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1 Introduction and summary of results

The study of gauge theories with extended supersymmetry, like N = 4 and N = 2 Super
Yang-Mills (SYM) theories, offers many insightful points of view and provides powerful
techniques for the non-perturbative analysis of quantum field theories in general. In the
present paper, which is an expanded version of a recent short letter [1], we exploit two
of these techniques that are complementary to each other, localization and holography, to
study a class of N = 2 superconformal quiver gauge theories in four dimensions.

These quiver theories, which are obtained with a ZM orbifold projection from N = 4
SYM, can be represented as in figure 1, where a SU(N) group factor is associated to
each node and bi-fundamental matter hypermultiplets are in correspondence to the links.
They can be realized in string theory as the low-energy theory of the massless sector
of open strings attached to fractional D3 branes on a C2/ZM orbifold background [2],
and possess a holographic dual given by Type II B string theory on the AdS5 × S5/ZM
space [3, 4]. Because of these features, they represent one of the simplest set-ups to
investigate the strong-coupling regime and to explore the holographic correspondence when
supersymmetry is not maximal. Beside being very interesting in their own, these quiver
theories give rise, upon further orbifold or orientifold projections, to other superconformal
N = 2 models, like for instance the so-called E-theory with gauge group SU(N) and
matter in the antisymmetric plus the symmetric representation, recently discussed in [5, 6].
Furthermore, they are also interesting from the integrability point of view (see [7] and
references therein) and can be used to analyze the tensionless limit of string theory in the
AdS5×S5/ZM background and to probe the dual free world-sheet description in a context
with N = 2 supersymmetry [8].

In the quiver theories there are sectors of BPS protected observables that can be
profitably studied with supersymmetric localization techniques [9, 10]. Examples of
such observables are the partition function and the expectation value of circular Wilson
loops [11–19]. In this paper we focus on another class of observables, namely the 2- and
3-point functions of a set of single-trace scalar operators. These correlation functions have
been considered in the literature from many points of view and for various N = 2 supercon-
formal theories (see for example [5, 6, 20–36]). Here we will study such correlators for the
ZM quiver theories in the ’t Hooft limit of a large number of colors and derive from them
the normalized structure constants, which are part of the intrinsic conformal field theory
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Figure 1. A graphical representation of the quiver theory with M nodes. Each node, labeled by
an index I = 0, 1, . . . ,M − 1, stands for a SU(N) factor with its adjoint vector multiplet. The lines
connecting two neighboring nodes represent bi-fundamental matter hypermultiplets.

data. In general, these structure constants are non-trivial functions of the ’t Hooft coupling
λ, and an efficient way to get them is to use localization, which maps the computation to an
interacting matrix model. By exploiting the recursive matrix-model techniques introduced
in [27] and named “full Lie algebra approach” in [37], it is possible to generate explicit ex-
pressions for the coefficients of the 2- and 3-point functions and the corresponding structure
constants, both at finite N and in the large-N limit. This expressions are typically power
series in λ and are therefore valid only in the weak-coupling regime when λ→ 0. However,
for the leading terms at large N we manage to resum these perturbative expansions into
functions that are valid for all values of λ. From these resummed expressions, we then
extract the leading behavior for λ→∞.

On the other hand, the strong-coupling regime of these quiver theories can be accessed
by means of the AdS/CFT correspondence [38]. Applying the AdS/CFT dictionary we
identify the supergravity modes that are dual to the operators of the quiver theory and
from their effective action in the AdS space we obtain the 2- and 3-point functions. The cor-
responding structure constants computed with these holographic methods perfectly match
those obtained from localization at strong coupling. This agreement can be seen either as a
validation of the strong-coupling extrapolation of the localization results or, alternatively,
as an explicit check of the AdS/CFT correspondence for a non-maximally supersymmetric
theory in four dimensions. To our knowledge, this is the first example where an analytic
interpolation between weak and strong coupling is presented together with an independent
holographic calculation for a four-dimensional N = 2 superconformal theory. A summary
of these results for the quiver theory with two nodes has been recently published in [1]
where only the main ideas have been described, omitting demonstrations and technical
details. In this paper, instead, we consider the general M -node quiver theories and discuss
in detail all aspects of the calculations.
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Summary of results. We have studied the 2- and 3-point functions of a set of gauge-
invariant operators built with the scalar fields of the adjoint vector multiplets of the various
nodes of the quiver. As in [36], we have actually introduced specific combinations of these
operators denoted as Uk and Tα,k which are called, respectively, untwisted and twisted and
are in one-to-one correspondence with the conjugacy classes of ZM . These operators are
chiral, have a protected conformal dimension

∆Uk = ∆Tα,k = k (1.1)

and carry a U(1)R charge which, in our conventions, equals to k. By replacing the adjoint
scalar fields with their complex conjugates, one obtains the anti-chiral operators Uk and
Tα,k which have the same conformal dimension as the chiral ones, but opposite charge.
The detailed expressions of these operators can be found in section 2.

The correlators that involve only untwisted operators are planar equivalent to those
of the N = 4 SYM theory and in the holographic correspondence they are associated to
Kaluza-Klein modes of the metric and of the 4-form of the Ramond/Ramond sector, exactly
as in [39]. The twisted operators, instead, are dual to Kaluza-Klein modes of the scalar
fields that arise from wrapping the Neveu-Schwarz/Neveu-Schwarz and Ramond/Ramond
2-forms around the exceptional cycles of the orbifold resolution [4]. From the string point
of view, these are modes of twisted closed strings, and their correlators receive corrections
at all orders in perturbation theory even in the large-N limit.

In the first part of the paper (sections 3 and 4) we exploit matrix-model techniques to
determine the leading contribution at large N to the 2-point and 3-point correlators of un-
twisted and twisted operators. As already discussed in [36], the untwisted 2-point functions〈
Uk Uk

〉
do not depend on λ, while the twisted ones,

〈
Tα,k Tα,k

〉
do and are proportional to

1/λ at strong coupling. The 3-point functions can be of various types depending on how
many twisted operators they involve. If there are only untwisted operators, they are of
the type

〈
Uk U` Up

〉
(or with chiral and anti-chiral operators exchanged). These correlators

are non zero only if p = k + ` because of charge conservation and are independent of λ
in the planar approximation. When there are two twisted operators, the correlators can
be of the type

〈
Uk Tα,` Tα,p

〉
or
〈
Tα,k TM−α,` Up

〉
(or their conjugates) and are analogous

to the ones computed in [6] for the so-called E-theory. In this paper we evaluate them by
means of a more compact and general method based on the properties of an infinite matrix
X, firstly introduced in [32] and later extended in [36], that encodes all interactions of the
matrix model in a convolution of Bessel functions and allows one to obtain results that
are valid at all values of the ’t Hooft coupling. This method can be nicely rephrased with
a diagrammatic formalism which helps in organizing the various contributions in a neat
way. Extrapolating these results at strong coupling, we find that the correlators involving
two twisted operators of the type mentioned above scale as 1/λ when λ → ∞. These
same methods allow us to compute also the correlators with three twisted fields, namely〈
Tα,k Tβ,` T γ,p

〉
, which are present for ZM quivers with M ≥ 3. They are proportional to

δα+β,γ and behave as 1/λ3/2 at strong coupling.
Of course, both the 2- and the 3-point functions depend on the way the operators have

been normalized. To overcome this ambiguity we compute the normalization-independent
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structure constants, namely the 3-point functions of the normalized operators. In the planar
limit and at strong coupling, we find that these structure constants are simple functions of
the conformal dimensions (1.1) given by

CUk,U`,Up = 1√
M N

√
k ` p , (1.2a)

CUk,Tα,`,Tα,p = 1√
M N

√
k (`− 1) (p− 1) , (1.2b)

CTα,k,TM−α,`,Up = 1√
M N

√
(k − 1) (`− 1) p , (1.2c)

CTα,k,Tβ,`,T γ,p = 1√
M N

√
(k − 1) (`− 1) (p− 1) δα+β,γ . (1.2d)

All these formulas, in which we have understood the factor δk+`−p,0 for charge conservation,
are strictly valid in the large-N and large-λ limits. We notice that the untwisted structure
constants (1.2a) are actually λ-independent and, apart from the factor of

√
M due to the

ZM orbifold, they coincide with those of the N = 4 SYM theory [39]. The other structure
constants are, instead, a new strong-coupling result.

In the second part of the paper (sections 5 and 6), we study the strong coupling regime
of the quiver gauge theories by means of the AdS/CFT correspondence. As mentioned
above, the holographic dual description of the ZM quivers is given in terms of Type II
B strings propagating in an orbifold geometry of the form AdS5 × S5/ZM [3, 4]. In the
untwisted sector of this orbifold we identify the scalar modes sk that are dual to the
untwisted operators Uk and compute their 2- and 3-point functions in a holographic manner
from their effective supergravity action. Just like in the N = 4 case [39], also for the
quiver theories these untwisted correlators do not depend on λ. Extending this analysis
to the twisted sectors of AdS5 × S5/ZM , we identify the scalar modes ηα,k that are dual
to the twisted operators Tα,k. These scalar modes [4] are localized at the orbifold fixed-
locus and their effective action can be obtained by dimensionally reducing the Type II
B supergravity action to AdS5 × S1, where S1 ⊂ S5 is the circle fixed by the orbifold
projection. In this way we can obtain the 2-point functions

〈
Tα,k Tα,k

〉
and the 3-point

functions
〈
Uk Tα,` Tα,p

〉
, respectively, from the quadratic and cubic parts of the twisted

effective action. Of course the normalization chosen in this supergravity calculations is
different from the one of the localization approach, but it is interesting to see that these
holographic correlators scale as 1/λ, exactly as their matrix-model counterparts at strong
coupling. To obtain a more convincing check, we compute the normalization-independent
structure constants CUk,Tα,`,Tα,p and find exactly the same expression as in (1.2b), showing
a perfect agreement between localization and holography. However, we note that the
effective twisted action that is derived from Type II B supergravity is quadratic in the
twisted modes and thus cannot yield the 3-point functions with three twisted fields which
instead can be easily found in the gauge theory. Presumably, to obtain these correlators
from the AdS/CFT correspondence one has to consider higher-derivative string corrections
to the effective action of the twisted modes. We leave this issue to future investigations.

This paper contains also four appendices. In the first one we provide details on the
asymptotic behavior at strong coupling of the building blocks that are used to write the
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2- and 3-point functions in the localization approach. In the second appendix we show
that the typical geometric structure of the resolved ZM orbifold used in the holographic
approach actually emerges from the localization results once they are extrapolated at strong
coupling. Finally, the last two appendices contain details and identities that are useful for
the calculations done with the AdS/CFT correspondence.

2 The N = 2 quiver theory

The 4-dimensional N = 2 quiver theory represented by the necklace diagram in figure 1
has a gauge group that is a product of M factors of SU(N), labeled with an index I =
0, 1, . . . ,M − 1 (defined modulo M), and has matter fields that form M bi-fundamental
hypermultiplets. Given this field content, there are eight conserved supercharges and in
each node the β-function vanishes. This means that we have N = 2 superconformal
invariance at the quantum level. While in general it would be possible to assign different
gauge couplings to the different nodes, we take the most symmetric attitude and assume
that all Yang-Mills couplings are equal to g. Since we will be interested in the planar limit,
we introduce the ’t Hooft coupling

λ = Ng2 (2.1)

which is kept fixed when N →∞. In this limit, instanton contributions are exponentially
suppressed and will not be considered.

It is interesting to note that this quiver theory can be obtained as a ZM orbifold
projection from a parent N = 4 SYM theory with gauge group SU(MN). Under this
orbifold projection the gauge group is broken to SU(N)M and the R-symmetry group
SU(4)R is broken to its SU(2)R× U(1)R subgroup. Thus, only half of the original sixteen
supersymmetries survive and the resulting theory has N = 2 supersymmetry. Moreover,
the gauge field A and one of the three complex scalars of the original N = 4 SYM, which we
call φ, are reduced to M block-diagonal components of size N ×N denoted, respectively,
AI and φI . These fields, together with their fermionic super-partners, form M vector
multiplets in the adjoint representation of SU(N) associated to the M nodes of the quiver.
The other two complex scalars of the parent N = 4 SYM are instead reduced to N × N
off-diagonal blocks which, together with their fermionic super-partners, give rise to M bi-
fundamental hypermultiplets represented by the lines connecting two neighboring nodes of
the quiver. This orbifold construction has a direct realization in Type II B string theory
by means of fractional D3-branes placed on a C2/ZM orbifold singularity [2, 40, 41]. This
fact will be exploited when we will discuss the holographic calculations in section 5.

Our main interest is to study this theory in the large-N limit and in the regime where
the ’t Hooft coupling λ tends to infinity. To this aim, we will consider the correlation
functions of a special class of protected gauge-invariant local operators defined as

Uk(x) = 1√
M

[
trφk0(x) + trφk1(x) + . . .+ trφkM−1(x)

]
, (2.2a)

Tα,k(x) = 1√
M

M−1∑
I=0

ρ−α I trφkI (x) , (2.2b)

– 5 –
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where k = 2, 3, . . ., α = 1, . . . ,M − 1 and ρ is the M -th root of unity:

ρ = e
2πi
M . (2.3)

The operators Uk are called untwisted, while the operators Tα,k are called twisted. The
reason for this terminology is two-fold. Firstly, under the cyclic permutation φI → φI+1
that generates ZM , the operators Uk and Tα,k transform as

Uk(x)→ Uk(x) and Tα,k(x)→ ρα Tα,k(x) , (2.4)

and are thus associated to the untwisted and twisted sectors of ZM . Secondly, as shown
in [4, 36], in the holographic correspondence the operators Uk are dual to supergravity
modes that belong to the untwisted sector of C2/ZM , while the operators Tα,k are dual to
string excitations that belong to the α-twisted sector of the orbifold.

The operators (2.2) are chiral primary operators of conformal dimension k and charge
k.1 If we replace the chiral fields φI with their complex conjugates φI , we obtain the
anti-chiral operators Uk(x) and Tα,k(k), which are primary operators of dimension k and
charge −k. Using these definitions, it is easy to see that

Uk(x) =
[
Uk(x)

]∗ and Tα,k(x) =
[
TM−α,k(x)

]∗
. (2.5)

Charge conservation, conformal invariance and symmetry under ZM fix the form of
the 2-point functions of the above operators to be

〈
Uk(x)Uk(y)

〉
= GUk
|x− y|2k

and
〈
Tα,k(x)Tα,k(y)

〉
=

GTα,k
|x− y|2k

, (2.6)

where the coefficients GUk and GTα,k are functions of N and λ. Also the 3-point functions
are constrained by the symmetries of the quiver theory. Because of charge conservation,
two of the operators must be chiral and the third one must be anti-chiral (or viceversa)
to soak up the charge. In addition, because of the ZM symmetry the total twist of the
three operators must be 0 modulo M . Taking these constraints into account we have the
following possibilities:

• a 3-point function with all untwisted operators

〈
Uk(x)U`(y)Up(z)

〉
=

GUk,U`,Up
|x− z|2k |y − z|2`

; (2.7)

• a 3-point function with chiral and anti-chiral twisted operators

〈
Uk(x)Tα,`(y)Tα,p(z)

〉
=

GUk,Tα,`,Tα,p
|x− z|2k |y − z|2`

; (2.8)

• a 3-point function with two chiral twisted operators belonging to conjugate sectors

〈
Tα,k(x)TM−α,`(y)Up(z)

〉
=

GTα,k,TM−α,`,Up
|x− z|2k |y − z|2`

; (2.9)
1In our conventions the chiral fields φI have charge +1 and the anti-chiral fields φI have charge −1.
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• a 3-point function with all twisted operators

〈
Tα,k(x)Tβ,`(y)Tα+β,p(z)

〉
=

GTα,k,Tβ,`,Tα+β,p

|x− z|2k |y − z|2`
, (2.10)

which is possible if M 6= 2.

