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Abstract

English. In this paper we want to test how
grasping possibilities for concrete objects
can be automatically classified. To dis-
criminate between objects that can be ma-
nipulated with one hand and the ones that
require two hands, we combine concep-
tual knowledge about the situational prop-
erties of the objects, which can be modeled
with distributional semantic methodolo-
gies, and physical properties of the objects
(i.e. their dimensions and their weights),
which can be found on the web through
crawling.

Italiano. In questo articolo vogliamo
testare come le possibilità di manipo-
lazione degli oggetti concreti possano es-
sere classificate automaticamente. Per
distinguere tra oggetti che possono es-
sere manipolati con una mano e oggetti
che richiedono due mani, combiniamo
conoscenza concettuale sulle proprietà
situazionali dell’oggetto - rappresentan-
dola secondo il paradigma della seman-
tica disribuzionale - con le proprietà
fisiche degli oggetti (le loro dimensioni e
il loro peso) estratte dal web mediante
crawling.

1 Introduction

Distributional semantic models of word meanings
are based on representations that want to be cogni-
tively plausible and that, as a matter of fact, have
been tested to produce results correlated with hu-
man judgments when concepts similarity and au-
tomatic conceptual categorizations are the aim of
the experiment (Erk, 2012; Turney and Pantel,
2010).
These approaches share the idea that two nominal

concepts are similar and can be clustered in the
same group if the corresponding lexemes occur in
comparable linguistic contexts.
Their success is also due to the expectations
of the Natural Language Processing (henceforth
NLP) community: both for count and predictive
models of distributional semantics (Baroni et al.
2014), the core idea is that encyclopedic knowl-
edge packed in a big corpus can improve the per-
formance in tasks such as word sense disambigua-
tion.
However, purely textual representations turn out
to be incomplete because in language learning and
processing human beings are exposed to percep-
tual stimuli paired with linguistic ones: the old AI
dream to ground language in the world requires the
mapping between these two sources of knowledge.
One of the aim of this paper is to understand how
much physical knowledge can be retrieved in lan-
guage. Can distributional representations of con-
crete nouns be helpful for the automatic classifi-
cation of objects, when grasping possibilities are
the focus? Could they help to discriminate be-
tween objects that can be manipulated with one
hand and the ones that require two hands? More
generally, how much knowledge about the physi-
cal world can be found in language?
Inspired by the cognitive psychology literature
on the topic, in this paper artifactual categories
are theorized as situated conceptualization where
physical and situational properties meet (Barsa-
lou 2002). These situational properties describe
a physical setting or event in which the target ob-
ject occurs (as grocery store, fruit basket, slicing,
picnic for apple). In an action-based categoriza-
tion of objects, these kinds of properties function
as a complex relational system, which links the
physical structure of the object, its use, the back-
ground settings, and the design history (Chaigneau
et al. 2004). Situational properties can be derived
from distributional semantic models, where each
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co-occurrence vector approximates the encyclope-
dic knowledge about its referent.
A complementary, but more action-oriented idea,
is the psychological notion of affordance as the
possibilities for actions that every environmen-
tal object offers (Gibson 1979). Conceptual in-
formation concerning objects affordances can be
partially acquired through language, considering
verb-direct object pairs as the linguistic realiza-
tions of the relations between the actions that can
be performed by an agent, and the objects involved
in those actions. Affordance verbs, intended as
verbs that select a distinctive action for a specific
object, can be discovered through statistical mea-
sures in corpora (Russo et al. 2013).
The main assumption of this paper is that the pri-
mary affordance for grasping of an artifact largely
depends on its physical properties, in particular
dimensions and weight. Such features are found
in e-commerce websites. Extracting these values
for many similar items, for example for all in-
stances of “plate”, may help to automatically rep-
resent average dimensions for that object. How-
ever, combining this knowledge with situational
properties of objects modeled as distributional se-
mantics vectors can help understanding if they can
be combined. This issue is relevant for the imple-
mentation of a module that automatically classi-
fies grasping possibilities for objects in embodied
robotics.
The paper is structured as follow: section 2 reports
on the manual annotation of grasping possibilities
for a set of 143 artifacts, discussing the definition
of the gold standard that will be the dataset for
classification experiments in section 3. Section 4
presents conclusions and ideas for future work.

