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In type-and-coeffect systems, contexts are enriched by coeffects modeling how they are actually used, typically

through annotations on single variables. Coeffects are computed bottom-up, combining, for each term, the

coeffects of its subterms, through a fixed set of algebraic operators. We show that this principled approach

can be adopted to track sharing in the imperative paradigm, that is, links among variables possibly introduced

by the execution. This provides a significant example of non-structural coeffects, which cannot be computed

by-variable, since the way a given variable is used can affect the coeffects of other variables. To illustrate the

effectiveness of the approach, we enhance the type system tracking sharing to model a sophisticated set of

features related to uniqueness and immutability. Thanks to the coeffect-based approach, we can express such

features in a simple way and prove related properties with standard techniques.
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1 INTRODUCTION
Recently, coeffect systems have received considerable interest as a mechanism to reason about

resource usage [Atkey 2018; Brunel et al. 2014; Choudhury et al. 2021; Dal Lago and Gavazzo 2022;

Gaboardi et al. 2016; Ghica and Smith 2014; Orchard et al. 2019; Petricek et al. 2014]. They are,

in a sense, the dual of effect systems: given a generic type judgment Γ ⊢ e : T , effects can be

seen as an enrichment of the type T (modeling side effects of the execution), whereas coeffects

can be seen as an enrichment of the context Γ (modeling how execution needs to use external

resources). In the typical case when Γ is a map from variables to types, the type judgment takes

shape x1 :c1 T1, . . . , x𝑛 :c𝑛 T𝑛 ⊢ e : T , where the scalar coeffect1 c𝑖 models how variable x𝑖 is used in

e. Such annotations on variables are an output of the typing process rather than an input: they are

computed bottom-up, as a linear combination, for each term, of those of its subterms.

1
Also called grade, using the terminology graded type system rather than coeffect system.
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The fact that a program introduces sharing between two variables, say x and y, for instance
through a field assignment x.f = y in an object-oriented language, clearly has a coeffect nature

(indeed, it is a particular way to use the resources x and y). However, to the best of our knowledge

no attempt has been made to use coeffects to track this information statically.

A likely reason is that this kind of coeffect does not fit in the framework of structural coeffect
systems, which predominate in the literature, and where the coeffect of each single variable is

computed independently. Clearly, this is not the case for sharing, since a program introducing

sharing between x and y, and between y and z, introduces sharing between x and z as well.
In this paper, we show that sharing can be naturally modeled by coeffects following a more

general schema distilling their fundamental ingredients; namely, a semiring for scalar coeffects, and

a module structure for coeffect contexts, providing sum and scalar multiplication. Whereas scalars

are regularly assumed in the literature to form (some variant of) a semiring, the fact that coeffect

contexts form a module has only been noted, to the best of our knowledge, by McBride [2016] and

subsequently by Wood and Atkey [2022]. In these papers, however, only structural coeffects are

considered, that is, modules where sum and scalar multiplication are defined pointwise. Sharing

coeffects provide a significant non-structural instance of the framework, motivating its generality.

To define the sharing coeffect system, we take as a reference language an imperative variant of

Featherweight Java [Igarashi et al. 1999], and we extend the standard type system of the language

by adding coeffects which track sharing introduced by the execution of a program. Following

the guiding principle of coeffect systems, they are computed bottom up, starting from the rule

for variables and constructing more complex coeffects by sums and scalar multiplications, where

coefficients are determined by each language construct. Hence, the typing rules can be easily turned

into an algorithm. In the resulting type-and-coeffect system, we are able to detect, in a simple and

static way, some relevant notions in the literature, notably that an expression is a capsule2, that is,
evaluates to the unique entry point for a portion of memory.

To illustrate the effectiveness of this approach, we enhance the type system tracking sharing to

model a sophisticated set of features related to uniqueness and immutability. Notably, we integrate

and formalize the language designs proposed in [Giannini et al. 2019a,b], which have two common

key ideas. The first is to usemodifiers (read, caps, and imm for read-only, uniqueness, and immutabil-

ity, respectively), allowing the programmer to specify the corresponding constraints/properties

in variable/parameter declarations and method return types. The second is that uniqueness and

immutability (caps and imm tags) are not imposed, but detected by the type system, supporting

ownership transfer rather than ownership invariants (see Sect. 7).
Because it is built on top of the sharing coeffects, the type-and-coeffect system we design to

formalize the above features significantly improves the previous work [Giannini et al. 2019a,b]
3
.

Notably, features from both papers are integrated; inference of caps and imm types is straightforward
from the coeffects, through a simple promotion rule; the design of the type system is guided, and

rules can be easily turned into an algorithm. Finally, the coeffect system uniformly computes both

sharing introduced by a program existing in current memory, allowing us to express and prove

relevant properties in a clean way and with standard techniques.

In summary, the contributions of the paper are the following:

• A schema distilling the ingredients of coeffect systems, mentioned by McBride [2016] and

Wood and Atkey [2022], but never used in its generality, that is, beyond structural instances.

2
We adopt the terminology of Giannini et al. [2019a,b]; in the literature there are many variants of this notion with different

names [Almeida 1997; Clarke and Wrigstad 2003; Dietl et al. 2007; Gordon et al. 2012; Hogg 1991; Servetto et al. 2013].

3
A more detailed comparison is provided in Sect. 8.
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• The first, to the best of our knowledge, formalization of sharing by a coeffect system. We

prove subject reduction, stating that not only is type preserved, but also sharing.

• On top of such a coeffect system, an enhanced type system supporting sophisticated features

related to uniqueness and immutability. We prove subject reduction, stating that type, sharing,

and modifiers are preserved, so that we can statically detect uniqueness and immutability.

We stress that the aim of the paper is not to propose a novel design of memory-management

features, but to provide, via a complex example, a proof-of concept that coeffects can be the basis

for modeling such features, which could be fruitfully employed in other cases. In particular, we

demonstrate the following:

• The paradigm of coeffects can be applied for useful purposes in an imperative/OO setting,

whereas so far in the literature it has only been used in functional calculi and languages.

• The views of ownership as a substructural capability and as a graph-theoretic property of

heaps can be unified.

• The expressive power obtained in [Giannini et al. 2019a,b] by complicated and ad-hoc type

systems is achieved in a much more elegant and principled way, using only simple algebraic

operations. Moreover, the coeffect approach allows one to reuse existing general results

regarding algorithms/implementations, like, e.g., those used in Granule [Orchard et al. 2019].

In Sect. 2 we present the reference language, and illustrate the properties we want to guarantee. In

Sect. 3 we illustrate the ingredients of coeffect systems through a classical example, and we define

their general algebraic structure. In Sect. 4 and Sect. 5 we describe the two type systems with the

related results. In Sect. 6 we discuss the expressive power, compared with closely related proposals.

In Sect. 7 we outline other related work, and in Sect. 8 we summarize our contribution and discuss

future work. Omitted proofs can be found in [Bianchini et al. 2022b].

2 SHARING AND MUTATION IN A JAVA-LIKE CALCULUS
We illustrate the properties we want to guarantee with the coeffect system on a simple reference

language, an imperative variant of Featherweight Java [Igarashi et al. 1999].

2.1 The Language
For the reader’s convenience, syntax, reduction rules, and the standard type system are reported

in Fig. 1. We write es as a metavariable for e1, . . . , e𝑛 , 𝑛 ≥ 0, and analogously for other sequences.

Expressions of primitive types, unspecified, include constants k. We assume a unique set of variables
x, y, z, . . . which occur both in source code (method parameters, including the special variable this,
and local variables in blocks) and as references in memory. Moreover, we assume sets of class
names C, field names f , and method names m. In addition to the standard constructs of imperative

object-oriented languages (field access, field assignment, and object creation), we have a block

expression, consisting of a local variable declaration, and the body in which this variable can be

used. We will sometimes abbreviate {T x = e; e′} by e; e′ when x does not occur free in e.
To be concise, the class table is abstractly modeled as follows, omitting its (standard) syntax:

• fields(C) gives, for each class C, the sequence T1 f1; . . . T𝑛 f𝑛; of its fields with their types;

• mbody(C,m) gives, for each method m of class C, its parameters and body

• mtype(C,m) gives, for each method m of class C, its parameter types and return type.

For simplicity, we do not consider subtyping (inheritance), which is an orthogonal feature.

Method bodies are expected to bewell-typedwith respect tomethod types. Formally,mbody(C,m)
and mtype(C,m) are either both defined or both undefined; in the first case mbody(C,m) =

(x1 . . . x𝑛, e), mtype(C,m) = T1 . . . T𝑛 → T , and
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this : C, x1 : T1 . . . , x𝑛 : T𝑛 ⊢ e : T
holds. Reduction is defined over configurations of shape e |`, where a memory ` is a map from

references to objects of shape [v1, . . . , v𝑛]C , and we assume free variables in e to be in dom(`). We

denote by `x .𝑖=v the memory obtained from ` by updating the 𝑖-th field of the object associated to

x by v, and by e[v/x] the usual capture-avoiding substitution.
Reduction and typing rules are straightforward. In rule (t-conf), a configuration is well-typed if

the expression is well-typed, and the memory is well-formed in the same context (recall that free

variables in the expression are bound in the domain of the memory). In rule (t-mem), a memory is

well-formed in a context assigning a type to all and only references in memory, provided that, for

each reference, the associated object has the same type.

2.2 Sharing and Mutation
In languages with state and mutations, keeping control of sharing is a key issue for correctness.

This is exacerbated by concurrency mechanisms, since side-effects in one thread can affect the

behaviour of another, hence unpredicted sharing can induce unplanned/unsafe communication.

Sharing means that some portion of the memory can be reached through more than one reference,

say through x and y, so that manipulating the memory through x can affect y as well.

Definition 2.1 (Sharing in memory). The sharing relation in memory `, denoted by ⊲⊳` , is the

smallest equivalence relation on dom(`) such that:

x ⊲⊳` y if ` (x) = [v1, . . . , v𝑛]C and y = v𝑖 for some 𝑖 ∈ 1..𝑛

Note that y = v𝑖 above means that y and v𝑖 are the same reference, that is, it corresponds to what

is sometimes called pointer equality.

It is important for a programmer to be able to rely on capsule and immutability properties.

Informally, an expression has the capsule property if its result will be the unique entry point for a
portion of store. For instance, we expect the result of a clonemethod to be a capsule, see Example 2.5

below. This allows programmers to identify state that can be safely used by a thread since no other

thread can access/modify it. A reference has the immutability property if its reachable object graph

will be never modified. As a consequence, an immutable reference can be safely shared by threads.

The following simple example illustrates the capsule property.

Example 2.2. Assume the following class table:

class B {int f;}

class C {B f1; B f2;}

and consider the expression e = {B z = new B(2); x.f1= y; new C(z, z)}. This expression has two

free variables (in other words, uses two external resources) x and y. We expect such free variables to

be bound to an outer declaration, if the expression occurs as a subterm of a program, or to represent

references in current memory. This expression is a capsule. Indeed, even though it has free variables

(uses external resources) x and y, such variables will not be connected to the final result. We say

that they are lent in e. In other words, lent references can be manipulated during the evaluation, but

cannot be permanently saved. So, we have the guarantee that the result of evaluating e, regardless
of the initial memory, will be a reference pointing to a fresh portion of memory. For instance,

evaluating e in ` = {x ↦→ [x1, x1]C, x1 ↦→ [0]B, y ↦→ [1]B}, the final result is a fresh reference w, in
the memory `′ = {x ↦→ [y, x1]C, x1 ↦→ [0]B, y ↦→ [1]B, z ↦→ [2]B, w ↦→ [z, z]C}.
Lent and capsule properties are formally defined below.

