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Abstract: An increasingly important role for gut microbiota in the initiation and progression of
colorectal cancer (CRC) has been described. Even in the early stages of transformation, i.e., colorectal
adenomas, changes in gut microbiota composition have been observed, and several bacterial species,
such as pks+ Escherichia coli and enterotoxigenic Bacteroides fragilis, have been proposed to drive colon
tumorigenesis. In recent years, several strategies have been developed to study mucosa-associated
microbiota (MAM), which is more closely associated with CRC development than lumen-associated
microbiota (LAM) derived from fecal samples. This review summarizes the state of the art about
the oncogenic actions of gut bacteria and compares the different sampling strategies to collect
intestinal microbiota (feces, biopsies, swabs, brushes, and washing aspirates). In particular, this
article recapitulates the current knowledge on MAM in colorectal adenomas and serrated polyps, since
studying the intestinal microbiota associated with early-stage tumors can elucidate the molecular
mechanisms underpinning CRC carcinogenesis.

Keywords: gut microbiota; colorectal cancer; colon polyp; lumen-associated microbiota; mucosa-
associated microbiota; intestinal pathogens

1. Introduction

The human gastrointestinal tract harbors trillions of microorganisms, collectively
referred to with the term microbiota, that play key roles in the digestion of complex
polysaccharides, the elimination of toxic substances and pathogens, and the modulation
of host metabolism and immunity [1]. Dysbiosis, i.e., the disruptions in the taxonomic
and metabolic balance of the intestinal microbial community, is associated with a number
of pathologies, including obesity [2,3], type 2 diabetes mellitus [4], inflammatory bowel
disease [5,6], cardiovascular disease [7,8] and cancer [9]. Accumulating evidence indicates
that the gut microbiota is especially involved in the initiation and progression of colorectal
cancer (CRC). CRC is a leading cause of death worldwide, and its incidence is predicted
to increase to 3.2 million new cases and 1.6 million deaths by 2040 [10]. The etiological
factors of CRC are complex and heterogeneous and involve both non-modifiable and
modifiable risk factors. The non-modifiable factors include age, male sex [11], and genetic
predisposition, which can be due to high-penetrance germline mutations that are found in
a small proportion (3–5%) of CRC patients [12] or to the combined effect of low-penetrance
alleles [13]. The modifiable risk factors for CRC are mostly associated with dysbiosis and
inflammation and include high consumption of animal fat, red and/or processed meat, low
intake of fiber-rich foods, and a sedentary lifestyle [14].

In most cases (70–90%), CRC develops from epithelial cells through the acquisition of
genetic and epigenetic alterations that lead first to hyperproliferation and then to tumor
initiation, via the so-called adenoma–carcinoma sequence, a series of well-defined molec-
ular and histopathological changes [15]. The early lesions, benign adenomatous polyps,
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typically present mutation/inactivation of the tumor suppressor adenomatous polyposis
coli (APC), which results in stabilization of β-catenin and activation of Wnt/β-catenin
signaling [16]. The accumulation of mutations in other genes, such as KRAS and TP53,
causes the outgrowth of more malignant cells and the progression of benign polyps to
tubular adenomas (TAs) with increasing grade of dysplasia and eventually to invasive ade-
nocarcinomas [17]. These tumors exhibit chromosomal instability (CIN), with aneuploidy
and large chromosomal aberrations. Alternatively to the conventional adenoma–carcinoma
pathway, 10–30% of all CRCs evolve along the serrated pathway. The molecular alterations
that characterize these tumors are the CpG island methylator phenotypes (CIMPs), due
to genome-wide promoter hypermethylation and silencing of a wide range of tumor sup-
pressor genes, BRAF activating mutations, but rarely APC mutations [18,19]. The precursor
lesions of the serrated pathway are histologically classified into benign hyperplastic polyps
(HPs), sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas
(TSAs) [20,21].

Many studies have demonstrated that the gut microbiota is significantly altered in
CRC patients compared to healthy subjects, and diverse bacteria whose abundance corre-
lates with tumor presence have been proposed as diagnostic markers [22–24]. Moreover,
functional studies on animal models have corroborated the causal association between
microbiota alterations and CRC.

