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Abstract: Gravity is a primary physical force that has a profound influence on the stability of the
cell cytoskeleton. In our research, we investigated the influence of microgravity on altering the
cytoskeletal pathways of glioblastoma cells. The highly infiltrative behavior of glioblastoma is
supported by cytoskeletal dynamics and surface proteins that allow glioblastoma cells to avoid
stable connections with the tissue environment and other cells. Glioblastoma cell line C6 was
exposed to a microgravity environment for 24, 48, and 72 h by 3D-RPM, a laboratory instrument
recognized to reproduce the effect of microgravity in cell cultures. The immunofluorescence for
GFAP, vinculin, and Connexin-43 was investigated as signals related to cytoskeleton dynamics. The
polymerization of GFAP and the expression of focal contact structured by vinculin were found to be
altered, especially after 48 and 72 h of microgravity. Connexin-43, involved in several intracellular
pathways that critically promote cell motility and invasion of glioma cells, was found to be largely
reduced following microgravity exposure. In conclusion, microgravity, by reducing the expression of
Connexin-43, alters the architecture of specific cytoskeletal elements such as GFAP and increases the
focal contact, which can induce a reduction in glioma cell mobility, thereby inhibiting their aggressive
metastatic behavior.
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1. Introduction

Gravity is a fundamental physical force that has a strong impact on all life forms
existing on Earth and their biological processes. With the advent of space programs, interest
in the effects of microgravity on human cells has grown since the initial investigations
performed within the US Skylab program in the early 1970s. The spaceflight results
show that cells are very sensitive to gravitational changes, revealing alterations in cell
morphology [1], proliferation and differentiation [2], apoptosis [3], cell adhesion, and
the corresponding signaling pathways [4]. The availability of a new tool to mimic the
microgravity environment has renewed interest in the effects of microgravity on cell
biology, increasing the possibility of performing experiments without space missions. The
3D-Random Positioning Machine (3D-RPM) is a device consisting of two gimbal-mounted
frames that constantly rotate biological samples around two perpendicular axes. This
device simulates some of the physical effects of space flight by providing a vector-averaged
reduction (10−6 g) in the apparent gravity, generating low levels of shear forces [5,6].
Experiments on the RPM have shown results comparable to space-flown experiments in
several studies [4,5,7].

The first studies that dealt with the effects of microgravity on human cancer cells
revealed alterations in cell proliferation, survival, and apoptosis, driving the cells towards
a less aggressive phenotype. These alterations are probably linked to cytoskeleton modifi-
cations, which function as gravity sensors for the cells [8,9].
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However, further studies have also pointed out the role of microgravity in favor of
carcinogenesis processes. Researchers have found some evidence showing that micrograv-
ity may accelerate cancer progression in leukemia, as well as lung, breast, ovarian, liver,
head, and neck cancers [10–12].

These findings indicate microgravity’s role as a two-edged sword in cancer [13],
limiting the initial enthusiasm for it.

However, though several studies reported the effects of microgravity on the prolifera-
tive pathways of cancer cells, less is known concerning their metastatic behavior. It has
been seen that microgravity promotes cellular migration for non-small cell lung cancer
cells [14]. On the contrary, simulated microgravity reduces the metastatic strength of hu-
man lung adenocarcinoma, inhibiting migration and invasion [15]. Exposure to long-term
microgravity has been related to a reduced aggressiveness of thyroid cancer cells [16].

Metastasis is a very complex process that is based on a prominent reorganization of
the cytoskeleton, involving extensive crosstalk between different components [17]. The
optimal dynamism of the cytoskeleton is the basis for cellular migration, and it is a critical
point in cancer cell metastases. The cytoskeleton is thought to be a major factor for cellular
graviperception, and microgravity affects the dynamic organization of the cells, inducing
impairment in several cytoskeleton-dependent pathways [4,9,18,19].

Focal adhesions have been found to play an important role in the inhibition of prolif-
eration and metastasis in melanoma cells [20].