Definition 2.3 (Lent reference). For x ∈ fv(e), x is lent in e if, for all `, e |` →★ y |`′ implies x ⊲⊳`′ y
does not hold.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 156. Publication date: October 2022.
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e ::= x | k | e.f | e.f = e′ | new C(es) | e.m(es) | {T x = e; e′} | . . . expression

T ::= C | P type

v ::= x | k value

E ::= [ ] | E.f | E.f = e′ | x.f = E | new C(vs, E, es) evaluation context

| E.m(es) | x.m(vs, E, es) | {T x = E; e} | . . .

(ctx)

e |` → e′ |`′
E[e] |` → E[e′] |`′ (field-access)

x.f𝑖 |` → v𝑖 |`

` (x) = new C(v1, . . . , v𝑛)
fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(field-assign)

x.f𝑖= v |` → v |`x .𝑖=v
` (x) = [v1, . . . , v𝑛]C
fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(new)

new C(vs)|` → x |` [new C(vs)/x] x ∉ dom(`)

(invk)

x.m(v1, . . . , v𝑛)|` → e[x/this] [v1/x1] . . . [v𝑛/x𝑛] |`
` (x) = new C(vs)
mbody(C,m) = (x1 . . . x𝑛, e)

(block) {T x = v; e}|` → e[v/x] |`

(t-var)

Γ ⊢ x : T
Γ(x) = T (t-const)

Γ ⊢ k : Pk

(t-field-access)

Γ ⊢ e : C
Γ ⊢ e.f𝑖 : T𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-field-assign)

Γ ⊢ e : C Γ ⊢ e′ : T𝑖
Γ ⊢ e.f𝑖= e′ : T𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)

Γ ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ ⊢ newC (e1, . . . , e𝑛) : C
fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-invk)

Γ ⊢ e0 : C Γ ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ ⊢ e0.m(e1, . . . , e𝑛) : T
mtype(C,m) = T1 . . . T𝑛 → T

(t-block)

Γ ⊢ e : T Γ, x : T ⊢ e′ : T ′

Γ ⊢ {T x = e; e′} : T ′

(t-conf)

Γ ⊢ e : T Γ ⊢ `

Γ ⊢ e |` : T
(t-obj)

Γ ⊢ v𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ ⊢ [v1, . . . , v𝑛]C : C
fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-mem)

Γ ⊢ ` (x𝑖 ) : C𝑖 ∀𝑖 ∈ 1...𝑛

Γ ⊢ `

Γ = x1 : C1, . . . , x𝑛 : C𝑛

dom(Γ) = dom(`)

Fig. 1. Syntax, reduction rules, and standard type system of the Java-like calculus

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 156. Publication date: October 2022.
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An expression e is a capsule if all its free variables are lent in e.

Definition 2.4 (Capsule expression). An expression e is a capsule if, for all `, e |` →★ y |`′ implies

that, for all x ∈ fv(e), x ⊲⊳`′ y does not hold.

The capsule property can be easily detected in simple situations, such as using a primitive deep

clone operator, or a closed expression. However, the property also holds in many other cases, which

are not easily detected (statically) since they depend on the way variables are used. To see this, we

consider a more involved example, adapted from [Giannini et al. 2019b].

Example 2.5.

class B {int f; B clone() {new B(this.f)}

class A { B f;

A mix (A a) {this.f=a.f; a} // this , a and result linked

A clone () {new A(this.f.clone ())} // this and result not linked

}

A a1 = new A(new B(0));

A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone() // (1)

// a1.mix(a2).clone ().mix(a2) // (2)

}

The result of mix, as the name suggests, will be connected to both the receiver and the argument,

whereas the result of clone, as expected for such a method, will be a reference to a fresh portion of

memory which is not connected to the receiver.

Now let us consider the code after the class definition, where the programmerwants the guarantee

that mycaps will be initialized with a capsule, that is, an expression which evaluates to the entry

point of a fresh portion of memory. Fig. 2 shows a graphical representation of the store after the

=
A

f=

a1
=

B
f=0

mycaps

A
f=

a2
=

B
f=1

A
f=

B
f=1

=
A

f=

a1
=

B
f=0

mycaps

A
f=

a2
=

B
f=1

A
f=

B
f=1

(1) (2)

Fig. 2. Graphical representation of the store for Example 2.5

evaluation of such code. Side (1) shows the resulting store if we evaluate line (1) but not line (2),

while side (2) shows the resulting store if we evaluate line (2) but not line (1). The thick arrow

points to the result of the evaluation of the block and a2 is a local variable. In side (1) a1 is not in

sharing with mycaps, whereas in side (2) a1 is in sharing with a2which is in sharing with mycaps and

so a1 is in sharing with mycaps as well. Set e1 = {A a2 = new A(new B(1)); a1.mix(a2).clone()}

and e2 = {A a2 = new A(new B(1)); a1.mix(a2).clone().mix(a2)}. We can see that a1 is lent in e1,
since its evaluation produces the object pointed to by the thick arrow which is not in sharing with

a1, whereas a1 is not lent in e2. Hence, e1 is a capsule, since its free variable, a1, is not in sharing

with the result of its evaluation, whereas a2 is not.
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We consider now immutability. A reference x has the immutability property if the portion of

memory reachable from x will never change during execution, as formally stated below.

Definition 2.6. The reachability relation in memory `, denoted by ⊲` , is the reflexive and transitive

closure of the relation on dom(`) such that:

x ⊲` y if ` (x) = [v1, . . . , v𝑛]C and y = v𝑖 for some 𝑖 ∈ 1..𝑛

Definition 2.7 (Immutable reference). For x ∈ fv(e), x is immutable in e if e |` →★ e′ |`′ and x ⊲` y
implies ` (y) = `′ (y).

A typical way to prevent mutation, as we will show in Sect. 5, is by a type modifier read, so that

an expression with type tagged in this way cannot occur as the left-hand side of a field assignment.

However, to have the guarantee that a certain portion of memory is actually immutable, a type

system should be able to detect that it cannot be modified through any possibile reference. For

instance, consider a variant of Example 2.5 with the same classes A and B.

Example 2.8.

A a1 = new A(new B(0));

read A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone() // (1)

// a1.mix(a2).clone ().mix(a2) // (2)

}

// mycaps.f.f=3 // (3)

a1.f.f=3 // (4)

The reference mycaps is now declared as a read type, hence we cannot modify its reachable object

graph through mycaps. For instance, line (3) is ill-typed. However, if we replace line (1) with line (2),

since in this case mycaps and a1 share their f field, the same effect of line (3) can be obtained by

line (4). This example shows that the immutability property is, roughly, a conjunction of the read
restriction and the capsule property.

3 COEFFECT SYSTEMS
In Sect. 3.1 we illustrate the fundamental ingredients of coeffect systems through a classical example,

and in Sect. 3.2 we formally define their general algebraic structure.

3.1 An Example
In Fig. 3 we show the example which is generally used to illustrate how a coeffect system works

4
.

Namely, a simple coeffect system for the call-by-name _-calculus where we trace when a variable is

either not used, or used linearly (that is, exactly once), or used in an unrestricted way, as expressed

by assigning to the variable a scalar coeffect c.
A coeffect context, of shape 𝛾 = x1 : c1, . . . , x𝑛 : c𝑛 , where order is immaterial and x𝑖 ≠ x𝑗 for 𝑖 ≠ 𝑗 ,

represents a map from variables to scalar coeffects where only a finite number of variables have

non-zero coeffect. A (type-and-coeffect) context, of shape Γ = x1 :c1 T1, . . . , x𝑛 :c𝑛 T𝑛 , with analogous

conventions, represents the pair of the standard type context x1 : T1 . . . , x𝑛 : T𝑛 , and the coeffect

context x1 : c1, . . . , x𝑛 : c𝑛 . We write dom(Γ) for {x1, . . . , x𝑛}.
Scalar coeffects usually form a preordered semiring [Abel and Bernardy 2020; Atkey 2018; Brunel

et al. 2014; Choudhury et al. 2021; Gaboardi et al. 2016; Ghica and Smith 2014; McBride 2016;

4
More precisely, the structure of coeffects is that of most papers cited in the Introduction, and the calculus a variant/combi-

nation of examples in those papers.
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t ::= n | x | _x:T .t | t1 t2
c ::= 0 | 1 | 𝜔
T ::= int | T1

c−→ T2
𝛾 ::= x1 : c1, . . . , x𝑛 : c𝑛
Γ,Δ ::= x1 :c1 T1, . . . , x𝑛 :c𝑛 T𝑛

(AppAbs) (_x:T .t) t′ → t [t′/x] (App)

t1 → t′
1

t1 t2 → t′
1
t2

(t-const) ∅ ⊢ n : int
(t-var)

0 × Γ + x :1 T ⊢ x : T
(t-sub)

Γ ⊢ t : T
Γ′ ⊢ t : T Γ′ ⪯ Γ

(t-abs)

Γ, x :c T1 ⊢ t : T2
Γ ⊢ _x:T1.t : T1

c−→ T2
(t-app)

Γ1 ⊢ t1 : T2
c−→ T1 Γ2 ⊢ t2 : T2

Γ1 + ((c ⋎1 ) × Γ2) ⊢ t1 t2 : T1

Fig. 3. A simple structural coeffect system

Orchard et al. 2019; Wood and Atkey 2022], that is, they are equipped with a preorder ⪯ (with binary

join ⋎), a sum +, and a multiplication ×, satisfying some natural axioms, see Def. 3.1 in Sect. 3.2. In

the example, the (pretty intuitive) definition of such a structure is given below.

0 ⪯ 𝜔 , 1 ⪯ 𝜔

+ 0 1 𝜔

0 0 1 𝜔

1 1 𝜔 𝜔

𝜔 𝜔 𝜔 𝜔

× 0 1 𝜔

0 0 0 0

1 0 1 𝜔

𝜔 0 𝜔 𝜔

The typing rules use three operators on contexts: preorder ⪯, sum + and multiplication × of a

scalar coeffect with a context. In the example, these operators are defined by first taking, on coeffect

contexts, the pointwise application of the corresponding scalar operator, with the warning that the

inverse preorder on scalars is used, see rule (t-sub) below. Then, they are lifted to type-and-coeffect

contexts, resulting in the following definitions:

• Γ ⪯ Δ is the preorder defined by

(0 × Δ), Γ ⪯ Γ (x :c T , Γ) ⪯ (x :c′ T ,Δ) if c′ ⪯ c and Γ ⪯ Δ
• c × Γ is the context defined by

c × ∅ = ∅ c × (x :c′ T , Γ) = x :c×c′ T , (c × Γ)
• Γ + Δ is the context defined by

∅ + Γ = Γ (x :c T , Γ) + Δ = x :c T , (Γ + Δ) if x ∉ dom(Δ)
(x :c T , Γ) + (x :c′ T ,Δ) = x :c+c′ T , (Γ + Δ)

Note that when lifted to type-and-coeffect contexts the sum becomes partial, since we require a

common variable to have the same type.