This review discusses the current knowledge of how gut microbiota can affect the
development and progression of early colon neoplasms.

2. Intestinal Bacteria Can Act as Oncogenic Factors

Recent studies have elucidated the main mechanisms by which intestinal bacteria
can influence the initiation and progression of CRC, which are by the production of bacte-
rial toxins, the release of metabolites, and the modulation of inflammation and immune
responses [25] (Figure 1).

Several intestinal bacteria can secrete genotoxins and virulence factors that lead to
DNA mutagenesis or functional damage in the host cells [26,27]. Cytolethal distending
toxin (CDT), which is produced by a large number of gram-negative bacteria, including
Helicobacter, Escherichia and Shigella species, is composed of three subunits, i.e., CdtA, CdtC,
and the catalytically active CdtB [28,29]. CDT causes single and double-strand DNA breaks
in eukaryotic cells, which are associated with cell cycle arrest, apoptosis, or mutagenesis if
the DNA lesion is unrepaired or misrepaired [30,31].

Colibactin is a genotoxin produced by Escherichia coli strains harboring the polyketide
synthase genomic island (pks+ E. coli) [32]. It has been demonstrated that colibactin
can cause DNA double-strand breaking, chromosome aberrations, DNA alkylation and
production of DNA adducts, and prolonged cell cycle arrest [33,34].

Enterotoxigenic Bacteroides fragilis (ETBF) can secrete the virulence determinant B.
fragilis toxin (BFT), a metalloprotease able to induce the cleavage of the extracellular domain
of E-cadherin, which is a key component of adherent junctions. E-cadherin cleavage
results in the translocation of β-catenin into the nucleus and in the expression of the
proto-oncogene c-myc [35]. BFT activates the Wnt/β-catenin and nuclear factor-κB (NF-
κB) signaling pathways in colonic epithelial cells, leading to increased cell proliferation,
barrier disruption, and production of inflammatory mediators [35,36]. ETBF infection
also promotes intestinal inflammation and colorectal carcinogenesis by downregulation of
miR-149-3p expression and subsequent superoxide dismutase 2 (SOD2) overexpression [37].
The bft gene was detected with higher frequency in mucosal and stool samples of CRC
cases compared to controls [38,39]; bft positivity was significantly increased in advanced-
vs. early-stage CRC patients.

The gram-positive gut commensal Enterococcus faecalis can generate extracellular su-
peroxide, which promotes DNA damage and chromosomal instability in colonic epithelial
cells. Superoxide upregulates cyclooxygenase-2 (COX2) expression in macrophages leading
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to the production of 4-hydroxy-2-nonenal, which favors malignant transformation in IL-10
knock-out mice [40–42].

Many studies strongly support the involvement of Fusobacterium, especially Fusobac-
terium nucleatum, in CRC [24,43,44]. Inoculation of F. nucleatum into ApcMin/+ mice results
in an NF-κB pro-inflammatory signature and in accelerated onset of small intestinal and
colonic tumors in the absence of colitis or macroscopical inflammation [45]. F. nucleatum
expresses on its surface the FadA adhesion protein, which binds to E-cadherin and ac-
tivates β-catenin signaling further leading to cell proliferation [46]. Another virulence
factor expressed by F. nucleatum is the Fap2 protein, which can cause human lymphocyte
death [47] and inhibit the activities of NK cells and T cells through interaction with their
TIGIT receptor [48].