For these areas, gravity alteration has attracted renewed interest as potential tools
for limiting the metastatic behavior of cancer cells, especially in those cell types in which
cytoskeleton dynamics represent the main factor in metastatic and proliferative behav-
iors [4,17]. Among several cell types that are strongly dependent on their physiological
performance in cytoskeletal roles, we chose glioblastoma cells, which derive from the
cancerogenic transformation of astrocytes.

Glioblastoma is the most frequent type of primary brain tumor. It strongly reduces life
expectancy, with most patients dying within 16–20 months after the diagnosis, despite all
of the advanced therapy available [21,22]. Glioblastoma is a rapidly growing and highly
infiltrative malignant tumor, which propagates primarily along the white matter fiber tracts
and infiltrating grey matter during the advanced stage [23].

The highly infiltrating behavior of glioblastoma inside the brain parenchyma is widely
supported by high cytoskeleton dynamicity and surface proteins that allow the glioblastoma
cells to avoid stable connections with the tissue environment and neighboring cells, such as
neurons and other astrocytes [4]. The viability and migration properties of a glioma cell
line were inhibited using simulated microgravity upon the depression of FAK intracellular
signaling [24].

The aim of the present research is to analyze the effects of microgravity on the survival
and integrity of cytoskeletal patterns and cell–cell connecting factors following long-term
microgravity exposure in C6 glioma cells, in order to highlight the potential reducing effect
of microgravity on glioma aggressive behavior.

In the present study, the C6 glioma cell line was chosen because it is considered to be
a gold standard in glioma research. C6 cells are developed experimentally by inducing
tumoral alterations in the astrocytes of Wistar rats. C6 cells exhibit the same histological
features as human glioblastoma cells, and have shown a high grade of tissue invasion [25].

2. Results

The F, G, and M cell groups did not statistically differ from each other for the pa-
rameters analyzed. These findings do not allow us to separate gravitational from fluid
dynamic effects.

From now on, throughout the study, we refer to the control groups considered invari-
ably as the frame, ground, and moving-ground controls.

Under our experimental conditions, no multicellular component formation was ob-
served, and an evaluable floating cell number was present only after 72 h of microgravity
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exposure. The proliferation analysis and cell death yielded similar results to those observed
in the adherent cells. The low number of floating cells did not allow Western blot analysis
to be performed. The immunohistochemistry analysis displayed similar pictures to those
observed in the adherent cells. Therefore, floating cells were no longer considered in the
present research.

2.1. Proliferation and Cell Death

Microgravity induced a slowdown in cell proliferation; in particular, cell proliferation
was largely affected after 48 and 72 h of microgravity exposure (Figure 1a).
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Figure 1. (a) Linear graph showing the proliferation of cells following microgravity exposure.
NormoG = normogravity; MicroG = microgravity; * = p < 0.05 vs. MicroG. (b) Cytofluorimetric
analysis of apoptotic and necrotic cell death following microgravity exposure. a = p < 0.05 vs.
Ng of isotemporal group; b = p < 0.05 vs. 24 h; c = p < 0.05 24 h and 48 h; Ng = normogravity;
Mg = microgravity.

Microgravity affected the cell viability after 24 h, inducing cell apoptosis. The observed
cellular apoptosis was mainly characterized by an early form of apoptosis as revealed by
the cell annexin-V positive/propidium iodide negative (almost 60% of apoptotic cells).
Then, after 72 h, the C6 cell population became affected by only necrotic cell death. These
findings indicate that C6 cells at 24 h are in a preliminary susceptible phase that may be
linked to their proliferative tendency, becoming largely affected by microgravity. Instead,
over time, the surviving cells became more resistant (Figure 1b) and characterized by very
low proliferation (Figure 1a).

2.2. GFAP

GFAP is the main specific component of the astrocytes’ cytoskeletons. However, it does
not represent a mere structural element of the cells; it is also involved in cellular adhesion,
cell–cell or cell–extracellular matrix (ECM) interrelationships and signaling pathways,
revealing the GFAP dynamics as fundamental for the biology of astrocytes in physiological
or pathological conditions [26].

