouped using GATK’s CombineGVCFs function [59].
The joint call step was then performed using genotypeGVCFs of the GATK software [60],
followed by SNP extraction using SelectVariantsGATK based on the reference genome.
To improve the quality of the SNPs, Tassel v.5 was utilized to remove low quality SNPs
that possessed a minor allele frequency less than 5% and a call rate below 75% [29,61–63].
Genetic datasets generated using GBS technology may contain missing values in SNP data
due to low coverage or other technical issues. Imputation is a common method used to
impute these missing values based on the linkage disequilibrium between SNPs in the
dataset. Beagle version 5.4 is a widely used software tool for imputing genotypes in such
datasets and is well-suited for use with GBS data. Therefore, in this study, we used Beagle
version 5.4 to impute the missing values in the SNP data obtained from GBS genotyping.
The algorithm is consistently high in accuracy within 90–100% for the major homozygous
genotype, even with increasing missing rates [64–66]. As a result of filtering, a total of
25,338 high-quality SNPs were included in the GWAS analysis.

2.4. Population Genetics Structure Analysis, Principal Component Analysis, and Linkage
Disequilibrium Assessment

The estimation of subgroup numbers in the rice panel was accomplished through
the application of population structure analysis and principal component analysis (PCA).
Following the imputation and pruning of data obtained from the panel of 200 rice acces-
sions, 25,338 SNPs with a minor allele frequency greater than 5% were obtained. The
STRUCTURE 2.3.4 program was utilized for estimating the population structure and K
values were determined by setting the range from 1 to 10 to find the lowest coefficient of
variation [28,67,68]. Both PCA and linkage disequilibrium (LD) analysis were performed
using the Tassel [61]. The PCA was conducted on 25,338 SNPs obtained from a total of
4,086,284 SNPs within the rice panel through an initial analysis of all 200 rice accessions.
Subpopulation verification was performed by combining and naming all the 200 BAM
files with a representative japonica rice, followed by plotting using the RStudio program.
Using the 25,338 highly accurate SNPs, Hapmap files were generated through the Tassel
software. The LD was determined by calculating the pairwise squared correlation (r2)
between SNP markers for each pair of loci. The LD analysis was conducted following the
method described by Hill and Weir [69], based on a sliding window of 50 SNPs with a
minor allele frequency of 0.05. Subsequently, a scatter plot with smoothing spline regression
lines was developed. In addition to these values, the LD decay rate was estimated based
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on the physical distance between markers and the r2 values and was determined when the
r2 value declined to half its average maximum value [70].

2.5. Genome-Wide Association Analysis

In this GWAS, multiple statistical methods were used to control for false-negative and
false-positive results [71,72]. The Genomic Association and Prediction Integrated (GAPIT)
tool was employed to perform the analysis, which was run using the R version 4.1.2 [73,74].
The 25,338 SNP loci were analyzed in relation to seven Xoo isolates to identify the asso-
ciation with BLB resistance. The four statistic methods were used as the mixed linear
models (MLM) [75], Settlement of MLM Under Progressively Exclusive Relationship (SU-
PER) [76], fixed and random model circulation probability unification (FarmCPU) [77], and
the Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK)
method [78] were used to control for false-negative results [71]. The threshold for identify-
ing significant SNPs was determined using the False Discovery Rate (FDR) [18,25,36,79,80].
Gene annotations within a 100 kb region surrounding the highly associated SNPs were
taken into consideration for SNP identification. To visualize the results of the GWAS,
Manhattan plots and quantile-quantile (Q-Q) plots were generated using the GAPIT tool in
R. The scatter plot of the Manhattan plot provides a summary of the results by plotting the
negative logarithm of the p-value obtained from each GWAS model against the genomic
region of each SNP on the 12 rice chromosomes. On the other hand, the Q-Q plot visualizes
the observed distribution of the negative logarithm of the p-values in comparison to their
expected distribution under the null hypothesis.

2.6. Candidate SNP Identification

In order to explore candidate genes underlying BLB resistance, SNPs with a p-value
less than 0.05 were considered as genomic regions carrying candidate genes. All gene loci
within ±100 kb of the flanking regions of each SNP were extracted from the annotation
of the Oryza sativa reference sequence (OsNippon-bare-Reference-IRGSP-1.0) [81]. To
validate the results of GWAS, all annotated genes contained within the genomic regions
were compared with genes known to be related to the phenotypic traits analyzed, as
available in the Oryzabase database, the rice genome annotation project, and The Rice
Annotation Project Database [20,82–85], or present in the literature as QTLs or genes. The
Haploview 4.2 software was used to estimate the local LD block within ±100 kb of the
genomic region containing significant SNPs [86]. Subsequent to identifying the candidate
genes, haplotype analysis was conducted using all SNPs within their coding regions. A
major haplotype was determined to be present when a minimum of 10 accessions were
detected [37].