Gut bacteria can also affect colon cell fate and influence host homeostasis by producing
a plethora of molecules, such as secondary bile acids (BAs) and short-chain fatty acids
(SCFAs). In the liver, the primary BAs chenodeoxycholic acid and cholic acid are produced
from cholesterol, conjugated to taurine or glycine to form bile salts, and excreted into
the duodenum to aid fat digestion [49]. In the distal small intestine and in the colon, gut
bacteria can deconjugate BAs and convert them into secondary BAs, namely lithocholic and
deoxycholic acid, which can induce inflammation through activation of the transcription
factor NF-κB in colonic epithelial cells and act as tumor-promoting metabolites [50]. Clinical
studies have shown that high-fat diets increase secondary BAs production [51,52] and that
high concentrations of BAs are correlated to increased risk of CRC [53–55]. Administration
of deoxycholic acid induces intestinal inflammation and disrupts the mucosal barrier in
Apcmin/+ mice [56] and facilitates tumorigenesis in rats treated with azoxymethane (AOM),
a colorectal carcinogen [57]. Conversely, increasing evidence indicates that SCFAs such
as butyrate have antineoplastic properties since they maintain mucosal integrity, inhibit
colonic inflammation, and reduce CRC risk [58,59]. Butyrate is the preferred energy source
for normal colonocytes, whereas cancerous colonocytes rely on glucose to produce energy,
and accumulate butyrate, which functions as a histone deacetylase (HDAC) inhibitor,
leading to suppression of cell proliferation and tumor development [60,61].

Finally, pathogenic bacteria can induce host cell damage by regulating the functions
of immune cells. Under normal physiological conditions, gut bacteria are of fundamental
importance for the maturation of gut-associated lymphoid tissue (GALT) and for the
induction of tolerance to commensal microbiota antigens [62]. Symbiotic intestinal microbes
stimulate the secretion of interleukin-1 beta (IL-1β) by macrophages and thus the expansion
of regulatory T cells (Tregs), which cooperate to immune homeostasis and maintenance of
intestinal mucosal integrity [1]. A healthy microbiota promotes the anti-tumoral functions
of cytotoxic CD8+ T cells, which can recognize tumor antigens presented on the surface of
transformed cells and eliminate tumor cells via release of cytotoxic granules and secretion of
pro-inflammatory cytokines [63]. Conversely, dysbiosis can stimulate excessive production
of pro-inflammatory cytokines, promote epithelial cell proliferation, and limit the action
of antitumorigenic immune cells [25]. Specific bacteria can indeed suppress the beneficial
actions of immune cells, leading to cancer development. A paradigmatic example, in
addition to the already mentioned F. nucleatum, is offered by ETBF, which induces chronic
colitis and colon tumorigenesis in murine models via activation of T helper type 17 (Th17)
cells, release of IL-17, and differentiation of myeloid cells into immunosuppressive myeloid-
derived suppressor cells [64,65]. Moreover, lipopolysaccharide (LPS), a component of the
outer membrane of gram-negative bacteria binds to the toll-like receptor 4 (TLR4) on the
surface of colonic epithelial cells and activates the NF-κB signaling pathway, resulting in
the production of numerous chemokines and pro-inflammatory cytokines [66,67].
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To explain how the oncogenic potential of certain bacteria can result in CRC develop-
ment, Sears and Pardoll proposed the “Alpha-bug” hypothesis, which states that specific
microbes with unique virulence traits not only can have genotoxic effects on colonocytes
but can also modulate the colonic bacterial community to generate a prooncogenic environ-
ment that favors neoplastic transformation [68]. Tjalsma et al. extended this hypothesis
by proposing the “driver-passenger” model for colon carcinogenesis, where driver bacte-
ria with procarcinogenic features that may contribute to CRC initiation are progressively
outcompeted and possibly replaced by bacteria more suited to grow in the tumor microen-
vironment [69]. This model implies that tumor progression is accompanied by remodeling
of gut microbiota and explains the observation that microbiota composition is different
in patients carrying early lesions, i.e., adenomas, compared to patients with CRC [70,71].
By focusing on the bacterial communities associated to colorectal adenomas, it should be
possible to identify the microbes that drive tumorigenesis rather than the bacteria that
display a growth advantage in the CRC environment, which is characterized by profound
metabolic alterations, including enhanced glycolysis, lower pH, and elevated amino acids
concentration [72].