In the C6 cells exposed to normogravity after 24 h, the GFAP appears as a homoge-
nously dispersed matrix into the cytoplasm, without showing correct polymerization into
cytoskeletal bundles. GFAP filaments appeared polymerized in well-visible bundles only
after 48 h, with an evident organization at 72 h of exposure (Figure 2A–C). This late poly-
merization of the specific intermediate filaments of C6 cells is compatible with their tumoral
nature, inducing a late stabilization of cell morphology.
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Figure 2. Microphotograph panel illustrating the immunofluorescence localization of GFAP in C6 glioma
cells following normogravity ((A–C); Ng) or microgravity ((D–F); Mg). The quantitative expression
of GFAP is shown in the bar graph (G) and Western blot panel (H). Black bar = GFAP expression in
normogravity; white bar = GFAP expression in microgravity; relative optical density (R.O.D.) see the
Section 4. a = p < 0.05 vs. 24 h; b = p < 0.05 vs. 24 h; * = p < 0.05 vs. isotemporal normogravity.

Western blot analysis showed the polymerization of GFAP in a well-defined bundle,
seen after 48 h under normogravity conditions, is accompanied by a reduction in the total
amount of protein, which increases with increasing bundle polymerization, as can be seen
after 72 h (Figure 2G,H).

Following 24 h of microgravity exposure, GFAP appeared in a homogenously dis-
persed matrix, gathered in a dense ring around the nucleus, and only faintly dispersed into
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the cytoplasm. Following 48 h of microgravity exposure, GFAP filaments appeared as short
bundles irregularly branching around the cell cytoplasm. Lastly, at 72 h, the GFAP became
organized into a condensed mass with shorter bundles (Figure 2D–F).

Western blot analysis showed that the GFAP amount reduced after 24 h of micro-
gravity exposure, in comparison to the normogravity-exposed cells, indicating that the
different disposition of finely dispersed filaments around the nucleus is accompanied by a
reduction in GFAP content. Instead, following 48 h of microgravity exposure, the increase
in GFAP became clearly evident, whereas following 72 h, only a modest increase in GFAP
was detected (Figure 2G,H). These increases in GFAP accompany the observed irregular
organization of GFAP into short bundles and condensed masses (Figure 2E,F).

2.3. Vinculin

Vinculin is an important factor in stabilizing the protein complex of focal adhesion,
optimizing cell–cell or cell–substrate adhesion. It is present in the cell in two forms [27],
a linear form that typically presents in focal adhesion complexes, displayed under micro-
scopic analysis as dot spots along cell borders, and a folded free form inside the cytoplasm,
resulting in a diffuse cytoplasm-positive reaction.

The C6 cells exposed to normogravity showed several adhesion contacts at the ends of
cell elongation profiles and distributed along the cellular profile. Immuno-positive reaction
was faintly detectable inside the cytoplasm, probably related to the vinculin folded form
(Figure 3A). No significant differences were observed between cells after 24 h, 48 h, and
72 h of normogravity exposure.

Western blot analysis confirmed the occurrence of the same amount of protein in C6
cells exposed to normal gravity after 24 h, 48 h, and 72 h (Figure 3E,F).

Following C6 exposure to microgravity, no change was observed after 24 h (Table 1);
we observed after 48 h an increase in the number of vinculin-positive focal contacts, and a
lower diffuse positive reaction inside the cytoplasm (Figure 3B, Table 1). Following 48 h,
the vinculin immune-positive distribution inside the cytoplasm increased, and focal contact
immunopositive spots appeared larger and reduced in number in comparison to what was
observed after 24 h of microgravity (Figure 3B,C and Table 1); furthermore, they were no
longer detectable after 72 h of microgravity (Figure 3D). Following 72 h of microgravity
exposure, the vinculin immune-positive distribution inside the cytoplasm further increased,
displaying an appearance similar to what was observed in normogravity (Figure 3A,D),
whereas the focal contacts increased in number (Table 1).

Table 1. Number of vinculin dot spots.

Number/Single Cells 24 h 48 h 72 h

Normogravity 23 ± 8 24 ± 10 22 ± 9
Microgravity 25 ± 10 16 ± 7 *§ 48 ± 10 **§

* = p < 0.05 vs. 24 h; ** = p < 0.05 vs. 24 and 48 h; § = p < 0.05 vs. normogravity.