In all above correlators we have understood the δ-function δk+`−p,0 enforcing charge con-
servation, and determined the space dependent part using conformal invariance. All coef-
ficients in the numerators of (2.7)–(2.10) are functions of N and λ. Besides these 3-point
functions, we have of course also the conjugate ones in which chiral and anti-chiral operators
are exchanged.

Both the 2-point functions (2.6) and the 3-point functions (2.7)–(2.10) are sensitive
to the normalization of the operators. To remove such dependence, one introduces the
structure constants:

CUk,U`,Up =
GUk,U`,Up√
GUk GU` GUp

, CUk,Tα,`,Tα,p =
GUk,Tα,`,Tα,p√
GUk GTα,` GTα,p

,

CTα,k,TM−α,`,Up =
GTα,k,TM−α,`,Up√
GTα,k GTM−α,` GUp

, CTα,k,Tβ,`,T γ,p =
GTα,k,Tβ,`,T γ,p√
GTα,k GTβ,` GTγ,p

,

(2.11)

which are part of the intrinsic CFT data of the theory.
In the following we will study the 3-point correlators (2.7)–(2.10) with particular em-

phasis on the strong-coupling behavior of the coefficients G in the large-N limit and on
the structure constants (2.11), generalizing what was done in [36] for the 2-point functions.
We will do this by employing two methods:

I) supersymmetric localization, which will be discussed in the next two sections;

II) holography within the AdS/CFT correspondence, as we will see in the second part
of the paper.

Part I

Localization
The computation of the 2- and 3-point functions introduced in section 2 can be efficiently
performed using supersymmetric localization [10]. With this technique one maps a N = 2
superconformal theory in R4 to an interacting matrix model defined on a 4-sphere S4 [9], so
that the computation of correlation functions is reduced to the evaluation of finite dimen-
sional matrix integrals. In the following we will employ the “full Lie algebra” approach to
localization introduced in [27], which permits to obtain explicit expressions for the matrix
integrals both at finite N and in the large N -limit by exploiting recursion relations.

– 7 –
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3 The matrix-model description

Once the quiver theory is placed on a sphere S4 with unit radius, its partition function
Z localizes and can be written as an integral over a set of M traceless Hermitian N ×N
matrices aI :

Z =
∫ M−1∏

I=0

(
daI e−tra2

I

)
|Z1-loop Zinst|2 . (3.1)

Here, Z1-loop encodes the 1-loop determinants of the fluctuations around the fixed points,
while Zinst accounts for the non-perturbative instanton corrections. However, since in
the large N -limit instantons are exponentially suppressed, henceforth we will set Zinst =
1. In the “full Lie algebra” approach the integrations in (3.1) are performed over all
matrix elements. If we write aI as a linear combination of the su(N) generators Tb in the
fundamental representation, namely

aI = abI Tb where trTb Tc = 1
2 δb,c with b, c = 1, · · · , N2 − 1 , (3.2)

then the integration measure in (3.1) is

daI ≡
N2−1∏
b=1

dabI√
2π

, (3.3)

where the normalization is fixed by requiring that the Gaussian integration for each aI
gives 1. The 1-loop contribution Z1-loop can be written in terms of an interaction action
Sint as follows

|Z1-loop|2 = e−Sint , (3.4)

with2

Sint =
M−1∑
I=0

[ ∞∑
m=2

2m∑
k=2

(−1)m+k
(

λ

8π2N

)m(2m
k

)
ζ2m−1

2m
(

tr a2m−k
I − tr a2m−k

I+1
)(

tr akI− tr akI+1
)]

(3.5)

where λ is the ’t Hooft coupling (2.1) and ζ2m−1 is the Riemann ζ-value ζ(2m− 1).
In this set-up, given a generic function f of the aI ’s, its expectation value reads

〈
f
〉

= 1
Z

∫ (M−1∏
I=0

daI e− tr a2
I

)
f e−Sint =

〈
f e−Sint

〉
0〈

e−Sint
〉

0
(3.6)

where
〈
·
〉

0 denotes the vacuum expectation value in the Gaussian matrix model. These
Gaussian expectation values can be efficiently evaluated exploiting the recursion relations
obeyed by the set of the following quantities

tn1n2...np =
〈

tr an1 tr an2 . . . tr anp
〉

0 , (3.7)

where a stands for any of the matrices aI , which were derived in [27] starting from the
fusion/fission identities of SU(N).

2Recall that aM ≡ a0.

– 8 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

3.1 Untwisted and twisted operators

In analogy with what one does in the quiver gauge theory, also in the matrix model it’s
natural to introduce the untwisted and twisted linear combinations

Ak = 1√
M

[
tr ak0 + tr ak1 + . . .+ tr akM−1

]
−
√
M tk , (3.8a)

Aα,k = 1√
M

M−1∑
I=0

ρ−αI tr akI , (3.8b)

with k = 2, 3, 4, . . .. Here the index α = 1, . . . ,M − 1 labels the twisted sector and ρ is the
M -th root of unity (2.3).3 Actually, we can combine the two definitions (3.8) and write
more compactly

Aα̂,k = 1√
M

M−1∑
I=0

ρ−α̂I tr akI −
√
M tk δα̂,0 (3.9)

where the new index α̂ = 0, 1, . . . ,M − 1 is defined modulo M . In particular, the value
α̂ = 0 is associated to the untwisted sector, i.e. A0,k = Ak, while the non-zero values of α̂
correspond to the twisted sectors. Using these definitions, we easily realize that

A†
α̂,k

= AM−α̂,k (3.10)

for any α̂. It will be useful in the following to collect the single trace operators in each
sector α̂ into an infinite column vector Aα̂ defined as

Aα̂ =


Aα̂,2
Aα̂,3
...

 . (3.11)

Even if the operators (3.9) have a structure resembling that of the primary opera-
tors (2.2), they cannot properly represent the latter [22]. Indeed, differently from the
operators of the quiver gauge theory, the matrix-model operators (3.9) mix with those of
lower dimension. To disentangle this mixing, it is necessary to introduce a normal-ordered
version of Aα̂,k which can be obtained by applying the Gram-Schmidt orthogonalization
procedure in each sector α̂. As shown in [6, 23], in planar limit it is enough to consider the
mixing of the single-trace operators among themselves, and thus we define

Pα̂,k(λ) = Aα̂,k −
∑
`<k

C(α̂)
k,` (λ)Pα̂,`(λ) (3.12)

where the mixing coefficients C(α̂)
k,` (λ) form a lower triangular matrix C(α̂)(λ) and are de-

termined by demanding that Pα̂,k(λ) be orthogonal to all lower dimensional operators,
namely 〈

P
α̂,k

(λ) P †
α̂,`

(λ)
〉

= 0 for all ` < k . (3.13)

3Notice that because of the term proportional to tk that appears in the definition (3.8a), the untwisted
operators Ak have vanishing vacuum expectation value: 〈Ak〉0 = 0. The same is true for the twisted
operators: 〈Aα,k〉0 = 0.
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Imposing this requirement leads to

C(α̂)
k,` (λ) =

〈
A
α̂,k

P †
α̂,`

(λ)
〉

〈
P
α̂,`

(λ)P †
α̂,`

(λ)
〉 =

〈
A
α̂,k

P †
α̂,`

(λ)
〉

〈
A
α̂,`
P †
α̂,`

(λ)
〉 (3.14)

where k + ` is even with ` < k. Notice that we can also rewrite (3.12) to express Pα̂,k(λ)
as a combination of the original operators Aα̂,k. Defining the infinite column vector Pα̂(λ)
in analogy with (3.11), we have

Pα̂(λ) = M(α̂)(λ) Aα̂ (3.15)

where M(α̂)(λ) =
[
1 + C(α̂)(λ)

]−1.
As mentioned above, the operators Pα̂,k(λ) properly represent in the matrix model the

primary operators (2.2) of the gauge theory; more precisely the correspondence is

Uk(x) ←→ P0,k(λ) and Tα,k(x) ←→ Pα,k(λ) , (3.16)

with similar relations for the conjugate operators. Therefore, using this map, the 2- and
3-point functions of the primary operators defined in section 2 are computed in the matrix
model by the 2- and 3-point correlators of the normal-ordered operators Pα̂,k(λ). For
example we have4

GTα,k '
〈
Pα,k(λ)P †α,k(λ)

〉
and GUk,Tα,`,Tα,p '

〈
P0,k(λ)Pα,`(λ)P †α,p(λ)

〉
, (3.17)

with analogous expressions for the other cases.

3.2 Free correlators in the large-N limit

The matrix-model correlators like those in (3.17) can be evaluated using the definition (3.6),
even if it is difficult to write the result in a compact way for the general case. However, in
the large-N limit remarkable simplifications occur.

As shown in [36], the key to compute correlators at large N is to first analyze the
scaling of correlators with N in the free model. Using the recursion relations satisfied by
the multi-traces (3.7), for the 2-point functions we find that〈

A
α̂,k

A†
β̂,`

〉
0 ∝ N

k+`
2 δ

α̂,β̂
(3.18)

if k+` is even, otherwise the correlator vanishes. For the 3-point functions, instead, we have〈
A
α̂,k

A
β̂,`
A†
γ̂,p

〉
0 ∝ N

k+`+p
2 −1 δ

α̂+β̂,γ̂ (3.19)

if k + ` + p is even, otherwise the correlator vanishes. In higher correlators with an even
number of A’s, the leading contribution at large N can be computed by factorizing them
à la Wick in terms of 2-point functions. Indeed, it follows from (3.18) and (3.19) that
decompositions which include two 3-point functions are suppressed by 1/N2 and thus are

4Here and in the following, we use the symbol ' to denote the leading term in the large-N limit.
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sub-leading. On the other hand, for correlators containing an odd number of A’s, the
leading large-N terms arise from factorizations à la Wick into exactly one 3-point function
and as many 2-point functions as needed.

To export these large-N simplifications in the computation of the gauge theory corre-
lators, we have to change basis and consider the normal-ordered operators (3.15). At λ = 0
further simplifications occur. Indeed, in the free theory the coefficients of the change of
basis at large N are related to the power expansion of Chebyshev polynomials [25] and in
all sectors read

lim
λ→0

M
(α̂)
k,` (λ) ' k

`

(
k+`−2

2
k−`

2

)(
− N

2

) k−`
2
≡ Mk,` (3.20)

when k + ` is even with ` ≤ k, and vanish in all other cases. Therefore, at λ = 0 we
simply have

Pα̂(0) ' M Aα̂ . (3.21)

The lower triangular matrix M can be easily inverted and the elements of its inverse read

(M−1)k,` =
(
N

2

) k−`
2
(
k
k−`

2

)
(3.22)

where again ` ≤ k, with k + ` even.
Combining (3.18) and (3.19) with (3.21), we obtain the 2- and 3-point correlators of

the normal-ordered operators in the free theory. For the 2-point functions we find

〈
P
α̂,k

(0)P †
β̂,`

(0)
〉

0 ' Gk δα̂,β̂ δk,` with Gk = k

(
N

2

)k
. (3.23)

This result naturally suggests to introduce the normalized operators

Pα̂,k ≡
1√
Gk

Pα̂,k(0) (3.24)

which obviously have a canonical “propagator”

〈
P
α̂,k
P†
β̂,`

〉
0 ' δ

α̂,β̂
δk,` ≡
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At λ = 0 it is easy to compute also the 3-point correlators. Indeed one finds〈
P
α̂,k
P
β̂,`
P†
γ̂,p

〉
0 ' Ck,`,p δα̂+β̂ , γ̂ (3.26)

for k + `+ p even, where
Ck,`,p = 1√

M N

√
k ` p . (3.27)

Note that the factor of 1/N with respect to the 2-point function (3.25) agrees with the
large-N behavior of the correlators of the operators Aα̂,k given in (3.18) and (3.19). The

– 11 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

cubic correlator (3.26) can be interpreted as a Feynman diagram built with three external
free propagators (3.25) attached to a cubic vertex as follows:

≡ Ck,`,p δα̂+β̂ , γ̂ . (3.28)

In terms of the unnormalized operators, the 3-point functions (3.26) become〈
P
α̂,k

(0)P
β̂,`

(0)P †
γ̂,p

(0)
〉

0 ' Gk,`,p δα̂+β̂,γ̂ (3.29)

where

Gk,`,p =
√
Gk G` Gp Ck,`,p = k ` p

2
√
M

(
N

2

) k+`+p
2 −1

. (3.30)

The quantities Gk and Gk,`,p defined in (3.23) and (3.30) are precisely the coefficients that
appear in the numerator of the 2- and 3-point functions of the gauge theory operators at
λ = 0, while the quantities Ck,`,p in (3.27) are the normalized structure constants of the
free theory. Notice that, apart from the factors of

√
M due to the quiver construction,

these coefficients match those of the N = 4 SYM theory in the planar limit.

3.3 The interaction action at large N

The crucial observation is that the 2- and 3-point functions of the normalized operators
given in (3.25) and (3.26) can be computed in full generality also in the interacting theory
when λ 6= 0. The reason for this is that the interaction action (3.5) can be written in terms
of the normalized operators Pα̂,k and their conjugates in a very simple form. To see this,
following [36], let us first rewrite Sint in the basis of the operators (2.2). This yields

Sint =
M−1∑
α̂=0

[
4 sα̂

∞∑
m=2

2m∑
k=2

(−1)m+k
(

λ

8π2N

)m(2m
k

)
ζ2m−1

2m A†
α̂,2m−k Aα̂,k

]
, (3.31)

where

sα̂ = sin2
(
πα̂

M

)
. (3.32)

Note that s0 = 0, so that the sum over α̂ effectively reduces to a sum over only the twisted
sectors. However, we find convenient to keep the extended sum over α̂. Using the inverse
matrix (3.22), we can rewrite the operators Aα̂,k in terms of the normalized operators Pα̂,k
and put the interaction action (3.31) in the form

Sint = −1
2

M−1∑
α̂=0

sα̂ P†
α̂

X P α̂ . (3.33)
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Here P α̂ is an infinite vector with components Pα̂,k and X is an infinite symmetric matrix
in which the entries with opposite parity vanish, namely

X2n,2m+1 = 0 , (3.34)

while the entries with the same parity are non-trivial functions of λ which can be expressed
in terms of a convolution of Bessel functions of the first kind [36] as follows

Xk,` = −8(−1)
k+`+2k `

2
√
k `

∫ ∞
0

dt

t

et
(et − 1)2 Jk

(
t
√
λ

2π

)
J`

(
t
√
λ

2π

)
(3.35)

with k, ` ≥ 2. Note that when we write the interaction action in the form (3.33) all de-
pendence on λ is inside the matrix X and, differently from what we had in the original
expression (3.5), this is not provided through a weak-coupling expansion but through the
Bessel functions. In other words, in writing the interaction action as in (3.33) we man-
aged to effectively resum the perturbative expansion and obtain the exact dependence on
λ through the matrix X. If we Taylor expand the Bessel functions in (3.35) and then
analytically perform the integration over t, we recover the perturbative expansion (3.31)
in the weak-coupling regime. On the other hand, using the inverse Mellin transform of
the product of two Bessel functions, (3.35) can be expanded asymptotically for large λ,
providing in this way information about the strong-coupling regime of the theory.