3. Results
3.1. Phenotypic Evaluation among Rice Panel

Through the inoculation of 200 rice varieties with seven Xoo isolates, distinct symptoms
were identified between the various rice accessions. The lesion length distribution among
Xoo isolates SK2-3-F, XORE1-1, XONS2-1, 3XOBR2-2, 59XOCRCS7-3, and 61XOSPSJ1-10 are
presented in the bar graph (Figure 1a–g). The lesion length distribution is continuous and
ranges from 1 to 35 cm. Thirty-one percent of 200 Thai landrace rice accessions showed a
resistant reaction to Xoo isolate 59XOCRCS7-3, which was the highest percentage among
the seven Xoo isolates used in this study (Figure 1h). While Xoo isolate SK2-3-F had 20% of
the examined rice accessions, which showed a susceptible reaction.
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262, demonstrated broad-spectrum resistance to all Xoo isolates (Table S2). The proportion 
of resistant to susceptible reactions were calculated and are shown in Figure 1h. Notably, 
the symptoms observed between the standard checks for resistance and susceptibility 
were significantly distinguishable (Figure 1i). The results showed a range of highly 
resistant reactions (HR: 0–5 cm), from 15.5% to 31%, while the range of susceptible 
reactions (moderately susceptible (MS) and highly susceptible (HS): ≥ 10) varied from 26% 
to 46.5% (Figure 1). 

  

Figure 1. Pathogenicity of 200 Thai rice accessions against seven different isolates of Xoo. (a–g) Bar
graphs and box plots show the distributions of phenotypic traits in response to Xoo isolates SK2–3–F9,
XORE1–1, XONS2–1, 3XOBR2–2, 59XOCRCS7–3, 61XOSPSJ1–10, and 61XOSPSJ2–10. The LL caused
by each Xoo isolate is represented on the X-axis of the bar graph and Y-axis of the box plot in
centimeters. (h) Proportions of rice reactions among Xoo isolates show highly resistant, moderately
resistant, moderately susceptible, and highly susceptible categories. (i) Lesion lengths of standard
resistant and susceptible rice varieties, bar = 1 cm.

Most rice accessions showed moderate resistance, as evidenced by a slight left skew
distribution of the bar graphs. However, two accessions, namely ARDA-174 and ARDA 262,
demonstrated broad-spectrum resistance to all Xoo isolates. The proportion of resistant
to susceptible reactions were calculated and are shown in Figure 1h. Notably, the symp-
toms observed between the standard checks for resistance and susceptibility were signifi-
cantly distinguishable (Figure 1i). The results showed a range of highly resistant reactions
(HR: 0–5 cm), from 15.5% to 31%, while the range of susceptible reactions (moderately
susceptible (MS) and highly susceptible (HS): ≥10) varied from 26% to 46.5% (Figure 1).

3.2. Genotypic Variation and Population Structure in Rice Panel

Imputation and error correction of the GBS data were performed. The VCF file of
4,086,620 SNPs from 200 Thai rice accessions was subjected to quality control procedures
using Tassel version 5. SNPs with MAF less than 0.05% and a coverage of less than 75%
were filtered out (Figure 2). These results suggested that imputation was an essential
step in improving the quality of GBS data, and the use of Beagle 5.4 can be an effective
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method for imputing missing genotypic data. Additionally, heterozygosity alleles and indel
sequences were removed before imputation to reduce the missing data rate [46]. The GWAS
was conducted using 25,338 high-quality SNPs, which were distributed evenly across the
12 chromosomes. Chromosome 1 had the largest number of SNP loci, while chromosome 9
had the smallest. This result was consistent with the research of Lu et al. [37], who
conducted GWAS of 421 rice accessions derived from the 3000 rice genome project (3KRGP),
and the results showed that the highest and lowest number of SNPs were identified on
chromosomes 1 and 9, respectively.
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Figure 2. Imputation and error correction in GBS data. The left panel shows the original dataset
without imputation, where a high rate of missing data is represented by the red bar and a significant
decrease in the minor allele frequency is represented by the purple bar. The right panel shows the
same dataset after imputation using Beagle 5.4. With imputation, missing data was reduced, leading
to an increase in the number of genotyped sites and a more uniform distribution of minor allele
frequency. This correction helps to reduce the bias in downstream analyses and improve the accuracy
of genetic diversity estimates.

The analysis of 25,338 high-quality SNPs revealed two subpopulations in the rice
panel, as supported by the estimation of the K value from the DeltaK plot generated by
STRUCTURE 2.3.4 (Figure 3). A DeltaK plot identifies possible subpopulations in a dataset
by detecting the peak in log-likelihood values at different values of K. In this study, the
DeltaK plot revealed that the highest peaks were observed at K = 2 and a second peak at
K = 6 (Figure 3), suggesting the presence of two or six distinct clusters within the 200 Thai
rice accession panel. These results were consistent with a previous investigation [87,88],
which classified the indica group into two major subpopulations (K = 2), but which reported
four subgroups within those two subpopulations (K = 4).