Western blot analysis after 24 and 48 h of microgravity exposure showed a total
vinculin content that was similar to the control group. In contrast, a higher vinculin content
was observed following 72 h of microgravity in comparison to the other experimental
groups (Figure 3E,F).
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Figure 3. Microphotograph panel illustrating the immunofluorescence localization of vinculin in C6
glioma cells following normogravity ((A); Ng) or microgravity ((B–D); Mg). The quantitative expression
of vinculin is shown in the bar graph (E) and the Western blot panel (F). Black bar = vinculin expression
in normogravity; white bar = vinculin expression in microgravity; relative optical density (R.O.D.) see
Section 4. a = p < 0.05 vs. 24 h; b = p < 0.05 vs. 24 h; * = p < 0.05 vs. isotemporal normogravity.

2.4. Connexin

Connexin (Cx43) is a widely diffuse protein in astrocyte cells and C6 glioma cells,
where it is involved in gap junction structure. Furthermore, it forms hemichannels that
relate the cell and its extracellular medium. Cx43 was also observed in cytoplasmatic
localization in tumor cell lines [28].
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The C6 cells exposed to normal gravity for 24 h showed an evident expression of Cx43
visualized as well-defined membrane placoids, and a diffuse cytoplasm positive reaction
(Figure 4A). Following 48 h of normogravity, the membrane placoids did not become more
visible, whereas a cytoplasm positive reaction of granular appearance can be observed
(Figure 4B). After 72 h, a further reduction in the cytoplasm positive reaction was observed
(Figure 4C).
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Figure 4. Microphotograph panel illustrating the immunofluorescence localization of Connexin-43
in C6 glioma cells following normogravity ((A–C); Ng) or microgravity ((D–F); Mg). The quanti-
tative expression of Connexin-43 is shown in the bar graph (G) and Western blot panel (H). Black
bar = Connexin-43 expression in normogravity; white bar = Connexin-43 expression in microgravity;
relative optical density (R.O.D.) see Section 4. a = p < 0.05 vs. 24 h; b = p < 0.05 vs. 24 h; * = p < 0.05 vs.
isotemporal normogravity.
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Following 24 h of microgravity application, Cx43 membrane placoids increased in
size, apparently reduced in number, and no appreciable change in the cytoplasm positive
reaction was observed (Figure 4D).

Following 48 h of microgravity application, the membrane placoids were not visible
anymore, even if a fairly appreciable diffuse cytoplasm positive reaction was still detected
(Figure 4E).

The samples observed after 72 h of microgravity revealed the absence of membrane
placoids, together with a strong reduction in the cytoplasm positive reaction (Figure 4F).

Western blot analysis revealed a similar amount of protein in Cx43 membrane placoids
compared to cells subjected to 24 h in normogravity and in microgravity. Following 48 h
in normogravity, the cells are characterized by an increase in Cx43 protein amount, while
the microgravity group remains with the similar amount observed after 24 h. The different
fragmentation pattern observed in this experimental group may indicate the occurrence of
a different structural expression of Cx43 (Figure 4H).

After 72 h, the amount of protein resulted largely decreased, much more in the cells
exposed to microgravity than cells exposed to normogravity (Figure 4G,H).

3. Discussion

The cytoskeleton has a key role in the life of cells. It is not only the major determinant
of the structural shape of the cell, but it allows for cell movement, and partially mediates
crosstalk with the extracellular matrix. In tumor formation, one of the main characteristics
of transformed cells is a metastatic behavior consisting of the ability to reduce connections
with the extracellular matrix, giving rise to invasive progression towards different organ
districts. This last point is heavily affected by cytoskeletal alteration [17].

GFAP represents the main protein of intermediate filaments characterizing astrocytes’
cytoskeletons, whose expression and modulation are strictly related to physiological and
pathological conditions of astrocytes, including tumoral transformation [26].