In rule (t-const) no variable is used. In rule (t-var), the coeffect context is one of those representing

the map where the given variable is used exactly once, and no other is used. Indeed, 0×Γ is a context

where all variables have 0 coeffect. We include, to show the role of ⪯, a standard subsumption rule

(t-sub), allowing a well-typed expression to be typed in a more specific context, where coeffects

are overapproximated.
5
This rule becomes useful, e.g., in the presence of a conditional construct,

as its typing rule usually requires the two branches to be typed in the same context (that is, to

use resources in the same way) and subsumption relaxes this condition. In rule (t-abs), the type

of a lambda expression is decorated with the coeffect assigned to the binder when typechecking

the body. In rule (t-app), the coeffects of an application are obtained by summing the coeffects of

the first subterm, which is expected to have a functional type decorated with a coeffect, and the

5
Note that this rule partly overlaps with (t-var).
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coeffects of the argument multiplied by the decoration of the functional type. The part emphasized

in gray, which shows the use of the join operator, needs to be added in a call-by-value strategy. For

instance, without this addition, the judgment y :0 int ⊢ (_x:int.n) y : int holds, meaning that y is

not actually used, whereas it is used in call-by-value.

Extrapolating from the example, we can distill the following ingredients of a coeffect system:

• The typing rules use three operators on contexts (preorder, sum, and scalar multiplication)

defined on top of the corresponding scalar operators.

• Coeffects are computed bottom-up, starting from the rule for variable.

• As exemplified in (t-app), the coeffects of a compound term are computed by a linear combi-
nation (through sum and scalar multiplication) of those of the subterms. The coefficients are

determined by the specific language construct considered in the typing rule.

• The preorder is used for overapproximation.

Note also that, by just changing the semiring of scalars, we obtain a different coeffect system. For

instance, an easy variant is to consider the natural numbers (with the usual preorder, sum, and

multiplication) as scalar coeffects, tracking exactly how many times a variable is used. The definition
of contexts and their operations, and the typing rules, can be kept exactly the same.

In the following section, we will provide a formal account of the ingredients described above.

3.2 The Algebra of Coeffects
As illustrated in the previous section, the first ingredient is a (preordered) semiring, whose elements

abstract a “measure” of resource usage.

Definition 3.1 (Semiring). A (preordered) semiring is a tuple R = ⟨𝑅, ⪯, +,×, 0, 1⟩ where
• ⟨𝑅, ⪯⟩ is a preordered set

• ⟨𝑅, +, 0⟩ is an ordered commutative monoid

• ⟨𝑅,×, 1⟩ is an ordered monoid

such that the following equalities hold for all 𝑟, 𝑠, 𝑡 ∈ 𝑅

(𝑟 + 𝑠) × 𝑡 = (𝑟 × 𝑡) + (𝑠 × 𝑡) 𝑟 × (𝑠 + 𝑡) = (𝑟 × 𝑠) + (𝑟 × 𝑡)
𝑟 × 0 = 0 0 × 𝑟 = 0

Spelling out the definition, this means that both + and × are associative and monotone with

respect to ⪯, and + is also commutative. In the following we will adopt the usual precedence rules

for addition and multiplication.

Let us assume a semiring R = ⟨𝑅, ⪯, +,×, 0, 1⟩ throughout this section. Again, as exemplified

in the previous section, coeffect contexts have a preorder, a sum with a neutral element and a

multiplication by elements of the semiring. Formally, they form a module over the semiring, as
already observed by McBride [2016] and Wood and Atkey [2022].

Definition 3.2 (R-module). A (preordered) R-module M is a tuple ⟨𝑀, ⪯, +, 0,×⟩ where
• ⟨𝑀, ⪯⟩ is a preordered set

• ⟨𝑀, +, 0⟩ is a commutative monoid

• × : 𝑅×𝑀 → 𝑀 is a function, called scalar multiplication, which is monotone in both arguments

and satisfies the following equalities:

(𝑟 + 𝑠) × 𝑢 = (𝑟 × 𝑢) + (𝑠 × 𝑢) 𝑟 × (𝑢 + 𝑣) = (𝑟 × 𝑢) + (𝑟 × 𝑣) (𝑟 × 𝑠) × 𝑢 = 𝑟 × (𝑠 × 𝑢)
0 × 𝑢 = 0 𝑟 × 0 = 0 1 × 𝑢 = 𝑢
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Given R-modulesM andN , a (lax) homomorphism 𝑓 : M → N is a monotone function 𝑓 : 𝑀 → 𝑁

such that the following hold for all 𝑢, 𝑣 ∈ 𝑀 and 𝑟 ∈ 𝑅:

𝑓 (𝑢) + 𝑓 (𝑣) ⪯ 𝑓 (𝑢 + 𝑣) 𝑓 (𝑟 × 𝑢) = 𝑟 × 𝑓 (𝑢)
From the second equality it follows that 0 = 𝑓 (0) as 0 = 0 × 𝑓 (0) = 𝑓 (0 × 0) = 𝑓 (0). It is also

easy to see that R-modules and their homomorphisms form a category, denoted by R-Mod. Note
that Wood and Atkey [2022] use a different notion of homomorphism built on relations. Here we

prefered to stick to a more standard functional notion of homomorphism. The comparison between

these two notions is an interesting topic for future work.

We show that the coeffects of the example in the previous section, and in general any structural

coeffects, form an R-module.

Let𝑋 be a set and𝛼 : 𝑋 → 𝑅 be a function. The support of𝛼 is the set supp(𝛼) = {𝑥 ∈ 𝑋 | 𝛼 (𝑥) ≠ 0}.
Denote by 𝑅𝑋 the set of functions 𝛼 : 𝑋 → 𝑅 with finite support, then we can define the R-module

R𝑋 = ⟨𝑅𝑋 , ⪯̂, +̂, 0̂, ×̂⟩ where ⪯̂ and +̂ are the pointwise extension of ⪯ and + to 𝑅𝑋 , 0̂ is the constant

function equal to 0 and 𝑟 ×̂𝛼 = 𝑥 ↦→ 𝑟 × 𝛼 (𝑥), for all 𝑟 ∈ 𝑅 and 𝛼 ∈ 𝑅𝑋 . Note that 0̂, +̂ and ×̂ are

well-defined because supp(0̂) = ∅, supp(𝛼 +̂𝛽) ⊆ supp(𝛼) ∪ supp(𝛽) and supp(𝑟 ×̂𝛼) ⊆ supp(𝛼).
When 𝑋 is the set of variables, R𝑋

(with the inverse preorder) is precisely the module of coeffect

contexts in the structural case: they assign to each variable an element of the semiring and the

requirement of finite support ensures that only finitely many variables have non-zero coeffect.

Finally, the coeffect systems considered in this paper additionally assume that the preordered

semiring, hence the associated module, has binary joins. Since this assumption is completely

orthogonal to the development in this section, we have omitted it. However, all definitions and

results also work in presence of binary joins, hence they can be added without issues.

4 COEFFECTS FOR SHARING
Introducing sharing, e.g. by a field assignment x.f = y, can be clearly seen as adding an arc between

x and y in an undirected graph where nodes are variables. However, such a graphical representation

would be a global one, whereas the representation we are looking for must be per variable, and,
moreover, must support sum and scalar multiplication operators. To achieve this, we introduce

auxiliary entities called links, and attach to each variable a set of them, so that an arc between x
and y is represented by the fact that they have a common link.

6
Moreover, there is a special link

res which denotes a connection with the final result of the expression.

For instance, considering again the classes of Example 2.2:

class B {int f;}

class C {B f1; B f2;}

and the program x.f1= y; new C(z1, z2), the following typing judgment will be derivable:

(∗) x :{ℓ } C, y :{ℓ } B, z1 :{res} B, z2 :{res} B ⊢ x.f1= y; new C(z1, z2) : C with ℓ ≠ res

meaning that the program’s execution introduces sharing between x and y, as expressed by their

common link ℓ , and between z1, z2, and the final result, as expressed by their common link res.
The derivation for this judgment is shown later (Fig. 5).

Formally, we assume a countable set Lnk, ranged over by ℓ , with a distinguished element res.
In the coeffect system for sharing, scalar coeffects X , Y , and Z will be finite sets of links. Let L
be the finite powerset of Lnk, that is, the set of scalar coeffects, and let CCtxL be the set of the
corresponding coeffect contexts𝛾 , that is (representations of) maps in LV , with V the set of variables.

Given 𝛾 = x1 : X1, . . . , x𝑛 : X𝑛 , the (transitive) closure of 𝛾 , denoted 𝛾★, is x1 : X★
1
, . . . , x𝑛 : X★

𝑛 where

X★
1
, . . . ,X★

𝑛 are the smallest sets such that:

6
This roughly corresponds to the well-known representation of a (hyper)graph by a bipartite graph.
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ℓ ∈ X𝑖 implies ℓ ∈ X★
𝑖

ℓ, ℓ ′ ∈ X★
𝑖 , ℓ

′ ∈ X★
𝑗 implies ℓ ∈ X★

𝑗

For instance, if 𝛾 = x : {ℓ}, y : {ℓ, ℓ ′}, z : {ℓ ′}, then 𝛾★ = x : {ℓ, ℓ ′}, y : {ℓ, ℓ ′}, z : {ℓ, ℓ ′}. That is,
since x and y are connected by ℓ , and y and z are connected by ℓ ′, then x and z are connected as

well. Note that, if 𝛾 is closed (𝛾★ = 𝛾 ), then two variables have either the same, or disjoint coeffects.

To sum two closed coeffect contexts, obtaining in turn a closed one, we need to apply the

transitive closure after pointwise union. For instance, the above coeffect context 𝛾 could have been

obtained as pointwise union of x : {ℓ}, y : {ℓ} and y : {ℓ ′}, z : {ℓ ′}.
Multiplication of a closed coeffect context with a scalar is defined in terms of an operator ⊳ on

sharing coeffects, which replaces the res link (if any) in the second argument with the first:

X ⊳ Y =


∅ if X = ∅
Y if X ≠ ∅ and res ∉ Y
(Y \ {res}) ∪ X if X ≠ ∅ and res ∈ Y

Similarly to sum, to multiply a coeffect context with a scalar X , we need to apply the transitive

closure after pointwise application of the operation ⊳. For instance, {ℓ ′′} × (x : {ℓ, res}, y : {ℓ ′}) =
x : {ℓ, ℓ ′′}, y : {ℓ ′}. To see that transitive closure can be necessary, consider, for instance,

{ℓ ′′} × (x : {ℓ, res}, y : {ℓ ′′}) = x : {ℓ, ℓ ′′}, y : {ℓ, ℓ ′′}.
When an expression e, typechecked with context Γ, replaces a variable with coeffect X in an

expression e′, the product X × Γ computes the sharing introduced by the resulting expression on

the variables in Γ. For instance, set e = x.f1= y; new C(z1, z2) of (∗) and assume that e replaces z
in z.f1= w, for which the judgment z :{res} C, w :{res} B ⊢ z.f1= w : B is derivable. We expect that z1
and z2, being connected to the result of e, are connected to whatever z is connected to (w and the

result of z.f1= w), whereas the sharing of x and y would not be changed. In our example, we have

{res} ⊳ {ℓ} = {ℓ} and {res} ⊳ {res} = {res}. Altogether we have the following formal definition:

Definition 4.1. The sharing coeffect system is defined by:

• the semiring L = (L, ⊆,∪, ⊳, ∅, {res})
• the L-module ⟨CCtxL★, ⊆̂, +, ∅,×⟩ where:
– CCtxL★ are the fixpoints of ★, that is, the closed coeffect contexts

– ⊆̂ is the pointwise extension of ⊆ to CCtxL★
– Γ + Γ′ = (Γ ∪̂ Γ′)★, where ∪̂ is the pointwise extension of ∪ to CCtxL★
– X × Γ = (X ⊳̂ Γ)★, where ⊳̂ is the pointwise extension of ⊳ to CCtxL★.

