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Abstract. We propose an interpretation of multiparty sessions as flow event
structures, which allows concurrency between communications within a
session to be explicitly represented. We show that this interpretation is
equivalent, when the multiparty sessions can be described by global types,
to an interpretation of global types as prime event structures.

1 Introduction

Session types were proposed in the mid-nineties [46, 32], as a tool for specifying
and analysing web services and communication protocols. They were first
introduced in a variant of the m-calculus to describe binary interactions between
processes. Such binary interactions may often be viewed as a client-server
protocol. Subsequently, session types were extended to multiparty sessions [33, 34],
where several participants may interact with each other. A multiparty session
is an interaction among peers, and there is no need to distinguish one of the
participants as representing the server. All one needs is an abstract specification of
the protocol that guides the interaction. This is called the global type of the session.
The global type describes the behaviour of the whole session, as opposed to the
local types that describe the behaviours of single participants. In a multiparty
session, local types may be retrieved as projections from the global type.

Typical safety properties ensured by session types are communication safety
(absence of communication errors), session fidelity (agreement with the protocol)
and, in the absence of session interleaving, progress (no participant gets stuck).

Some simple examples of sessions not satisfying the above properties are:
1) a sender emitting a message while the receiver expects a different message
(communication error); 2) two participants both waiting to receive a message
from the other one (deadlock due to a protocol violation); 3) a three-party session
where the first participant waits to receive a message from the second participant,
which keeps interacting forever with the third participant (starvation, although
the session is not deadlocked).

What makes session types particularly attractive is that they offer several
advantages at once: 1) static safety guarantees, 2) automatic check of protocol
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implementation correctness, based on local types, and 3) a strong connection
with automata [27], graphical models [37] and logics [13,47,49].

In this paper we further investigate the relationship between multiparty ses-
sion types and other concurrency models, by focussing on Event Structures [52].
We consider a standard multiparty session calculus where sessions are described
as networks of sequential processes [27]. Each process implements a participant
in the session. We propose an interpretation of such networks as Flow Event
Structures (FESs) [8,10] (a subclass of Winskel’s Stable Event Structures [52]),
which allows concurrency between session communications to be explicitly
represented. We then introduce global types for these networks, and define an
interpretation of them as Prime Event Structures (PESs) [50,42]. Since the syntax
of global types does not allow all the concurrency among communications to be
expressed, the events of the associated PES need to be defined as equivalence
classes of communication sequences up to permutation equivalence. We show that
when a network is typable by a global type, the FES semantics of the former is
equivalent, in a precise technical sense, to the PES semantics of the latter.

The paper is organised as follows. Section 2 introduces our multiparty session
calculus. In Section 3 we recall the definitions of PESs and FESs, which will be
used in Section 4 to interpret processes and networks, respectively. PESs are also
used in Section 6 to interpret global types, which are defined in Section 5. In
Section 7 we prove the equivalence between the FES semantics of a network and
the PES semantics of its global type. Section 8 discusses related work in some
detail and sketches directions for future work. Last but not least, we conclude by
expressing our gratitude to Rocco.

For space reasons, all the proofs except that of the main theorem (Theorem 4)
are omitted. The missing proofs may be found in the research report [15].

2 A Core Calculus for Multiparty Sessions

We now formally introduce our calculus, where multiparty sessions are rep-
resented as networks of processes. We assume the following base sets: session
participants, ranged over by p, g, r and forming the set Part, and messages, ranged
over by A, A’,... and forming the set Msg.

Let m € {p?A,p!A | p € Part, A € Msg} denote an atomic action. The action
p?A represents an input of message A from participant p, while the action p!A
represents an output of message A to participant p.

Definition 1 (Processes). Processes are defined by:
P:= ZieIp?/\i}Pi | @ielp!Ai;pi | [JX‘P | X |10

External choice (}) and internal choice (€P) are assumed to be associative,
commutative, and non-empty. When I is a singleton, X;c;p?A;; P; will be rendered
as p?A; P and @iel p!A;; P; will be rendered as p!A; P.

A process prefixed by an atomic action is either an input process or an output
process. Note that in an external choice all summands are input processes receiving
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Fig.1: LTS for networks.

from the same sender p, and in an internal choice all summands are output
processes sending to the same receiver p. Trailing 0 processes will be omitted.

Recursion is required to be guarded and processes are treated equi-recursively,
i.e. they are identified with their generated tree [45] (Chapter 21).

In a full-fledged calculus, messages would carry values, namely they would
be of the form A(v). For simplicity, we consider only pure messages here. This
will allow us to project global types directly to processes, without having to
explicitly introduce local types, see Section 5.

