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Abstract 

Background The contemporary management of mass casualty incidents (MCIs) relies on the effective application 
of predetermined, dedicated response plans based on current best evidence. Currently, there is limited evidence 
regarding the factors influencing the accuracy of first responders (FRs) in applying the START protocol and the associ-
ated prehospital times during the response to MCIs. The objective of this study was to investigate factors affecting 
FRs’ accuracy in performing prehospital triage in a series of simulated mass casualty exercises. Secondly, we assessed 
factors affecting triage-to-scene exit time in the same series of exercises.

Methods This retrospective study focused on simulated casualties in a series of simulated MCIs Full Scale Exercises. 
START triage was the triage method of choice. For each Full-Scale Exercise (FSEx), collected data included exercise 
and casualty-related information, simulated casualty vital parameters, simulated casualty anatomic lesions, scenario 
management times, and responder experience.

Results Among the 1090 casualties included in the primary analysis, 912 (83.6%) were correctly triaged, 137 (12.6%) 
were overtriaged, and 41 (3.7%) were undertriaged. The multinomial regression model indicated that increasing heart 
rate (RRR = 1.012, p = 0.008), H-AIS (RRR = 1.532, p < 0.001), and thorax AIS (T-AIS) (RRR = 1.344, p = 0.007), and lower 
ISS (RRR = 0.957, p = 0.042) were independently associated with overtriage. Undertriage was significantly associated 
with increasing systolic blood pressure (RRR = 1.013, p = 0.005), AVPU class (RRR = 3.104 per class increase), and A-AIS 
(RRR = 1.290, p = 0.035). The model investigating the factors associated with triage-to-scene departure time showed 
that the assigned prehospital triage code red (TR = 0.841, p = 0.002), expert providers (TR = 0.909, p = 0.015), and higher 
peripheral oxygen saturation (TR = 0.998, p < 0.001) were associated with a reduction in triage-to-scene departure 
time. Conversely, increasing ISS was associated with a longer triage-to-scene departure time (TR = 1.004, 0.017).

Conclusions Understanding the predictors influencing triage and scene management decision-making by health-
care professionals responding to a mass casualty may facilitate the development of tailored training pathways regard-
ing mass casualty triage and scene management.
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Background
Contemporary management of mass casualty incidents 
(MCIs) relies on the effective application of predeter-
mined dedicated response plans based on current best 
evidence. Quick decision-making, efficient triage, and 
reduced scene time are essential in MCIs to optimize 
medical response efforts, mitigate the strain on avail-
able resources, and improve overall outcomes for those 
affected [1].

MCI Triage involves the systematic classification of 
patients based on predefined algorithms, allowing pri-
oritization for treatment and onward transfer, and best 
use of available resources both on-scene and in-hospital 
[2, 3]. The accuracy of the triage process, is gauged by 
how well the assigned priority aligns with the expected 
priority, strictly adhering to a predefined algorithm [4]. If 
there’s a discrepancy between the assigned and expected 
priorities, it can lead to two types of errors: overtriage 
and undertriage. These errors can significantly impact the 
efficiency and effectiveness of patient care in both ordi-
nary times and MCIs [5, 6]. Undertriage and overtriage 
represent undesirable outcomes, as they can lead to sub-
optimal allocation of resources and potentially negative 
consequences for patients [7, 8]. A commonly applied 
system for MCI triage is the START system which 
involves categorizing individuals with color-coded tags: 
green (minor injury), yellow (delayed), red (immediate), 
and black (deceased). Key parameters evaluated within 
this system are the ability to walk, breathing and its rate, 
capillary refill time, and the ability to follow commands 
[7]. Accurate triage should be coupled to smooth scene 
management, and it is known that prolonged prehospi-
tal intervals are linked to increased in-hospital mortality 
[9, 10]. Empirical evidence from real-world data indicates 
that MCIs tend to lead to longer time intervals in the pre-
hospital phase compared to non-MCIs [11, 12].