The majority (86.8%) of pairwise kinship coefficients were found to be within the
range of 0 to 0.5, while a minority (approximately 13.19%) of kinship values exceeded
0.5 (Figure 4a). These results indicated low levels of relatedness within the rice indica
panel [87]. The eigenvalues associated with each PC represent the amount of variation
explained by that component. In Figure 4b, we presented the eigenvalue plot obtained
from the PCA. The plot showed a clear elbow point at PC = 2, indicating that the first
two PCs capture most of the variance in the data. This suggested that the data can be
effectively summarized and analyzed using only the first two PCs. Therefore, we retained
the first two PCs for further analysis. A PCA was conducted to explore the genetic diver-
sity and structure within the panel of rice accessions. The first two PCs (PC1 and PC2)
were visualized to reveal the genetic variation among the accessions. However, the PCA
plot indicated an ambiguous subpopulation structure (Figure 4c). PC1 and PC2 jointly
accounted for roughly 14% of the total genetic variation, with PC1 and PC2 accounting for
8.5% and 5.5%, respectively. The two principal components captured some of the genetic
variation among the accessions, but other factors may contribute to the overall genetic
diversity within the panel. The findings demonstrated that genetic differentiation among
the six geographic populations was not substantial, which may be attributed to genetic
exchange between populations [88]. Based on the geographical origin of the rice accessions,
the 200 rice accessions were separated along PC1, with accessions from central and eastern
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regions exhibiting negative values, while those from northeastern and northern regions
had positive values. These findings agree with previous reports suggesting that indica rice
varieties tend to cluster according to their geographical location [42,88,89].
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Figure 3. The population structure of 200 rice accessions. (a) A plot of DeltaK values used to classify
subpopulations within the rice panel. The plot shows the highest peak at K = 2, indicating the
presence of two subpopulations. (b) The estimated subpopulation components determined by the
STRUCTURE 2.3.4 procedure, which were distributed based on the DeltaK method used to determine
the most probable number of subpopulations at K = 2 and K = 6. The plot confirms the presence of
two subpopulations in the rice panel, as supported by the DeltaK method. Different colors represent
different populations of rice accessions.

To confirm the sub-species of rice, a panel of rice samples was utilized to perform SNP
recall for 31,300 loci combined to 10 representative SNPs selected for the japonica rice group.
Figure 4d shows a distinct separation between the indica and ten japonica rice groups. Out
of the 200 rice samples analyzed, 18 were categorized as belonging to the admixture group,
while only one sample was identified as being of the japonica group. The genetic variation
in the sample population is geographically dependent, with the majority of the samples
from the north and northeast located on the positive side of PC2, while the rest were located
on the negative side of PC2. This suggests that most of the samples in the study are indica
rice and admixture groups [42].

The current investigation estimated LD decay by evaluating 25,338 SNPs across a ge-
nomic region spanning 12 chromosomes. The findings revealed that the maximum r2 value
for the entire genome drops by half when the distance between SNPs reaches 118,257 base
pairs, as depicted in Figure 5. The shortest LD decay distance was 72 kb, observed on
chromosome 11, while the longest distance of LD decay is 225.8 kb, identified on chromo-
some 10, as indicated. These outcomes corresponded to prior studies, which suggested
that the average LD decay distance for Indica rice is approximately 100 kb [18,70,87,90].
Since most marker distances are below 100 kb, it is expected that the study would have
reasonable power to identify common large-effect variations in the Indica panel.
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Figure 4. Kinship matrix and PCA of 200 rice accessions. (a) Heatmap of the kinship matrix, which
represents the degree of relatedness between each pair of rice accessions in the dataset. Darker colors
indicate greater relatedness. (b) PCA eigenvalue plot showing the number of principal components
versus the percentage of variance explained by each component. The plot indicates that the first two
principal components account for the largest amount of variance in the dataset. (c) PCA of 200 rice
accessions based on the first two principal components. Each data point represents a single rice
accession, and the different colors indicate different groups within the dataset base on geographical
regions. (d) PCA of the rice panel combined into 10 representative japonica rice groups (green circle)
to confirm the groups of sample tests. Two hundred rice accessions used in this study are significantly
separated from representative japonica rice which confirm that most of them are indica rice with
2 subgroups in the population.
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3.3. GWAS Analysis of Bacterial Leaf Blight Resistance Traits

Various statistical models were used to identify SNPs associated with BLB disease
caused by Xoo in rice. The results showed statistical significance at a threshold of 1.97 × 10−6

and a false discovery rate (FDR) cutoff at 0.05. The MLM model, which considers fixed and
random effects, identified four SNPs significantly associated with the XORE1-1 isolate on
chromosome 2. Meanwhile, the SUPER method designed to control false positives detected
15 SNPs linked to SK2-3-F, XORE1-1, and 59XOCRCS7-3 isolates on chromosomes 1, 2,
4, and 7. Similarly, multi-locus models such as FarmCPU and BLINK identified 11 and
10 significant SNPs linked to SK2-3-F and 59XOCRCS7-3 isolates, respectively (Table 1).
Notably, all models discovered significant SNPs associated with only three Xoo isolates
(SK2-3-F, XORE1-1, and 59XOCRCS7-3), emphasizing the significance of isolates-specific
effects in identifying SNP-trait associations. Overall, the findings contributed insights
into the genetic basis of BLB resistance in rice and demonstrate the usefulness of different
statistical models in SNP-trait association studies.