Networks are comprised of at least two pairs of the form p[[ P ]] composed in
parallel, each with a different participant p.

Definition 2 (Networks). Networks are defined by:
N=pi[P ]Il llpullP.] 122, p;i #p; forany i,j

We assume the standard structural congruence on networks, stating that parallel
composition is associative and commutative and has neutral element p[[ 0] for
any fresh p. To express the operational semantics of networks, we use an LTS
whose labels record the message exchanged during a communication together
with its sender and receiver. The set of atomic communications, ranged over by a, o/,
is defined to be {pAq | p,q € Part, A € Msg}, where pAq represents the emission
of a message A from participant p to participant g. We write part(pAq) = {p, q}.
The LTS semantics of networks is specified by the unique rule [Com] given
in Figure 1. Notice that rule [Com] is symmetric with respect to external and
internal choices. In a well-typed network (see Section 5) it will always be the
case that I C |, assuring that participant p can freely choose an output, since

participant q offers all corresponding inputs. As usual, we write N <% N’ as

short for N =5 Ny --- N, =5 N’.

3 Event Structures

We recall now the definitions of Prime Event Structure (PES) from [42] and Flow
Event Structure (FES) from [8]. The class of FESs is more general than that of
PESs: for a precise comparison of various classes of event structures, we refer the
reader to [9]. As we shall see in Section 4, while PESs are sufficient to interpret
processes, the generality of FESs is needed to interpret networks.

Definition 3 (Prime Event Structure). A prime event structure (PES) is a tuple
S = (E, <, #) where:

1. Eis a denumerable set of events;
2. <C (E X E) is a partial order relation, called the causality relation;




3. # C (EXE)is an irreflexive symmetric relation, called the conflict relation, satisfying
the property: Ve, e’',e” € E : e#e’ <e” = e#e” (conflict hereditariness).

We say that two events are concurrent if they are neither causally related nor in
conflict.

Definition 4 (Flow Event Structure). A flow event structure (FES) is a tuple S =
(E, <, #) where:

1. Eis a denumerable set of events;
2. <C (E X E) is an irreflexive relation, called the flow relation;
3. # C (E X E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its
reflexive and transitive closure is just a preorder, not necessarily a partial order).
Intuitively, the flow relation represents a possible direct causality between two
events. Observe also that in a FES the conflict relation is not required to be
irreflexive nor hereditary; indeed, FESs may exhibit self-conflicting events, as
well as disjunctive causality (an event may have conflicting causes).

Any PES S = (E, <, #) may be regarded as a FES, with < given by < (the strict
ordering) or by the covering relation of <.

We now recall the definition of configuration for event structures. Intuitively, a
configuration is a set of events having occurred at some stage of the computation.
Thus, the semantics of an event structure S is given by its poset of configurations
ordered by set inclusion, where X7 C X, means that S may evolve from X; to X».

Definition 5 (PES Configuration). Let S = (E, <, #) be a prime event structure. A
configuration of S is a finite subset X of E such that:

1. Xisleft-closed: ¢ <e€e X = ¢ €X;
2. Xis conflict-free: Ve, e’ € X, —(efte’).

The definition of configuration for FESs is slightly more elaborated. For a subset
X of E, let <y be the restriction of the flow relation to X and <% be its transitive
and reflexive closure.

Definition 6 (FES Configuration). Let S = (E, <, #) be a flow event structure. A
configuration of S is a finite subset X of E such that:

1. Xis left-closed up to conflicts: ¢ <e€e X, ¢ ¢ X = e’ € X. e'#e” <e;
2. Xis conflict-free: Ve, e’ € X, —(ette’);
3. X has no causality cycles: the relation <

*

% 18 a partial order.

Condition (2) is the same as for prime event structures. Condition (1) is adapted
to account for the more general — non-hereditary — conflict relation. It states that
any event appears in a configuration with a “complete set of causes”. Condition
(3) ensures that any event in a configuration is actually reachable at some stage
of the computation.

If S is a prime or flow event structure, we denote by C(S) its set of finite
configurations. Then, the domain of configurations of S is defined as follows:



Definition 7 (ES Configuration Domain). Let S be a prime or flow event structure
with set of configurations C(S). The domain of configurations of S is the partially
ordered set D(S)=4et(C(S), ).