Currently, there is limited evidence regarding the fac-
tors influencing the accuracy of first responders (FRs) 
in applying the START protocol and the associated pre-
hospital times during response to MCIs. One contribut-
ing aspect to this limitation is the need for more reliable 
real-world data to assess such factors. Full-scale exercises 
(FSEx) serve as the most common approximation to real 
events, incorporating realistic scenarios, high-fidelity 
simulated casualties, and actual resources (ambulances, 
personnel, hospital beds, etc.) in real-time. FSEx not only 
represent the gold standard in training for most EMS and 
hospital systems but also offer a valuable opportunity to 
gather data that could allow for the identification of fac-
tors impacting MCI triage and prehospital times, thus 
enabling professionals involved in MCI management and 
training to develop targeted interventions and protocols 
that effectively address the current challenges [13–17]. 

Therefore, after evaluating the accuracy related to the 
application of both prehospital and hospital triage within 
our cohort, the principal objective of this study was to 
investigate factors affecting FRs’ accuracy in performing 
prehospital triage in a series of simulated mass casualty 
exercises. Secondly, we assessed factors affecting triage-
to-exit time in the same series of exercises.

Methods
This retrospective observational study encompassed all 
consecutive FSEx conducted by the Center for Research 
and Training in Disaster Medicine, Humanitarian Aid, 
and Global Health (CRIMEDIM; Università del Piemonte 
Orientale; Novara, Italy) within its institutional activity 
over ten years (from January 2012 to December 2022).

Exercise design
All FSEx were designed and executed in a uniform and 
standardized manner. Each incorporated a storyboard 
that outlined a predetermined number of casualties. The 
severity and distribution of these casualties were estab-
lished based on epidemiological reports, with the objec-
tive to closely resemble the characteristics of the targeted 
event. Once epidemiological profiles were defined, spe-
cific sets of simulated casualties were generated accord-
ingly. Casualty sets comprised three components: (i) 
paper Dynamic Casualty Cards (DCCs), which featured 
evolving vital signs and were designed to be placed into 
transparent plastic envelopes and safely attached to a 
lanyard to be worn around the casualty neck; (ii) instruc-
tions for casualties ‘moulage’, providing professional guid-
ance on creating a standard and high-fidelity wounds on 
the actors for a realistic appearance and (iii) storyboards 
for simulating realistic and evolving patients, serving as 
guidelines to match the data cards and simulate inju-
ries and associated symptoms. All simulated casualties 
underwent standardized training on how to progress 
according to the provided storyboard, passing time and 
receiving treatments. The instructions given to partici-
pants in delivering treatments to simulated victims were: 
(i) to place the necessary treatment devices (e.g., fluids, 
medications) near the victim; (ii) to communicate the 
administration of the treatment; (iii) to remain in close 
proximity to the victim for a duration realistically corre-
sponding to the treatment time. DCCs featured all nec-
essary vitals required for assigning triage codes based on 
the START system. Based on these vitals, each casualty 
had a predetermined expected (correct) triage code. In 
addition to their role as casualties, participants also col-
lected data by documenting their assigned triage codes at 
the scene and upon arrival at the hospital, as well as key 
timestamps during the exercise, including time to triage, 
time to a prehospital staging area, and time to prehospital 
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scene exit. All these times were measured from the start 
of the exercise. These data are then computed and used 
in the after-action debriefing. Details about the casualty 
evolution method, general structure of the simulation, 
and DCCs were described in a series of previous papers. 
[16, 18–24] An example of DCCs is presented in Addi-
tional file 1: Fig. 1S.

Inclusion and exclusion criteria
To be enrolled in the study, each FSEx had to incorporate 
at least one prehospital scenario and at least one simu-
lated hospital. The analysis excluded all casualties specifi-
cally designated to be observed only at the hospital and 
did not undergo prehospital triage.

Data collection
For each FSEx, the master database including pre-existing 
exercise-specific casualty profiles, expected and assigned 
triage codes, and key management times, was thoroughly 
reviewed and consolidated into a single file for analysis.

Included variables consisted of:

• Exercise and casualty-related data—exercise unique 
identification number, simulated casualty unique 
identification number, expected prehospital first tri-
age following the START algorithm, assigned prehos-
pital and hospital triage.