2 Manual Annotation of Grasping
Possibilities

Concerning grasping possibilities for concrete ob-
jects, we expect as relevant several features. First
of all, objects dimensions strongly influence the
type of grasp afforded by objects. For instance,
we are likely to grasp a tennis ball with a whole
hand, but a soccer ball with two hands: the dif-
ference between the two spheres clearly is in their
diameter.
Heavy objects require a type of grasp different
from the one required by the light ones. Apart
from these features, we should also consider more
subjective factors, such as culture, past experience

with objects, or intentions. This is particularly ev-
ident for artifacts and tools, that are the kind of ob-
jects most typically involved in manipulation and
grasping and that often have a part that is specif-
ically designed (or more suited than others) for
grasping, for its shape and conformation, such as
a handle (which we may call affording parts; cf.
De Felice, 2015; in press). However, such parts
(e.g. the handle of a cup) are usually grasped
when the agents intention is to use the object for
its canonical function (e.g. to drink from the cup),
whereas in other cases it may be ignored and a dif-
ferent grasp could be performed (e.g. the whole
cup might be taken from the above if we simply
wanted to displace it).
Therefore, we can individuate at least four differ-
ent grasp types afforded by concrete entities (cf.
infra): the undifferentiated one-handed or two-
handed grasps; a grasp by part, i.e. directed to a
specific part of the object; a grasp with instrument,
for substances, aggregates or every sort of things
usually manipulated with some other object.
In order to obtain a gold standard annotation of
artifacts grasping possibilities, we first searched
WordNet 3.0 for all the nouns that have artifact as
hyperonym, obtaining a list of 1510 synsets. From
this list, we chose the nouns that have enough pic-
tures as products sold on amazon.com, since it was
our intention to extract objects dimensions from
this website for classification experiments (cf. 3).
We selected the nouns for which at least 15 pages
about that object sold on amazon.com were ho-
mogeneous - i.e. they contain objects of the same
type- reducing noise caused by the crawling strat-
egy. We obtained a total number of 143 nouns.
Then, for each of these nouns, we manually an-
notated the type of grasp afforded by the object,
according to the following classes:

• One-handed grasp: this kind of grasp is for
objects that have no handles or protruding
parts suited for the grasp, and that can be
grasped by using only one hand. The size of
two of the objects dimensions (length, width
or thickness) usually does not exceed the
maximum span of a hand with at least two
fingers bent in order to grasp and hold some-
thing. E.g.: bowl, bottle, candle, shell, neck-
lace, clothes peg.

• Two-handed grasp: this kind of grasp is for
objects that have no handles or protruding
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Table 1: Number of items per classes in the gold
standard.

class #nouns
onehand 43
onehandORpart 1
oneORtwohand 25
part 23
twohand 73
twohandORpart 3

parts suited for the grasp, and that are usu-
ally grasped with two hands, because their
size exceeds the maximum span of a single
hand. E.g.: board, soccer ball, player piano,
table, computer.

• Grasp by part: this kind of grasp is for: (i)
small or large objects that have a part specif-
ically designed for the grasping; (ii) entities
that have a well identifiable part that, even
if it is not specifically designed for this spe-
cific purpose, is more suited than others for
the grasping thanks to its shape and confor-
mation. E.g. knife, jug, axe, trolley, bag.

• Grasp with instrument: this kind of grasp is
mainly for substances, aggregates, and enti-
ties which cannot be (or are usually not) con-
trolled without using some other object (an
instrument, generally a container). E.g. wa-
ter, broth, flour, bran, sand.

For several objects more than one grasping possi-
bility is plausible, depending on the size (a plate
can be small or big) or on the availability of a con-
tainer (sand can be grasped by hand).
The dataset of 143 nouns have been annotated by
two annotators and the inter-annotator agreement
was 0.66. Since we need a gold standard for ex-
periments, we managed disagreements reaching a
consensus on every noun.
The gold standard contains items assigned to 6
classes, distributed as in Table 1.

3 Semantic and physical knowledge
about artifacts: guessing grasping
possibilities

The way humans can grasp an object can be de-
signed as a function that depends on multiple
variables, such as the presence of affording parts
(i.e. handle for bag), its shape, its dimensions, its

weight and the final aim of the action of grasping,
modeled here as part of the situational properties.
In this paper we want to test which one of these
features can help in classifying artifacts that have
been manually annotated according to 6 categories
(see par. 2). In particular we experiment with a
combination of 4 features provided for each noun:

• distributional semantics information from
two corpora (GoogleNews and instructa-
bles.com) obtained with word2vec toolkit
(Mikolov et al. 2013);

• average dimensions (height, length and
depth) for each object, obtained crawling at
least 15 pages per object from amazon.com;

• average weight for each object, obtained
crawling at least 15 pages per object from
amazon.com;

• co-occurrence matrix in the corpus instructa-
bles.com with nouns that are affording parts,
extracting the syntactic pattern AFFORD-
ING PART NOUN of ARTIFACT (e.g. ”han-
dle of the bag”).