We recall from [9] a useful characterisation for configurations of FESs, which is
based on the notion of proving sequence, defined as follows:

Definition 8 (Proving Sequences). Given a flow event structure S = (E,<,#), a
proving sequence in S is a sequence e1; - - - ; ey, of distinct non-conflicting events (i.e.
i#] = e #ejand —(e#e)) for all i, j) satisfying:

Vi<nVe€E: e<e = dj<i. either e=e; or efej<e;

Note that any prefix of a proving sequence is itself a proving sequence.
We have the following characterisation of configurations of FESs in terms of
proving sequences.

Proposition 1 (Representation of configurations as proving sequences [9]).
Given a flow event structure S = (E, <, #), a subset X of E is a configuration of S if and
only if it can be enumerated as a proving sequence e1;- - ;ey.

Since PESs may be viewed as particular FESs, we may use Definition 8 and
Proposition 1 both for the FESs associated with networks (see Section 4) and for
the PESs associated with global types (see Section 6). Note that for a PES the
condition of Definition 8 simplifies to

Visn¥YeeE: e<e = dj<i.e=g¢;

4 Event Structure Semantics of Processes and Networks

We interpret both processes and networks as event structures. The event structures
associated with processes will be PESs. On the other hand, the event structures
associated with networks will be FESs that are not necessarily prime.

Process events, ranged overby 1), 1/, are actions r, 7’ € {p?A, p!A | p € Part, A € Msg)
preceded by their causal history, which is a sequence of past actions.

Definition 9 (Process event). Process events 1, 1" are defined by:
n u=m | m-q

Let C denote a (possibly empty) sequence of actions, and C denote the prefix
ordering on such sequences. Each process event 7 may be written either in the
form n = C- m or in the form 1 = 7 - C. We shall feel free to use any of these forms.
We define the action of a process event as follows:
act(C-n)=mn

Definition 10 (Event Structure of a Process). The event structure of process P is
the triple

SP(P) = (PE(P), <, #)
where:

1. PE(P) is defined by induction on the structure of P as follows:



(@) PEEep?i:P) = Ui lp?A) U Ui (02A, - | i € PE(P);
(b) PED,; P!Ai; Pi) = Uierp!Ai} U Uier{p!A - i | 1 € PE(P));
(c) FE0) = 0;
(d) PE(uX.P) = PEP{uX.P/X});
2. the < relation on the set of events PE(P) is given by:
(@) CCC > n-C<n-C;
3. the # relation on the set of events PE(P) is given by:
@) e = n-C#1 - U
) n#n' = n-n#n-n.

Note that, due to Clause 1d of the previous definition, the set PE(P) is denumer-
able.

Example 1. If P = uX.q'A; X ® q!A’, then
PEP)=1{g!'A-...-qA|n=1}U{gA-...-q'A-qIV | n >0}
N—— ————

Proposition 2. Let P be a process. Then S”(P) is a prime event structure with an
empty concurrency relation.

The definition of network events requires some preliminary notions. We
start by defining the projections of process events on participants, which yield
sequences of undirected actions of the form ?A and !A, or the empty sequence €.
Let 9 range over ?A and !A, and let ® range over non empty sequences of 9’s.

Definition 11 (Projection of process events).

worese qmrpz{

€  otherwise.

_Jnte frlp =e
mnlp = {n fp.nlp otherwise.

A ifp=q,
€ otherwise.

PATP =

Sequences of undirected actions are related by a standard notion of duality.

Definition 12 (Duality of projections of process events).
A A I and ©® x O = 9.0 ~x 8.6/

Network events are essentially pairs of matching process events. To formalise
the matching condition, we need to specify the locations of process events,
namely the participants to which they belong.

Definition 13 (Located event). We call located event a process event 1 pertaining
to a participant p, written p :: 1.

The duality between projections of process events induces a duality between
located events.



Definition 14 (Duality of located events). Two located events p :: 1,qQ :: 1 are
dual, written p = n > q = 0, if n 1 q 1 | p and either act(n) = q?A and
act(’) = p!A or act(n) = q!A and act(y’) = p?A.

Dual located events may be sequences of actions of different length. For instance
p:giA-rA par:p?A’and p : qIA g rIA - p?A.

Definition 15 (Network event). Network events v,V are unordered pairs of dual
located events, namely:

vi={punq:n} where punraq::y
We can now define the event structure associated with a network.

Definition 16 (Event Structure of a Network). The event structure of network
N=pil P11l pull Py 1 is the triple

SN(N) = (NE(N), <, #)
where:

1. NE(N) = Us<izj<nlpi = i, 0j 12 1} [ i € PE(P), nj € FEP)), pi =2 1i ™ Pj 2 1))
2. the < relation on the set of events NE(N) is given by:

n<n &punev&pun ev=v<v;
3. the # relation on the set of events NE(N) is given by:

n#n &punev&pun ev =S v#v.