3.4 Correlators in the interacting theory

Since the normalized operators Pα̂,k defined in (3.24) are linear combinations of the op-
erators Aα̂,k, they inherit from the latter the large-N factorization properties discussed
after (3.19). Thus, the free correlator of an even number of P’s can be simply obtained,
at large N , by making all possible contractions using the propagator (3.25); indeed, for
every insertion of the cubic vertex (3.28) we would get an extra factor of 1/N , as shown
in (3.27). Furthermore, since the free propagator only connects conjugated twisted sectors,
the correlator factorizes with respect to the indices α̂.

3.4.1 The propagator

As already discussed in [36], the interaction action (3.31) modifies the propagator. At the
first order in Sint, one has〈

P
α̂,k
P†
β̂,`

〉
=
〈
P
α̂,k
P†
β̂,`

〉
0 −

〈
P
α̂,k
P†
β̂,`
Sint

〉
0 +

〈
P
α̂,k
P†
β̂,`

〉
0
〈
Sint

〉
0 + . . .

= δ
α̂,β̂

δk,` + 1
2
∑
γ̂

∑
m,n

sγ̂
〈
P
α̂,k
P†
β̂,`

(
P†
γ̂,m

Xm,n Pγ̂,n
)〉

0

∣∣∣
conn

+ . . . , (3.36)

where by the notation |conn we mean the connected part of the correlator in which the two
operators coming from Sint are not contracted with each other. Performing the allowed
Wick contractions with the free propagator, we get〈

P
α̂,k
P†
β̂,`

〉
' δ

α̂,β̂

(
1 + sα̂ X

)
k,`

+ . . . . (3.37)
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Thus, diagrammatically, the insertion of Sint corresponds to a quadratic vertex:

≡ sγ̂ Xm,n . (3.38)

Taking into account the subsequent orders in Sint leads simply to
〈
P
α̂,k
P†
β̂,`

〉
'
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' δ
α̂,β̂

(
1 + sα̂ X + s2

α̂
X2 + . . .

)
k,`

. (3.39)

Resumming the formal geometric series, we find〈
P
α̂,k
P†
β̂,`

〉
' δ

α̂,β̂

( 1
1− sα̂ X

)
k,`

≡ δ
α̂,β̂

D(α̂)
k,` ≡
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We stress that this formula, which vanishes if k and ` have different parity, is exact in λ

and that the entire dependence on the coupling is encoded in the Bessel functions inside X
and hence inside D(α̂). Note that in the untwisted sector α̂ = 0, we have s0 = 0 and thus
the propagator remains the free one, namely〈

P0,k P
†
0,`
〉
' D(0)

k,` = δk,` . (3.41)

We can therefore conclude that in the interacting theory the large-N leading contribution
to correlators of an even number of P’s are given by all possible Wick contractions as in
the free theory, but performed using the interacting propagator (3.40).

3.4.2 The 2-point functions

The operators Pα̂,k, which are orthonormal at λ = 0, are no longer so when λ 6= 0 but
can be easily normal-ordered by applying the Gram-Schmidt procedure to their scalar
product (3.40). Taking into account the normalization factor Gk appearing in (3.24), we can
thus express the operators Pα̂,k(λ), which represent the gauge theory operators according
to (3.16), in terms of the P’s and write

Pα̂,k(λ) =
√
Gk
(
Pα̂,k −

∑
`<k

Q(α̂)
k,` (λ)Pα̂,`

)
, (3.42)

where the mixing coefficients Q(α̂)
k,` (λ) are determined by demanding that Pα̂,k(λ) be orthog-

onal to all lower dimensional operators. This process is trivial in the untwisted case since

P0,k(λ) '
√
Gk P0,k (3.43)

for any k, while it can be carried out iteratively to the desired level, independently in each
twisted sector α. For the first few values of k, we have

Pα,2(λ) '
√
G2 Pα,2 , Pα,3(λ) '

√
G3 Pα,3 ,

Pα,4(λ) '
√
G4

(
Pα,4 −

D(α)
4,2

D(α)
2,2
Pα,2

)
, Pα,5(λ) '

√
G5

(
Pα,5 −

D(α)
5,3

D(α)
3,3
Pα,3

)
,

(3.44)

and so on.
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Using these formulas, the correspondence (3.17) and the interacting propagator (3.40),
it is straightforward to obtain the coefficients GUk and GTα,k appearing in the twisted
2-point functions. Indeed, in the untwisted sector we have

GUk '
〈
P0,k(λ)P †0,k(λ)

〉
' Gk

〈
P0,k P

†
0,k
〉
' Gk (3.45)

for all k, while in each twisted sector α we obtain

GTα,2 '
〈
Pα,2(λ)P †α,2(λ)

〉
' G2

〈
Pα,2 P

†
α,2
〉
' G2 D(α)

2,2 ,

GTα,3 '
〈
Pα,3(λ)P †α,3(λ)

〉
' G3

〈
Pα,3 P

†
α,3
〉
' G3 D(α)

3,3 ,

GTα,4 '
〈
Pα,4(λ)P †α,4(λ)

〉
'
√
G4
〈
Pα,4(λ)P†α,4

〉
' G4

〈(
Pα,4 −

D(α)
4,2

D(α)
2,2
Pα,2

)
P†α,4

〉

' G4
D(α)

4,4 D(α)
2,2 − D(α)

4,2 D(α)
2,4

D(α)
2,2

, (3.46)

GTα,5 '
〈
Pα,5(λ)P †α,5(λ)

〉
'
√
G5
〈
Pα,5(λ)P†α,5

〉
' G5

〈(
Pα,5 −

D(α)
5,3

D(α)
3,3
Pα,3

)
P†α,5

〉

' G5
D(α)

5,5 D(α)
3,3 − D(α)

5,3 D(α)
3,5

D(α)
3,3

.

Similar formulas can be easily worked out for other values of k. In fact, as shown in [36],
it is possible to write a compact expression for GTα,k at a generic k. If we introduce the
matrices Deven,(α) and Dodd,(α) defined as(

Deven,(α))
n,m

= D(α)
2n,2m and

(
Dodd,(α))

n,m
= D(α)

2n+1,2m+1 , (3.47)

then we have

GTα,2n ' G2n
det

[
Deven,(α)

(n)
]

det
[
Deven,(α)

(n−1)
] and GTα,2n+1 ' G2n+1

det
[
Dodd,(α)

(n)
]

det
[
Dodd,(α)

(n−1)
] (3.48)

where the subscript (n) indicates the upper-left n × n block of the matrix, with the con-
vention that Deven,(α)

(0) = Dodd,(α)
(0) = 1.

Such expressions can be used to extract very efficiently the perturbative expansion
in λ. To do so, one simply has to expand the propagators D(α) as geometric series in X
and then exploit the weak coupling expansion of the latter that is obtained by expanding
the Bessel functions. However, using the properties of these functions when the argument
tends to infinity, one can also obtain the asymptotic expansion of the 2-point functions in
the strong-coupling regime, as we will see in section 4.

3.4.3 The 3-point functions

We now extend the above arguments to the calculation of the 3-point functions at large
N . At λ = 0 they are given in (3.26) and (3.27) and have the diagrammatic interpretation
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shown in (3.28). When the interaction is turned on, at order n in Sint we have to evaluate
correlators involving (3 + 2n) operators P in the free theory. As said before, the operators
P inherit the large-N factorization properties of the operators A; in particular, as described
after (3.19), the leading term of the correlator of an odd number of P’s is given by diagrams
constructed out of just one cubic vertex (3.28) plus the needed contractions with the free
propagators. Thus, for a correlator with (3 + 2n) operators arising at order n in Sint, we
employ one cubic vertex and n free propagators. For instance, at the first order in Sint
we have〈
P
α̂,k
P
β̂,`
P†
γ̂,p

〉
=
〈
P
α̂,k
P
β̂,`
P†
γ̂,p

〉
0 −

〈
P
α̂,k
P
β̂,`
P†
γ̂,p
Sint

〉
0

∣∣∣
conn

+ . . .

= δ
α̂+β̂,γ̂ Ck,`,p + 1

2
∑
δ̂

∑
m,n

s
δ̂

〈
P
α̂,k
P
β̂,`
P†
γ̂,p
P†
δ̂,m

Xm,n Pδ̂,n
〉

0

∣∣∣
conn

+ . . . .

(3.49)

Factorizing the second term into a cubic vertex times a Wick contraction in all possible
ways, we get

〈
P
α̂,k
P
β̂,`
P†
γ̂,p

〉
' δ

α̂+β̂,γ̂

(
Ck,`,p +

∑
k′

sα̂ Xkk′ Ck′,`,p +
∑
`′

s
β̂

X``′ Ck,`′,p +
∑
p′

sγ̂ Xpp′ Ck,`,p′
)

+ . . . . (3.50)

Diagrammatically, this reads

〈
P
α̂,k
P
β̂,`
P†
γ̂,p

〉
' .

(3.51)

It is easy to see that the inclusion of all subsequent orders in Sint has the effect of promoting
the external lines to the fully interacting propagators (3.40). The result, at the leading
order in N but exact in λ, is thus

〈
P
α̂,k
P
β̂,`
P†
γ̂,p

〉
' ≡ δ

α̂+β̂,γ̂

∑
k′,`′,p′

D(α̂)
kk′ D

(β̂)
``′ D(γ̂)

pp′ Ck′,`′,p′ . (3.52)

Since the structure constants Ck′,`′,p′ are factorized (see (3.27)), the above expression can
be written as

〈
P
α̂,k
P
β̂,`
P†
γ̂,p

〉
'

δ
α̂+β̂,γ̂√
M N

d(α̂)
k d(β̂)

` d(γ̂)
p , (3.53)
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where

d(α̂)
k =

∑
k′

D(α̂)
kk′

√
k′ . (3.54)

In the untwisted case we simply have

d(0)
k =

√
k , (3.55)

and the correlator of three untwisted operators retains its free value also for λ 6= 0:

〈
P0,k P0,` P†0,p

〉
' Ck,`,p = 1√

M N

√
k ` p (3.56)

provided k+`+p is even. Instead, in the twisted case the quantities in (3.54) are non-trivial
functions of λ. At weak coupling it is quite straightforward to obtain their perturbative
expressions. For example, for k = 2, 3 we have

d(α)
2 =

√
2
[
1−6sα ζ3 λ̂

2+50sα ζ5 λ̂
3−
(735

2 sα ζ7 − 36s2
α ζ

2
3

)
λ̂4+

(
2646sα ζ9−540s2

α ζ3 ζ5
)
λ̂5

−
(38115

2 sα ζ11 − 3675 s2
α ζ3 ζ7 − 2050 s2

α ζ
2
5 + 216 s3

α ζ
3
3

)
λ̂6 + . . .

]
, (3.57)

and

d(α)
3 =

√
3
[
1− 10 sα ζ5 λ̂

3 + 245
2 sα ζ7 λ̂

4 − 1134 sα ζ9 λ̂
5

+
(38115

4 sα ζ11 + 100 s2
α ζ

2
5

)
λ̂6 + . . .

]
, (3.58)

where for compactness of notation we introduced the rescaled coupling λ̂ = λ/(8π2). Sim-
ilar perturbative expansions can be easily derived for higher values of k.

Using (3.53) and the relation (3.42), we can obtain the 3-point functions of the normal-
ordered operators Pα̂,k(λ) and thus find the 3-point coefficients of the quiver gauge theory
at generic value of λ. If all three operators are untwisted, the 3-point function is unmodified
with respect to the free theory expression (3.29):

GUk,U`,Up '
〈
P0,k(λ)P0,`(λ)P †0,p(λ)

〉
'
√
Gk G` Gp

〈
P0,k P0,` P

†
0,p
〉

'
√
Gk G` Gp Ck,`,p = Gk,`,p (3.59)

where the δ function imposing charge conservation is understood.
When there are twisted operators, the correlators deviate from those of the free theory.

To give some explicit expressions, let us fix for simplicity M = 3. In the corresponding
Z3 quiver theory there are two twisted sectors, α = 1 and α = 2, that are conjugated
to each other, and the coefficients sα̂ take the values: s0 = 0, s1 = s2 = 3/4. A typical
3-point twisted correlator in this theory is, for example, GUk,Tα,`,Tα,p with p = k + ` for
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charge conservation. If for simplicity we take k = 2, ` = 3, p = 5 and α = 1, using (3.43)
and (3.44) we have

GU2,T1,3,T 1,5
'
〈
P0,2(λ)P1,3(λ)P †1,5(λ)

〉
'
√
G2 G3 G5

〈
P0,2 P1,3

(
P†1,5 −

D(1)
5,3

D(1)
3,3
P†1,3

)〉

'
√
G2 G3 G5√

3N
√

2 d(1)
3

(
d(1)

5 −
D(1)

5,3

D(1)
3,3

d(1)
3

)
(3.60)

where the last step follows from (3.53) and (3.55). Expanding at weak coupling, we obtain

GU2,T1,3,T 1,5
' G2,3,5

[
1− 15

2 ζ5 λ̂
3+ 735

8 ζ7 λ̂
4− 6993

8 ζ9 λ̂
5+

(
7623 ζ11 + 225

4 ζ2
5

)
λ̂6+ . . .

]
,

(3.61)

where G2,3,5 = 5
√

3(N/2)4 in accordance with (3.30). Other correlators involving operators
with different dimensions can be obtained in a similar way.

In the Z3 quiver theory, we can have also a 3-point function with three twisted opera-
tors. An example is given by the following correlator

GT1,2,T1,3,T 2,5
'
〈
P1,2(λ)P1,3(λ)P †2,5(λ)

〉
'
√
G2 G3 G5

〈
P1,2 P1,3

(
P†2,5 −

D(2)
5,3

D(2)
3,3
P†2,3

)〉

'
√
G2 G3 G5√

3N
d(1)

2 d(1)
3

(
d(2)

5 −
D(2)

5,3

D(2)
3,3

d(2)
3

)
(3.62)

whose perturbative expansion is

GT1,2,T1,3,T 2,5
' G2,3,5

[
1− 9

2ζ3 λ̂
2 + 30ζ5 λ̂

3−
(735

4 ζ7 −
81
4 ζ2

3

)
λ̂4+

(8883
8 ζ9 − 270 ζ3 ζ5

)
λ̂5

−
(53361

8 ζ11 −
6615

4 ζ3 ζ7 −
7425

8 ζ2
5 + 729

8 ζ3
3

)
λ̂6 + . . .

]
. (3.63)

These prototypical examples, which can be easily generalized in many ways, show that the
3-point correlators of the quiver theory can be written algebraically in terms of the quanti-
ties D(α̂)

k,` and d(α̂)
k that contain the exact dependence on λ. By expanding these quantities

at weak coupling, we easily generate the perturbative series and, more importantly, by
studying their behavior for large values of λ we can access the strong-coupling regime as
we are going to do in the next section.