Table 1. The significant SNPs of 200 Thai rice accessions against 7 Xoo isolates using four statistical
models in GWAS.

Method/Traits SNP Chr. Allele Pos p-Value MAF H&B. p-Value q-Value

SUPER.Xoo1 S1_27143044 1 A/C 27,143,044 1.97 × 10−6 0.26531 0.00919 5.71
SUPER.Xoo1 S1_27155997 1 A/G 27,155,997 7.17 × 10−7 0.26020 0.00454 6.14
SUPER.Xoo1 S7_3529421 7 A/G 3,529,421 4.70 × 10−7 0.15816 0.00397 6.33
SUPER.Xoo1 S7_3537960 7 T/C 3,537,960 4.70 × 10−7 0.15816 0.00397 6.33
SUPER.Xoo1 S7_18664455 7 A/G 18,664,455 4.47 × 10−7 0.21939 0.00397 6.35
FarmCPU.Xoo1 S1_27155997 1 A/G 27,155,997 3.52 × 10−8 0.26020 0.00083 7.45
FarmCPU.Xoo1 S2_935021 2 A/T 935,021 1.34 × 10−7 0.32653 0.00113 6.87
FarmCPU.Xoo1 S5_18901969 5 C/A 18,901,969 1.64 × 10−6 0.13776 0.01036 5.79
FarmCPU.Xoo1 S7_3529421 7 A/G 3,529,421 6.57 × 10−8 0.15816 0.00083 7.18
FarmCPU.Xoo1 S8_6216184 8 A/G 6,216,184 4.19 × 10−6 0.46429 0.02126 5.38
FarmCPU.Xoo1 S4_28336644 4 C/T 28,336,644 1.22 × 10−5 0.18878 0.05167 4.91
FarmCPU.Xoo1 S2_23903211 2 G/T 23,903,211 1.44 × 10−5 0.10459 0.05223 4.84
BLINK.Xoo1 S2_935021 2 A/T 935,021 5.78 × 10−8 0.32653 0.00073 7.24
BLINK.Xoo1 S7_3529421 7 A/G 3,529,421 6.07 × 10−10 0.15816 0.00002 9.22
BLINK.Xoo1 S7_16039418 7 A/T 16,039,418 7.35 × 10−7 0.29592 0.00465 6.13
BLINK.Xoo1 S8_6216184 8 A/G 6,216,184 2.57 × 10−7 0.46429 0.00217 6.59
MLM.Xoo2 S2_25400454 2 G/A 25,400,454 1.09 × 10−6 0.43333 0.01181 5.96
MLM.Xoo2 S2_25408622 2 G/A 25,408,622 1.77 × 10−6 0.43846 0.01181 5.75
MLM.Xoo2 S2_25413622 2 G/A 25,413,622 1.77 × 10−6 0.43846 0.01181 5.75
MLM.Xoo2 S2_25400408 2 T/C 25,400,408 2.80 × 10−6 0.43590 0.01181 5.55
MLM.Xoo2 S2_25400480 2 A/C 25,400,480 2.80 × 10−6 0.43590 0.01181 5.55
MLM.Xoo2 S2_25400530 2 A/C 25,400,530 2.80 × 10−6 0.43590 0.01181 5.55
MLM.Xoo2 S2_25400580 2 C/T 25,400,580 6.24 × 10−6 0.43077 0.02260 5.20