Operations on closed coeffect contexts can be lifted to type-and-coeffect contexts, exactly as we

did in the introductory example in Sect. 3.1.

It is easy to check that L = (L, ⊆,∪, ⊳, ∅, {res}) is actually a semiring with ∅ neutral element of

∪ and {res} neutral element of ⊳. The fact that ⟨CCtxL★, ⊆̂, +, ∅,×⟩ is actually an L-module can be

proved as follows: first of all, LV = ⟨CCtxL, ⊆̂, ∪̂, ∅, ⊳̂⟩ is an L-module, notably, the structural one

(all operations are pointwise); it is easy to see that _
★
is an idempotent homomorphism on LV

;

then, the thesis follows from a general result proved in [Bianchini et al. 2022b], stating that an

idempotent homomorphism on a module induces a module on the set of its fixpoints.

In a judgment Γ ⊢ e : T , the coeffects in Γ describe an equivalence relation on dom(Γ) ∪ {res}
where each coeffect corresponds to an equivalence class. Two variables, say x and y, have the same

coeffect if the evaluation of e possibly introduces sharing between x and y. Moreover, res in the

coeffect of x models possible sharing with the final result of e. Intuitively, sharing only happens

among variables of reference types (classes), since a variable x of a primitive type P denotes an
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Γ,Δ ::= x1 :X1
T1, . . . , x𝑛 :X𝑛

T𝑛 context

X ::= {ℓ1, . . . , ℓ𝑛} coeffect (set of links)

(t-var) ∅ × Γ + x :{res} T ⊢ x : T
(t-const) ∅ × Γ ⊢ k : Pk

(t-field-access)

Γ ⊢ e : C
Γ ⊢ e.f𝑖 : T𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-field-assign)

Γ ⊢ e : C Δ ⊢ e′ : T𝑖
Γ + Δ ⊢ e.f𝑖= e′ : T𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)

Γ𝑖 ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ1 + . . . + Γ𝑛 ⊢ newC (e1, . . . , e𝑛) : C
fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-invk)

Γ0 ⊢ e0 : C Γ𝑖 ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛∑𝑛
𝑖=0 (X𝑖 ∪ {ℓ𝑖 }) × Γ𝑖 ) ⊢ e0 .m(e1, . . . , e𝑛) : T

mtype(C,m) ≡fr X0, T
X1

1
. . . TX𝑛

𝑛 → T
ℓ0, . . . , ℓ𝑛 fresh

(t-block)

Γ ⊢ e : T Γ′, x :X T ⊢ e′ : T ′

(X ∪ {ℓ}) × Γ + Γ′ ⊢ {T x = e; e′} : T ′ ℓ fresh (t-prim)

Γ ⊢ e : P
{ℓ} × Γ ⊢ e : P ℓ fresh

(t-conf)

Δ ⊢ e : T Γ ⊢ `

Δ + Γ ⊢ e |` : T
dom(Δ) ⊆ dom(Γ)

(t-obj)

Γ𝑖 ⊢ v𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ1 + · · · + Γ𝑛 ⊢ [v1, . . . , v𝑛]C : C
fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-mem)

Γ𝑖 ⊢ ` (x𝑖 ) : C𝑖 ∀𝑖 ∈ 1...𝑛

Γ̀ + Γ ⊢ `

Γ̀ = x1 :{ℓ1 } C1, . . . , x𝑛 :{ℓ𝑛 } C𝑛
dom(Γ̀ ) = dom(`)
Γ = ({ℓ1} × Γ1) + . . . + ({ℓ𝑛} × Γ𝑛)
ℓ1, . . . , ℓ𝑛 fresh

Fig. 4. Coeffect system for sharing

immutable value rather than a reference in memory. To have a uniform treatment, a judgment

x :{ℓ } P ⊢ x : P with ℓ fresh is derivable (by rules (t-var) and (t-prim), as detailed below
7
).

The typing rules are given in Fig. 4. In the rule for variable, the variable is obviously linked with

the result (they coincide), hence its coeffect is {res}. In rule (t-const), no variable is used.

In rule (t-field-access), the coeffects are those of the receiver expression. In rule (t-field-assign),

the coffects of the two arguments are summed. In particular, the result of the receiver expres-

sion, of the right-side expression, and the final result, will be in sharing. For instance, we derive

x :{res} C, y :{res} B ⊢ x.f1= y : B. In rule (t-new), analogously, the coeffects of the arguments of the

constructor are summed. In particular, the results of the argument expressions and the final result

will be in sharing. For instance, we derive z1 :{res} B, z2 :{res} B ⊢ new C(z1, z2) : C.
In rule (t-invk), the coeffects of the arguments are summed, after multiplying each of them with

the coeffect of the corresponding parameter, where, to avoid clashes, we assume that links different

from res are freshly renamed, as indicated by the notation ≡fr
. Moreover, a fresh link ℓ𝑖 is added

8
,

7
Alternatively, variables of primitive types could be in a separate context, with no sharing coeffects.

8
Analogously to the rule (t-app) in Fig. 3 in the call-by-value case.
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since otherwise, if the parameter is not used in the body (hence has empty coeffect), the links of

the argument would be lost in the final context, see the example for rule (t-block) below.

The auxiliary function mtype now returns an enriched method type, where the parameter types

are decorated with their coeffects, including the implicit parameter this. The condition that method

bodies should be well-typed with respect to method types is extended by requiring that coeffects

computed by typechecking the method body express no more sharing than those in the method

type, formally: if mbody(C,m) and mtype(C,m) are defined, then mbody(C,m) = (x1 . . . x𝑛, e),
mtype(C,m) = X0, T

X1

1
. . . TX𝑛

𝑛 → T , and
this :X ′

0

C, x1 :X ′
1

T1, . . . , x𝑛 :X ′
𝑛
T𝑛 ⊢ e : T

X ′
𝑖 = X ′

𝑗 ≠ ∅ implies X𝑖 = X𝑗 ≠ ∅
holds. As an example, consider the following method:

class B {int f;}

class C {B f1; B f2;

C m(B y, B z1 , B z2) {this.f1=y; new C(z1,z2)}

}

where mtype(C, m)={ℓ}, B{ℓ }, B{res}, B{res} → C, with ℓ≠res. The method body is well-typed, since

we derive this :{ℓ } C, y :{ℓ } B, z1 :{res} B, z2 :{res} B ⊢ x.f1= y; new C(z1, z2) : C, with ℓ≠res.
Consider now the method call x.m(z,y1,y2). We get the following derivation:

(t-invk)

(t-var)

x :{res} C ⊢ x : C
(t-var)

z :{res} B ⊢ z : B
(t-var)

y1 :{res} B ⊢ y1 : B
(t-var)

y2 :{res} B ⊢ y2 : B
x :X C, z :X B, y1 :Y B, y2 :Y B ⊢ x.m(z, y1, y2) : C

where X = {ℓ ′, ℓ0, ℓ1} and Y = {res, ℓ2, ℓ3}.
The context of the call is obtained as follows

{ℓ′, ℓ0} × (x :{res} C) + {ℓ′, ℓ1} × (z :{res} B) + {res, ℓ2} × (y1 :{res} B) + {res, ℓ3} × (y2 :{res} B)
= (x :{ℓ ′,ℓ0 } C) + (z :{ℓ ′,ℓ1 } B) + (y1 :{res,ℓ2 } B) + (y2 :{res,ℓ3 } B)
= x :X C, z :X B, y1 :Y B, y2 :Y B

where ℓ ′ is a fresh renaming of the (method) link ℓ , and ℓ𝑖 , 0 ≤ 𝑖 ≤ 3, are fresh links.

For a call x.m(z,z,y), instead, we get the following derivation:

(t-invk)

(t-var)

x :{res} C ⊢ x : C
(t-var)

z :{res} B ⊢ z : B
(t-var)

z :{res} B ⊢ z : B
(t-var)

y :{res} B ⊢ y : B

x :X C, z :X B, y :X B ⊢ x.m(z, z, y) : C

where X = {ℓ ′, ℓ0, ℓ1, ℓ2, ℓ3, res}. That is, x, y, z, and the result, are in sharing (note the role of the

transitive closure here).

In the examples that follow we will omit the fresh links unless necessary.

In rule (t-block), the coeffects of the expression in the declaration are multiplied by the join (that

is, the union) of those of the local variable in the body and the singleton of a fresh link, and then

summed with those of the body. The union with the fresh singleton is needed when the variable is

not used in the body (hence has empty coeffect), since otherwise its links, that is, the information

about its sharing in e, would be lost in the final context. For instance, consider the body of method

m above, which is an abbrevation for B unused = (this.f1=y); new (z1, z2). Without the join

with the fresh singleton, we could derive the judgment this :∅ C, y :∅ B, z1 :{res} B, z2 :{res} B ⊢
B unused = (this.f1=y); new (z1, z2) : C, where the information that after the execution of

the field assignment this and y are in sharing is lost.

Rule (t-prim) allows the coeffects of an expression of primitive type to be changed by removing

the links with the result, as formally modeled by the product of the context with a fresh singleton

coeffect. For instance, the following derivable judgment
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(t-block)

(t-new)

(t-const) ∅ ⊢ 2 : int
∅ ⊢ new B(2) : B

(t-block)

D1 D2

Γ ⊢ {B w = (x.f1= y); new C(z, z)} : C
x :{ℓ } C, y :{ℓ } B ⊢ {B z = new B(2); x.f1= y; new C(z, z)} : C

ℓ, ℓ′ fresh
x :{ℓ } C, y :{ℓ } B = ({res} + {ℓ′}) × ∅ + x :{ℓ } C, y :{ℓ } B
Γ = (∅ + {ℓ}) × (x :{res} C, y :{res} B) + z :{res} B = x :{ℓ } C, y :{ℓ } B, z :{res} B

D1 = (t-field-assign)

(t-var)

x :{res} C ⊢ x : C
(t-var)

y :{res} B ⊢ y : B

x :{res} C, y :{res} B ⊢ x.f1= y : B

D2 = (t-new)

(t-var)

w :∅ B, z :{res} B ⊢ z : B
(t-var)

w :∅ B, z :{res} B ⊢ z : B

w :∅ B, z :{res} B ⊢ new C(z, z) : C

Fig. 5. Example of derivation

z1 :{ℓ } B, z2 :{ℓ } B ⊢ new C(z1, z2).f1.f : int, with ℓ ≠ res
shows that there is no longer a link between the result and z1, z2.
In rule (t-conf), the coeffects of the expression and those of the memory are summed. In rule

(t-mem), a memory is well-formed in a context which is the sum of two parts. The former assigns a

type to all and only references in memory, as in the standard rule in Fig. 1, and a fresh singleton

coeffect. The latter sums the coeffects of the objects in memory, after multiplying each of them

with that of the corresponding reference. For instance, for x ↦→ [y]A, y ↦→ [0]B, z ↦→ [y]A, the
former context is x :{ℓx } A, y :{ℓy } B, z :{ℓz } A, the latter is the sum of the three contexts y :{ℓx } A,
∅, and y :{ℓz } A. Altogether, we get x :{ℓx,ℓy,ℓz } A, y :{ℓx,ℓy,ℓz } B, z :{ℓx,ℓy,ℓz } A, expressing that the three
references are connected. Note that no res link occurs in memory; indeed, there is no final result.

As an example of a more involved derivation, consider the judgment

x :{ℓ } C, y :{ℓ } B ⊢ {B z = new B(2); x.f1= y; new C(z, z)} : C where ℓ ≠ res.