4 Strong-coupling results from localization

The expressions for the correlators we have derived in the previous section for a generic
value of λ remarkably simplify at strong coupling. Indeed, as discussed in [36], using the
properties of the Bessel functions one can show that the matrix X behaves for λ→∞ as

X ∼
λ→∞

− λ

2π2 S (4.1)
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where S is a three-diagonal matrix with elements

Sk,` =
√
`

k

(
− δk−2,`

2(k − 2)(k − 1) + δk,`
(k − 1)(k + 1) −

δk+2,`
2(k + 1)(k + 2)

)
(4.2)

for k + ` even and zero otherwise. Using this result in (3.40) yields

D(α)
k,` ∼

λ→∞

2π2

sα λ

(
S−1)

k,`
= π2

sα λ

[√
k `
(

min(k2, `2)− δkmod 2,1
)]
. (4.3)

Writing out explicitly the first entries, we have5

D(α)
k,` ∼

λ→∞

8π2

sα λ



1 0
√

2 0
√

3 0 · · ·
0 3 0

√
15 0

√
21 · · ·√

2 0 8 0 4
√

6 0 · · ·
0
√

15 0 15 0 3
√

35 · · ·√
3 0 4

√
6 0 27 0 · · ·

0
√

21 0 3
√

35 0 42 · · ·
...

...
...

...
...

... . . .


. (4.4)

4.1 The 2- and 3-point functions

Through (3.40), the matrix (4.3) encodes the 2-point functions of the operators Pα,k in the
large-N and large-λ regime. Ultimately, however, we are interested in the correlators of
the normal-ordered operators Pα̂,k(λ) determined by the Gram-Schmidt procedure. Quite
remarkably, at large λ, this procedure takes a very simple form. Indeed, the 2-point
functions can be diagonalized with the following change of basis6

P0,k(∞) '
√
Gk P0,k , Pα,2(∞) '

√
G2 Pα,2 ,

Pα,k(∞) '
√
Gk
(
Pα,k −

√
k

k − 2 Pα,k−2

)
for k > 2 . (4.5)

If we express Pα,k in the basis of the operators Aα,k through (3.24) and (3.21), we obtain

Pα(∞) ' M(∞)Aα (4.6)

where

M(∞)
k,` = 2(k − 1)

k + `− 2 Mk,` (4.7)

with Mk,` defined in (3.20).7

5Recall that k and ` are ≥ 2.
6From now on, the symbol ' denotes the leading term both at large N and at large λ.
7It is interesting to notice that the operators Pα,k(∞) as given in (4.6) are related to the Gegen-

bauer polynomials C(w)
k of order k with weight parameter w = −1. More precisely, we have Pα,k(∞) =

(N2 ) k
2 k!

(w)k

[
C

(w)
k (x/

√
2N)−C(w)

k (0)
]∣∣
w=−1

, where (w)k is the Pochammer symbol and xn has to be inter-
preted as Aα,n. This fact is the strong-coupling counterpart of the relation of the operators P

α̂,k
(0) with

the Chebyshev polynomials observed at λ = 0 [25].
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Then, using the correspondence (3.16), it is immediate to find that the coefficients in
the 2-point functions of the quiver operators at strong coupling are

GUk '
〈
P0,k(∞)P †0,k(∞)

〉
' Gk ,

GTα,k '
〈
Pα,k(∞)P †α,k(∞)

〉
' Gk

4π2 k (k − 1)
sα λ

, (4.8)

confirming the results of [36].
To find the strong-coupling behavior of the 3-point functions we need a new ingredient,

namely the strong-coupling limit of the quantities d(α̂)
k defined in (3.54). Of course, in the

untwisted case α̂ = 0, we already know that d(0)
k =

√
k (see (3.55)), but in the twisted

sectors we have to work out how these coefficients behave when λ→∞. Since the strong-
coupling expansions are asymptotic series, we cannot simply plug-in the large-λ limit in
each term of the sum that defines d(α̂)

k , but we have to perform a new independent analysis.
This is discussed in detail in appendix A using two different methods that lead to the
following very compact result

d(α)
k ∼

λ→∞

π√
sα λ

[√
k

2
(
k2 − δkmod 2,1

)]
. (4.9)

Through the change of basis (4.5), the correlators of three normal-ordered operators
Pα̂,k(∞) are reduced to linear combinations of the 3-point functions of the Pα̂,k operators
given in (3.53). Since the latter factorize in terms of the d(α̂)

k coefficients, it is sufficient to
introduce the quantities

d̃(0)
k = d(0)

k and d̃(α)
k = d(α)

k −

√
k

k − 2 d(α)
k−2 , (4.10)

and obtain 〈
P
α̂,k

(∞)P
β̂,`

(∞)P †
γ̂,p

(∞)
〉
'

δ
α̂+β̂,γ̂√
M N

√
Gk G` Gp d̃(α̂)

k d̃(β̂)
` d̃(γ̂)

p (4.11)

where, as usual, we have omitted the δ-function imposing charge conservation. At strong
coupling, we have

d̃(0)
k =

√
k and d̃(α)

k ∼
λ→∞

2π√
sα λ

√
k (k − 1) , (4.12)

which follows upon inserting (4.9) into (4.10). With all these ingredients it is now straight-
forward to obtain the expression of the various 3-point correlators at strong-coupling. When
all operators are untwisted we simply have

GUk,U`,Up '
〈
P0,k(∞)P0,`(∞)P †0,p(∞)

〉
' Gk,`,p (4.13)

as in the free theory (see (3.59)), whereas when there are some twisted operators we have
new results. In particular we find

GUk,Tα,`,Tα,p '
〈
P0,k(∞)Pα,`(∞)P †α,p(∞)

〉
' 1√

M N

√
Gk G` Gp

√
k d̃(α)

` d̃(α)
p

' Gk,`,p
[ 2π√

sα λ
(`− 1)

][ 2π√
sα λ

(p− 1)
]
, (4.14)
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and

GTα,k,TM−α,`,Up '
〈
Pα,k(∞)PM−α,`(∞)P †0,p(∞)

〉
' 1√

M N

√
Gk G` Gp d̃(α)

k d̃(M−α)
`

√
p

' Gk,`,p
[ 2π√

sα λ
(k − 1)

][ 2π√
sM−α λ

(`− 1)
]
. (4.15)

Finally, if all three operators are twisted we have

GTα,k,Tβ,`,T γ,p '
〈
Pα,k(∞)Pβ,`(∞)P †γ,p(∞)

〉
' δα+β,γ√

M N

√
Gk G` Gp d̃(α)

k d̃(β)
` d̃(γ)

p

' Gk,`,p
[ 2π√

sα λ
(k − 1)

][ 2π√
sβ λ

(`− 1)
][ 2π√

sγ λ
(p− 1)

]
δα+β,γ . (4.16)

Of course this last possibility exists only in quivers with more than two nodes.

4.2 The structure constants at strong coupling

Combining our strong-coupling results on the 2- and 3-point correlators, we can obtain
the structure constants which do not depend on the normalization of the operators and
are part of the intrinsic data of the conformal field theory. For the various cases we have
considered, these structure constants, defined in (2.11), at strong coupling read

CUk,U`,Up '
1√
M N

√
k ` p , (4.17a)

CUk,Tα,`,Tα,p '
1√
M N

√
k (`− 1) (p− 1) , (4.17b)

CTα,k,TM−α,`,Up '
1√
M N

√
(k − 1) (`− 1) p , (4.17c)

CTα,k,Tβ,`,T γ,p '
1√
M N

√
(k − 1) (`− 1) (p− 1) δα+β,γ . (4.17d)

In all these expressions we have understood the factor δk+`−p,0 which enforces the charge
conservation.

Part II

Holography
In this part of the paper we derive the 2- and 3-point functions of the scalar operators at
strong coupling using the AdS/CFT correspondence. Since we are interested in the planar
limit, we can work at the level of supergravity. However, we find more convenient to start
from a more general string theory set-up.

5 The holographic description

The quiver theory under consideration can be obtained from a parent N = 4 SYM theory
with gauge group SU(MN) engineered with MN regular D3-branes of Type II B string
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theory placed on a C2/ZM orbifold singularity (see for instance [2, 3]). Denoting by z2 and
z3 the complex coordinates of C2, the action of ZM is simply

z2 → ρ z2 and z3 → ρ−1 z3 , (5.1)

where ρ = e 2πi
M . By breaking the pile of MN D3-branes into M stacks of N fractional

D3-branes located at the orbifold fixed-locus z2 = z3 = 0, we obtain the quiver theory of
figure 1, in which each node corresponds to one of the M stacks. The latter can therefore
be labeled by the same index I used for the quiver nodes. In the field-theory limit, the
massless excitations of the open strings starting and ending on the I-th branes give rise to
the adjoint vector multiplet of the I-th node of the quiver, while the massless excitations of
the open strings stretching between the I-th branes and the (I ± 1)-th branes yield the bi-
fundamental matter hypermultiplets. The massless excitations associated to open strings
stretching between the I-th branes and the (I±k)-th branes with k ≥ 2 are instead removed
by the orbifold projection and this explains why there are no links between non-adjacent
nodes of the quiver.

From a geometrical point of view, the fractional D3-branes can be interpreted as D5-
branes wrapped around the exceptional 2-cycles ei (with i = 1, . . . ,M − 1) of the ZM
orbifold singularity. These 2-cycles are associated to anti-self dual 2-forms ωi such that∫

ei

ωj = δ ji , (5.2)

which are normalized as follows ∫
M
ωi ∧ ωj = −

(
C−1)ij . (5.3)

HereM is the ALE space obtained by resolving the C2/ZM orbifold singularity and C is
the Cartan matrix of SU(M), namely

C =


2 −1 0 0 0 . . .
−1 2 −1 0 0 . . .
0 −1 2 −1 0 . . .
...

...
...

...
... . . .

 . (5.4)

Note that there are M types of fractional branes but there are only (M − 1) exceptional
2-cycles ei. In fact, the fractional branes corresponding to the trivial representation, i.e.
those with I = 0 in our conventions, are D5-branes wrapped around the 2-cycle e0 = −∑i ei
(in presence of an additional magnetic background flux on the world-volume).

From the closed string point of view, the fractional D3-branes can be seen as soliton
configurations that emit the metric, a 4-form C4 with a self-dual field strength, and the
scalars corresponding to the wrapping of the 2-forms B2 and C2 around the 2-cycles ei of
the orbifold,8 namely

b̂i = 1
2πα′

∫
ei

B2 and ĉi = 1
2πα′

∫
ei

C2 , (5.5)

8See for instance [40–42] where it is also shown that the axio-dilaton of fractional D3-branes is constant.
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where α′ is the square of the string length. The factors of 1/(2πα′) have been inserted in
order to make b̂i and ĉi dimensionless, just like their parent 2-forms B2 and C2.

The low-energy effective dynamics of the metric and the 4-form C4 is captured by the
following 10-dimensional action

S10 = 1
2κ2

10

∫
d10x

√
G

(
R+ 1

4 · 5!
(
dC4

)2) (5.6)

with the understanding that the self-duality condition on the field strength dC4 has to be
imposed on the field equations. Here G is the determinant of the metric, R is the scalar
curvature and 2κ2

10 is the gravitational constant in ten dimensions:

2κ2
10 = (2π)7 g2

s α
′ 4 (5.7)

where gs is the string coupling.
To describe the dynamics of the scalars b̂i and ĉi, we have to consider the part of the

low-energy effective action of Type II B string theory that depends on B2 and C2, which
is given by9

S′10 = 1
2κ2

10

[ ∫
d10x

√
G

( 1
12
(
dB2)2 + 1

12
(
dC2)2

)
− 4

∫
C4 ∧ dB2 ∧ dC2

]
. (5.8)

From (5.5) we see that B2 = (2πα′)∑i b̂i ω
i and C2 = (2πα′)∑i ĉi ω

i. Inserting these
expansions in the above action and using (5.3), we obtain the following six-dimensional
action

S6 = (2πα′)2

2κ2
10

M−1∑
i,j=1

[ ∫
d6x
√
G′
(1

2 ∇b̂i·∇b̂j + 1
2 ∇ĉi·∇ĉj

)
+4
∫
C4∧db̂i∧dĉj

](
C−1)ij (5.9)

where G′ is the determinant of the metric in the space transverse to the C2/ZM singularity.
We now perform a change of basis and rewrite everything in terms of the fields asso-

ciated to the twisted sectors of the orbifold [36, 41, 43]. To do so, we first introduce two
additional scalars10

b̂0 = 1
2πα′

∫
e0
B′2 and ĉ0 = 1

2πα′
∫
e0
C2 . (5.10)

Since e0 = −∑i ei, these fields are not independent; indeed one has

b̂0 = 1−
M−1∑
i=1

b̂i and ĉ0 = −
M−1∑
i=1

ĉi . (5.11)

9Here we have used the fact that in the presence of fractional D3-branes, the axio-dilaton is constant.
Therefore, the only dilaton dependence in S′10 is through gs which is the exponential of the vacuum expec-
tation value of the dilaton. Moreover, without any loss of generality, we have set the axion to zero, so that
the field strength of C2 is just its exterior derivative.

10Here B′2 = B2 + 2πα′F where F is a constant background representing a unit magnetic flux.

– 23 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

Nevertheless, it is useful to use them in order to define the following combinations

b0 = 1
2

M−1∑
I=0

b̂I , bα = 1
2

M−1∑
I=0

ρ−αI b̂I , (5.12a)

c0 = 1
2

M−1∑
I=0

ĉI , cα = 1
2

M−1∑
I=0

ρ−αI ĉI , (5.12b)

where α = 1, . . . ,M − 1. Note that, in view of (5.11), b0 is constant and c0 vanishes.
Therefore, these scalars do not have any dynamical role. The other scalars bα and cα (with
α 6= 0) are called twisted since they are associated to the (M − 1) twisted sectors of the
ZM orbifold. They are complex fields and satisfy the following conjugation rules

b∗α = bM−α and c∗α = cM−α . (5.13)

Now we rewrite b̂i and ĉi in terms of bα and cα using the inverse of (5.12) and, after some
simple algebra, we find that (5.9) becomes

S6 = (2πα′)2

2κ2
10M

M−1∑
α=1

1
2sα

[ ∫
d6x
√
G′
(
∇b∗α ·∇bα +∇c∗α ·∇cα

)
+ 8

∫
C4 ∧ db∗α ∧ dcα ,

]
(5.14)

where
sα = sin2

(
πα

M

)
, (5.15)

which is just eq. (3.32) for α̂ = α. The actions (5.6) and (5.14) are the starting point for
our holographic computations.

5.1 The near-horizon limit and Kaluza-Klein expansions

The next step is to consider the near-horizon limit of the fractional D3-brane geometry [4].
This means that the 10-dimensional space is taken to be of the form

AdS5 × S5/ZM (5.16)

and the field-stregth F5 = dC4 to be proportional to the volume form of the AdS5 space.
The 6-dimensional space transverse to the orbifold fixed locus where the scalars bα and cα
propagate is instead taken to be of the form

AdS5 × S1 . (5.17)

In appendix C we provide an explicit parametrization of S5 and of the ZM action on its
angular coordinates, from which one can easily see that the fixed locus is indeed a circle
S1 inside S5.