SUPER.Xoo2 S2_25400454 2 G/A 25,400,454 4.77 × 10−6 0.43333 0.03765 5.32
SUPER.Xoo2 S2_25408622 2 G/A 25,408,622 6.73 × 10−6 0.43846 0.03765 5.17
SUPER.Xoo2 S2_25413622 2 G/A 25,413,622 6.73 × 10−6 0.43846 0.03765 5.17
SUPER.Xoo2 S2_25400408 2 T/C 25,400,408 8.92 × 10−6 0.43590 0.03765 5.05
SUPER.Xoo2 S2_25400480 2 A/C 25,400,480 8.92 × 10−6 0.43590 0.03765 5.05
SUPER.Xoo2 S2_25400530 2 A/C 25,400,530 8.92 × 10−6 0.43590 0.03765 5.05
SUPER.Xoo2 S4_31500482 4 C/G 31,500,482 1.43 × 10−5 0.45385 0.04039 4.84
SUPER.Xoo2 S4_31505231 4 T/G 31,505,231 1.43 × 10−5 0.45385 0.04039 4.84
SUPER.Xoo2 S4_23423399 4 G/A 23,423,399 1.43 × 10−5 0.46667 0.04039 4.84
BLINK.Xoo2 S2_25400454 2 G/A 25,400,454 3.96 × 10−12 0.43333 0.00000 11.40
BLINK.Xoo2 S4_31770194 4 C/G 31,770,194 7.04 × 10−8 0.46410 0.00089 7.15
SUPER.Xoo5 S1_27155997 1 A/G 27,155,997 9.82 × 10−8 0.36592 0.00249 7.01
SUPER.Xoo5 S1_27143044 1 A/C 27,143,044 2.55 × 10−7 0.36313 0.00322 6.59
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Table 1. Cont.

Method/Traits SNP Chr. Allele Pos p-Value MAF H&B. p-Value q-Value

FarmCPU.Xoo5 S12_15567690 12 G/A 15,567,690 3.45 × 10−9 0.39385 0.00009 8.46
FarmCPU.Xoo5 S1_22492602 1 G/A 22,492,602 6.15 × 10−8 0.45810 0.00078 7.21
FarmCPU.Xoo5 S3_438061 3 A/G 438,061 6.39 × 10−7 0.43017 0.00540 6.19
FarmCPU.Xoo5 S5_2313550 5 G/T 2,313,550 2.61 × 10−6 0.39944 0.01656 5.58
FarmCPU.Xoo5 S6_1362133 6 C/T 1,362,133 3.53 × 10−6 0.37989 0.01789 5.45
FarmCPU.Xoo5 S12_18758444 12 T/C 18,758,444 8.17 × 10−6 0.39944 0.03042 5.09
FarmCPU.Xoo5 S1_30147885 1 T/C 30,147,885 8.40 × 10−6 0.37709 0.03042 5.08
BLINK.Xoo5 S1_27155997 1 A/G 27,155,997 4.55 × 10−11 0.36592 0.00000 10.30
BLINK.Xoo5 S8_26134412 8 C/A 26,134,412 7.65 × 10−8 0.42737 0.00097 7.12
BLINK.Xoo5 S2_25453856 2 A/C 25,453,856 5.97 × 10−7 0.44413 0.00504 6.22
BLINK.Xoo5 S2_18882825 2 A/G 18,882,825 5.00 × 10−6 0.45810 0.03167 5.30

Based on the Q-Q plots, the MLM, FarmCPU, and BLINK models exhibited a linear
pattern with a distinct upward deviation in the tail region, suggesting effective control
of both false positives and false negatives. However, MLM appeared to have a limited
ability to detect the associated SNPs. On the other hand, the SUPER model displayed a
non-normal distribution on the lower left corner, which might be indicative of a ceiling
effect or right-skewness in the data. Through GWAS, we identified significant SNPs in three
Xoo isolates using both SUPER and BLINK analysis. However, we found that the Q-Q plots
of FarmCPU and BLINK provided a better fit to the data, as the plotted points followed a
straight line closely along the identity line with a sharply deviated tail (Figures 6–8). This
distinctive pattern was more apparent than that observed in other models. The candidate
genes containing SNPs significantly associated with bacterial leaf blight resistance trait
were identified by the gene annotation [81] and the Oryzabase database [82]. In summary,
GWAS revealed 32 significant SNPs associated with BLB resistance, which were located on
chromosomes 1–8 and 12. The SNP with the highest level of significance was identified
at S7_3529421 on chromosome 7, with a p-value of 6.07 × 10−10. This result was obtained
using the BLINK method against SK2-3-F, and the details are provided in Table 1.

The Manhattan plots showed a set of highly significant SNPs that were associated with
the SK2-3-F isolate, as identified by four distinct methods (Figure 6). These results were
generated using the SUPER model with the genomic coordinates S1_2714304, S1_2715599,
S7_3529421, S7_3537960, and S7_1866445 on chromosomes 1 and 7. The corresponding
−log10 (p-values) for these SNPs ranged from 5.70 to 6.34. Notably, the FarmCPU model
generated the largest number of significant SNPs, spanning across chromosomes 1, 2, 4,
5, 7, and 8, with −log10 (p-values) ranging from 4.84 to 7.45 at FDR threshold of 0.05. The
BLINK model identified a limited number of significant SNPs associated with resistance
to the SK2-3-F isolate. Specifically, this model identified four significant SNPs located on
chromosomes 2, 7, and 8. However, it demonstrated the highest peak of significance among
all methods, with a −log10 (p-value) of 9.22.