Because all the big corpora available contain in
general news or web crawled texts that don’t men-
tion concrete actions and concrete objects so often,
we choose to build a smaller but coherent corpus
of do-it-yourself instructions, with the assumption
that it will contain frequent instances of concrete
language.
We crawled from the website instructables.com all
the titles and descriptions for the projects available
online in six categories (e.g. technologies, work-
shop, living, food, play, outside). Cleaned of the
html code, the instructables.com corpus has 17M
tokens; each project was parsed with the Stan-
ford parser (de Marneffe and Manning 2008). To
test if a do-it-yourself instructions corpus is useful
with respect to a generic one, we represent each
noun in the following experiment as a vector ex-
tracted from GoogleNews with word2vec toolkit
(Mikolov et al. 2013) but also as a vector extracted
from the instructables.com corpus trained with the
same toolkit. These are the purely textual repre-
sentations we experimented with; to complete this
knowledge we added extracted information about
dimensions, weight and affording parts for 143 ob-
jects.
The list of objects’ parts that afford grasping and
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Table 2: Precision and recall for 8 combinations
of features for the 6 classes dataset.

features Precision Recall
instructables.com 0.113 0.336
GoogleNews 0.113 0.336
weight 0.364 0.406
dimensions 0.413 0.517
dimensions+weight 0.561 0.531
affording parts 0.25 0.399
instructables.com + all 0.443 0.552
GoogleNews + all 0.458 0.559

are component of the pattern extracted for the fea-
ture “affording parts” has been derived with a psy-
cholinguistic test (De Felice 2015). Thirty stu-
dents of the University of Pisa were interviewed
and presented with 42 images of graspable enti-
ties. For each picture, they were asked to describe
in the most detailed way how they would have
grasped the object represented. Among the objects
depicted, there were 31 artefacts. From the inter-
views recorded for these artefacts, we extracted all
nouns denoting objects’ parts that were named as
possible target of the grasp (e.g. the handle for the
bag, the cup or the ladle). The list of 78 nouns was
then translated in English.

3.1 Classification Experiment

The experiment is based on a multi-label classi-
fication, since our dataset consists of 143 nouns
denoting artifacts, annotated according to 6 cat-
egories. The implementation of Support Vector
Multi-Classification is based on LibSVM software
(Chang and Lin 2001) in WEKA with 10 fold
cross-validation. Table 2 reports the results in
terms of precision and recall. The best perfomance
depends on information about average dimensions
and weight of the objects. Distributional seman-
tics vectors seems useless.

The overall performance is influenced by the
fact that some classes are small in the gold stan-
dard. For this reason, we experimented with the
same features including just the 91 nouns that be-
long to the “onehand” or “twohand” classes. In
Table 3, results show again that dimensions and di-
mensions plus weight produce good results (with
“dimensions” as the best feature), even if they do
not improve the performance when combined with
distributional vectors that in this case are useful
per se. Again, affording parts co-occurences pro-

Table 3: Precision and recall for 8 combinations
of features on two-classes dataset (“onehand” VS
“twohand”).

features Precision Recall
GoogleNews 0.846 0.846
weight 0.715 0.714
dimensions 0.851 0.846
dimensions+weight 0.831 0.802
affording parts 0.63 0.615
GoogleNews + all 0.846 0.846

duce the worst performance, mainly because the
list of affording parts was originally derived for
only 31 artefacts, and not for all the objects con-
sidered in our experiment.

4 Conclusions and Future Works

In this paper we test how distributional representa-
tions of nouns denoting artifacts can be combined
with physical information about their dimensions
and weights automatically extracted from an e-
commerce website and with co-occurrence infor-
mation about their affording parts as found in a
corpus of do-it-yourself instructions. The start-
ing hypothesis - concerning grasping possibilities
as basic manipulative actions for object - was that
they are conceptually a combination of situational
and physical properties.
As a consequence, we expect the best performance
from a mixed features models. This hypothesis is
not confirmed; for the two-classes dataset (“one-
hand” VS “twohand”) both physical knowledge
and distributional semantics vectors give good re-
sultsbut they don’t improve the classifier’s perfor-
mance when combined.
These results are in line with the current trend to
mix textual and visual features from computer vi-
sion algorithms (Bruni et al. 2012) in order to
go beyond the limitations of purely textual seman-
tic representations that cannot encode information
about colors, dimensions, shapes etc. As future
work we plan to integrate the features used for
the experiment in this paper with representations
of words as bag of visual words derived from the
scale-invariant feature transform (SIFT) algorithm
(Lowe 1999) that in computer vision helps to de-
tect and describe local features in images.
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