The analysis of Type II B supergravity in the AdS5 × S5 space was performed long
ago in [44] where the full spectrum of excitations around that background was derived
from the equations obeyed by all supergravity fields. For our purposes, here it is enough
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to consider the fluctuations of the metric and the 4-form which are the fields appearing in
the action (5.6). Therefore, we write11

Gmn = gmn + hmn and C4m1...m4 = cm1...m4 + am1...m4 , (5.18)

where gmn and cm1...m4 are the background fields, while the fluctuations are as in [39, 44],
namely12

hµν = h′(µν) −
3
25 h2 gµν with gµν h′(µν) = 0 ,

hαβ = h′(αβ) + 1
5 h2 gαβ with gαβ h′(αβ) = 0 ,

aµ1µ2µ3µ4 = − εµ1µ2µ3µ4ν ∂
νa ,

aα1α2α3α4 = εα1α2α3α4β ∂
βa .

(5.19)

We then expand these fluctuations in the spherical harmonics of S5 to find the Kaluza-
Klein (KK) modes that propagate in the AdS5 space. Since we are interested in those KK
modes that are scalars in S5 and that are dual to the untwisted operators of the quiver
theory, among all possible scalar harmonics we consider only the following ones:

Y ±n = 1
2n2

cosnφ e± in θ , (5.20)

where we have used the parametrization of S5 discussed in appendix C. In this parametriza-
tion, the condition φ = 0 defines the fixed locus of the ZM orbifold which is a circle S1

parametrized by θ ∈ [0, 2π]. Notice that these harmonics are normalized in the standard
way (see appendix C.2) and remain non-trivial at the orbifold fixed locus. The relevant
expansions are then13

h2 =
∑
k∈Z

h2,k Y
k , a =

∑
k∈Z

ak Y
k , h′(µν) =

∑
k∈Z

h′(µν),k Y
k . (5.21)

Following the same steps described in [39, 44], one can show that the equations of motion for
h2,k and ak, which descend from (5.6), can be diagonalized by introducing the combinations

sk = 1
20(k + 2)

[
h2,k − 10 (k + 4) ak

]
, tk = 1

20(k + 2)
[
h2,k + 10 k ak

]
,

s∗k = 1
20(k + 2)

[
h2,−k − 10 (k + 4) a−k

]
, t∗k = 1

20(k + 2)
[
h2,−k + 10 k a−k

]
,

(5.22)

11Our conventions are the following: 10-dimensional indices are denoted by Latin letters m,n, . . .; 5-
dimensional indices in the AdS5 space are denoted by Greek letters from the middle part of the alphabet
µ, ν, . . ., whereas 5-dimensional indices along the 5-sphere are denoted by Greek letters from the beginning
part of the alphabet α, β, . . . The notation (mn) means that this pair of indices is symmetrized with strength
one and with the trace removed.

12In writing these expressions we have already implemented several consistency conditions and constraint
equations. For details we refer to the original paper [44]. Moreover, we have written only those fluctuations
which contain terms that are scalars with respect to S5.

13We do not consider the symmetric traceless fluctuation h(αβ) since it does not yield KK modes that are
scalars in S5.
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for k ≥ 2. Indeed, one finds

∇µ∇µsk = k(k − 4) sk and ∇µ∇µ tk = (k + 4)(k + 8) tk , (5.23)

and similarly for s∗k and t∗k. The relations (5.22) can be easily inverted, getting

h2,k = 10 k sk + 10 (k + 4) tk , ak = −sk + tk , (5.24)

with analogous expressions for their conjugates. Furthermore, as shown in [39], the con-
straint equations satisfied by h′(µν) can be solved by requiring that

h′(µν),k =
2∇(µ∇ν)

(
h2,k − 30 ak

)
5(k + 1)(k + 3) =

4∇(µ∇ν) sk

k + 1 +
4∇(µ∇ν) tk

k + 3 (5.25)

for k ≥ 2, and an analogous relation for h′(µν),−k in terms of s∗k and t∗k.
The KK modes sk and s∗k are dual to the untwisted primary operators Uk(x) and Uk(x)

of the gauge theory and will be the focus of our attention in the following. The KK modes
tk and t∗k correspond instead to scalar descendants of these primary operators and will not
be considered any longer. Inserting this information into (5.24) and (5.25), we obtain the
following effective substitution rules

h2,k → 10 k sk , ak → −sk , h′(µν),k →
4∇(µ∇ν) sk

k + 1 , (5.26)

for k ≥ 2, and similarly for the complex conjugate modes.
The dynamics of sk and s∗k can be obtained by using the above harmonic expansions

and the effective rules into the action (5.6). In the AdS5 × S5 case, corresponding to the
N = 4 SYM theory, this is precisely what has been done in [39]. We can therefore heavily
rely on that analysis and simply rephrase those findings in our notations, adapting them
to the N = 2 orbifold theory. Proceeding in this way, at the quadratic level we obtain the
following effective action in AdS5:

S
(2)
untw = 4(MN)2

(2π)5

∫
AdS5

d5z
√
g
∑
k≥2

Ak
(
∇µs∗k∇µsk + k(k − 4) s∗k sk

) π3

M
. (5.27)

Let us comment on the various terms appearing in this expression. The prefactor is simply
the rewriting of the gravitational constant using the AdS/CFT dictionary for the case at
hand, namely

4πgs = λ

MN
and α′ = R2

√
λ

(5.28)

where R is the radius of AdS5 and of S5. Therefore, in units where this radius is set to 1,
we have

1
2κ2

10
= 1

(2π)7 g2
s α
′ 4 = 4(MN)2

(2π)5 (5.29)

which is the prefactor in (5.27). The normalization factor of the kinetic term is

Ak =
[32 k(k − 1)(k + 2)

k + 1

] [ 1
2k−1(k + 1)(k + 2)

]
. (5.30)

– 26 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

where the first bracket has been explicitly derived in [39], while the second bracket comes
from the overlap of the spherical harmonics (see (C.11)). Finally, the last factor of π3/M

is simply the volume of S5/ZM (see (C.14)). Up to the M -dependence, which is due to the
orbifold, the action (5.27) is the same as the one appearing in [39], and of course yields the
equations (5.23) satisfied by the KK modes sk and s∗k.

Let us now turn to the twisted sectors. We start from the action (5.14) and take the
background geometry to be (5.17) with the 5-form F5 proportional to the volume form of
AdS5. Then, we expand the twisted scalars in the harmonics of S1, according to

bα =
∑
k∈Z

bα,k eikθ and cα =
∑
k∈Z

cα,k eikθ . (5.31)

Notice that as a consequence of (5.13), the KK modes bα,k and cα,k satisfy the following
complex conjugation rules

b∗α,k = bM−α,−k and c∗α,k = cM−α,−k . (5.32)

As shown in [4, 36], the equations of motion that follow from (5.14) after using the above
expansions can be diagonalized by introducing in each twisted sector α the combinations

ηα,k = cα,k − i bα,k , γα,k = cα,k + i bα,k ,
η∗α,k = cM−α,−k + i bM−α,−k , γ∗α,k = cM−α,−k − i bM−α,−k ,

(5.33)

for k ≥ 2. In fact, one has

∇µ∇µηα,k = k(k − 4) ηα,k and ∇µ∇µγα,k = k(k + 4) γα,k , (5.34)

and similarly for η∗α,k and γ∗α,k. The relations (5.33) can be easily inverted leading to

cα,k = 1
2
(
ηα,k + γα,k

)
, bα,k = i

2
(
ηα,k − γα,k

)
, (5.35)

with analogous expressions for the conjugate modes.
In [4] it was proved that the mass spectrum (5.34) perfectly accounts for the scalar

operators of the quiver gauge theory. In particular, the KK modes ηα,k and η∗α,k are dual
to the twisted primary operators Tα,k(x) and Tα,k(x) defined in (2.2b) for k ≥ 2, and thus
from now on we will focus on them and disregard γα,k and γ∗α,k. This means that we can
use the following effective replacements

cα,k →
1
2 ηα,k , bα,k →

i
2 ηα,k , c∗α,k →

1
2 η
∗
α,k , b∗α,k → − i

2 η
∗
α,k , (5.36)

which follow from (5.35).
Inserting the above expansions into the twisted action (5.14), it is easy to obtain

S
(2)
tw = 4(MN)2

(2π)3Mλ

M−1∑
α=1

∫
AdS5

d5z
√
g

1
2sα

∑
k≥2

(
∇µη∗α,k∇µηα,k + k(k − 4) η∗α,k ηα,k

)
2π , (5.37)
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from which the equations of motion for ηα,k and η∗α,k given in (5.34) immediately follow.
Notice that the prefactor in (5.37) is just the rewriting of the effective 6-dimensional grav-
itational constant using the holographic dictionary (5.28):

(2πα′)2

2κ2
10M

= 1
(2π)5 g2

s α
′ 2M

= 4(MN)2

(2π)3Mλ
, (5.38)

and the last factor of 2π in (5.37) is simply the length of the unit circle S1.
The quadratic actions (5.27) and (5.37) can be used to compute the 2-point functions

of the untwisted and twisted primary operators of the quiver theory in a holographic way.

5.2 The 2-point functions

To obtain the 2-point functions we follow the procedure described in detail in [45, 46] and
also in [47].

5.2.1 The untwisted sector

We introduce a linear coupling on the boundary of the AdS5 space between the KK modes
sk and s∗k and the corresponding dual operators Uk and Uk, which reads

S′untw =
∫
∂(AdS5)

∑
k≥2

wk
(
s∗k Uk + sk Uk

)
. (5.39)

Here, as in [39], we have put an arbitrary coefficient wk to parametrize our lack of knowledge
of the boundary action. Indeed, we only know that the supergravity fields that couple to
Uk and Uk are proportional to the untwisted KK modes s∗k and sk. Then, adding the
boundary action (5.39) to the bulk action (5.27), and using the explicit formulas of [47],14

we obtain 〈
Uk(x)Uk(y)

〉
= GUk
|x− y|2k

(5.40)

where

GUk = 4(MN)2

(2π)5
Ak
w2
k

[ 1
π2

Γ(k + 1)
Γ(k − 2)

2(k − 2)
k

]
π3

M
. (5.41)

Here we have kept the various terms separate so that it is easier to trace their origin.
Notice that the factor w2

k in the denominator is due to the rescaling of the KK modes sk
and s∗k into sk/wk and s∗k/wk which puts the boundary coupling (5.39) in the canonical
form

(
s∗k Uk + sk Uk

)
but changes the normalization of the kinetic term in the bulk action

from Ak to Ak/w2
k. The 2-point amplitude (5.41) can be simplified as

GUk = MN2 k (k − 1)2(k − 2)2

2k−4 π4w2
k (k + 1)2 . (5.42)

14See in particular eq. (17) with the correction factor in eq. (95).
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5.2.2 The twisted sectors

In the twisted sectors we proceed in a similar way. We first introduce the boundary action

S′tw =
M−1∑
α=1

∫
∂(AdS5)

∑
k≥2

$α,k

(
η∗α,k Tα,k + ηα,k Tα,k

)
(5.43)

where $α,k is an arbitrary coefficient. Then, using the bulk action (5.37) and applying the
formulas of [47], we obtain

〈
Tα,k(x)Tα,k(y)

〉
=

GTα,k
|x− y|2k

(5.44)

with
GTα,k = 4(MN)2

(2π)3Mλ

1
2sα

1
$2
α,k

[ 1
π2

Γ(k + 1)
Γ(k − 2)

2(k − 2)
k

]
2π . (5.45)

Again we have kept the various factors separate in order to easily trace their origin from
those appearing in (5.37). In particular we note that the original normalization factor of
the kinetic term 1/(2sα) becomes 1/(2sα$2

α,k) after the rescalings of the KK modes ηα,k
and η∗α,k which bring the boundary coupling to the canonical form. Simplifying (5.45),
we have

GTα,k = MN2

sαλ

(k − 1)(k − 2)2

π4$2
α,k

. (5.46)

5.3 The 3-point functions

In order to compute the 3-point functions of the gauge theory operators, we need to find
the cubic couplings of their dual KK modes.

5.3.1 The untwisted sector

For the untwisted case, these cubic couplings have been worked out in detail in [39]. Thus,
we can rely on that analysis and simply translate those results in our conventions. The
cubic action for the untwisted KK modes sk and s∗k is

S
(3)
untw = 4(MN)2

(2π)5

∫
AdS5

d5z
√
g

∑
k,`,p≥2

(
Vk,`,p s

∗
k s
∗
` sp δk+`−p,0 + c.c.

) π3

M
, (5.47)

where Vk,`,p is given in eqs. (3.39) and (3.40) of [39]. In our notation it reads

Vk,`,p = −ak,`,p
128 (k + `+ p)

[(
k+`+p

2

)2
− 1

][(
k+`+p

2

)2
− 4

] (
k+`−p

2

) (
`+p−k

2

) (
p+k−`

2

)
(k + 1) (`+ 1) (p+ 1)

(5.48)
where

ak,`,p = 1
2
k+`+p

2 −1
(
k+`+p

2 + 1
) (

k+`+p
2 + 2

) (5.49)

is the overlap coefficient of three spherical harmonics (see (C.12)).
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Notice that Vk,`,p vanishes if one uses the δ-function imposing charge conservation.
This is a well-known feature [48, 49] of all coupling coefficients that are related to extremal
correlators, like the 3-point functions we are interested in, and is not in contradiction with
the fact that the final holographic correlators are non-zero. Indeed, as we are going to see,
the zero in the coupling is compensated by a pole in the Witten diagram that yields the
3-point function so that the final result is finite and well-defined. This can be clearly seen
if one uses the δ-function of charge conservation only at the end [39, 48, 49], which is what
we are going to do.15

Using the cubic action (5.47) together with the boundary action (5.39) and applying
the formula in eq. (25) of [47], we find that the coefficient of the correlator of three untwisted
operators is

GUk,U`,Up = −4(MN)2

(2π)5
2Vk,`,p
wkw`wp

[Γ
(
k+`−p

2

)
Γ
(
k+p−`

2

)
Γ
(
`+p−k

2

)
Γ
(
k+`+p

2 − 2
)

2π4 Γ(k − 2)Γ(`− 2) Γ(p− 2)

]
π3

M
(5.50)

where we have understood the δ-function of charge conservation and have again kept sep-
arate all terms in order to easily trace their origin.16 From this expression, we clearly
see that the vanishing factor (k + ` − p) in Vk,`,p is compensated by the pole in the first
Γ-function of the numerator inside the square bracket that comes from the cubic Witten di-
agram; thus as mentioned above, the product is well-defined and non-zero when the charge
conservation is imposed. We can drastically simplify the right hand side of (5.50) and get
a completely factorized expression

GUk,U`,Up = MN2
(
k (k − 1) (k − 2)

2 k2−2 π2wk (k + 1)

)(
` (`− 1) (`− 2)

2 `
2−2 π2w` (`+ 1)

)(
p (p− 1) (p− 2)

2
p
2−2 π2wp (p+ 1)

)
(5.51)

where again the δ-function of charge conservation is understood.