Manhattan plot showed the significant SNPs associated with BLB inoculated with
XORE1-1 isolate (Figure 7). The findings revealed that only two out of the four statistical
models generated significant SNPs associated with the BLB resistance gene. The MLM mod-
els produced the highest number of significant SNPs, with most located on chromosome 2.
In contrast, the BLINK models only identified two significant SNPs on chromosomes 2 and
4. In addition, the Manhattan plot showed the significant SNPs linked to BLB resistance
against the 59XOCRCS7-3 isolate (Figure 8). The results generated from the SUPER, Farm-
CPU, and BLINK models showed highly significant SNPs along chromosomes 1, 2, 3, 5, 6, 8,
and 12. These findings indicated that different statistical models can reveal significant SNPs
associated with the resistance to BLB caused by different Xoo strains. Therefore, the use of
multiple models can provide a more comprehensive understanding of the genetic factors
underlying BLB resistance in rice. Notably, both the BLINK and SUPER models were able
to detect significant SNPs in all three Xoo isolates (SK2-3-F, XORE1-1, and 59XOCRCS7-3).
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Among the four models, BLINK method performed the best in controlling false positive
and false negative errors, as evidenced by an analysis of the Q-Q plots, which is a common
approach to assess model performance. The Q-Q plot generated by the SUPER model
showed an inflated upward line, indicating a high number of false positives. In contrast,
the BLINK model produced a straight line with a slight tail, suggesting that it effectively
controlled both false positives and false negatives.
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200 rice accessions that are associated with SK2-3-F isolate. The significant 11 SNPs were found to be
located on chromosomes 1, 2, 4, 5, 7, and 8. Different colors represent different rice chromosomes
from chromosome 1 to chromosome 12.

Out of the 581 genes that were located surrounding the significant SNPs, 179 genes
were found within the ±100 kb region surrounding the SNP of interest. Among these
179 genes, 49 were selected as candidate genes based on their known functions in plant
defense mechanisms. In addition, they were selected for their proximity to significant SNPs
in the gene region. This study focuses on genes associated with several plant defense func-
tions. These genes include the serine/threonine protein kinase-related domain-containing
protein, the WRKY transcription factor, the cell cycle-associated protein kinase, the Leucine-
rich repeat, the NBS-LRR disease resistance protein, disease resistance protein RGA2, and
the MYB transcription factor.
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3.4. Analysis of Haplotypes and Linkage of Candidate Genes

In order to perform a haplotype analysis to detect significant differences between
the resistance and susceptibility, 16 candidate SNP loci were selected based on the gene
annotation as a plant defense mechanism located on chromosome 2, 4, and 8. One of
the significant SNP loci, S2_25453856, had two candidate genes surrounding its region
(±100 kb), namely LOC_Os02g42310.1 and LOC_Os02g42314.2, which were located within
the LD decay. These genes started from the position 25442875 to 25450093 and 25450313 to
25454074, respectively.

The LOC_Os02g42310.1 gene is composed of 6 SNPs with 5 haplotypes, and the
function of the gene is predicted to be a serine carboxypeptidase II-like protein. Serine
carboxypeptidases are a group of enzymes that are involved in cleaving C-terminal amino
acids from peptide substrates. These enzymes have been shown to play important roles in
various biological processes in plants, including cell wall metabolism and defense responses
against pathogens. One specific serine carboxypeptidase gene has been identified as being
significantly associated with sheath blight resistance [91]. Six SNPs identified within this
gene have the potential to affect the activity or stability of the protein, which could, in turn,
impact the plant’s resistance or susceptibility to the disease. These findings suggest that the
identification and characterization of specific genetic markers, such as SNPs in this gene,
could be a valuable tool for developing more effective strategies for breeding rice varieties
with enhanced disease resistance. The other gene locus, LOC_Os02g42314.2, is composed of
three SNPs that can produce seven different haplotypes (Hap1-Hap7). The protein encoded
by this gene is a Ubiquitin-conjugating enzyme/RWD-like domain-containing protein.

Moreover, two gene loci in the same linkage disequilibrium decay with S8_6216184
on chromosome 8 were identified, LOC_Os08g10440.1, which encodes a CC-NBS-LRR
protein known to confer Pyricularia oryzae resistance-33(t) in rice [92]. This gene, located on
chromosome 8, consists of seven different genetic patterns. Interestingly, haplotypes Hap7
and Hap8 of this gene were found to confer a moderated resistance (MR) phenotype, where
the lesion length (LL) was greater than or equal to 10 cm. LOC_Os08g10560.1 is responsible
for encoding the nuclear factor Y C subunit 5 (NF-YC5) in rice, which plays a crucial role in
the processes of DNA replication and repair. The gene ontology annotation suggested that
the OsNF-Y genes are co-expressed with stress response, seed storage reserve accumulation,
and plant development genes [93]. NF-Y is a heterotrimeric transcription factor that
regulates a variety of biological processes in plants, including defense mechanisms against
both biotic and abiotic stresses. In particular, the NF-YC5 subunit of the NF-Y complex is
known to regulate the plant defense response in various species, such as Arabidopsis thaliana
and Cassava (Manihot esculenta). The expression of NF-YC5 is induced upon infection
by a range of plant pathogens, including bacteria, fungi, and viruses. [94,95]. The gene
comprises 13 SNPs, resulting in 8 haplotypes. Among these, Hap1, Hap4, and Hap9
demonstrated a moderated resistance reaction, as evidenced by a lesion length (LL) of
5 ≥ 10 cm.