Here x.f1= y; new C(z, z) is shorthand for {B w = (x.f1= y); new C(z, z)}. The derivation is in

Fig. 5, where the subderivations D1 and D2 are given below for space reasons.

The rules in Fig. 4 immediately lead to an algorithm which inductively computes the coeffects of

an expression. Indeed, all the rules except (t-prim) are syntax-directed, that is, the coeffects of the

expression in the consequence are computed as a linear combination of those of the subexpressions,

where the basis is the rule for variables. Rule (t-prim) is assumed to be always used in the algorithm,

just once, for expressions of primitive types.

We assume there are coeffect annotations in method parameters to handle (mutual) recursion;

for non-recursive methods, such coeffects can be computed (that is, in the coherency condition

above, the X𝑖s in mtype are exactly the X ′
𝑖 s). We leave to future work the investigation of a global

fixed-point inference to compute coeffects across mutually recursive methods.

Considering again Example 2.5:

class B {int f; B clone [{ℓ } ] () {new B(this.f)} // ℓ ≠ res

class A { B f;

A mix [{res} ] (A {res} a) {this.f=a.f; a} // this , a and result linked

A clone [{ℓ } ] () {new A(this.f.clone ()) } // ℓ ≠ res

}
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A a1 = new A(new B(0));

A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone()

// a1.mix(a2).clone ().mix(a2)

}

The parts emphasized in gray are the coeffects which can be computed for the parameters by

typechecking the body (the coeffect for this is in square brackets). In a real language, such

coeffects would be declared by some concrete syntax, as part of the type information available to

clients. From such coeffects, a client knows that the result of mix will be connected to both the

receiver and the argument, whereas the result of clone will be a reference to a fresh portion of

memory, not connected to the receiver.

By sharing coeffects, we can discriminate a2.mix(a1).clone() and a1.mix(a2).clone().mix(a2),

as desired. Indeed, for the first mix call, the judgment a1 :{res} A, a2 :{res} A ⊢ a1.mix(a2) : A
holds. Then, the expression a1.mix(a2).clone() returns a fresh result, hence a1 :{ℓ } A, a2 :{ℓ } A ⊢
a1.mix(a2).clone() : A holds, with ℓ ≠ res. After the final call to mix, since a1 and a2 have a link in

common, the operation + adds to the coeffect of a1 the links of a2, including res, hence we get:
a1 :{ℓ,res} A ⊢{A a2 = new A(new B(1));a1.mix(a2).clone().mix(a2)} : A

expressing that a1 is linked to the result.

We now state the properties of the coeffect system for sharing.

Given Γ = x1 :X1
T1, . . . , x𝑛 :X𝑛

T𝑛 , set coeff(Γ, x𝑖 ) = X𝑖 and links(Γ) =
⋃

𝑖∈1..𝑛 X𝑖 ∪ {res}. Finally,
the restriction of a context Γ = x1 :X1

T1, . . . , x𝑛 :X𝑛
T𝑛 to the set of variables V = {x1, . . . , x𝑚}, with

𝑚 ≤ 𝑛, and the set of links X , denoted Γ↾(V ,X ), is the context x1 :Y1 T1, . . . , x𝑚 :Y𝑚 T𝑚 where, for

each 𝑖 ∈ 1..𝑚, Y𝑖 = X𝑖 ∩ X . In the following, Γ↾Δ abbreviates Γ↾(dom(Δ), links(Δ)).
Recall that ⊲⊳` denotes the sharing relation in memory ` (Def. 2.1). The following result shows

that the typing of the memory precisely captures the sharing relation.

Lemma 4.2. If Γ ⊢ `, then x ⊲⊳` y if and only if coeff(Γ, x) = coeff(Γ, y).

Subject reduction states that not only type but also sharing is preserved. More precisely, a

reduction step may introduce new variables and new links, but the sharing between previous

variables must be preserved, as expressed by the following theorem.

Theorem 4.3 (Subject reduction). If Γ ⊢ e |` : T and (e, `) → (e′, `′), then Δ ⊢ e′ |`′ : T , for
some Δ such that (Γ + Δ)↾Γ = Γ.

Corollary 4.4. If Γ ⊢ e |` : T and (e, `) →★ (e′, `′), then Δ ⊢ e′ |`′ : T for some Δ such that
(Γ + Δ)↾Γ = Γ.

Indeed, coeffects in Γ + Δ model the combined sharing before and after the computation step,

hence the requirement (Γ + Δ)↾Γ = Γ ensures that, on variables in Γ, the sharing remains the same.

That is, the context Δ cannot connect variables that were disconnected in Γ.
Thanks to the fact that reduction preserves (initial) sharing, we can statically detect lent references

(Def. 2.3) and capsule expressions (Def. 2.4) just looking at coeffects, as stated below.

Theorem 4.5 (Lent reference). If Γ ⊢ e |` : C, x ∈ dom(Γ) with res ∉ coeff(Γ, x), and
e |` →★ y |`′, then x ⊲⊳`′ y does not hold.

Proof. By Theorem 4.3 we have Δ ⊢ y |`′ : C, for some Δ such that (Γ + Δ)↾Γ = Γ. By inversion,

we have y :{res} C ⊢ y : C with Δ = Δ′ + y :{res} C, hence res ∈ coeff(Δ, y). Assume x ⊲⊳`′ y. By
Lemma 4.2, we have coeff(Δ, x) = coeff(Δ, y), thus res ∈ coeff(Δ, x). Since (Γ + Δ)↾Γ = Γ, res ∈
coeff(Γ + Δ, x) and x ∈ dom(Γ), we also have res ∈ coeff(Γ, x), contradicting the hypothesis. □
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We write capsule(Γ) if, for each x ∈ dom(Γ), res ∉ coeff(Γ, x), that is, x is lent. The theorem

above immediately implies that an expression which is typable in such a context is a capsule.

Corollary 4.6 (Capsule expression). If Γ ⊢ e |` : C, with capsule(Γ), and e |` →★ y |`′, then,
for all x ∈ dom(Γ), x ⊲⊳`′ y does not hold.

Proof. Let x ∈ dom(Γ). The hypothesis capsule(Γ) means that each variable in Γ is lent that is,

res ∉ coeff(Γ, x). Then, by Theorem 4.5, x ⊲⊳`′ y does not hold. □

Note that, in particular, Corollary 4.6 ensures that no free variable of e can access the reachable

object graph of the final result y. Notice also that assuming capsule(Γ) is the same as assuming

capsule(Δ) where Γ = Δ + Δ′
and Δ is the context that types the expression e, because no res link

can occur in the context that types the memory.

5 CASE STUDY: TYPE MODIFIERS FOR UNIQUENESS AND IMMUTABILITY
The coeffect system in the previous section tracks sharing among variables possibly introduced by

reduction. In this section, we check the effectiveness of the approach to model specific language

features related to sharing and mutation, taking as challenging case study those proposed by

Giannini et al. [2019a,b], whose common key ideas are the following:

• types are decorated by modifiers mut (default, omitted in code), read, caps, and imm for

read-only, capsule, and immutable, respectively, allowing the programmer to specify the

corresponding contraints/properties for variables/parameters and method return types

• mut (resp. read) expressions can be transparently promoted to caps (resp. imm)
• caps expressions can be assigned to either mutable or immutable references.

For instance, consider the following version of Example 2.5 decorated with modifiers:

Example 5.1.

class B {int f; B clone [read{ℓ } ] () {new B(this.f)} // ℓ ≠ res

class A { B f;

A mix [{res} ] (A {res} a) {this.f=a.f; a} // this , a and the result linked

A clone [read{ℓ } ] () {new A(this.f.clone ()) } // ℓ ≠ res

}

A a1=new A(new B(0));

read A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone ()// (1)

// a1.mix(a2).clone ().mix(a2) // (2)

}

// mycaps.f.f= 3 // (3)

a1.f.f=3 // (4)

The modifier of this in mix needs to be mut, whereas in clone it is read to allow invocations on

arguments with any modifier. The result modifier in mix is that of the parameter a, chosen to be

mut since read would have made the result of the call less usable. The result modifier of clone could
be caps, but even if it is mut, the fact that there is no connection between the result and this is
expressed by the coeffect. The difference is that with modifier caps promotion takes place when

typechecking the body of the method, whereas with modifier mut it takes place at the call site.
As expected, an expression with type tagged read cannot occur as the left-hand side of a field

assignment. To have the guarantee that a portion of memory is immutable, a type system should
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caps

mut imm

read

𝜎 𝜎 ′

Arrows:

Subtype

Promotion

Fig. 6. Type modifiers and their relationships

be able to detect that it cannot be modified through any possibile reference. In the example, since

mycaps is declared read, line (3) is ill-typed. However, if we replace line (1) with line (2), since in

this case mycaps and a1 share their f field, the same effect of line (3) can be obtained by line (4). As

previously illustrated, the sharing coeffect system detects that only in the version with line (1) does

mycaps denote a capsule. Correspondingly, in the enhanced type system in this section, mycaps can

be correctly declared caps, hence imm as well, whereas this is not the case with line (2). By declaring

mycaps of an imm type, the programmer has the guarantee that the portion of memory denoted

by mycaps cannot be modified through another reference. That is, the immutability property is

detected as a conjunction of the read-only restriction and the capsule property.

Assume now that mycaps is declared caps rather than read. Then, line (3) is well-typed. However,
if mycaps could be assigned to both a mutable and an immutable reference, e.g:

Aimm imm = mycaps;

mycaps.f.f=3

the immutability guarantee for imm would be broken. For this reason, capsules can only be used

linearly in the following type system.

We formalize the features illustrated above by a type-and-coeffect system built on top of that of the

previous section, whose key advantage is that detection of caps and imm types is straightforward from
the coeffects, through a simple promotion9 rule, since they exactly express the desired properties.

Type-and-coeffect contexts are, as before, of shape x1 :X1
T1, . . . , x𝑛 :X𝑛

T𝑛 , where types are either
primitive types or of shape Cm

, with m modifier. We assume that fields can be declared either imm
ormut, whereas the modifiers caps and read are only used for local variables. Besides those, which

are written by the programmer in source code, modifiers include a numerable set of seals 𝜎 which

are only internally used by the type system, as will be explained later.

Operations on coeffect contexts are lifted to type-and-coeffect contexts as in the previous case.

However, there are some novelties:

• The preorder must take into account subtyping as well, defined by

T ≤ T ′
if either T = T ′

primitive type, or T = Cm
, T ′ = Cm

′
, and m ≤ m

′
induced by

𝜎 ≤ 𝜎 ′
, 𝜎 ≤ caps, caps ≤ mut, caps ≤ imm, mut ≤ read, imm ≤ read, see Fig. 6.

• In the sum of two contexts, denoted Γ ⊕ Δ, variables of a caps or 𝜎 type cannot occur in both;

that is, they are handled linearly.