5.3.2 The twisted sectors

In this case we have to work out the cubic couplings involving one untwisted and two
twisted modes. To do so, we start from the 6-dimensional action (5.14) and expand it
around the AdS5 × S1 background keeping all contributions up to the third order in the
fluctuations. We treat the two parts of (5.14) separately. For the first term that depends on
the 6-dimensional metric, we need the explicit expressions of the latter and its fluctuations.
Using (5.18) and (5.19), we have
√
G′ = √g − 1

5
√
g h2 ,

G′µν = gµν −
3
25 h2 gµν + h′(µν) , G′µθ = 0 , G′θθ = 1 + 1

5 h2 ,

G′µν = gµν + 3
25 h2 g

µν − gµρ h′(ρσ) g
σν , G′µθ = 0 , G′ θθ = 1− 1

5 h2 .

(5.52)

15If one enforces the charge conservation from the very beginning, one needs to carefully evaluate the
contributions to the correlators coming from boundary terms which, as shown in [48], lead to the same final
result in the 3-point correlators as the other approach.

16The factor of 2 in front of Vk`p is a multiplicity factor due to the symmetry of the correlator in k and `.
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Inserting these expressions into the “metric” term of (5.14), we easily see that
M−1∑
α=1

1
2sα
√
G′
(
∇b∗α ·∇bα +∇c∗α ·∇cα

)
=

M−1∑
α=1

1
2sα

(
L(2)
α + L(3)

α + . . .
)

(5.53)

where

L(2)
α = √g

(
∇µb∗α∇µbα +∇µc∗α∇µcα + ∂θ b

∗
α ∂θ bα + ∂θ c

∗
α ∂θ cα

)
(5.54)

is the Lagrangian that contributes to the quadratic action (5.37), while

L(3)
α = − 2

25
√
g h2

(
∇µb∗α∇µbα +∇µc∗α∇µcα

)
−√g h′(µν)

(
∇µb∗α∇νbα +∇µc∗α∇νcα

)
(5.55)

− 2
5
√
g h2

(
∂θ b
∗
α ∂θ bα + ∂θ c

∗
α ∂θ cα

)
is the cubic Lagrangian which is of interest for us. Finally, the ellipses in (5.53) stand for
higher order terms in the fluctuations which we will not consider.

We now elaborate on the cubic terms (5.55) and expand all fields in spherical harmon-
ics. For the twisted ones, these expansions are given in (5.31), while for the untwisted ones,
h2 and h′(µν), they are given in (5.21) but with the spherical harmonics evaluated at the
orbifold fixed locus, namely

Y k = 1
2
|k|
2

ei k θ (5.56)

(see also (C.15)). Inserting these expansions in (5.55), we obtain
M−1∑
α=1

1
2sα
L(3)
α =

M−1∑
α=1

√
g

1
2sα

∑
k,`,p≥2

1
2 k2

[
− 4

25 h
∗
2,k

(
∇µb∗α,`∇µbα,p +∇µc∗α,`∇µcα,p

)
− 2h′ ∗(µν),k

(
∇µb∗α,`∇νbα,p +∇µc∗α,`∇νcα,p

)
(5.57)

− 4
5 h
∗
2,k

(
` p b∗α,` bα,p + ` p c∗α,` cα,p

)]
e−i (k+`−p)θ + c.c. + . . . .

Here we have explicitly exhibited only the terms with k, `, p ≥ 2, since these are those
which will be relevant for the calculation of the 3-point functions we are interested in.
All other structures are understood in the ellipses. Thanks to the effective rules (5.26)
and (5.36), we can rewrite (5.57) as
M−1∑
α=1

1
2sα
L(3)
α =

M−1∑
α=1

√
g

1
2sα

∑
k,`,p≥2

1
2 k2

(
− 4

5 k s
∗
k∇µη∗α,`∇µηα,p −

4
k+1∇(µ∇ν)s

∗
k∇µη∗α,`∇νηα,p

− 4 k ` p s∗k η∗α,` ηα,p
)

e−i (k+`−p)θ + c.c. + . . . . (5.58)

Then, exploiting the identities proven in appendix D, up to a total derivative we can
recast (5.58) in the following form

M−1∑
α=1

1
2sα
L(3)
α =

M−1∑
α=1

√
g

1
2sα

∑
k,`,p≥2

(
Lk,`,p s

∗
k η
∗
α,` ηα,p e−i (k+`−p)θ + c.c.

)
+ . . . (5.59)
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where the coupling coefficients are

Lk,`,p = 1
2 k2

{
− 2 k

5
[
k(k − 4)− `(`− 4)− p(p− 4)

]
+ 1

(k + 1)
[
`(`− 4)

(
`(`− 4)− k(k − 4)− p(p− 4)

)
+ p(p− 4)

(
p(p− 4)− k(k − 4)− `(`− 4)

)
− 3

5 k(k − 4)
(
k(k − 4)− `(`− 4)− p(p− 4)

)]
− 4 k ` p

}
. (5.60)

Let us now consider the topological term of the action (5.14). The corresponding
Lagrangian can be written as a sum of two pieces: one which is quadratic in the fluctuations
and contributes to the quadratic action (5.37) of the twisted fields, and one which is cubic
in the fluctuations. The latter is explicitly given by

M−1∑
α=1

1
2sα
L̃(3)
α =

M−1∑
α=1

1
2sα

( 8
4! ε

m1...m6 am1...m4∇m5b
∗
α∇m6cα

)

= −
M−1∑
α=1

√
g

1
2sα

8∇µa
(
∇µb∗α ∂θcα − ∂θb∗α∇µcα

)
(5.61)

where the last expression follows upon using the fluctuation of the 4-form given in the third
line of (5.19). We now repeat the same steps described in detail for the “metric” terms,
namely we expand the fields in (5.61) in the spherical harmonics and focus only on those
terms which are relevant for the calculations of the 3-point functions we are interested in.
Then, using the effective rules (5.26) and (5.36) and the identities in appendix D, up to a
total derivative we find an expression similar to (5.59):

M−1∑
α=1

1
2sα
L̃(3)
α =

M−1∑
α=1

√
g

1
2sα

∑
k,`,p≥2

(
L̃k,`,p s

∗
k η
∗
α,` ηα,p e−i (k+`−p)θ + c.c.

)
+ . . . (5.62)

where

L̃k,`,p = 1
2 k2

{
2 p
[
p(p− 4)− k(k − 4)− `(`− 4)

]
+ 2 `

[
`(`− 4)− k(k − 4)− p(p− 4)

]}
.

(5.63)

Putting everything together and integrating over AdS5 × S1, we finally obtain the cubic
action involving one untwisted and two twisted KK modes:

S
(3)
tw = 4(MN)2

(2π)3Mλ

M−1∑
α=1

∫
AdS5

d5z
√
g

1
2sα

∑
k,`,p≥2

(
Wk,`,p s

∗
k η
∗
α,` ηα,p δk+`−p,0 + c.c.

)
2π . (5.64)

Here the prefactor is the same as in the quadratic action (5.37), the last factor of 2π
arises from the integration over S1, which also produces the δ-functions imposing charge
conservation, and

Wk,`,p = Lk,`,p + L̃k,`,p = −(k + `− p)(k + p− `)(k + `+ p− 2)(k + `+ p− 4)
2 k2 (k + 1)

. (5.65)
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Notice that, differently from the partial couplings Lk,`,p and L̃k,`,p given in (5.60) and (5.63),
the total coupling Wk,`,p can be written as a product of simple factors. One of these
factors vanishes if the δ-function of charge conservation is used, but again this zero will
be compensated by a pole in the Witten diagram that computes the 3-point function, so
that the final result is finite and well-defined. Indeed, using the bulk action we just derived
together with the boundary action (5.43) and applying the formulas of [47], we find that
the coefficient in the 3-point function of one untwisted and two twisted operators is

GUk,Tα,`,Tα,p =− 4(MN)2

(2π)3Mλ

1
2sα

Wk,`,p

wk$α,`$α,p

×

Γ
(
k+`−p

2

)
Γ
(
k+p−`

2

)
Γ
(
`+p−k

2

)
Γ
(
k+`+p

2 − 2
)

2π4 Γ(k − 2) Γ(`− 2) Γ(p− 2)

 2π . (5.66)

Again we have kept separate the various factors so that it is easier to trace their origin.
Using the explicit form (5.65) of the coupling coefficients, the expression can be simplified
and the final result is

GUk,Tα,`,Tα,p = MN2

sαλ

(
k (k − 1) (k − 2)

2 k2−2 π2wk (k + 1)

)((`− 1) (`− 2)
π2$α,`

)((p− 1) (p− 2)
π2$α,p

)
(5.67)

where the charge-conservation δ-function is understood.

6 Structure constants and effective Witten-like diagrams

The 2-point coefficients (5.42) and (5.46), and the 3-point coefficients (5.51) and (5.67)
are the main results of the previous section. They represent the coefficients in the 2- and
3-point correlators of the gauge theory operators in the planar limit and at strong coupling
predicted by the AdS/CFT correspondence, and should be compared with those obtained
from supersymmetric localization at strong coupling that we derived in section 4.

A feature of note is that these coefficients have the same dependence on the ’t Hooft
coupling λ in the two approaches. In particular, the coefficients in the untwisted correlators
are independent of λ, while those in the correlators with twisted operators behave as
1/λ. In the localization approach this dependence arises from the strong-coupling behavior
of the quantities D(α) and d(α), while in the holographic approach the 1/λ comes from
the gravitational constant of the 6-dimensional theory defined at the orbifold fixed point
(see (5.38)).

Of course the detailed expressions of the 2- and 3-point coefficients in the two ap-
proaches are sensitive to the normalization of the chiral and anti-chiral operators in the
quiver theory and to the coupling between these operators and the KK modes in the holo-
graphic approach, as one can see from the appearance of the parameters wk and $α,k. To
get rid of these ambiguities we thus consider the structure constants.
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6.1 The holographic structure constants

The structure constants computed using the AdS/CFT correspondence are easily obtained
from (5.42), (5.46), (5.51) and (5.67). In the untwisted case we have

CUk,U`,Up = 1√
M N

√
k ` p . (6.1)

Notice that in this combination all dependence on the arbitrary coefficients wk drops out
and many other factors cancel as well, leaving us with a result that matches the one
in (4.17a) obtained using localization.

More importantly, in the case with twisted operators from (5.42), (5.46) and (5.67),
we find

CUk,Tα,`,Tα,p = 1√
M N

√
k (`− 1) (p− 1) . (6.2)

Again most of the factors, including the arbitrary coefficients wk and $α,k and the coupling
λ that appear in (5.46) and (5.67), cancel between numerator and denominator, and the
end result is independent of λ and of the twisted sector, and fully matches the localization
result in (4.17b).

The complete agreement between the two approaches can be interpreted either as a
validation of our extrapolation of the localization results at strong coupling or, alternatively,
as a check of the AdS/CFT correspondence prescriptions in a model with non-maximal
supersymmetry.

6.2 Effective Witten-like diagrams

The remarkable simplicity of the structure constants suggests to exploit the presence of the
arbitrary coefficients wk and $α,k in order to simplify as much as possible the holographic
results. In fact, these coefficients can always be chosen in such a way that the untwisted
and twisted 2-point correlators (5.42) and (5.46) become

GUk = MN2 and GTα,k = MN2 . (6.3)

In this form these correlators can be interpreted as effective Witten-like diagrams in which
the fields that are dual to the chiral and anti-chiral operators of the gauge theory are
connected with a trivial quadratic vertex as shown in figure 2.

The same choice of wk and $α,k inserted into (5.51) and (5.67), leads to the following
3-point correlators

GUk,U`,Up = MN2√k ` p and GUk,Tα,`,Tα,p = MN2
√
k (`− 1) (p− 1) (6.4)

where the δ-function imposing charge conservation is understood. They too can be repre-
sented as effective Witten-like diagrams, this time with a non-trivial cubic vertex as shown
in figure 3.

These examples show that all information about the correlators at strong coupling can
be encoded in a cubic vertex which is the product of three factors, each one being the
square root of the conformal dimension in the case of untwisted operators or the square

– 34 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

<latexit sha1_base64="rx8W+5O3cfacxh4wXHcsn2UsvHs="></latexit>

Uk

<latexit sha1_base64="7KQhTGoFYqe772P9M0RjD88ry+Q="></latexit>

Uk
<latexit sha1_base64="QnP6FuUKzPdkfEd3WngqGM4uaxA="></latexit>

T↵,k

<latexit sha1_base64="vQXNTKcgkzF9fh0PTnOp9S31B1U="></latexit>

T↵,k

Figure 2. The 2-point effective Witten-like diagrams that pictorially represent the untwisted (left)
and twisted (right) correlators in (6.3). The circle represents the space where the gauge theory
operators are inserted. Our conventions are such that it yields the factor MN2. The full and
dotted oriented lines represent the “propagators” of the untwisted and twisted modes, respectively,
and the arrows distinguish between the chiral and anti-chiral ones. Finally, the open dot in the
middle represents the quadratic vertex which, with the coefficients wk and $α,k we have chosen, is
simply 1. The correlators (6.3) are thus given by the product of the global factor MN2 times 1.
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Figure 3. The 3-point effective Witten-like diagrams that pictorially represent the correlators (6.4).
Again the circle, representing the space where the operators are inserted, yields the factor MN2,
while the cubic vertices in the middle are, respectively,

√
k ` p (left) and

√
k (`− 1) (p− 1) (right).

Notice we have understood the δk+`−p,0 which enforces charge conservation.

root of the conformal dimension minus one in the case of twisted operators, independently
whether these are chiral or anti-chiral. Moreover, for twisted operators the cubic coupling
does not depend on the twisted sector to which they belong.

Using these rules it is natural also to consider the cubic interaction represented in
figure 4, in which we have exchanged the orientation of two lines with respect to the right
diagram of figure 3, in such a way that the two incoming lines both correspond to twisted
chiral operators belonging to conjugate twisted sectors and the outgoing line corresponds
to an untwisted anti-chiral operator. This cubic interaction, which is not included in the
supergravity derivations considered in section 5, leads to the following correlator

GTα,k,TM−α,`,Up = MN2
√

(k − 1) (`− 1) p (6.5)

where the δ-function enforcing the charge conservation is understood, and to the structure
constants

CTα,k,TM−α,`,Up = 1√
M N

√
(k − 1) (`− 1) p (6.6)

which match those in (4.17c).
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Figure 4. The cubic effective Witten-like diagram describing the interaction of two chiral twisted
operators belonging to conjugate twisted sectors and one anti-chiral untwisted operator. The cubic
vertex is

√
(k − 1) (`− 1) p times δk+`−p,0 enforcing charge conservation. As in the previous figures,

this δ-function is understood.

<latexit sha1_base64="nxUkE7IfbpEh+MwTVV4Yg62dViM="></latexit>

T↵,k
<latexit sha1_base64="qcYi1Yi8c6F5WhXV2wSr3/upHQk="></latexit>

T�,`

<latexit sha1_base64="Ocbx5hRdACaGVOgqBJA5lqYdoik="></latexit>

T↵+�,p

Figure 5. A cubic interaction involving three twisted operators whose twist parameters add up
to zero modulo M . The cubic vertex is

√
(k − 1) (`− 1) (p− 1) times δk+`−p,0 enforcing charge

conservation. Again this δ-function is understood.

We finally observe that whenM ≥ 3 there is the possibility of having a cubic interaction
involving three twisted operators whose twist parameters add up to zero modulo M . In this
case, following the rules we have introduced, we are naturally led to propose the effective
Witten-like diagram represented in figure 5.