• DCC simulated vital parameters—heart rate, systolic 
blood pressure, blood oxygen saturation, level of con-
sciousness (AVPU scale)

Fig. 1 Flowchart of simulated casualties in the study
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• Simulated anatomical injuries—pre-defined casualty 
injury severity score (ISS), pre-defined abbreviated 
injury scales (AIS).

• Scenario management times—time-to-triage, time to 
Collecting Area, Time from Triage to Scene Depar-
ture, Prehospital Scene Time, Time to Hospital, Time 
to final disposition.

• Experience of the group of rescuers—Exercises man-
aged by trained professionals completing a Master of 
Science in Disaster Medicine (European master in 
disaster medicine, EMDM,) [25] were arbitrarily clas-
sified as “expert”, while exercises managed by junior 
doctors or trainees who completed a basic course 
in disaster medicine were classified as “non-expert”. 
This classification is based on our previous work [16].

Statistical analysis
Casualties were grouped into three categories: correct 
triage, overtriage, and undertriage, based on how the 
assigned triage matched the expected one.

Continuous variables were represented as either medi-
ans and interquartile ranges (IQR) or means and stand-
ard deviations, depending on their distribution assessed 
with QQ plots. The Kruskal–Wallis test or one-way anal-
ysis of variance was used to compare these variables as 
needed. Categorical variables were presented as counts 
and percentages, and the Chi-square test or Fisher’s exact 
test was used for comparison when suitable.

A multinomial logistic regression model was con-
structed to examine the impact of various physiological 
and anatomical factors on the risk of overtriage or under-
triage in prehospital settings. In this model, triage evalu-
ation was the dependent variable, with correct triage 
serving as the reference outcome. The effects of individ-
ual factors under investigation were expressed as relative 
risk ratios (RRR).

Vital parameters, Injury Severity Score (ISS), Abbrevi-
ated Injury Scale (AIS) scores, and the experience of the 
operators were tested as independent variables in the 
model. A stepwise forward and backward selection of 
variables was performed based on the Akaike Informa-
tion Criterion (AIC).

For the secondary objective, the time from triage to exit 
was used. This metric was considered less influenced by 
the spatial distribution of casualties within the scenario 
and the rescue teams’ exploration path. A survival analy-
sis approach was adopted to investigate factors influenc-
ing the triage-to-exit time.

The full model, which included anatomical lesions, 
physiological parameters, the group’s experience, and 
observed triage as independent covariates, fit a Weibull 
distribution well (Additional file 1: Fig. 2S). However, the 

assumption of proportional hazards was not met. As a 
result, an accelerated failure time (AFT) model was con-
structed. Variable selection for this model was also per-
formed using a stepwise forward and backward selection 
based on AIC. AFT models are parametric survival mod-
els that distribute the probability of failure over time by 
accelerating or decelerating it among groups. The output 
estimator for each covariate in these models is the time 
ratio (TR), which measures how much longer or shorter 
the time-to-event is on average. The main advantage of 
AFT models is that they do not rely on the assumption 
of proportional hazards. All the tests were two-tailed, a 
p < 0.05 was considered significant. The analyses were 
performed with R Core Team 2023 (R: A Language and 
Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria).

Ethics and data protection
Ethical approval was not required as the study focused 
solely on documenting even frequencies within simulated 
training programs for learning improvement, with no 
supplementary interventions conducted. All the authors 
confirm adhering to the principles outlined in the Dec-
laration of Helsinki while delivering the simulated edu-
cational program, ensuring confidentiality. Information 
stored in the master databases was fully anonymized 
and was recorded at a group level, due to the inability to 
associate a particular individual with a specific visited 
simulator.

Results
The study incorporated data from 13 FSEx conducted 
between 2012 and 2022, encompassing 1309 simulated 
casualties. A comprehensive description of each FSEx 
included in the study can be found in the electronic sup-
plement (Additional file 1: Table 1S).