3. The Dilemma of Sampling Gut Microbiota

In recent years, advances in next-generation sequencing methodologies and bioinfor-
matics tools have been instrumental in providing a better understanding of microbiota
composition, but particular attention should be devoted to the choice of specimens for
sequencing analyses (Figure 2). Stools are frequently used for intestinal microbiota studies
since their collection is simple and noninvasive. However, fecal samples do not provide
information on the distribution of bacteria in different districts of the intestinal tract, nor
do they reflect the microbial communities in close contact with the epithelium. The lumen-
associated microbiota (LAM), represented by feces, and the mucosal-associated microbiota
(MAM) that can be studied by collecting mucosal biopsies during colonoscopy, are two
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distinct ecosystems that differ significantly from each other in microbial diversity and com-
position [73–76]. Many independent studies showed that MAM derived from biopsies was
significantly less diverse than LAM [73,74,77,78]. For instance, in a study on individuals
undergoing routine screening colonoscopies, either healthy or with hyperplastic polyps
or tubular adenomas, it has been observed that the MAM had reduced species richness
(evaluated by Chao1 index) and diversity (by Shannon index) compared to the LAM [79].
The predominant phylum was Proteobacteria in MAM and Firmicutes in LAM [79]. It has
been proposed that an increased level of oxygen-tolerant organisms of the Proteobacteria
phylum may be present in the mucosa because of the different oxygen content which is
higher in the mucosal interface and lower in the lumen [80].
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The microbes adherent to the surface of the intestinal mucosal cells are considered the
most important for the fortification of host immune defenses and other beneficial functions
but also for procarcinogenic processes, such as inflammation [81,82]. Mucosal biopsies
obtained during colonoscopy have been used to study MAM in different anatomical sites
and in tumors. This approach presents the disadvantages of being invasive for the patients
and being influenced by the unavoidable alterations due to bowel preparation [78,83,84].
An alternative strategy to biopsies is the collection of MAM by swabs, brushes, or washing
aspirates. Avelar-Barragan and coll. tested multiple sampling methods to obtain MAM
during colonoscopies from subjects with TAs, HPPs, SSPs, or healthy controls. In particular,
they directly brushed the surface of polyps and of normal tissue on the opposite colon wall
and collected the colonoscopy washing fluid sprayed on normal tissue near the polyps.
Both techniques gave similar microbiome profiles, but samples collected by brushing
resulted in higher proportions of human-derived reads during shotgun sequencing and in
a higher risk of damaging the intestinal epithelium. MAM obtained by mucosal aspirates
had significantly decreased species richness and Shannon diversity than LAM analyzed
in fecal samples [85]. In 2019, we developed a novel approach to collect both MAM
and mucosa-associated metabolites from the tumor surface [77,86]. This method consists
in gently brushing swabs on the surface of colorectal polyps after their removal during
colonoscopies, ensuring the collection of bacteria and metabolites present on the tumor
surface and not on the normal mucosa nearby. Moreover, this approach preserves the
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integrity of the polyps and does not interfere with histopathological analyses. MAM was
subsequently analyzed by 16S rDNA sequencing and compared to LAM from the same
patients, obtaining comparable number of taxa from MAM and LAM samples (165 and
202 taxa, respectively) but differences in diversity and composition [77]. This method is
suitable also for shotgun sequencing and is expected to avoid human reads contamination.
Shotgun sequencing has the advantage, compared to 16S rDNA sequencing, to have
higher resolution (even down to strain identification) and to infer bacterial functions.
However, since with shotgun metagenomics all the DNA (and not only the 16S amplicons) is
sequenced, host DNA is a considerable contaminant, especially for biopsies. For this reason,
host DNA depletion methods are developing [87]. Other innovative biotechnological
strategies allow the identification of promising biomarkers (e.g., metabolites, miRNAs)
from various biological fluids and tissues, including feces [77,88–90].

Overall, MAM collection (by biopsies, swabs, brushes, or washing aspirates) is invasive
and not always feasible for healthy individuals, and its composition is influenced by
colonoscopy preparation. Swabs, brushes, and washing aspirates, differently from biopsies,
have the advantage of preserving polyp integrity; biopsies and brushes are the MAM
collection methods that are more affected by host DNA contamination. On the other hand,
although fecal samples are a powerful resource for biomarker discovery and application
in CRC screening since stool collection is easy and not invasive, it seems reasonable to
consider MAM more representative of the complex ecosystem that drives transformation
of colonic epithelial cells. Indeed, fecal samples provide an overview of the gut bacterial
environment but do not represent tumor-site microbiota as accurately as MAM.