This diagram corresponds to the following correlator

GTα,k,Tβ,`,Tα+β,p
= MN2

√
(k − 1) (`− 1) (p− 1) , (6.7)

and to the structure constants

CTα,k,Tβ,`,Tα+β,p
= 1√

M N

√
(k − 1) (`− 1) (p− 1) (6.8)

which agree with those in (4.17d) obtained using localization. Notice that while these
structure constants are completely natural, they imply the existence of the 3-point function
GTα,k,Tβ,`,Tα+β,p

which in the holographic normalization should scale as λ−3/2. It would be
very interesting to prove this behavior using the holographic AdS/CFT correspondence.
This is particularly challenging since the supergravity action considered in section 5 is
quadratic in the twisted fields and thus cannot contain a cubic interaction among twisted
modes that is needed to produce a 3-point function with all twisted operators. We think
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that to overcome this problem it is necessary to go beyond the supergravity approximation
and consider higher-derivative string corrections which indeed may produce the desired
cubic terms in the low-energy effective action of the twisted scalars. Work along this line
is in progress.
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A Strong-coupling behavior of d(α)
k

In this appendix we provide a derivation of the asymptotic form of the coefficients d(α)
k

when λ→∞ given in (4.9) of the main text. We will do this following two methods.

A.1 First method

This first method is somehow heuristic and is suggested by the analysis performed in [17].
It is based on the definition of the coefficients d(α)

k as a power series in X, namely

d(α)
k =

∑
k′

(
δk,k′ + sα Xk,k′ + s2

α (X2)k,k′ + s3
α (X3)k,k′ + · · ·

)√
k′ . (A.1)

Like X, also its higher powers can be written an integral representation involving products
of Bessel functions [5, 36]. For example,

(X2)k,` = +8(−1)
k+`+2k `

2
√
k `

∫
Dt1Dt2 Jk(zt1)G(zt1, zt2) J`(zt2) , (A.2a)

(X3)k,` = −8(−1)
k+`+2k `

2
√
k `

∫
Dt1Dt2Dt3 Jk(zt1)G(zt1, zt2)G(zt2, zt3) J`(zt3) , (A.2b)

where

Dt = dt

t

et
(et − 1)2 , z =

√
λ

2π , (A.3)

and the function G(t1, t2) is

G(t1, t2) = 8×



∞∑
n=1

(2n+ 1) J2n+1(t1) J2n+1(t2) if k, ` are odd ,

∞∑
n=1

(2n) J2n(t1) J2n(t2) if k, ` are even .
(A.4)

– 37 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

Using the properties of the Bessel functions, one can show that the above sums lead to

G(t1, t2) =


4 t1 t2
t21 − t22

(
t2J1(t2) J2(t1)− t1 J1(t1) J2(t2)

)
≡ Godd(t1, t2) if k, ` are odd ,

4 t1 t2
t21 − t22

(
t1 J1(t2) J2(t1)− t2J1(t1) J2(t2)

)
≡ Geven(t1, t2) if k, ` are even .

(A.5)

To derive how d(α)
k behaves when λ → ∞, in each power of X appearing in (A.1) we

keep only the leading term at large λ, and then perform the sum over k′. Let us do this for
the linear term in X, whose dominant contribution is given in (4.1)–(4.2). When we sum
over k′, we find

∑
k′

sα Xk,k′
√
k′ ∼

λ→∞
−sα λ2π2

∑
k′

Sk,k′
√
k′ ∼

λ→∞
−sα λ4π2 ×


1√
2 for k = 2 ,
1

2
√

3 for k = 3 ,
0 for k ≥ 4 .

(A.6)

The leading contributions arising from higher powers of X can be evaluated in a similar
way by using the integral representations (A.2a)–(A.2b) (and their generalizations) and by
exploiting the asymptotic expansion of the inverse Mellin transform of the product of two
Bessel functions. For example, at the order X2 we obtain

∑
k′

s2
α (X2)k,k′

√
k′ ∼

λ→∞

s2
α λ

2

4π4 ×



1
6
√

2 for k = 2 ,
1

32
√

3 for k = 3 ,
− 1

48 for k = 4 ,
− 1

96
√

5 for k = 5 ,
0 for k ≥ 6 .

(A.7)

In general the leading contribution arising from the term with Xq, when it is non zero, is
proportional to λq. Collecting all the leading contributions, we get a power series in λ. For
example, for k = 2, 3, 4, 5 we find

d(α)
2 =

√
2− sα λ

4
√

2π2 + s2
α λ

2

24
√

2π4 −
11s3

α λ
3

1536
√

2π6 + 19s4
α λ

4

15360
√

2π8 + . . . , (A.8a)

d(α)
3 =

√
3− sα λ

8
√

3π2 + s2
α λ

2

128
√

3π4 −
s3
α λ

3

1920
√

3π6 + 13s4
α λ

4

368640
√

3π8 + . . . , (A.8b)

d(α)
4 = 2− s2

α λ
2

192π4 + s3
α λ

3

960π6 −
17s4

α λ
4

92160π8 + . . . , (A.8c)

d(α)
5 =

√
5− s2

α λ
2

384
√

5π4 + s3
α λ

3

4608
√

5π6 −
s4
α λ

4

64512
√

5π8 + . . . . (A.8d)

Remarkably these series can be resummed in terms of a ratio of modified Bessel functions
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of the first kind Ik. Indeed, we have

d(α)
2m =

√
2m
[
1−

I2m
(√sα λ

π

)
I0
(√sα λ

π

)
]
, (A.9)

d(α)
2m+1 =

√
2m+ 1

[
1−

I2m+1
(√sα λ

π

)
I1
(√sα λ

π

)
]
. (A.10)

We have checked this result for several values of m. In this way, exploiting the asymptotic
properties of the modified Bessel functions Ik, we find that

d(α)
2m ∼

λ→∞

π
√

2m√
sα λ

(2m2) , d(α)
2m+1 ∼

λ→∞

π
√

2m+ 1√
sα λ

(2m2 + 2m) . (A.11)

We can combine these two expressions and write

d(α)
k ∼

λ→∞

π√
sα λ

[√
k

2
(
k2 − δkmod 2,1

)]
(A.12)

for all k, which is eq. (4.9) of the main text.
We observe that this same method can be used also to extract the leading asymptotic

term of the propagator D(α)
k,` when λ→∞. For example, for k = ` = 2 we have

D(α)
2,2 = 1 + sα X2,2 + s2

α (X2)2,2 + s3
α (X3)2,2 + s4

α (X4)2,2 + · · ·

= 1− sα λ

6π2 + 11s2
α λ

2

384π4 −
19s3

α λ
3

3840π6 + 473s4
α λ

4

552960π8 + . . . (A.13)

where the second line follows from retaining in each power of X only the leading term in
λ. As before, this series can be resummed in terms of modified Bessel functions. In this
way we find

D(α)
2,2 = 8π2

sα λ

I2
(√

sα λ
π

)
I0
(√

sα λ
π

) ∼
λ→∞

8π2

sα λ
(A.14)

in full agreement with (4.3). In the same way one can check all other cases and reconstruct
the matrix (4.4) which was firstly obtained in [36] with a different more rigorous technique.

A.2 Second method

We now provide an alternative method to derive the strong-coupling behavior of d(α)
k which

is based on the following identities

d(α)
2 d(α)

2m =
√

2m
m−1∑
r=1

√
2r D(α)

2,2r +
(
m+ 1 + λ∂λ

)
D(α)

2,2m , (A.15)

d(α)
3 d(α)

2m+1 =
√

2m+ 1
m−1∑
r=1

√
2r + 1 D(α)

3,2r+1 +
(
m+ 2 + λ∂λ

)
D(α)

3,2m+1 , (A.16)

d(α)
2n d(α)

2m+1 =
√

2m+ 1
m∑
r=1

√
2r D(α)

2n,2r +
√

2n
n−1∑
s=1

√
2s+ 1 D(α)

2m+1,2s+1 . (A.17)

These relations can be easily checked perturbatively by expanding both sides for small
values of λ, and we have done this in a variety of cases up to order λ45. In the following
we present a proof of the third identity based on a different strategy.
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A.2.1 Proof of (A.17)
Using the definitions of D(α) and d(α) in terms of X, we expand both sides of (A.17) in
powers of X and show that the identity is satisfied at any order.

Linear order. At the first order, the identity (A.17) reduces to

√
2m+ 1

∞∑
r=m+1

√
2r X2n,2r +

√
2n

∞∑
s=n

√
2s+ 1 X2m+1,2s+1 = 0 . (A.18)

Using the integral representation of X given in (3.35), we see that the left-hand side of (A.18)
is proportional to

∞∑
r=m+1

(−1)r+n (2r)
∫
Dt J2n(zt) J2r(zt) +

∞∑
s=n

(−1)s+m (2s+ 1)
∫
Dt J2m+1(zt) J2s+1(zt)

(A.19)

where Dt and z are defined in (A.3). We now exploit the following identities

J2n(zt) = 2
zt

∞∑
s=n

(−1)n+s (2s+ 1) J2s+1(zt) , (A.20a)

J2m+1(zt) = − 2
zt

∞∑
r=m+1

(−1)m+r (2r) J2r(zt) , (A.20b)

which can be proven recursively from the recurrence relation

Jq−1(x) = 2q
x
Jq(x)− Jq+1(x) (A.21)

satisfied by the Bessel functions. Then, inserting (A.20) into (A.19), we find zero, so that
the relation (A.18) is satisfied.

Quadratic order. At the quadratic order, the identity (A.17) yields the following rela-
tion

√
2m+ 1

∞∑
r=m+1

√
2r (X2)2n,2r +

∞∑
r,s=1

√
(2r)(2s+ 1) X2n,2r X2m+1,2s+1

+
√

2n
∞∑
s=n

√
2s+ 1 (X2)2m+1,2s+1 = 0 . (A.22)

Using the integral representation for X and X2, one can show that the left-hand side
of (A.22) is proportional to

∞∑
r=m+1

(−1)r+n (2r)
∫
Dt1Dt2 J2n(zt1)Geven(zt1, zt2) J2r(zt2)

+
∞∑
s=n

(−1)s+m (2s+ 1)
∫
Dt1Dt2 J2m+1(zt2)Godd(zt1, zt2) J2s+1(zt1) (A.23)

+ 8
∞∑

r,s=1
(−1)r+n+s+m (2r)(2s+ 1)

∫
Dt1Dt2 J2n(zt1) J2m+1(zt2) J2r(zt1) J2s+1(zt2) ,
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where Geven and Godd are defined in (A.5). Exploiting the relations (A.20), after some
algebra we are left with a term proportional to∫
Dt1Dt2 J2n(zt1)J2m+1(zt2)

[
t2 Geven(zt1, zt2)− t1 Godd(zt1, zt2)− 4zt1t2 J1(zt1) J2(zt2)

]
(A.24)

which vanishes as one can see by using the explicit expressions of Geven and Godd. Thus,
the identity (A.17) is proven also to the quadratic order.

Higher orders. The above calculations can be easily generalized to higher orders. At
order Xp the identity (A.17) implies the following relation

√
2m+ 1

∞∑
r=m+1

√
2r (Xp)2n,2r +

∞∑
r,s=1

√
(2r)(2s+ 1)

[
(Xp−1)2n,2r X2m+1,2s+1 (A.25)

+ . . .+ X2n,2r (Xp−1)2m+1,2s+1
]

+
√

2n
∞∑
s=n

√
2s+ 1 (Xp)2m+1,2s+1 = 0 .

Proceeding as before, one can show that the left-hand side is proportional to∫
Dt1 . . .Dtn J2n(zt1)J2m+1(ztp)

[
Geven(zt1, zt2) . . .Geven(ztp−2, ztp−1)Y (ztp−1, ztp)

+ Geven(zt1, zt2) . . .Geven(ztp−3, ztp−2)Y (ztp−2, ztp−1)Godd(ztp−1, ztp) + · · ·+ (A.26)

+ Y (zt1, zt2)Godd(zt2, zt3) . . .Godd(ztp−1, ztp)
]

where Y is the function inside the square brackets of (A.24) which vanishes. Since each
term in (A.26) contains this vanishing combination, we have shown that (A.25) is true for
a generic p. This concludes the proof of the identity (A.17).

A.2.2 d(α)
k for λ→∞

The identity (A.15) for m = 1 reads(
d(α)

2
)2 =

(
2 + λ∂λ

)
D(α)

2,2 . (A.27)

From the strong-coupling behavior of D(α)
2,2 (see (A.14)), we easily deduce that

d(α)
2 ∼

λ→∞

2
√

2π√
sα λ

(A.28)

which agrees with what we have found with the first method (see (A.12) for k = 2). Then,
exploiting the identity (A.17) for n = 1 and the previous result, we deduce that

d(α)
2m+1 ∼

λ→∞

π
√

2m+ 1 (2m2 + 2m)√
sα λ

(A.29)

in agreement with (A.11). Finally, using this behavior in the identity (A.17) we obtain

d(α)
2m = π

√
2m(2m2)√
sα λ

(A.30)

which coincides with (A.11). These results show that the two methods we have presented
lead to the same strong-coupling behavior for d(α)

k .

– 41 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

B Results in the basis associated to the quiver nodes

In the sections of the main text we have computed the structure constants for the single-
trace scalar operators of the quiver theory utilizing the untwisted and twisted operators
defined in (2.2). In this appendix we rephrase these results in the basis of the operators
trφkI (x) associated to the nodes of the quiver.

Free theory. When λ = 0, the matrices aI are decoupled and one can work out the
large-N behavior of the correlators of the operators tr akI exploiting the recursion relations
independently in each factor. To diagonalize the 2-point functions, we introduce operators
RI,k (with I = 0, . . . ,M − 1 and k ≥ 2) which are expressed as Chebyshev polynomials in
terms of the traces tr akI and obey〈

RI,kRJ,`
〉

0 = δk,`δI,J . (B.1)

Their 3-point functions are given by〈
RI,kRJ,`RK,p

〉
0 =
√
M Ck,`,p δI,J δJ,K (B.2)

and thus vanish unless I = J = K. The set of operators RI are the analogue of the
operators P α̂ in the twisted basis defined in (3.24), and are related to them by the (inverse)
discrete Fourier transform on ZM :

RI = 1√
M

M−1∑
α̂=0

ρIα̂ P α̂ . (B.3)

Substituting this relation into (3.25) and (3.26), one retrieves,17 consistently, the 2- and
3-point functions (B.1) and (B.2). One can also introduce the rescaled operators

RI,k(0) =
√
GkRI,k (B.5)

which are the matrix-model representatives of the chiral scalar operators trφnI (x) of the
gauge theory at λ = 0. They satisfy〈

RI,k(0)RJ,`(0)
〉

0 = Gk δk,` δI,J (B.6)

and 〈
RI,k(0)RJ,`(0)RK,p(0)

〉
0 =
√
M Gk,`,p δI,J δJ,K . (B.7)

Even if the spectrum of the gauge theory is described by the quiver of figure 1, at zero
coupling the correlators of the gauge-invariant operators trφkI (x) in each node are not
influenced by the presence of the hypermultiplets corresponding to the links of the quiver,
which should run inside loops, and are therefore diagonal in the space of the indices I.
Within each node, at λ = 0 the results coincide with those of the N = 4 SU(N) theory, a
part from the

√
M factor in (B.7).