Out of the 1309 simulated casualties, 133 (10.1%) did 
not undergo prehospital triage as they were planned to be 
already inside the hospital at the beginning of the simu-
lation. Additionally, 86 simulated casualties (6.5%) had 
complete missing data. Figure  1 shows the flow of the 
simulated casualties included in the study and the cor-
responding relative numbers included in the analysis. 
Among the 1090 casualties included in the primary anal-
ysis, 912 (83.6%) were correctly triaged, 137 (12.6%) were 
overtriaged, and 41 (3.7%) were undertriaged. Table  1 
shows descriptive characteristics of included casualties 
stratified by the correctness of the assigned prehospital 
triage, while Fig. 2 shows the expected and assigned tri-
age codes in prehospital and hospital assessments.

Concerning vital parameters, the overtriaged and 
undertriaged groups exhibited lower blood pressure, 
peripheral oxygen saturation and level of consciousness 
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(AVPU class); conversely, heart rate and ISS were 
higher in both these groups compared to the correctly 
triaged simulants. Figure  3 illustrates the distribution 
of regional AIS scores across the various groups. Spe-
cifically, head, chest and abdomen AIS scores (H-AIS, 

T-AIS and A-AIS) were significantly higher in mistri-
aged casualties, while Face AIS scores (F-AIS) were 
lower. Of note, undertriaged casualties had a shorter 
time-to-triage, whereas overtriaged casualties experi-
enced a longer time-to-triage. However, no differences 
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Fig. 2 Alluvial plot portraying the casualty triage in the study exercise. Note: this alluvial plot visually depicts casualty triage during the study 
exercise. It shows expected and assigned triage codes at prehospital and in-hospital stages, with stream widths representing casualty numbers. 
Colours denote triage codes: Green, Yellow, Red, Black, and NA (for unadmitted patients)

Table 1 Descriptive Characteristics of study casualties stratified by correctness of assigned triage

Correct triage Overtriage Undertriage p

n 912 137 41

Heart Rate (median [IQR]), bpm 92 [84, 110] 101 [88, 120] 110 [0, 130] 0.002

Respiratory Rate (median [IQR]), bpm 22 [18, 25] 23 [19, 26] 23 [0, 32] 0.071

Systolic Blood Pressure (median [IQR]), mmHg 120 [100, 132] 110 [90, 130] 100 [0, 132] 0.041

Diastolic Blood Pressure (median [IQR]), mmHg 76 [55, 85] 70 [51, 80] 68 [0, 88] 0.012

SpO2 (median [IQR]), % 97 [92, 98] 94 [85, 97] 92 [0, 95]  < 0.001

ISS (median [IQR]) 4 [1, 5] 4 [1, 16] 10 [1, 75]  < 0.001

Time to Triage (median [IQR]), min 41 [28, 62] 54 [39, 80] 34 [26, 51]  < 0.001

Time from Triage to Scene Departure (median [IQR]), min 75 [47, 103] 75 [49, 93] 68 [44, 106] 0.903

Prehospital Scene Time (median [IQR]), min 120 [91, 151] 127 [105, 168] 111 [74, 156] 0.109

Time to Hospital (median [IQR]), min 132 [102, 161] 136 [108, 176] 120 [79, 146] 0.225

Time to final disposition (median [IQR]), min 178 [151, 204] 180 [155, 204] 140 [99, 172] 0.004

Expert, n(%) 667 (73.1) 108 (78.8) 27 (65.9) 0.192



Page 6 of 10Carenzo et al. Scand J Trauma Resusc Emerg Med           (2024) 32:97 

Correct triage

Overtriage

Undertriage

0 2 4 6
Head

Correct triage

Overtriage

Undertriage

0 2 4 6
Face

Correct triage

Overtriage

Undertriage

0 2 4 6
Chest

Correct triage

Overtriage

Undertriage

0 2 4 6
Abdomen

Correct triage

Overtriage

Undertriage

0 2 4 6
Extremity

Correct triage

Overtriage

Undertriage

0 2 4 6
External

Fig. 3 Distribution of regional Abbreviated Injury Scores (AIS) across the various groups. Note: this violin plot illustrates the distribution of regional 
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were observed in terms of operator experience in the 
unadjusted population.