Glioma metastatic behavior is mainly characterized by an invasion of the surrounding
tissue. Cultured C6 cells exhibit a first phase in which GFAP, the most specific cytoskeleton
component, transforms from a dispersed distribution to a well-defined bundle polymeriza-
tion. We might argue that this reorganization reflects the first phase for C6 tumor cells to
assume independence from surrounding environments. Later on (72 h), a well-structured
GFAP cytoskeleton may help to drive cell movements towards a metastatic invasion of the
surrounding tissue [29]. In the same time-lapse, microgravity exposition causes alterations
in the distribution and a different polymerization of GFAP filaments, probably making it
difficult for cells to begin their metastatic process.

Vinculin is a key factor in the focal adhesion complex that regulates cell–cell and
cell–ECM interactions [30,31]. These interactions are prominent in modulating cell mor-
phology, adhesion, and motility, such as migration and proliferation [32–34]. Consequently,
vinculin downregulation promotes cell apoptosis and motility downregulation [35]. Con-
versely, reduced vinculin expression has been observed to be a distinctive trait in several
metastatic cancer cells [36,37]. On the contrary, vinculin has gained a double face value in
promoting the metastatic behavior of cancer cells. Cancer cells with high vinculin expres-
sion have been found to enter dense tissue matrices, suggesting that matrix stiffness may
be responsible in the generation of physical forces promoting tissue invasion [38,39], such
as those confirmed in human breast cancer [38] and prostate cancer [40]. On the contrary,
in soft tissues such as ovary tissue, the metastatic process is induced by a reduction in
vinculin expression [35]. Brain tissue can be considered a soft tissue, and C6 glioma cells
have in their vinculin expression reduction one of the promoting factors to metastatic
behavior [41]. Experimental evidence indicates that microgravity promotes an increase in
vinculin expression in C6 glioma cells, with large amounts of the protein as focal contacts
following 24 h of microgravity exposition. After 72 h, a large increase in the number of focal
contacts was observed. These findings are compatible with the hypothesis of microgravity
as a possible agent able to inhibit the metastatic behavior of glioma cells.
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Different scientific papers report that microgravity environments can attenuate the
metastatic behaviors of different cancer cells [42] by regulating calcium entry through the
Orai1 membrane channels and the SOCE (store-operated-calcium-entry) mechanism. In
particular, this has been proven true even for the glioblastoma cell line U87 [43], where the
authors claim modeled microgravity as a potential therapeutic strategy in glioblastoma
treatment. C6 cells reduce their motility and increase focal adhesion following the silencing
of Orai1 channels and decrease in calcium influx [44], which is a possible mechanism for
reducing metastatic progression and tumor diffusion.

The altered expression of Connexin-43 (Cx43) has been considered important in sus-
taining the metabolism of tumor cells; it is considered a key factor in glioblastoma, where
its expression is widely linked to metastatic behavior of the tumor [45].

Cx43 is a pleiotropic protein that is not only involved in the architecture of gap
junctions, but it also participates in several functions, such as regulation of cell architecture,
polarity, mobility, invasion, and growth [45–48]. Cx43 is widely expressed in astrocytes. A
decrease in Cx43 expression in glioma cells has been observed, and the levels are inversely
correlated with the degree of malignancy [49–51]. However, other studies reported an
increase in the invasive action of Cx43-overexpressing glioma cells [48,52]. The enigmatic
consequence of Cx43 expression in glioma cells was adequately described by Sin and
colleagues, who highlighted the opposing role of Cx43 in glioma progression [53]. Recently,
this enigmatic behavior of Cx43 has found an explanation in the research of Hong and
colleagues, who evidenced a differential effect of Cx43 in its relationship with surrounding
cells so that glioma–glioma Cx43 communication suppresses glioma invasion, while glioma–
astrocyte communication favors glioma invasion [54].

In particular, analyses performed on malignant glioma masses reveal that Cx43 is
barely expressed, while a much higher level of Cx43 is detected on the plasma membrane of
reactive astrocytes surrounding the peritumoral area, and even in tumor cell infiltration and
reactive astrocytes [55,56]. These data suggest that the overexpression of Cx43 encourages
glioma cell migration and invasion in a gap-junction channel-dependent manner. Similar
considerations have been made in the hepatic district, where Cx43 propagates endoplasmic
reticulum stress through gap junctions to neighboring hepatocytes [57].