Combination of modifiers, denoted m[m′], is the following operation:

9
This terminology is chosen to emphasize the analogy with promotion in linear logic.
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T ::= Cm | P | . . . type

m ::= mut | read | imm | caps | 𝜎 modifier

(t-sub)

Γ ⊢ e : T ′

Γ ⊢ e : T T ′ ≤ T (t-var) ∅ × Γ ⊕ x :{res} T ⊢ x : T
(t-const) ∅ ⊳ Γ ⊢ k : Pk

(t-field-access)

Γ ⊢ e : Cm

Γ ⊢ e.f𝑖 : T𝑖 [m]
fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-field-assign)

Γ ⊢ e : Cmut Δ ⊢ e′ : T𝑖
Γ ⊕ Δ ⊢ e.f𝑖= e′ : T𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)

Γ𝑖 ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ1 ⊕ . . . ⊕ Γ𝑛 ⊢ newC (e1, . . . , e𝑛) : Cmut fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-invk)

Γ0 ⊢ e0 : Cm Γ𝑖 ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛⊕𝑛
𝑖=0 (X𝑖 ∪ {ℓ𝑖 } × Γ𝑖 ) ⊢ e0 .m(e1, . . . , e𝑛) : T

mtype(C,m) ≡fr
m
X0 , TX1

1
. . . TX𝑛

𝑛 → T
ℓ0, . . . , ℓ𝑛 fresh

(t-block)

Γ ⊢ e : T Γ′, x :X T ⊢ e′ : T ′

(X ∪ {ℓ}) × Γ ⊕ Γ′ ⊢ {T x = e; e′} : T ′ ℓ fresh

(t-imm)

Γ ⊢ e : T
{ℓ} × Γ ⊢ e : T

ℓ fresh

T = P or T = Cimm (t-prom)

Γ ⊢ e : Cm

Γ [𝜎] ⊢ e : Cm[caps]
mut ≤ m

𝜎 fresh

(t-conf)

Δ ⊢ e : T Γ ⊢ `

Δ + Γ ⊢ e |` : T
dom(Δ) ⊆ dom(Γ)

( t-ref)

x :{res} Cm ⊩ x : Cm
m = mut or m = 𝜎 ( t-imm-ref)

x :{ℓ } Cimm ⊩ x : Cimm
ℓ fresh

(t-mem-const) ∅ ⊩ k : Pk
( t-obj)

Γ𝑖 ⊩ v𝑖 : T𝑖 [m] ∀𝑖 ∈ 1..𝑛

Γ1 + · · · + Γ𝑛 ⊩ [v1, . . . , v𝑛]C : Cm

fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-mem)

Γ𝑖 ⊩ ` (x𝑖 ) : Cm𝑖

𝑖
∀𝑖 ∈ 1...𝑛

Γ̀ + Γ ⊢ `

Γ̀ = x1 :{ℓ1 } C
m1

1
, . . . , x𝑛 :{ℓ𝑛 } C

m𝑛
𝑛

dom(Γ̀ ) = dom(`)
Γ = ({ℓ1} × Γ1) + . . . + ({ℓ𝑛} × Γ𝑛)
ℓ1, . . . , ℓ𝑛 fresh

Fig. 7. Adding modifiers and immutability

m[m′] = m ifm ≤ imm mut[m] = m read[m] =


imm if m = imm or m = caps
undefined if m = 𝜎

read if mut ≤ m

Combination of modifiers is used in (t-field-access) to propagate the modifier of the receiver,

and in (t-prom) to promote the type and seal mutable variables connected to the result, see below.

The typing rules are given in Fig. 7. We only comment on the novelties with respect to Sect. 4.

Rule (t-sub) uses the subtyping relation defined above. For instance, an expression of type Ccaps

has the types Cmut
and Cimm

as well. In rule (t-field-access), the notation T [m] denotes Cm
′ [m]

if

T = Cm
′
, and T otherwise, that is, if T is a primitive type. For instance, mutable fields referred to

through an imm reference are imm as well. In other words, modifiers are deep.
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In rule (t-field-assign), only amut expression can occur as the left-hand side of a field assignment.

In rule (t-new), a constructor invocation ismut, hencemut is the default modifier of expressions of

reference types. Note that the readmodifier can only be introduced by variable/method declaration.

The caps and imm modifiers, on the other hand, in addition to variable/method declaration, can be

introduced by the promotion rule (t-prom).

As in the previous type system, the auxiliary function mtype returns an enriched method type

where the parameter types are decorated with coeffects, including the implicit parameter this.
The condition that method bodies should be well-typed with respect to method types is exactly as

in the previous type system, with only the difference that types have modifiers.

Rule (t-imm) generalizes rule (t-prim) of the previous type system, allowing the links with the result

to be removed, to immutable types. For instance, assuming the following variant of Example 2.2

(recall that the default modifier mut can be omitted):

class B {int f;}

class C {imm B f1; B f2;}

the following derivable judgment

z1 :∅ Bimm, z2 :{ℓ } B ⊢ new C(z1, z2).f1 : Bimm, with ℓ ≠ res
shows that there is no longer a link between the result and z1.

The new rule ( t-prom) plays a key role, since, as already mentioned, it detects that an expression

is a capsule thanks to its coeffects, and promotes its type accordingly. The basic idea is that a mut
(resp. read) expression can be promoted to caps (resp. imm) provided that there are no free variables
connected to the result with modifier read or mut. However, to guarantee that type preservation

holds, the same promotion should be possible for runtime expressions, which may contain free

variables which actually aremut references generated during reduction. To this end, the rule allows
mut variables connected to the result10. Such variables become sealed as an effect of the promotion,

leading to the context Γ [𝜎], obtained from Γ by combining modifiers of variables connected to the

result with 𝜎 . Formally, if Γ = x1 :X1
T1, . . . , x𝑛 :X𝑛

T𝑛 ,

Γ [𝜎] = x1 :X1
T ′
1
, . . . , x𝑛 :X𝑛

T ′
𝑛 where T ′

𝑖 = T𝑖 [𝜎] if res ∈ X𝑖 , T ′
𝑖 = T𝑖 otherwise

The notation T [𝜎] is the same used in rule (t-field-access).

This highlights once again the analogy with the promotion rule for the (graded) bang modality of

linear logic [Breuvart and Pagani 2015], where, in order to introduce a modality on the right-hand

side of a sequent, one has to modify the left-hand side accordingly.
11
We detail in the following

how sealed variables are internally used by the type system to guarantee type preservation.

Rule (t-conf) is as in Fig. 4. Note that we use the sum of contexts + from the previous type system,

since the linear treatment of caps and 𝜎 variables is only required in source code.

Rule (t-mem) is also analogous to that in Fig. 4. However, typechecking objects is modeled by an

ad-hoc judgment ⊩, where references can only be mut, imm, or 𝜎 (read and caps are source-only
notions), and subsumption is not included. As a consequence, rule (t-obj) imposes that a reference

reachable from an imm reference or field should be tagged imm as well, and analogously for seals.

As in the previous type system, the rules in Fig. 7 lead to an algorithmwhich inductively computes

the coeffects of an expression. The only relevant novelty is rule ( t-prom), assumed to be applied only
when needed, that is, when we typecheck the initialization expression of a local variable declared

caps, or the argument of a method call where the corresponding parameter is declared caps. Rule
(t-imm) is applied, as (t-prim) before, only once, whenever an expression has either a primitive or

an immutable type. Subsumption rule (t-sub) only handles types, and can be replaced by a more

10
Whereas read variables are still not allowed, as expressed by the fact that read[𝜎 ] is undefined.

11
This is just an analogy, making it precise is an interesting direction for future work.
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verbose version of the rules with subtyping conditions where needed. In the other cases, rules are

syntax-directed, that is, the coeffects of the expression in the consequence are computed as a linear

combination of those of the subexpressions, where the basis is the rule for variables.

We illustrate now the use of seals to preserve types during reduction. For instance, consider

again Example 2.2:

class B {int f;}

class C {B f1; B f2;}

e0 = {B z = new B(2); x.f1= y; new C(z, z)}
`0 = {x ↦→ [x1, x1]C, x1 ↦→ [0]B, y ↦→ [1]B}

Expression e0 is a capsule since its free variables (external resources) x and y will not be connected

to the final result. Formally, set Δ = x :{ℓ } C, y :{ℓ } B, with ℓ ≠ res, we can derive the judgment

Δ ⊢ e0 : Cmut
, and then apply the promotion rule ( t-prom), as shown below.

(t-conf)

( t-prom)

Δ ⊢ e0 : Cmut

Δ ⊢ e0 : Ccaps
Γ ⊢ `0

Δ + Γ ⊢ e0 |`0 : Ccaps
Γ = x :{ℓx } C, x1 :{ℓx } C, y :{ℓy } B

where promotion does not affect the context Δ as there are no mutable variables connected to res.
The first steps of the reduction of e0 |`0 are as follows:

e0 |`0→ e1 |`1 = {B z = w; x.f1= y; new C(z, z)}|` ∪ {w ↦→ [2]B}
→ e2 |`1 = x.f1= y; new C(w, w)|` ∪ {w ↦→ [2]B}

Whereas sharing preservation, in the sense of Theorem 4.3, clearly still holds, to preserve the caps
type of the initial expression the ( t-prom) promotion rule should be applicable to e1 and e2 as well.
However, in the next steps w is a free variable connected to the result; for instance for e1, we derive:

Δ, w :{res} B ⊢ e1 : Cmut

Intuitively, e1 is still a capsule, since w is a fresh reference denoting a closed object in memory.

Formally, the promotion rule can still be applied, but variable w becomes sealed:

(t-conf)

( t-prom)

Δ, w :{res} B ⊢ e1 : Cmut

Δ, w :{res} B𝜎 ⊢ e1 : Ccaps
Γ, w :{ℓw } B

𝜎 ⊢ `1

Δ, w :{res} B𝜎 + Γ ⊢ e1 |`1 : Ccaps
Capsule guarantee is preserved since a sealed reference is handled linearly, and the typing rules

for memory (judgment ⊩) ensure that it can only be in sharing with another one with the same

seal. Moreover, the relation 𝜎 ≤ 𝜎 ′
ensures type preservation in case a group of sealed references

collapses during reduction in another one, as happens with a nested promotion.

Let us denote by erase(Γ) the context obtained from Γ by erasing modifiers (hence, a context

of the previous type-and-coeffect system). Subject reduction includes sharing preservation, as in

the previous type system; in this case modifiers are preserved as well. More precisely, they can

decrease in the type of the expression, and increase in the type of references in the context. We

write Γ ≤ Δ when, for all x ∈ dom(Γ), we have modif (Γ, x) ≤ modif (Δ, x).
Theorem 5.2 (Subject Reduction). If Γ ⊢ e |` : T and (e, `) → (e′, `′) then Δ ⊢ e′ |`′ : T for

some Δ such that
• (Γ′ + Δ′)↾Γ′ = Γ′, for Γ′ = erase(Γ) and Δ′ = erase(Δ);
• Γ ≤ Δ.

We now focus on properties of the memory ensured by this extended type system. First of all,

we prove two lemmas characterising how the typing of memory propagates type modifiers. Recall

that ⊲` denotes the reachability relation in memory ` (Definition 2.6).
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Lemma 5.3. If Γ ⊢ ` and x ⊲` y, then
• modif (Γ, x) = mut implies modif (Γ, y) = mut or modif (Γ, y) = imm,
• modif (Γ, x) = 𝜎 implies modif (Γ, y) = 𝜎 or modif (Γ, y) = imm,
• modif (Γ, x) = imm implies modif (Γ, y) = imm.

Proof. By induction on the definition of ⊲` .

Case y = x The thesis trivially holds.

Case ` (x) = [v1, . . . , v𝑛]C , z = v𝑖 for some 𝑖 ∈ 1..𝑛 and z ⊲` y . From Γ ⊢ `, by inverting rule

(t-mem), we have Δ ⊩ [v1, . . . , v𝑛]C : Cm
with Γ = Γ′ + {ℓ} × Δ and m = modif (Γ, x).