The multinomial regression model resulting from 
stepwise variable selection (Table  2) evidenced that 
increasing heart rate (RRR = 1.012, p = 0.008), H-AIS 
(RRR = 1.532, p < 0.001) and thorax AIS (T-AIS) 
(RRR = 1.344, p = 0.007), and lower ISS (RRR = 0.957, 
p = 0.042) were independently associated with overtriage. 
On the other hand, undertriage was significantly associ-
ated with increasing systolic blood pressure (RRR = 1.013, 
p = 0.005), AVPU class (RRR = 3.104 per class increase), 
and A-AIS (RRR = 1.290, p = 0.035). The AFT model 
resulting from stepwise variable selection (Table  3) 
investigating the factors associated with triage-to-scene 
departure time, showed that the assigned prehospital 
triage code red (TR = 0.841, p = 0.002), expert provid-
ers (TR = 0.909, p = 0.015) and higher peripheral oxygen 
saturation (TR = 0.998, p < 0.001) were associated with a 
reduction in triage-to-scene departure time. Conversely 
increasing ISS was associated with a longer triage-to-
scene departure time (TR = 1.004, 0.017).

Discussion
This study investigated the influencing factors on FRs’ 
accuracy in prehospital triage application and triage-to-
exit time during simulated mass casualty exercises. It 

represents a pioneering effort in systematically investi-
gating the impact of these variables, with potential impli-
cations for customizing MCI triage training. Our findings 
indicate an overall FRs accuracy of 83.6%, a higher figure 
compared to the results reported in the literature [5]. Spe-
cifically, we report an overall overtriage rate of 12.6% and 
a notably lower overall undertriage rate (3,7%). Under-
triage refers to the incorrect assignment of lower triage 
priority to patients with severe injuries or medical con-
ditions, thus causing delay or insufficiency in providing 
medical care to those who require it with utmost urgency 
[2]. It can lead to preventable complications, worsening 
of injuries, and even loss of life [26]. Conversely, overtri-
age occurs when patients with less severe injuries receive 
higher triage priority. This can overwhelm emergency 
medical services and hospitals, resulting in inefficient 
resource utilization, increased waiting times, and delays 
in treating patients in need of immediate medical inter-
vention [27]. It is crucial to emphasize that, in our study, 
triage accuracy referred to the correctness exhibited by 
the participants when using the triage tool against a set 
of predetermined profiles, each associated with expected 
triage codes. During the FSEx exercises, participants 
were trained using predetermined algorithms (START) 
and encountered simulated casualties presenting with 
specific signs and symptoms. Although far from being 
perfect, START triage is still extensively used in real-
world applications and embedded in several local opera-
tional plans [17, 28]. The use of the DCCs, which presents 
vitals in a written format, combined with trained live 
actors (who walk and follow commands based on their 
profiles), provides a foundation to confidently assert that 
strict adherence to the algorithm, along with transparent 
provision of all necessary information, should yield very 
high FRs’ triage accuracy. However, we identified a 16.4% 

Table 2 Multinomial logistic regression model for overtriage and 
undertriage

Reference group: Correct triage

RRR  relative risk ratio; CI confidence interval; AIS Abbreviated Injury scale

Variable RRR 95%CI p

Overtriage

Expert group 1.526 0.963–2.418 0.072

Heart rate (per point increase) 1.012 1.003–1.021 0.008

Systolic pressure (per mmHg increase) 1.000 0.996–1.004 0.938

AVPU class (per class increase from A) 1.305 0.969–1.758 0.080

Injury severity score (1 pt increase) 0.957 0.918–0.998 0.042

AIS—Head 1.532 1.217–1.931  < 0.001

AIS—Chest 1.344 1.083–1.667 0.007

AIS—Abdomen 1.273 0.978–1.659 0.073

Undertriage

Expert group 0.529 0.257–1.089 0.084

Heart rate (per point increase) 1.005 0.993–1.017 0.413

Systolic blood pressure (per mmHg 
increase)