4. Mucosa-Associated Bacteria in Patients with Colon Adenomas

Some studies focused on the bacterial composition of rectal mucosa in patients car-
rying colon adenomas vs. adenoma-free controls [91–94] under the assumption that the
microbiota is relatively stable along the digestive tract [95,96] and that the rectal mucosa
might be considered a proxy of the mucosa at the adenoma site. Microbial richness of
the rectal mucosa was increased in subjects with adenomas compared to controls [91,94].
A significantly higher abundance of Proteobacteria and lower abundance of Bacteroidetes
was observed in cases with adenoma compared to controls [94]. The relative abundance
of potential pathogens such as Pseudomonas, Helicobacter, Acinetobacter, and other genera
belonging to the phylum Proteobacteria was significantly increased in cases [91], as well as
Fusobacterium and Bifidobacterium spp. [92,93]. Moreover, Shen et al. observed that some
less abundant genera, i.e., Oscillospira spp., Clostridium spp., Phascolarctobacterium spp.,
Finegoldia spp., Eubacterium spp., and Akkermansia spp. were present only in cases but not
in controls [94].

Several other studies compared the microbiota of adenoma biopsies to the surround-
ing healthy tissue. The Fusobacterium spp. level was measured by qPCR in adenoma
biopsies and adjacent normal tissue from the same patients. Fusobacterium was found
present in 48% of adenomas and was significantly enriched in adenomas compared to the
adjacent tissue [45]. This suggests that Fusobacterium begins to accumulate at early stages
of colon tumorigenesis.

Lu et al. compared the bacterial composition of biopsies from adenoma and normal
adjacent tissue collected from 31 patients with adenoma and found no significant differences
at the phylum level [82], a result confirmed by a subsequent report [97]. Comparison
of these samples to the colon biopsies collected from 20 healthy volunteers showed a
remarkably different microbiota [82]. In particular, a conspicuous reduction in Firmicutes
with concomitant expansion of Proteobacteria was observed in patients with adenomas,
and the Firmicutes/Bacteroidetes ratio, which is considered a marker of eubiosis in the
gastrointestinal tract, was decreased [82]. Biopsies of premalignant polyps also had a
higher abundance of Bifidobacterium, Faecalibacterium, Bacteroides, and Romboutsia than the
healthy colon mucosa isolated from the same patients and reduced levels of Helicobacter
and Klebsiella [97]. Since Faecalibacterium, Bacteroides, and Romboutsia are also depleted in
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CRC mucosa, these taxa may represent microbial biomarkers associated with the presence
of either early or advanced tumor lesions [97].

Mira-Pascual et al. found that TA samples had increased diversity compared to
adjacent normal tissue, and the diversity was even higher in CRC samples [98].

A paper by Nakatsu et al. described the microbial communities in 47 cases with
colorectal adenomas, 52 cases with invasive adenocarcinomas, and 61 controls without
colorectal tumors [99]. Biopsies were obtained from tumors and tumor-adjacent mucosa
and analyzed by 16S ribosomal RNA gene sequencing to determine associations of distinct
taxonomic configurations with disease status. No statistical difference in microbial diversity
was found between tumors and tumor-adjacent mucosa, but carcinoma samples had a
significant increase in diversity when compared to adenomas. Adenomatous lesions
showed signs of dysbiosis and the enrichments of E. coli [99]. Data obtained in this
study [99] were also used by Xu et al., who compared microbiota of mucosa biopsies from
CRC cases, adenoma cases, and healthy controls, and found a significant enrichment of
Fusobacteria in patients with CRC compared to patients with adenomas and control subjects.
No significant difference at the phylum and genus levels was found between the normal
and adenoma groups. The genus Escherichia was more abundant in adenoma patients than
in CRC patients and healthy controls [100]. The authors hypothesize that E. coli might
colonize the colon mucosa and act as a driver of tumorigenesis then be outcompeted by
passenger bacteria that acquire a growth advantage in the tumor microenvironment. The
authors propose E. coli as a candidate adenoma-associated biomarker [100].