LOC_Os04g52900 was associated with SNP S4_31500482 and S4_31505231, which en-
code for ATP binding cassette (ABC) transporters, a well-studied and highly conserved
family of transporter proteins. Previous research has demonstrated that certain ABC trans-
porters play a role in conferring resistance against bacterial pathogens, such as the HpaABC
transporter which is involved in bacterial blight resistance [92,96]. In addition, the genetic
locus LOC_Os04g52900 contains several SNP loci, resulting in a genetic variant with three
distinct haplotypes (Figure 9). Of these haplotypes, Hap2 exhibited a significantly enhanced
level of resistance, as evidenced by a lesion length of less than or equal to 5 cm. Additionally,
our investigation suggested that genetic variation within the LOC_Os04g53350 gene, anno-
tated as a conserved hypothetical protein, may also play a crucial role in providing disease
resistance in plants. This gene demonstrated a highly resistant reaction (LL = 4 cm) against
the SK2-3-F pathogen and is located on chromosome 4 within a gene region containing
three genes. Our findings highlight the potential of these genes as targets for improving
plant disease resistance through breeding programs.
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some 4 through GWAS analysis and LD heatmaps. Haplotype analysis for two MSU genes,
LOC_Os04g53350.1 and LOC_O4g52900.1, was shown in (a,b), while (c) displays the LD heatmap for
a specific region (31.3–32.7 Mb) indicating positions of well-known genes, including Xa1 and 15 other
genes within ±100 kb of significant SNPs. White and gray areas suggests low levels of LD within this
region, while red areas suggests high levels of LD within the region. (d) shows the significant LD
block within LOC_Os04g53350.1.

4. Discussion

BLB, caused by Xoo bacteria, have reported yield losses ranging from 80–100% in
Asia [4,5,12]. GBS is an advanced technique that has emerged as a valuable tool for
identifying genetic variants linked to BLB resistance in crops through GWAS. Despite the
challenges associated with GBS, it is still a cost-effective, high-throughput, and minimally
invasive method, making it suitable for large-scale studies of diverse crop populations.
GBS can capture rare and low-frequency genetic variants that may not be detected by other
genotyping methods, providing a more comprehensive view of the genetic architecture
underlying BLB resistance [29,60,97].