Our findings show differential expression of Cx43 in C6 glioma cells on a time scale
ranging between 24 and 72 h. Under normogravity conditions, Cx43 increased the cyto-
plasmatic localization between time zero and 24 h, while we observed a decrease in Cx43
at 48 h, and a further decrease in cytoplasmatic localization and recovery of membrane
localization at 72 h.

In our experimental set, the isolated condition in which the cells were observed did
not allow for a differential comparison of the Cx43 distribution between the core and the
periphery of tumoral masses. On the other hand, the pleiotropic and complex effects of
Cx43 were well noted.

However, these movements in the expression of Cx43 in C6 cells in normogravity may
be considered compatible with the opposing role that Cx43 assumes in glioma biology and
metastatic behavior, where loss of expression in the tumor core and increased expression or
redistribution of Cx43 at the tumor mass periphery promote infiltration [58].

To this regard, the inhibitory action exerted by microgravity on both cytoplasmic
and membrane Cx43 expression highlights the downregulation of one of the main factors
linking the metabolism of glioma cells to the surrounding environment.

Cx43 has been reported [59] to control cellular movements through the transcriptional
regulation of N-cadherin, by interacting with basic transcription factor 3 (BTF3). BTF3
overexpression has been linked to tumor prognosis, proliferation, and cancer progression.
In such a view, reducing Cx43 could impair BTF3 activity, thus reducing interactions with
the surrounding tumor microenvironment, opposing the metastatic process.

Mounting evidence has shown a crosstalk between connexins, cytoskeletal, and focal
adhesion complexes. In particular, it has been observed that focal adhesion complexes
containing vinculin are maintained by the presence of Cx43 that interacts directly with
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vinculin [60]. In C6 cells, the increase in Cx43 in the cytoplasm under normogravity may
indicates an induced weakness of focal contact, even if the vinculin localization is not
altered. This event can be associated with a dynamic modulation of ECM-focal contact
interrelationships favoring the metastatic movements of tumoral cells [41].

In turn, Cx43 is also associated with several activation pathways involving cell pro-
liferation, differentiation, survival, and participation widely in mechanical stimuli and
cytoskeletal dynamics. We speculate that Cx43 cytoplasmic movement induces the change
in GFAP, from a primary cytoskeletal protein that supports astrocyte physiology to a
dynamic element that helps tumoral astrocytes move toward tissue invasion.

In this scenario, microgravity exerts its inhibition on Cx43, and its redistribution
probably inhibits the primary force, inducing the subsequent dynamic alteration of the
other factors investigated.

Ideally, by transporting this vision to in vivo conditions, we can speculate that micro-
gravity exerts an inhibitory force on these cell transformation mechanisms, reducing the
metastatic progression of C6-type tumoral astrocytes; potentially, this may pave the way
for pharmacological interventions that have more time to be effective if the glioma strongly
reduces its aggressive behavior.

Limitations of the Study

The present study has several limitations due to the use of in vitro cell models that
cannot be considered similar to tissue cancer or in vivo models, where other factors and
interactions with several neighboring cells create a more complex active environment. The
3D-RPM device mimics microgravity; although it is widely considered a cost-effective
device [61], it has some limitations in considerations of the effects of shear stress, which
needs to be monitored separately, as we have done.

The use of a single tumoral cell line without a comparison with normal cells or other
tumor cells limits the possibility of extending our observations more generally, and the
behaviors observed in the C6 cells may be closely related only to this cell type. Furthermore,
the sample size prevented the analysis of the population effect on the observed mechanisms.
In fact, in vivo, the presence of a small tumoral size or the presence of a large mass of
tumoral cells often activates different behaviors, thus differentiating the response of the
core of the tumor mass from the response of the peripheral cells of the tumor mass.