17Recall that ρ = exp(2πi/M) and therefore

1
M

M−1∑
α̂=0

ρα̂(I−J) = δI,J . (B.4)
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Interacting theory. At zero coupling, both the operators P α̂ and the operators RI we
just introduced have canonical 2-point functions. In the interacting case, the operators P α̂

remain diagonal in the space of the indices α̂. The 2-point functions of the RI operators,
instead, are no longer diagonal in the space of the indices I. In fact, using (B.3) and
then (3.40), one has

〈
RI,kRJ,`

〉
= 1
M

M−1∑
α̂,β̂=0

ρα̂I+β̂J 〈Pα̂,k Pβ̂,`〉 = 1
M

M−1∑
α̂=0

ρα̂(I−J) D(α̂)
k,` , (B.8)

which is not proportional to δI,J because D(α)
k,` depends on α̂ and we cannot use (B.4).

The normal-ordered operators RI,k(λ), which correspond for generic λ to the operators
trφkI (x), are obtained via inverse discrete Fourier transform from the operators Pα̂,k(λ)
defined in (3.42):

RI,k(λ) = 1√
M

M−1∑
α̂=0

ρIα̂ Pα̂,k(λ) =
√
Gk√
M

M−1∑
α̂=0

ρIα̂
(
Pα̂,k −

∑
`<k

Q(α̂)
k,` (λ)Pα̂,`

)

=
√
Gk
(
RI,k −

M−1∑
J=0

∑
`<k

U(I,J)
k,` (λ)RJ,`

)
, (B.9)

where the coefficients

U(I,J)
k,` (λ) = 1

M

M−1∑
α̂=0

ρα̂(I−J)Q(α̂)
k,` (λ) (B.10)

are not diagonal in I, J . Thus, for a generic value of λ the matrix-model operators that
represent the gauge theory operators trφkI (x) are linear combinations constructed with the
matrices at different nodes. Moreover, their 2-point functions are not diagonal and have a
complicated, λ-dependent expression. These features of the normal ordering in the matrix
model and of the 2-point functions were studied at the perturbative level in [34], where
in fact it was shown that at 1-loop the operators in a node of the quiver start mixing
with those of the adjacent nodes and that by increasing the loop order they mix with
farther nodes.

Strong coupling behavior. When λ→∞ the map (B.9) simplifies because the expres-
sion of the normal-ordered operators in the twisted basis reduces to that in (4.5). Therefore,
we get

RI,k(∞) = 1√
M

M−1∑
α̂=0

ρIα̂ Pα̂,k(∞) =
√
Gk

1√
M

∑
α̂

ρIα̂
(
Pα,k −

√
k

k − 2 Pα,k−2

)

=
√
Gk

(
RI,k −

√
k

k − 2 RI,`
)
, (B.11)

where in the last step we used (B.3). Thus, at strong coupling, just as it happened in the
free theory, the normal-ordered procedure is carried out independently in each node. To

– 43 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
0

study the 2-point correlators it is convenient to separate the untwisted (α̂ = 0) and twisted
(α̂ = α 6= 0) component of these operators by writing

RI,k(∞) = 1√
M
P0,k(∞) + R̂I,k(∞) . (B.12)

The operators

R̂I,k(∞) = 1√
M

M−1∑
α=1

ρIα Pα,k(∞) , (B.13)

which are the twisted operators in the node basis, are not independent since they satisfy
the relation

M−1∑
I=0

R̂I,k(∞) = 0 . (B.14)

Their 2-point functions are given by
〈
R̂I,k(∞) R̂J,`(∞)

〉
= 1
M

M−1∑
α,β=1

ραI+βJ〈Pα,k(∞)Pβ,`(∞)〉 = 4π2

λ
k(k − 1)δk,l gI,J , (B.15)

where in the second step we used (4.8) and introduced the M ×M matrix

gI,J = 1
M

M−1∑
α=1

ρα(I−J)

sα
. (B.16)

This matrix arises from the strong-coupling behavior of the quiver gauge theory but has
a geometrical meaning related to the resolution of the orbifold space C2/ZM involved in
the string-theory embedding of the N = 2 quiver gauge, as discussed at the beginning of
section 5. Recall that the exceptional 2-cycles ei, with i = 1, . . .M − 1, of the resolved
space have an intersection matrix Ci,j which is the Cartan matrix of the Lie algebra suM−1.
Introducing the extra cycle e0 = −∑i ei, the intersection matrix of the eI = (e0, ei) cycles
is the affine Cartan matrix ĈI,J whose Dynkin diagram is exactly a circular quiver with M
nodes. The quantities 4sα = 4 sin2 πα

M are exactly the M − 1 non-zero eigenvalues of ĈI,J ,
and one has [50]

1
M

M−1∑
α=1

ρα(I−J) sα = 1
4 ĈI,J . (B.17)

In the expression of the matrix gI,J the reciprocal of the eigenvalues sα appear. However,
the extended Cartan matrix ĈI,J has a zero eigenvalue, so gI,J cannot directly be propor-
tional to its (ill-defined) inverse. Rather, we have to restrict ourselves to a set ofM−1 inde-
pendent operators among the R̂J(∞)) ones, for instance setting R̂0(∞) = −∑M−1

i=1 R̂i(∞)
and focusing on the R̂i(∞) ones. Then, the symmetric matrix gI,J represents a scalar
product and defines a bilinear form according to

M−1∑
I,J=0

gI,J R̂I(∞)R̂J(∞) =
M−1∑
i,j=1

(gi,j − gi,0 − g0,j + g0,0) R̂i(∞)R̂j(∞)

= 4
M−1∑
i,j=1

(
C−1

)i,j
R̂i(∞)R̂j(∞) . (B.18)
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This argument shows that the geometry of the resolution of the orbifold C2/ZM , which is
the crucial ingredient of the holographic description of the theory, emerges directly from the
large-N , strong-coupling behavior of the correlators in the quiver gauge theory as obtained
from localization.

C The scalar spherical harmonics on S5 and S5/ZM

C.1 S5

A 5-sphere of unit radius S5 can be defined through its embedding in R6 given by

y2
1 + y2

2 + y2
3 + y2

4 + y2
5 + y2

6 = 1 . (C.1)

This equation, which is clearly invariant under SO(6) rotations, can be conveniently
parametrized by

y1 = cosφ cos θ , y2 = cosφ sin θ ,
y3 = sinφ cosφ′ cos θ′ , y4 = sinφ cosφ′ sin θ′ ,
y5 = sinφ sinφ′ cos θ′′ , y6 = sinφ sinφ′ sin θ′′ ,

(C.2)

where φ, φ′ ∈ [0, π/2] and θ, θ′, θ′′ ∈ [0, 2π]. Using these angular coordinates, the metric of
S5 becomes

ds2
S5 = dφ2 + sin2 φdφ′ 2 + cos2 φdθ2 + sin2 φ cos2 φ′ dθ′ 2 + sin2 φ sin2 φ′ dθ′′ 2 (C.3)

and its volume is

vol(S5) =
∫ π

2

0
dφ

∫ π
2

0
dφ′

∫ 2π

0
dθ

∫ 2π

0
dθ′
∫ 2π

0
dθ′′

(
sin3 φ cosφ sinφ′ cosφ′

)
= π3 (C.4)

Let us now consider the totally symmetric traceless rank n tensors of SO(6) which we
denote by CAi1...in . Here the integer index A labels the different such tensors and its range is

1 ≤ A ≤ (n+ 1)(n+ 2)2(n+ 3)
12 . (C.5)

Thus, there are 6 different tensors of rank 1, 20 different tensors of rank 2, 50 different
tensors of rank 3 and so on. We normalize all these tensors in such a way that

CAi1...in C
B , i1...in = δAB . (C.6)

The combination
YA = CAi1...in y

i1 . . . yin , (C.7)

which through the map (C.2) is a function of the five angular coordinates of S5, is a scalar
spherical harmonic of rank n. One can check that these harmonics satisfy the following
relations ∫

S5
YA1 YA2 = π3

2n−1(n+ 1)(n+ 2) δ
A1A2 (C.8)
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where n is the rank of the two harmonics, and∫
S5
YA1 YA2 YA3 = n1!n2!n3!π3

2
n1+n2+n3

2 −1 (n1+n2+n3+4
2 )! (n1+n2−n3

2 )! (n2+n3−n1
2 )! (n3+n1−n2

2 )!
×
〈
CA1CA2CA3

〉
(C.9)

where n1, n2 and n3 are the ranks of three harmonics and
〈
CA1CA2CA3

〉
is the unique SO(6)

invariant that can be formed out of the three tensors CA1 , CA2 and CA3 .
For any integer n ≥ 0, we consider in particular the two following harmonics of rank n:

Y ±n = 1
2n2

(y1 ± i y2)n = 1
2n2

cosnφ e± in θ , (C.10)

which satisfy the following relations∫
S5
Y n Y −m = π3

2n−1(n+ 1)(n+ 2) δn,m , (C.11)∫
S5
Y n Y m Y −p =

∫
S5
Y −n Y −m Y p = π3

2
n+m+p

2 −1(n+m+p
2 + 1)(n+m+p

2 + 2)
δn+m,p . (C.12)

The fact that the overlap coefficient in (C.11) is the same as the one in (C.8) shows that
Y ±n are normalized as the general harmonics YA. The reason to consider these particular
harmonics is that they are the ones that remain non-trivial at the fixed point of a ZM
orbifold, as we are going to see in the next subsection.

C.2 S5/ZM

Let us consider a ZM orbifold in R6 corresponding to a rotation of an angle (2π/M) in the
(y3, y4)-plane accompanied by a rotation of an angle (−2π/M) in the (y5, y6)-plane (see
also (5.1)). In the parametrization (C.2), this action simply corresponds to

θ′ → θ′ + 2π
M

, θ′′ → θ′′ − 2π
M

, (C.13)

with all other angles unchanged. This action in R6 is inherited by S5 and leads to the
orbifold S5/ZM . The invariant locus under the orbifold is the sub-space y3 = y4 = y5 =
y6 = 0 corresponding to φ = 0. This locus is the (y1, y2)-plane which in S5 describes a
circle S1 parametrized by θ.

The orbifold space S5/ZM has the same metric (C.3) of S5, but with a modified range
for the angles. A possible choice is to reduce the range of θ′ to [0, 2π/M ], instead of [0, 2π]
as it was in S5. In this way one gets

vol(S5/ZM ) = π3

M
. (C.14)

Then, in S5/ZM it is easy to see that the harmonics Y ±n in (C.10) satisfy the rela-
tions (C.11) and (C.12) with π3 replaced by π3/M . Furthermore, at the fixed point locus
φ = 0, they simply reduce to

Y ±n = 1
2n2

e± in θ . (C.15)
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D Useful identities

In this appendix, following the analysis of [48], we prove some identities that are useful
in deriving the cubic vertex between one untwisted and two twisted KK modes that we
presented in section 5.3.

Let us first consider the bulk fields s∗k, η∗α,` and ηα,p, with k, `, p > 0. In the super-
gravity Lagrangian (5.58), we find three types of terms. The first one is proportional to
s∗k∇µη∗α,`∇µηα,p. Using the Leibniz rule for the covariant derivatives, it is very easy to
show that

s∗k∇µη∗α,`∇µηα,p = 1
2 (∇µ∇µs∗k) η∗α,` ηα,p −

1
2 s
∗
k (∇µ∇µη∗α,`) ηα,p −

1
2 s
∗
k η
∗
α,` (∇µ∇µηα,p)

+ 1
2 ∇µ

[
s∗k∇µ(η∗α,` ηα,p)−∇µs∗k η∗α,` ηα,p

]
= 1

2
[
k(k − 4)− `(`− 4)− p(p− 4)

]
s∗k η

∗
α,` ηα,p + total derivative , (D.1)

where in the last step we used the on-shell conditions in AdS5 given in (5.23) and (5.34)
for the untwisted and twisted modes respectively. In a very similar way, one can show that

∇µs∗k η∗α,`∇µηα,p = 1
2
[
`(`− 4)− k(k − 4)− p(p− 4)

]
s∗k η

∗
α,` ηα,p + total derivative ,

∇µs∗k∇µη∗α,` ηα,p = 1
2
[
p(p− 4)− `(`− 4)− k(k − 4)

]
s∗k η

∗
α,` ηα,p + total derivative .

(D.2)
The second term in the Lagrangian (5.58) is proportional to ∇(µ∇ν)s

∗
k∇µη∗α,`∇νηα,p.

Again by repeatedly using the Leibniz rule for the covariant derivatives, we can show that

∇(µ∇ν)s
∗
k∇µη∗α,`∇νηα,p =

(
∇µ∇νs∗k −

1
5 gµν∇λ∇

λs∗k

)
∇µη∗α,`∇νηα,p

= 1
2 ∇µ∇νs

∗
k

(
∇µη∗α,`∇νηα,p +∇νη∗α,`∇µηα,p − gµν∇λη∗α,`∇ληα,p

)
+ 1

2 ∇λ∇
λs∗k∇µη∗α,`∇µηα,p −

1
5 ∇λ∇

λs∗k∇µη∗α,`∇µηα,p

= −1
2 ∇νs

∗
k

(
∇µ∇µη∗α,`∇νηα,p +∇νη∗α,`∇µ∇µηα,p

)
+ 3

10 ∇λ∇
λs∗k∇µη∗α,`∇µηα,p + total derivative

= −1
2 `(`− 4)∇νs∗k η∗α,`∇νηα,p −

1
2 p(p− 4)∇νs∗k∇νη∗α,` ηα,p

+ 3
10 k(k − 4) s∗k∇µη∗α,`∇µηα,p + total derivative , (D.3)

where in the last step we have inserted the mass-shell conditions (5.23) and (5.34). If we
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now use the identities (D.1) and (D.2), we can rewrite (D.3) as

∇(µ∇ν)s
∗
k∇µη∗α,`∇νηα,p = −1

4 `(`− 4)
[
`(`− 4)− k(k − 4)− p(p− 4)

]
s∗k η

∗
α,` ηα,p

− 1
4 p(p− 4)

[
p(p− 4)− k(k − 4)− `(`− 4)

]
s∗k η

∗
α,` ηα,p

+ 3
20 k(k − 4)

[
k(k − 4)− `(`− 4)− p(p− 4)

]
s∗k η

∗
α,` ηα,p

+ total derivative . (D.4)

Exploiting (D.1) and (D.4), we see that the combination appearing in the Lagrangian (5.58)
can be written as follows

− 4
5 k s

∗
k∇µη∗α,`∇µηα,p −

4
k + 1 ∇(µ∇ν)s

∗
k∇µη∗α,`∇νηα,p − 4 k ` p s∗k η∗α,` ηα,p

=
{
− 2 k

5
[
k(k − 4)− `(`− 4)− p(p− 4)

]
+ 1

(k + 1)

[
`(`− 4)

(
`(`− 4)− k(k − 4)− p(p− 4)

)
(D.5)

+ p(p− 4)
(
p(p− 4)− k(k − 4)− `(`− 4)

)
− 3

5 k(k − 4)
(
k(k − 4)− `(`− 4)− p(p− 4)

)]
− 4 k ` p

}
s∗k η

∗
α,` ηα,p ,

which leads to the cubic coupling given in (5.60) of the main text.
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