In this study, we explored the genetic basis of BLB resistance in Thai local rice. To
do this, we conducted a GWAS on a panel of 200 indica rice accessions collected from six
different regions in Thailand. We can classify the rice panel into two subpopulations, which
is consistent with the previous report that used indica rice for genetic analysis [42,87]. We
assessed BLB resistance by infecting all 200 rice accessions with seven Thai Xoo isolates. The
four methods of statistical analysis were used for GWAS analysis. The Q-Q plots revealed a
non-uniform distribution of p-values in the SUPER models of all empirical traits, consistent
with previous research, indicating their unsuitability for trait-associated mapping due
to the possibility of false marker-trait associations [72]. To correct population structure
and family relatedness, complex models such as MLM, FarmCPU, and BLINK have been
suggested [72,76–79]. MLM and FarmCPU Q-Q plots displayed a straight line with slightly
deviated tails, indicating a decrease in false positives but an increase in false negatives due
to overfitting, which is in line with other studies. However, the Q-Q plot of the multi-locus
model, BLINK, indicated that it controls both false positives and false negatives for all
empirical traits in both crops, as shown by a straight line with a sharp deviated tail. As
a result of our GWAS analysis, in this study, we have identified a novel region that con-
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tains SNPs associated with three Xoo isolates. These SNPs were found to be located on
chromosomes 1–8 and 12 but not on chromosomes 9–11. It is worth noting that previous
reports have mostly identified the BLB resistance gene on chromosome 11 [17,18,36,98].
However, our results indicate that SNPs on chromosome 11 were only detected at a low
level of significance, with a q-value threshold of 5.71 and an FDR of 0.01 for the three Xoo
isolates. In addition, our investigation revealed 15 MSU genes flanking the well-known
resistance gene Xa1, which were also located within the same LD block. Previous studies
have reported that Xa2, Xa12, Xa14, Xa25, Xa31(t), and Xa38 were localized to the region
near Xa1 and conferred race-specific resistance against Xoo [99]. Our finding indicated
that the two significant SNPs, S4_31500482 and S4_31505231, consist of 26 MSU genes
situated around them. Out of 15 MSU genes, LOC_Os04g52890, LOC_Os04g52870, and
LOC_Os04g52900 have been identified as genes for a blast resistance gene Pikahei-1(t)
mapped to chromosome 4 [17]. We also identified a gene, LOC_Os04g53160, which is
located within the same LD decay as Xa1 and encodes BED-NLBs. It is a DNA-binding
domain present in many transposases and chromatin-boundary element-binding proteins
and acts as an integrated decoy domain. This gene was previously reported as an R gene
analog named RGAg (Os04g53160) [100]. Additionally, we found that LOC_Os04g53160
was located near LOC_Os04g53170 and LOC_Os04g53180, which were identified as a puta-
tive Xa1 gene and a bromodomain-containing protein, respectively [100]. These findings
provide valuable insights into the potential roles of these genes in BLB resistance and
suggest new avenues for further exploration in developing BLB-resistant rice varieties.
Furthermore, we found that this region contains LOC_Os04g53210 and LOC_Os04g53214,
which encode for a glycolate oxidase (GLO) enzyme. Previous studies have reported
that a reduction in the expression of GLO can lead to an increase in the production of
reactive oxygen species (ROS), which can ultimately enhance the plant’s ability to defend
against various stresses [101]. In addition, this study has identified seven NBS-LRR coding
genes (LOC_Os02g02660.1, LOC_Os02g02670.1, LOC_Os02g39660.1, LOC_Os04g53050.1,
LOC_Os06g03500.1, LOC_Os07g31500.1, and LOC_Os08g10440.1) located on chromosomes
2, 4, 6, 7, and 8, which may be crucial for the recognition and constant surveillance of
invading elicitors and play a significant role in the plant defense mechanism [72,86,102].
Among these genes, LOC_Os04g53050 was identified as an Xa38 gene associated with
S4_31500482 and S4_31505231 [4]. In a previous study, Dilla-Ermita et al. [17] identified
eight SNPs located on chromosome 8 that were adjacent to and flanked the xa13 gene,
including S8_26013849, S8_26044514, S8_26044528, S8_27319974, S8_27520607, S8_27536844,
S8_27641374, and S8_27663433. Interestingly, these SNPs also flank our S8_26134412, which
is located on the LOC_Os08g41380 gene that encodes a P-type PPR protein and has been
implicated in responding to biotic and abiotic stresses [103]. Shu et al. [25] also reported
the identification of S12_175769641 and S8_27163888, which are located near the clone R
gene xa25 and Xa23, respectively. Interestingly, these two significant SNPs are located in
close proximity to our own SNP results.

The SNPs with the highest level of significance associated with BLB resistance are
located on chromosome 2 (Table 1) with a p-value of 3.69 × 10−12. Among these, the candi-
date SNP S2_25400454 is located on non-coding regions [84], which are linked to several
genes including LOC_Os02g42110 (cell cycle-associated protein kinase), LOC_Os02g42150
(wall-associated kinase, which positively regulates rice blast resistance), LOC_Os02g42200
(BB-block binding subunit of TFIIIC domain containing protein), and LOC_Os02g42310 (sim-
ilar to serine carboxypeptidase II-like protein), all of which are in the same LD decay block
(± 100 kb from the significant SNP). Finally, our analysis of flashpoint regions revealed
that the LOC_Os04g53350 gene contains six haplotypes, among which Hap4 (CCGCAGC)
showed a strong resistance reaction. This gene is located on chromosome 4 within a gene
region that contains three other genes. Our findings suggest that LOC_Os04g53350 may
play a crucial role in providing disease resistance in plants and could be a promising target
for improving plant disease resistance through breeding programs.
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The identification of a candidate gene in this study highlights its potential role in
regulating immunity to BLB resistance in rice. The results provide valuable insights
into the underlying genetic mechanisms of BLB resistance, which can help to improve
breeding programs. Further investigations into the specific roles of these genes in enhancing
rice’s resistance to this devastating disease are essential for the development of effective
management strategies. These findings underscore the importance of continued research in
this area to ensure the sustainability of rice production and food security worldwide.

5. Conclusions

The Genome-Wide Association Study (GWAS) approach was adopted to identify
Single Nucleotide Polymorphisms (SNPs) associated with resistance to each of the seven
Xoo isolates. To analyze the results, Manhattan and Q-Q plots were used, and it was found
that the BLINK method outperformed other methods in terms of smoother test lines on the
Q-Q plots. The study also identified candidate genes that could potentially confer resistance
against Xoo. Two genes, LOC_Os04g53350 and LOC_Os04g52900, were found to exhibit
highly resistant action against Xoo, with lesion lengths of 4 and 5 cm (Hap4 and Hap2 of
each gene), respectively. Additionally, ten candidate genes were analyzed for haplotypes.
The results of this research could be used to develop more efficient and effective breeding
programs aimed at enhancing the resistance of rice against Xoo, ultimately leading to
improved crop productivity and food security.
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