1.013 1.004–1.022 0.005

AVPU class (per class increase from A) 3.104 1.908–5.048  < 0.001

Injury severity score (1 pt increase) 1.005 0.972–1.040 0.754

AIS—Head 0.734 0.507–1.061 0.100

AIS—Chest 0.957 0.733–1.249 0.746

AIS—Abdomen 1.290 1.018–1.634 0.035

Table 3 Factors influencing triage-to-exit time

Multivariate Accelerated Failure Time model

TR time ratio; CI confidence interval; SpO2 Blood oxygen saturation

Multivariable Accelerated failure time model

Variable TR 95%CI p

Prehospital triage colour assigned

Green Reference

Yellow 1.062 0.981–1.149 0.139

Red 0.841 0.754–0.940 0.002

Black 0.990 0.780–1.256 0.933

Expert providers group 0.909 0.841–0.982 0.015

Injury severity score (1 point 
increase)

1.004 1.001–1.007 0.017

SpO2 (1 point increase) 0.998 0.997–0.999  < 0.001

AVPU class (per class increase from A) 0.950 0.886–1.018 0.147
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inaccuracy, which we hypothesize could be attributed to 
other clinical factors integrated by clinicians in their tri-
age decision-making. Concerning our primary objective, 
the multinomial regression model for overtriage iden-
tified significant associations with elevated heart rate, 
higher H-AIS and T-AIS, and a lower overall ISS. Clini-
cians have traditionally considered heart rate, a parame-
ter notably absent in the START algorithm, as a potential 
indicator of a more "severe" or shocked patient. It is plau-
sible that the occurrence of tachycardia in patients cat-
egorized within a lower triage level may have influenced 
clinicians to assign a triage code higher than the expected 
one. Similar considerations apply to the heightened 
H-AIS and T-AIS. The AIS is an anatomically-based 
injury severity scoring system. It classifies each injury by 
body region on a six point scale. Although formal ana-
tomical evaluation or triage wasn’t requested from FSEx 
participants, it was hypothesized that providers’ field tri-
age decisions might be indirectly influenced by visible 
anatomical injuries (e.g., bruises, fractures, penetrating 
trauma, amputations) or their consequences (e.g., coma, 
bleeding). Therefore, the AIS score was included in the 
statistical analysis, as it serves as a proxy for the anatomi-
cal injuries sustained. Trauma to the head or chest, such 
as penetrating or open chest wounds in a walking patient, 
might have contributed to instances of overtriage. When 
considering undertriage, independently associated fac-
tors are higher systolic blood pressure, better AVPU 
class scale and higher A-AIS. Indeed, DCCs provided 
participants in the prehospital setting with information 
on “advanced” vital parameters (such as blood pres-
sure), typically accessible only through the presence of 
monitors in a more advanced phase of the MCI response, 
when more resources arrive on scene or an advanced 
medical post is established [29]. Blood pressure, which is 
not “per se” included in the START evaluation, is how-
ever widely used in assessing the hemodynamic stability 
of trauma patients, thus the observation that a higher 
systolic could be perceived as indicative of a more “sta-
ble” patient and as such the link with undertriage is not 
surprising [30]. Consciousness itself could follow the 
same approach, very young and fit patients usually toler-
ate a higher degree of shock without compromising their 
consciousness level and relying on the consciousness 
state probably led to some undertriage in our cohort. 
Finally, in contrast to noticeable signs of head and chest 
injuries (like changes in consciousness, penetrating 
objects, or respiratory issues) diagnosing abdominal inju-
ries can be challenging, especially when point-of-care 
ultrasound is not readily available. This difficulty in clini-
cal diagnosis probably contributes to the higher A-AIS in 
the undertriage model. On a side note, it is interesting to 
note that our method of offering additional information 