The levels of three bacteria that have been implicated in the development of CRC, i.e.,
F. nucleatum, B. fragilis, and Streptococcus gallolyticus [24,35,36,101–106], were quantified by
qPCR in biopsies from 99 patients with CRC (tumor and paired normal tissue), 96 patients
with adenomas, and 104 patients with diverticula [107]. S. gallolyticus was detected in none
of the samples. F. nucleatum and B. fragilis were significantly reduced in adenoma tissues
compared to diverticula and to CRC (both tumors and paired normal tissues). The genus
Acinetobacter was highly abundant in both diverticula and adenomas but absent in samples
derived from CRC patients, while the genus Prevotella was associated to CRC [107]. It is
well known that some strains of Prevotella can promote chronic inflammation by driving
Th17-mediated immune responses [108,109].

Comparison of biopsies from 15 patients with adenomatous polyps and 46 CRC
patients showed a reduction in the families of Campylobacteraceae, Carnobacteriacerae, Gemel-
laceae, Leptotrichiaceae, and Streptococcaceae, and an increase in Pseudomonadaceae and Yersini-
aceae in adenoma vs. CRC [71]. At the genus level, a reduced level of Fusobacterium
and Gemella and an increased level of Pseudomonas and Serratia were found in adenomas
compared to CRC [71].

Geng et al. relied on the driver-passenger model [69] to interpret the results obtained
on 10 normal, 10 adenomas, and eight CRC biopsy samples. Taxa, whose relative abun-
dances in adenoma tissues were significantly higher than in normal and CRC tissues, such
as Enterobacteriaceae, Pseudomonadaceae, Neissenaceae, and Enterobacter, were classified as
potential drivers. The family Streptococcaceae and the genus Streptococcus were considered
possible pro-inflammatory passengers [110].

A study on a small cohort of Norwegian patients evaluated by quantitative PCR
(qPCR) the levels of F. nucleatum and four E. coli toxin genes in biopsies from 21 CRC
patients, 11 adenoma patients, and 11 healthy controls [111]. The levels of E. coli toxin genes
in stool and biopsy samples were not significantly different among groups. F. nucleatum
was more frequently detected in biopsies from CRC patients, and significantly higher
levels of F. nucleatum and Fusobacterium spp. were identified in stool samples from CRC
patients compared with adenoma patients and healthy controls [111]. Similarly, a study
on biopsies from nine CRC patients with synchronous adenomas, 16 colorectal adenoma
(CRA) patients, and 10 healthy subjects, showed that F. nucleatum was significantly enriched
in tumor, adenoma, and normal adjacent tissues from CRC patients compared to healthy
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controls but not in adenoma and normal adjacent tissues from CRA patients [112]. Table 1
summarizes the mentioned articles.

Table 1. Summary of the literature data about mucosa-associated bacteria in patients with colon adenomas.

Reference Samples Comparison Results

[91] Biopsies from
rectal mucosa

33 subjects with adenomas vs.
38 adenoma-free controls

Pseudomonas, Helicobacter, Acinetobacter, and
other genera belonging to the phylum

Proteobacteria increased in cases.

[94] Biopsies from
rectal mucosa

21 subjects with adenomas vs.
23 non-adenoma controls

Higher richness and higher abundance of
Proteobacteria and lower abundance of

Bacteroidetes in cases.
Oscillospira spp., Clostridium spp.,

Phascolarctobacterium spp, Finegoldia spp.,
Eubacterium spp., and Akkermansia spp.

present only in cases.

[45] Adenoma/colon biopsies
Adenoma biopsies vs.

surrounding healthy tissues of
29 patients

Fusobacterium enriched in adenomas.

[82] Adenoma/colon biopsies

Adenoma biopsies vs.
surrounding healthy tissues of

31 patients

No significant differences at the
phylum level.

Adenoma biopsies of 31 patients
vs. colon biopsies collected from

20 healthy volunteers

Reduction in Firmicutes and expansion of
Proteobacteria in patients with adenomas.

[97] Adenoma/colon biopsies
Premalignant polyp biopsies vs.
surrounding healthy tissues of

12 patients

Higher abundance of Bifidobacterium,
Faecalibacterium, Bacteroides, and Romboutsia

and reduced levels of Helicobacter and
Klebsiella in premalignant polyps.