Inverting rule (t-obj) and either (t-ref) or (t-imm-ref), we have z :X T𝑖 [m] ⊩ z : T𝑖 [m], with
Δ = Δ′, z :X T𝑖 [m] and fields(C) = T1 f1; . . . T𝑛 f𝑛;. Since z ∈ dom(`), T𝑖 is of shape C′m′

.

We split cases on m
′
. If m

′=imm, then T𝑖 [m]=imm, hence modif (Γ, z) = imm and, by induction

hypothesis, we get modif (Γ, y) = imm, as needed. If m′=mut, then T𝑖 [m]=m, hence we get
modif (Γ, z) = m and, by induction hypothesis, the thesis.

□

Lemma 5.4. If Γ ⊢ `, then coeff(Γ, x)=coeff(Γ, y) implies modif (Γ, x) = modif (Γ, y).
In this refined setting, the definition of the sharing relation needs to take into account modifiers.

Indeed, if intuitively two references are in sharing when a mutation of either of the two affects the

other, then no sharing should be propagated through immutable references. To do so, we need to

assume a well-typed memory in order to know modifiers of references.
12

Definition 5.5 (Sharing in memory with modifiers). The sharing relation in memory Γ ⊢ `, denoted

by ⊲⊳Γ,` , is the smallest equivalence relation on dom(`) such that:

x ⊲⊳Γ,` y if ` (x) = [v1, . . . , v𝑛]C , modif (Γ, x),modif (Γ, y) ≤ mut and y = v𝑖 for some 𝑖 ∈ 1..𝑛

Again, for a well-typed memory, coeffects characterize the sharing relation exactly.

Proposition 5.6. If Γ ⊢ `, then x ⊲⊳Γ,` y iff coeff(Γ, x) = coeff(Γ, y), for all x, y ∈ dom(`).
In the extended type system, we can detect capsule expressions from the modifier, without

looking at coeffects of free variables, proving that the result of a caps expression is not in sharing

with the initial mutable variables.

Theorem 5.7 (Capsule expression). If Γ ⊢ e |` : Ccaps, and e |` →★ y |`′, then there exists Γ′ such
that Γ′ ⊢ `′, Γ ≤ Γ′ and, for all x ∈ dom(`), x ⊲⊳Γ′,`′ y implies modif (Γ, x) ≤ modif (Γ′, x) ≠ mut.

Proof. By Theorem 5.2, we get Δ ⊢ y |`′ : Ccaps
with Γ ≤ Δ. By inverting rule (t-conf), we

get Δ1 ⊢ y : Ccaps
and Δ2 ⊢ `′, with Δ = Δ1 + Δ2 and Γ ≤ Δ2, as modif (Δ2, z) = modif (Δ, z)

for all ∈ dom(Δ). Since y ∈ dom(`′), it cannot have modifier caps, hence Δ1 ⊢ y : Ccaps

holds by rule (t-prom) or (t-sub). This implies Δ1 = ∅ × Δ′, y :{res} C𝜎
and so modif (Δ, y) =

modif (Δ2, y) = modif (Δ1, y) = 𝜎 . Set Γ′ = Δ2. By Proposition 5.6 and Lemma 5.4, x ⊲⊳Γ′,`′ y implies

modif (Γ′, 𝑥) = 𝜎 , thus modif (Γ, 𝑥) ≤ modif (Δ, x) = modif (Γ′, x) ≠ mut, hence the thesis. □

It is important to notice that the notion of capsule expression in Theorem 5.7 is different from

the previous one (Definition 2.4), as we now have imm references. In particular, the previous notion

prevented any access to the reachable object graph of the result from free variables, since, without

modifiers, any access to a portion of memory can modify it. Here, instead, this is no longer true,

hence the notion of capsule allows mutable references to access the reachable object graph of the

result of a capsule expression, but only through imm references. Indeed, if two references access the

same non-imm reference, they are necessarily in sharing, as shown below.

12
Actually, we do not need the full typing information, having just modifiers would be enough.
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Proposition 5.8. Let Γ ⊢ `. If x ⊲` z and y ⊲` z and modif (Γ, z) ≠ imm, then x ⊲⊳Γ,` y.

Proof. We first show that x ⊲⊳` z. The proof is by induction on the definition of ⊲` .

Case x = z The thesis trivially holds by reflexivity of ⊲⊳Γ,` .

Case ` (x) = [v1, . . . , v𝑛]C , x′ = v𝑖 for some 𝑖 ∈ 1..𝑛 and x′ ⊲` z We know that modif (Γ, x),
modif (Γ, x′) ≤ mut since, by Lemma 5.3, modif (Γ, x′) = imm (or modif (Γ, x) = imm) would
imply modif (Γ, z) = imm which is a contradiction. Then, by Definition 5.5, we have x ⊲⊳Γ,` x′

and by induction hypothesis, we get x′ ⊲⊳Γ,` z; then we get x ⊲⊳Γ,` z by transitivity of ⊲⊳Γ,` .

By the same argument, we also get y ⊲⊳Γ,` z. Then, by transitivity of ⊲⊳Γ,` , we get the thesis. □

Corollary 5.9. If Γ ⊢ e |` : Ccaps, and e |` →★ y |`′, then there exists Γ′ such that Γ′ ⊢ `′, Γ ≤ Γ′

and, for all x ∈ dom(`), modif (Γ′, x) = mut and x ⊲`′ z and y ⊲`′ z imply modif (Γ′, z) = imm.

Proof. By Theorem 5.7, we get Γ′ ⊢ `′ and x ⊲⊳Γ′,`′ y imply modif (Γ′, x) ≠ mut. Suppose
modif (Γ′, z) ≠ imm, then, by Proposition 5.8, we get x ⊲⊳Γ′,`′ y, hence modif (Γ′, x) ≠ mut, which
contradicts the hypothesis. Therefore, modif (Γ′, z) = imm. □

In the extended type system, we can also nicely characterize the property guaranteed by the imm
references. Notably, the reachable object graph of an imm modifier cannot be modified during the

execution. We first show that fields of an imm reference cannot change in a single computation step.

Lemma 5.10. If Γ ⊢ e |` : T , and modif (Γ, x) = imm, and e |` → e′ |`′, then ` (x) = `′ (x).

Proof. By induction on reduction rules. The key case is rule (field-assign). We have e = y.f = v
and Γ ⊢ y.f = v |` : T . Let modif (Γ, y) = m. Either rule (T-field-assign) was the last rule applied, or

one of the non syntax-directed rules was applied after (T-field-assign). In the former case m = mut
or m = caps if rule (T-Sub) was applied before (T-field-assign). In the latter case m could only be

equal to the previous modifier or m = 𝜎 if rule (T-Prom) was applied and the previous modifier

was mut. Therefore, y ≠ x and so we have the thesis. For all other computational rules the thesis

is immediate as they do not change the memory, and for (ctx) the thesis immediately follows by

induction hypothesis. □

Thanks to Lemma 5.3, we can show that the reachable object graph of an imm reference contains

only imm references. Hence, by the above lemma we can characterise imm references as follows:

Theorem 5.11 (Immutable reference). If Γ ⊢ e |` : T ,modif (Γ, x) = imm, and e |` →★ e′ |`′, then
x ⊲` y implies ` (y) = `′ (y).

Proof. By induction on the definition of→★

Case e |` = e′ |`′ The thesis trivially holds.

Case e |` → e1 |`1 →★ e′ |`′ Since modif (Γ, x) = imm, for all y such that x ⊲` y, by Lemma 5.3

modif (Γ, y) = imm, hence, by Lemma 5.10, `1 (y) = ` (y). Therefore, it is easy to check that

x ⊲` y implies x ⊲`1 y. By Theorem 5.2, Δ ⊢ e1 |`1 : T and modif (Γ, x) ≤ modif (Δ, x), hence
modif (Δ, x) = imm. Then, by induction hypothesis, `′ (y) = `1 (y), hence the thesis. □

6 EXPRESSIVE POWER
We discuss the expressive power of the type-and-coeffect system in Sect. 5, comparing it with the

two most closely related proposals by Gordon et al. [2012] and by Clebsch [2017]; Clebsch et al.

[2015], abbreviated as Gordon et al. and Pony, respectively. The takeaway is that our promotion

mechanism is much more powerful than their recovery, since sharing is taken into account; on

the other hand, the expressive power allowed by some of their annotations on fields is beyond the

scope of this paper. We assume a syntax enriched by the usual programming constructs.
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Before the work in Gordon et al., the capsule property was only ensured in simple situations,

such as using a primitive deep clone operator, or composing subexpressions with the same property.

The type system in Gordon et al. has been an important step, being the first to introduce recovery.
That is, this type system contains two typing rules which allow recovering isolated

13
or immutable

references from arbitrary code checked in contexts containing only isolated or immutable variables.

Such rules are rephrased below in our style for better comparison.

(t-recov-iso)

Γ ⊢ e : Cmut

Γ ⊢ e : Ccaps IsoOrImm(Γ) (t-recov-imm)

Γ ⊢ e : Cread

Γ ⊢ e : Cimm
IsoOrImm(Γ)

where IsoOrImm(Γ) means that, for all x : Cm
in Γ, m ≤ imm.

As the reader can note, this is exactly in the spirit of coeffects, since typechecking also takes into

account the way the surrounding context is used. By these rules Gordon et al. typechecks, e.g., the

following examples, assuming the language has threads with a parallel operator:

isolated IntList l1 = ...

isolated IntList l2 = ...

l1.map(new Incrementor ()); || l2.map(new Incrementor ());

The two threads do not interfere, since they operate and can mutate disjoint object graphs.

isolated IntBox increment(isolated IntBox b){

b.value ++;//b converted to mut by subtyping

return b// convert b *back* to isolated by recovery

}

An isolated object can be mutated
14
, and then isolation can be recovered, since the context only

contains isolated or immutable references.

In Pony, the ideas of Gordon et al. are extended to a richer set of modifiers. In their terminology

val is immutable, ref is mutable, box is read-only. An ephemeral isolated reference iso^ is similar

to a caps reference in our calculus, whereas non ephemeral iso references are more similar to the

isolated fields discussed below. Finally, tag only allows object identity checks and asynchronous

method invocation, and trn (transition) is a subtype of box that can be converted to val, providing
a way to create values without using isolated references. The last two modifiers have no equivalent

in Gordon et al. or our work.