However, a goal of our study is to focus attention on some specific factors that consti-
tute the focal contact, and on the main structural astrocyte protein responsible for the tissue
environment-related response (such as GFAP), in determining the influence of microgravity
on specific alterations that support the aggressive behavior of glioma cells. Furthermore,
a goal of our study is to show that the physical force of gravity is a potential tool to counter-
act tumor cells that modulate their aggressive behavior by involving pathways of adhesion
and movement in the surrounding environment.

4. Materials and Methods
4.1. Culture Procedure

C6 glioma cells, a cell line derived from rat brain tumors, were purchased from ATCC
CCL 107, American Tissue Culture Collection, Rockville, MD, USA.

The cells were grown in DMEM medium (Sigma, St. Louis, MO, USA) with the
addition of 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were kept at
37 ◦C in a humidified room with 5% CO2. For proliferation, cytofluorimetric and Western
blot procedure C6 cells were seeded at 500.000 cells/mL in T25 (25 cm2) flasks. For the
immunohistochemical procedure, C6 cells were seeded at 50.000 cells/mL using the “slide
flask” method (flasks apposed onto tight-fitting removable slides 9.0 cm2 in area).

4.2. Simulated Microgravity

The cells were plated in monolayer in flasks, which were subsequently fitted onto a
3D-Random Positioning Machine (3D-RPM, Dutch Space, NL, Leiden, The Netherlands).
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The cells were kept at 37 ◦C in continuous rotation at 56◦/s to induce microgravity for 24 h,
48 h, and 72 h. The flasks (n = 8) were completely filled with culture medium and placed
next to the center of the rotor to minimize centrifugal accelerations.

The frame control flasks (F, 1g, n= 4) were placed on the set-up bearing the RPM, in
order to monitor the possible vibrations produced by the rotating machinery and transmit-
ted to the holding structure. These frame control flasks were exposed for the same time
intervals as above. A second control group named ground flasks (G, 1g, n = 4) was kept at
37 ◦C in a humidified 5% CO2 incubator, and then analyzed at the same time points as well.

Since the RPM generates limited but present shear forces, especially under adherent
cell conditions [62], to differentiate the effect of fluid movements in the flasks, they were
settled on a rocking plate. This further control group was named the moving-ground flasks
(M, 1g, n = 4).

At the end of each experiment, the medium was collected to analyze floating cells
separately. The medium was transferred to a 50 mL falcon flask and centrifuged at 1100 rpm
for 5 min. the supernatant was discharged, and then forwarded for cell analyses as
described below.

The flasks were washed with phosphate buffer saline (PBS, pH 7.4), and the adherent
cells were used in the techniques described below.

4.3. Proliferation Assay

The proliferation of C6 cells was evaluated by means of the DNA content. The cells
were plated in monolayer in flasks as described above, and after 24 h, the cultures were
subjected to simulated µg (µg cultures) for 24 h, 48 h, and 72 h. The frame, ground, and
moving-ground control groups were set as described above.

Briefly, the medium was removed, and the samples were washed with warm PBS
added with 1 mL of lysis solution (urea 10 M, 0.01% SDS in saline sodium citrate buffer
[SSC] 0.154 M NaCl, and 0.015 M Na3C6H5O7 (sodium citrate), pH 7). The cell suspensions
were incubated at 37 ◦C in a shaking bath for 2 h. After that, 1 mL of Hoechst 33258 dye,
1 mg/mL in SSC buffer, was added in the dark. The absorbance was measured with an
LS5 Perkin Elmer spectrofluorometer (mod. LS5, Perkin Elmer, Shelton, CT, USA). Cell
proliferation was estimated by referring fluorescence units to a linear standard curve for
DNA fluorescence versus cell number.

4.4. Analysis of Cell Death

Cell death was determined using FACSCalibur equipment (Becton Dickinson, Franklin
Lakes, NJ, USA), then analyzed with FlowJo, LLC (V10, Becton Dickinson, Franklin Lakes,
NJ, USA), via the annexin-V/PI assay. The C6 cells were washed with PBS and stained
with 5 µL of annexin V-FITC in 195 µL of binding buffer for 10 min at room temperature in
the dark, then washed with PBS, resuspended in 190 µL of binding buffer, and stained with
10 µL of PI. The apoptotic cells were detected as annexin-V-positive cells, while necrotic
cells were detected as annexin-V-negative/PI positive cells.