[98] Adenoma/colon biopsies
Adenomas vs. adjacent normal

tissues of 7 subjects with CRC and
11 with tubular adenomas

Increased diversity in adenomas and CRC
compared to normal tissue.

[99] Adenoma/colon biopsies

47 cases with colorectal
adenomas, 52 cases with invasive
adenocarcinomas, and 61 controls

without colorectal tumors

Increased diversity in carcinomas compared
to adenomas.

Enrichment of E. coli in adenomas.

[100] Data from [99] Data from [99]

Enrichment of Fusobacteria in patients with
CRC compared to patients with adenomas

and control subjects.
No differences between normal and

adenoma groups.
Escherichia more abundant in adenoma

patients than in CRC patients and
healthy controls.

[107] Adenoma/colon biopsies

99 patients with CRC (tumor and
paired normal tissues), 96 patients
with adenomas, and 104 patients

with diverticula

F. nucleatum and B. fragilis reduced in
adenoma tissues compared to diverticula

and to CRC.
Acinetobacter highly abundant in both

diverticula and adenomas.
Prevotella associated to CRC.
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Table 1. Cont.

Reference Samples Comparison Results

[71] Adenoma/colon biopsies 15 patients with adenomatous
polyps vs. 46 CRC patients

Reduction in the families of
Campylobacteraceae, Carnobacteriacerae,

Gemellaceae, Leptotrichiaceae, and
Streptococcaceae and increase in

Pseudomonadaceae and Yersiniaceae in
adenoma vs. CRC.

Reduced level of Fusobacterium and Gemella
and increased level of Pseudomonas and
Serratia in adenomas compared to CRC.

[110] Adenoma/colon biopsies 10 normal, 10 adenoma,
and 8 CRC

Higher Enterobacteriaceae, Pseudomonadaceae,
Neissenaceae, and Enterobacter in adenoma

tissues and reduced Streptococcus.

[111] Adenoma/colon biopsies 21 CRC patients, 11 adenoma
patients, and 11 healthy controls

F. nucleatum more frequently detected in
biopsies from CRC patients.

[112] Adenoma/colon biopsies

9 CRC patients with synchronous
adenomas, 16 colorectal adenoma

(CRA) patients, and
10 healthy subjects

F. nucleatum enriched in tumor, adenoma,
and normal adjacent tissues from CRC

patients compared to healthy controls, but
not in adenoma and normal adjacent tissues

from CRA patients.

5. Mucosa-Associated Bacteria Involved in the Serrated Pathway

Only a few studies have compared the microbiomes profiles of premalignant colorectal
lesions developed through the traditional adenoma–carcinoma sequence and the serrated
pathway. Since the genetic and epigenetic changes underlying CRC carcinogenesis are
different for these two pathways, it is possible that distinct microbes play a specific role for
each pathway. Burns and coll. found that tumors with APC mutations, a feature typical
of the adenoma–carcinoma sequence but not of the serrated pathway, correlate with an
increase in abundance of the genus Finegoldia, which is an opportunistic pathogen highly
prevalent in skin wounds [113,114].

A paper reported no significant difference in MAM among healthy controls, patients
with conventional adenoma, SSA, and CRC, but two important limits of this work were
the small number of subjects (24 in total) and the fact that the MAM was examined from
biopsy samples of normal rectal mucosa, not of tumors [115].

Park et al. analyzed by 16S rDNA sequencing the MAM from TA, SSA/P, and CRC
biopsy samples and noticed that Fusobacteria was identified in 37.5% of TAs, 50% of SSA/Ps,
and 100% of CRCs. The relative abundance of Fusobacteria was similar between the TA
and SSA/P groups but was significantly higher in the CRC group [116]. Noteworthy,
Fusobacteria was also identified in biopsies of normal tissue adjacent to the neoplastic
lesions. These results suggest that Fusobacteria may contribute to tumorigenesis via both the
adenoma–carcinoma sequence and the serrated pathway [116] and are in good agreement
with previous work by Ito et al., who evaluated by qPCR the level of F. nucleatum in
138 HPs, 129 SSAs, 102 TSAs, 131 non-serrated adenomas, and 544 CRCs. F. nucleatum
was detected in 56% of CRCs and in 24–35% of premalignant colorectal lesions with
no significant association with histopathology. Moreover, F. nucleatum positivity was
significantly associated with CIMP-high status and larger size of premalignant lesions.
The presence of F. nucleatum in SSAs gradually increased from the sigmoid colon to the
ascending colon and cecum [117].