on casualties beyond what a typical first responder might 
gather in their initial assessment of an MCI casualty (e.g., 
heart rate, systolic blood pressure, blood oxygen satura-
tion) is a forefront of what is likely to occur in the future 
with the integration of new technologies in MCI response 
[31, 32]. Indeed, in the evolving landscape of prehospital 
emergency response, a discernible trend is the increas-
ing integration of sensors and new technologies aimed 
at enhancing the performance of FRs also by providing 
additional vitals compared to what is normally available 
and accessible during MCIs. Similarly to what happened 
during our study, this influx of additional data has the 
potential to significantly influence FRs’ clinical assess-
ment, and impact the application of triage protocols, 
thus potentially affecting the delicate balance between 
available resources and urgent needs. Hence, there is a 
pressing need for forthcoming studies to explore these 
dynamics and consider the potential need to adjust our 
approach to primary triage in MCIs. Concerning our sec-
ondary objective, the AFT model revealed a significant 
association between the assignment of a triage red code 
and shorter duration in triage-to-scene departure time. 
Given that one of the objectives of triage is to prioritize 
the transportation of individuals across different triage 
categories, it is unsurprising that patients categorized as 
red experienced a shorter duration on the scene. Intrigu-
ingly, we noted that patients with lower SpO2 spent more 
time on the scene, potentially indicating that clinicians 
frequently chose to address airway management at the 
prehospital scene, thereby prolonging the triage-to-scene 
departure time. Conversely, patients with higher  SpO2, 
requiring no airway and breathing interventions, were 
evacuated more rapidly. The same consideration can be 
made for increasing ISS, which could have prompted 
participants to perform treatment and stabilization 
maneuvers on site, thus impacting on the time on scene. 
A reduced time-to-triage departure time was linked to 
increased provider experience, aligning with the out-
comes observed in our previous study wherein “expert” 
teams demonstrated superior proficiency in both triage 
and on-scene management [16]. The underlying assump-
tion is that expert teams possess a more comprehensive 
understanding of prehospital processes and recognize the 
imperative to swiftly clear the scene, acknowledging the 
hospital as the definitive care location where casualties 
can receive optimal treatment. This perspective is con-
sistent with existing literature, which underscores that 
prolonged prehospital times are correlated with unfa-
vorable hospital outcomes [10].

Limitations
Several limitations should be acknowledged in this 
study. Firstly, it is a retrospective analysis of previously 
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collected data. Secondly, despite the efforts to organ-
ize the exercises in as realistic a manner as possible, 
they remain simulations. Consequently, the simulated 
casualties may only reflect a limited range of changes 
in their clinical condition, posing challenges to the real-
world transferability of the study’s findings.

Nevertheless, in the field of disaster medicine, it is 
common practice to use simulation data as a surro-
gate to inform further research or propose changes 
for evaluation in clinical practice. Third, we can-
not exclude that the FSEx was not perceived realistic 
enough from the participants to generate enough stress 
that could potentially hinder their performance and as 
such we cannot exclude that real-world performances 
could be worse (or better) than reported. Fourth, it is 
worth remembering that ISS and AIS are mainly used 
for prognostic purposes and their use as anatomical 
descriptors can be considered at best an approximation. 
Lastly, due to the inability to identify rescuer-related 
individual experience, we opted to consider group-level 
experience as a variable in the data analysis.

Conclusions
Understanding the predictors influencing triage and 
scene management decision-making by healthcare pro-
fessionals responding to a mass casualty may facilitate 
the development of tailored training pathways regard-
ing triage and scene management. In the primary eval-
uation of MCI casualties during simulated exercises, 
altered values of heart rate, blood pressure and AVPU 
influenced the application of the conventional START 
algorithm, an observation that suggests the necessity to 
potentially reevaluate the initial approach to MCI casu-
alties considering the increasing likelihood of immedi-
ate access to these parameters through technological 
advancement. Similarly, mistriage was linked to T-AIS, 
H-AIS and A-AIS, underscoring the influence of realis-
tic moulage casualties on the application of the START 
algorithm. This implies that clinicians are inclined to 
incorporate an anatomical assessment more atten-
tively even during their initial evaluations. Addition-
ally, we noticed an inclination to retain patients with 
more severe conditions possibly requiring interven-
tions (such as casualties with higher ISS scores or with 
airway and breathing issues) on the scene for initial 
stabilization.
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