The experiments were performed in triplicate and reported as cell death index, calcu-
lated on cell number detected as 100 × [(microgravity exposure − control)/control].

4.5. Immunofluorescence and Microscopy Analysis

The cells were fixed in 4% buffered formalin for 15 min at room temperature, and
then the slides containing the cultured cells were removed from flasks and evaluated
with indirect immunofluorescence. The slides were permeabilized with 0,1% Triton X-100
(Sigma, St. Louis, MO, USA) in PBS, washed in PBS, and then the slides were exposed
to normal goat serum (diluted 1:50 in PBS; Sigma Aldrich, St. Louis, MO, USA). For
the first step, the fixed cells were incubated at 4 ◦C overnight with anti-GFAP (mouse
monoclonal antibody GA5; dilution 1:100; eBioscienceTM, San Diego, CA, USA), anti-
vinculin (monoclonal antibody 7F9; dilution 1:100; eBioscienceTM), and anti-Connexin-
43 (mouse monoclonal antibody CX-1B1; dilution 1:100; eBioscienceTM), with primary



Biophysica 2023, 3 647

antibodies diluted in 1% BSA. The next day, the cells were incubated with eFluorTM 615 and
goat anti-mouse (dilution 1:20; eBioscienceTM) to detect GFAP, and Alexa Fluor 488 goat
anti-mouse (dilution 1:25; eBioscienceTM) to detect vinculin and Connexin-43, for 1.5 h at
room temperature. The immunostaining specificity was verified by omitting one of the
steps of the immuno-histochemical procedure, or by replacing the primary antisera with
non-immune rabbit serum or PBS.

The fluorescence detection was performed with a TCS SP2 confocal microscope (Leica
Microsystems, Wetzlar, Germany). The distribution of the targeted proteins was observed,
and several images were taken for successive analysis. The vinculin plaques per cell were
also determined using Image J software (V.1.52.r).

4.6. Western Blot and Densitometric Analysis

Denaturing electrophoresis was performed on 10–15% gradient polyacrylamide gels
(SDS-PAGE). For each sample, 20 µg of total protein was loaded. The protein run was
carried out at 30 V for 40 min.

After blotting, nitrocellulose membranes were stained with Red Ponceau, washed
with phosphate buffer saline (PBS), and labeled with the primary antibodies against anti-
GFAP (mouse monoclonal antibody GA5; dilution 1:200; eBioscienceTM), anti-vinculin
(mouse monoclonal antibody 7F9; dilution 1:200; eBioscienceTM), and anti-Connexin-43
(mouse monoclonal antibody CX-1B1; dilution 1:200; eBioscienceTM). All of the antibodies
were diluted in PBS + 0.15% Tween (PBSt). Protein detection was performed with the
Immun-Star WesternC kit (BioRad Lab, Hercules, CA, USA), and images were acquired;
quantitative densitometry was performed using the ChemiDoc XRS + System (Bio-Rad).
The data are expressed as relative optical density (R.O.D.) and normalized against α-tubulin
expression (mouse anti-α-tubulin, 1:1000, Merckmillipore, Burlington, MA, USA). α-tubulin
was chosen as the reference because, even if its polymerization is altered by microgravity,
its amount into the cell results in a stable signal through microgravity experiments in the
time lapse considered in the present research [18].

4.7. Statistical Analysis

For the morphometric analysis, statistical analysis was performed using ANOVA
followed by a post hoc Bonferroni test. The normality of the data distribution was assured
by the Kolgomorov–Smirnoff test. p values < 0.05 were considered significant. The data are
reported as mean ± SD.

5. Conclusions

In conclusion, microgravity exerts an inhibitory effect on principal cytoskeletal dy-
namic components such as GFAP, vinculin, and Cx43, which are all related to proliferative
and metastatic behaviors of glioma cells. Although in the present research, direct ex-
periments in vitro or in vivo on the migration and metastatic behavior of C6 cells were
not planned, our findings strongly address the indication of microgravity as a potential
anti-tumoral countermeasure.
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