Avelar-Barragan et al. compared the MAM of polyp-free controls vs. patients with TAs
vs. patients with serrated polyps (HPP, TSA, or SSP) by metagenome analysis of mucosal
aspirates, i.e., the colonoscopy fluid washed on the mucosa near the polyp. No significant
difference in Shannon diversity or richness was observed among groups [85]. Patients with
TA showed an enrichment of Lachnospiraceae, such as Ruminococcus gnavus, which has been
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previously associated with inflammatory bowel disease [118,119], and Clostridium scindens,
which can transform primary BAs into secondary BAs [120]. The bacterium Eggerthella
lenta was significantly less abundant in serrated polyps compared to aspirates from healthy
controls. This bacterium metabolizes inert plant lignans into bioactive enterolignans with
antiproliferative and anti-inflammatory effects [121,122]. This finding is coherent with
the hypothesis that a low-fiber diet can favor aberrant epigenetic alterations in colonic
epithelial cells and induce development of serrated polyps [85].

6. Discussion: Future Directions and Perspectives

Dysbiosis can contribute to carcinogenesis by promoting cell proliferation, inflamma-
tion, and DNA damage [123].

Many studies investigating the composition of microbial communities in CRC have
relied on fecal samples, mainly because they can be exploited for cancer screening and
early detection. Although convenient and noninvasive, fecal samples reflect the luminal
microbial community and do not fully capture the microbiota adherent to the mucosal
layer, which is more closely associated with cancer development. The microbiota directly
in contact with the tumor surface can be analyzed from biopsies or mucosal swab/brushes,
but these methods require invasive procedures. Moreover, biopsies and mucosal brushes
contain a large proportion of human-derived reads when analyzed by shotgun sequencing,
and this can affect data quality [85,87].

There is an urgent need for prospective longitudinal studies that address the role of
dysbiosis in the etiopathogenesis of CRC by a thorough characterization of the risk factors
(e.g., unhealthy diet, sedentary life, and comorbidities) [124] in large cohorts of subjects.
A clear understanding of the temporal relationship between microbiota alterations and
carcinogenesis might allow the identification of a gut bacterial signature that defines indi-
viduals with high risk of CRC. This would be of crucial importance for the implementation
of preventative and therapeutic measures based on microbiota manipulation.

Treatments with immune checkpoint inhibitors (ICIs) have been proven effective for
CRC patients with DNA mismatch repair deficiency or high microsatellite instability (MSI-
H) but mostly unsuccessful for patients without these characteristics [125–127]. It has been
demonstrated that microbiota modulation can improve the efficacy of immunotherapy
for patients with CRC and other tumors [128,129]. Administration of specific bacteria,
such as Bifidobacterium, Akkermansia muciniphila, and Faecalibacterium prausnitzii, positively
influences immune responses to ICIs in animal models [128,130,131].

Possible modulation strategies in CRC patients include dietary interventions, probi-
otics, prebiotics, and fecal microbiota transplantation (FMT). FMT has emerged in recent
years as a promising option [132], especially after the outstanding results obtained to treat
Clostridioides difficile infections (CDI). Clinical studies demonstrated that FMT is highly
effective in treating recurrent CDI, with success rates around 80–90% for patients that do
not respond to standard antibiotic therapies [133–135]. More efforts are needed to clarify
the potential benefits of FMT in the prevention and treatment of colorectal tumors [136].

7. Conclusions

An accurate representation of the microbial communities at the tumor site, with a focus
on early-stage tumors, is imperative to determine how the complex interactions between
microbes and host cells contribute to the etiopathogenesis of CRC. Particular attention
should be directed to the study of specific bacterial species that can act as oncomicrobes
and whose effects can be elucidated only by functional experiments.
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