The type-and-coeffect-system in Sect. 5 shares with Gordon et al. and Pony the modifiers mut,
imm, read, and caps with their subtyping relation, a similar operation to combine modifiers, and

the key role of recovery. However, rule (t-prom) is much more powerful than the recovery rules

reported above, which definitely forbid read andmut variables in the context. Rule (t-prom), instead,

allows such variables when they are not connected to the final result, as smoothly derived from

coeffects which compute sharing. For instance, with the classes of Example 2.2, the following two

examples would be ill-typed in Gordon et al. and Pony:

caps C es1 = {B z = new B(2); x.f1=y; new C(z,z)}

caps C es2 = {B z = new B(y.f=y.f+1); new C(z,z) }

Below is the corresponding Pony code.

class B

var f: U64

new create(ff:U64) => f=ff

class C

13
Their terminology for capsule.

14
We say that the capsule is opened, see in the following.
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var f1: B

var f2: B

new create(ff1: B ref , ff2: B ref) => f1=ff1; f2=ff2

var x: B ref = ...

var y: B ref = ...

var es1: C iso = recover iso var z = B(2); x.f1=y; C(z,z) end//ERROR

var es2: C iso = recover iso var z = B(y.f=y.f+1); C(z,z) end//ERROR

For comparison on a more involved example, let us add to class A of Example 5.1 the method

nonMix that follows:

A nonMix [{ℓ } ] (A {res} a) {this.f.f=a.f.f; a} // ℓ ≠ res

Consider the following code:

A a1= new A(new B(0));

caps A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone() // (1)

// a1.mix(a2).clone ().mix(a2) // (2)

// a1.nonMix(a2) // (3)

}

The corresponding Pony code is as follows:

class B

var f:U64

new create(ff:U64) => f=ff

fun box clone ():B iso^ => recover B(f) end

class A

var f:B

new create(ff:B) => f=ff

fun ref mix(a:A):A => this.f=a.f; a

fun ref nonMix(a:A):A => f.f=a.f.f; a

fun box clone ():A iso^ =>var x:B iso=f.clone (); recover A(consume x) end

var a1 = A(B(0))

var a2 = A(B(1)); var l1:A iso = a1.mix(a2).clone() // (1)

var l2:A iso=recover var a2=A(B(1));a1.mix(a2).clone ().mix(a2) end //(2)

var l3:A iso= recover var a2 = A(B(1)); a1.nonMix(a2) end // (3)

As in our approach, Pony is able to discriminate line (1) from line (2), causing code to be well-

typed and ill-typed, respectively. However, to do so, Pony needs an explicit modifier iso^ in the

return type of clone, whereas, as noted after the code of Example 5.1, in our approach the return

type of clone can be mut, since the fact that there is no connection between the result and this is

expressed by the coeffect. Moreover, in order to be able to obtain an iso from the clone method,

Pony needs to insert explicit recover instructions. In the case of class A where the field is an object,

Pony needs to explicitly use consume to ensure uniqueness, whereas in our approach promotion

takes place implicitly and uniqueness is ensured by linearity. Finally, Pony rejects line (3) as well,

whereas, in our approach, this expression is correctly recognized to be a capsule, since the external

variable a1 is modified, but not connected to the final result.

Moreover, our type system can prevent sharing of parameters, something which is not possibile

in Gordon et al. and Pony. The following method takes two teams, t1 and t2, as parameters. Both

want to add a reserve player from their respective lists p1 and p2, sorted with best players first. To

keep the game fair, the two reserve players can only be added if they have the same skill level.
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static void addPlayer(Team {ℓ } t1, Team {ℓ ′ } t2, Players {ℓ } p1, Players {ℓ ′ } p2)

{/*ℓ ≠ ℓ′*/} {while(true){

if(p1.isEmpty ()||p2.isEmpty ()) {/* error */}

if(p1.top(). skill==p2.top(). skill){t1.add(p1.top ());t2.add(p2.top ());}

else{removeMoreSkilled(p1,p2);}

}

The sharing coeffects express that each team can only add players from its list of reserve players.

As mentioned at the beginning of the section, an important feature supported by Gordon et

al. and Pony, and not by our type system, are isolated fields. To ensure that accessing an isolated

field will not introduce aliasing, they use an ad-hoc semantics, called destructive read, see also
Boyland [2010]. In Gordon et al., an isolated field can only be read by a command x=consume(y.f),

assigning the value to x and updating the field to null. Pony supports the command (consume x),

with the semantics that the reference becomes empty. Since fields cannot be empty, they cannot be

arguments of consume. By relying on the fact that assignment returns the left-hand side value, in

Pony one writes x=y.f=(consume z), with z isolated. In this way, the field value is assigned to x,

and the field is updated to a new isolated reference.

We prefer to avoid destructive reads since they can cause subtle bugs, see Giannini et al.

[2019b] for a discussion. We leave to future work the development of an alternative solution,

notably investigating how to extend our affine handling of caps variables to fields. Concerning

this point, another feature allowing more flexibility in Gordon et al. and Pony is that iso variables

can be “consumed” only once, but accessed more than once. For example in Pony we can write

var c: C iso=recover var z=B(2); C(z,z) end; c.f1=recover B(1) end;c.f2=recover B(1) end.

To achieve this in our type system, one needs to explicitly open the capsule by assigning it to a

local mutable variable, modify it and finally apply the promotion to recover the capsule property.

7 RELATEDWORK
7.1 Coeffect Systems
Coeffects were first introduced by Petricek et al. [2013] and further analyzed by Petricek et al.

[2014]. In particular, Petricek et al. [2014] develops a generic coeffect system which augments

the simply-typed _-calculus with context annotations indexed by coeffect shapes. The proposed
framework is very abstract, and the authors focus only on two opposite instances: structural

(per-variable) and flat (whole context) coeffects, identified by specific choices of context shapes.

Most of the subsequent literature on coeffects focuses on structural ones, for which there is a

clear algebraic description in terms of semirings. This was first noticed by Brunel et al. [2014], who

developed a framework for structural coeffects for a functional language. This approach is inspired

by a generalization of the exponential modality of linear logic, see, e.g., Breuvart and Pagani [2015].

That is, the distinction between linear and unrestricted variables of linear systems is generalized to

have variables decorated by coeffects, or grades, that determine how much they can be used. In this

setting, many advances have been made to combine coeffects with other programming features,

such as computational effects [Dal Lago and Gavazzo 2022; Gaboardi et al. 2016; Orchard et al.

2019], dependent types [Atkey 2018; Choudhury et al. 2021; McBride 2016], and polymorphism

[Abel and Bernardy 2020]. A fully-fledged functional programming language, called Granule, has

been presented by Orchard et al. [2019], inspired by the principles of coeffect systems.

As already mentioned, McBride [2016] and Wood and Atkey [2022] observed that contexts in a

structural coeffect system form a module over the semiring of grades, event though they do not

use this structure in its full generality, restricting themselves to free modules, that is, to structural

coeffect systems. This algebraic structure nicely describes operations needed in typing rules, and
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we believe it could be a clean framework for coeffect systems beyond structural ones. Indeed, the

sharing coeffect system in this paper provides a non-structural instance.

7.2 Type Systems Controlling Sharing and Mutation
The literature on type systems controlling sharing and mutation is vast. In Sect. 6 we provided a

comparison with the most closely related approaches. We briefly discuss here other works.

The approach based on modifiers is extended in other proposals [Castegren and Wrigstad

2016; Haller and Odersky 2010] to compositions of one or more capabilities. The modes of the

capabilities in a type control how resources of that type can be aliased. The compositional aspect

of capabilities is an important difference from modifiers, as accessing different parts of an object

through different capabilities in the same type gives different properties. By using capabilities it

is possible to obtain an expressivity similar to our type system, although with different sharing

notions and syntactic constructs. For instance, the full encapsulation notion by Haller and Odersky

[2010], apart from the fact that sharing of immutable objects is not allowed, is equivalent to our

caps guarantee. Their model has a higher syntactic/logic overhead to explicitly track regions. As

for all work preceding Gordon et al. [2012], objects need to be born unique and the type system

permits manipulation of data preserving their uniqueness. With recovery/promotion, instead, we

can use normal code designed to work on conventional shared data, and then recover uniqueness.

An alternative approach to modifiers to restrict the usage of references is that of ownership, based
on enforcing invariants rather than deriving properties. We refer to the recent work of Milano et al.

[2022] for an up-to-date survey. The Rust language, considering its “safe” features [Jung et al. 2018],

belongs to this family as well, and uses ownership for memory management. In Rust, all references

which support mutation are required to be affine, thus ensuring a unique entry point to a portion of

mutable memory. This relies on a relationship between linearity and uniqueness recently clarified

by Marshall et al. [2022], which proposes a linear calculus with modalities for non-linearity and

uniqueness with a somewhat dual behaviour. In our approach, instead, the capsule concept models

an efficient ownership transfer. In other words, when an object x is “owned” by y, it remains always

true that y can only be accessed through x, whereas the capsule notion is dynamic: a capsule can

be “opened”, that is, assigned to a standard reference and modified, since we can always recover

the capsule guarantee.
15
.

We also mention that, whereas in this paper all properties are deep, that is, inherited by the

reachable object graph, most ownership approaches allows one to distinguish subparts of the

reachable object graph that are referred to but not logically owned. This viewpoint has some

advantages, for example Rust uses ownership to control deallocation without a garbage collector.

8 CONCLUSION
The main achievement of this paper is to show that sharing and mutation can be tracked by a

coeffect system, thus reconciling two distinct views in the literature on type systems for mutability

control: substructural type systems, and graph-theoretic properties on heaps. Specifically, the

contributions of the paper are the following:

• a minimal framework formalizing ingredients of coeffect systems

• a coeffect system, for an imperative Java-like calculus, where coeffects express links among

variables and with the final result introduced by the execution

• an enhanced type system modeling complex features for uniqueness and immutability.

15
Other work in the literature supports ownership transfer, see, e.g., Müller and Rudich [2007] and Clarke and Wrigstad

[2003], however not of the whole reachable object graph.
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The enhanced type system (Sect. 5) cleanly integrates and formalizes language designs by

Giannini et al. [2019b] and Giannini et al. [2019a], as detailed below:

• Giannini et al. [2019b] supports promotion through a very complex type system; moreover,

sharing of two variables/parameters cannot be prevented, as, e.g., in the example on page 24.

• Giannini et al. [2019a] has a more refined tracking of sharing allowing us to express this

example, but does not handle immutability.

• In both works, significant properties are expressed and proved with respect to a non-standard

reduction model where memory is encoded in the language itself.

Each of the contributions of the paper opens interesting research directions. Theminimal framework

we defined, modeling coeffect contexts as modules, includes structural coeffect systems, where

the coeffect of each variable can be computed independently (that is, the module operators are

defined pointwise), and coeffect systems such as those in this paper, which can be considered quasi-
structural. Indeed, coeffects cannot be computed per-variable (notably, the sum and multiplication

operator of the module are not defined pointwise), but can still be expressed by annotations on single
variables. This also shows a difference with existing graded type systems explicitly derived from

bounded linear logic, which generally consider purely structural (that is, computable per-variable)

grades.
16
. In future work we plan to develop the metatheory of the framework, and to investigate its

appropriateness both for other quasi-structural cases, and for coeffects which are truly flat, that is,
cannot be expressed on a per-variable basis. This could be coupled with the design of a _-calculus

with a generic module-based coeffect system, substantially revising [Petricek et al. 2014].

In the type system in Sect. 5, coeffects and modifiers are distinct, yet interacting, features. We will

investigate a framework where modifiers, or, more generally, capabilities [Gordon 2020; Gordon

et al. 2012; Haller and Odersky 2010], are formalized as graded modal types, which are, roughly,

types annotated with coeffects (grades) [Brunel et al. 2014; Dal Lago and Gavazzo 2022; Orchard

et al. 2019], thus providing a formal foundation for the “capability” notion in the literature. A related

interesting question is which kinds of modifier/capability can be expressed purely as coeffects.

The read-only property, for instance, could be expressed by enriching the sharing coeffect with a

Read/Write component (Read by default), so that in a field assignment, variables connected to res

in the context of the left-hand expression are marked as Write.

Concerning the specific type system in Sect. 5, additional features are necessary to have a more

realistic language. Two important examples are: suitable syntactic sugar for coeffect annotations in

method types and relaxation of coeffects when redefining methods in the presence of inheritance.

Finally, an interesting objective in the context of Java-like languages is to allow variables (notably,

method parameters) to be annotated by user-defined coeffects, written by the programmer by

extending a predefined abstract class, in the same way user-defined exceptions extend the Exception

predefined class. This approach would be partly similar to that of Granule [Orchard et al. 2019],

where, however, coeffects cannot be extended by the programmer. A first step in this direction is

presented by Bianchini et al. [2022a].
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