We define comm(v) = pAqifv ={p:: C-q!A,q = C' - p?A} and we say that the network

event v represents the atomic communication pAQ.
Two events v and v' are concurrent if part(comm(v)) N part(comm(v’)) = 0.

The set of network events can be infinite as in the following example.

Example 2. Let Pbeasin Example1, Q = uYp?A; Yop?A’and N =p[P] I ql Q1.
Then
NEN) = {{p=qA-...-qA,qup?A-...-p?A} [n=>1} U

{fp=qgA-...-glAqV, g p?A-...-p?A-p?A} | n > 0}
n n
Notably, concurrent events may also be related by the transitive closure of
the flow relation, as shown in Example 3.

Proposition 3. Let N be a network. Then SN(N) is a flow event structure with an
irreflexive conflict relation.

The following example shows how communications inherit the flow relation
from the causality relation of their components.

Example 3. Let N be the network

plalAr I alp?Ai; A2 T rLa?Az;s!As ] I s[[r?7A5 ]
Then SV(N) has three network events



1 ={p:qiA,q:p?A} vy ={q:: p?A1; 1AL, 1 Q?2A,)
vz = {r: q?Az; 843, S 1?43}
The flow relation obtained by Definition 16 is: vi < v, and v» < v3. Note that
each time the flow relation is inherited from the causality within a different
participant, q in the first case and r in the second case. By the same definition the
events v and v3 are concurrent. However, since v; <* v3, the events v and v;
cannot occur in any order. Indeed, the nonempty configurations are {v1}, {v1, 2}
and {v1,v2,v3}. Note that S¥(N) has only one proving sequence per configuration
(which is that given by the numbering of events in the configuration).

If N is a binary network, then its flow event structure may be turned into a prime
event structure simply by replacing < by <™:

Theorem 1. Let N = pi[[P1] || p2[ P21 and SN(N) = (NE(N), <, #). Then the
structure SN (N)=gef(NE(N), <*, #) is a prime event structure.

If N has more than two participants, then the duality requirement on its events
is not sufficient to ensure the absence of circular dependencies4. For instance,
in the following ternary network (which may be viewed as representing the
3-philosopher deadlock) the relation <* is not a partial order.

Example 4. Let N be the network
plreA; g T Al p?A”; A T [ 9?A”; plA T
Then SV(N) has three network events
v ={p A, r:qg?A”;pld} vy ={p:r?A;qiA, g p?A’}
vy =1{q p?A;rA”, r e g?A”)

By Definition 16(2) we have v; < v, < v3 and v3 < v1. The only configuration of
SN(N) is the empty configuration, because the only set of events that satisfies
left-closure is X = {v1,17,v3}, but this is not a configuration because <} is not a
partial order (recall that <x is the restriction of < to X) and hence the condition
(3) of Definition 6 is not satisfied.

The next example illustrates Proposition 3 and shows that a network event
may have both conflicting and concurrent causes.

Example 5. Let N be the network
pla!A;riA @ g!A; rAL T gl p?A; s!Az+p?A7; st T
rfp?A1; 843 11 s[?42; 1?4511

Then SV(N) has seven network events:

1 ={p:qlA,q:p?A} vi={p =g, q:p?A}

v ={p :: qQIA; A, 1 p?A4} vh ={p = qIA;rA, 1 p?Ay)

vz =1{q:: p?A;sidy, s q?A,) vy ={q: p?A’;sldy, s Q?A,)

vy = {rp?Ay;8iAs, s i q?A; 1?2 As)

We have v; < v; fori = 2,3 and v; < v4 for j = 2,3. Similarly, we have v} < v
fori = 2,3 and v}. < g for j = 2,3. The events v, and v} share r :: p?44, the

* Thisis a well-known issue in multiparty session types, which motivated the introduction
of global types in [33], see Section 6.



V1 Vv,

1
p:qlh, ) {p:qld’,
q:p?A} : q:p?A}
/ % # —
: vy v
p: q'/\ Ay, {q: p7A slAy, : {p:qlA;riAy, {q = p?A;siAy,
r:p?Asg) s g2y} : r:p?As} s q?Ay)
V4
{r:: p?Ay;siA;,

s Q?A2; 1?A3)

Fig. 2: Flow relation between events of SN(N) in Example 5

V1 : v

1
{p:q'4, : {p:gln,
q:p?A} : q:p?A’)

l # l
V2 V;
{p:qlA;riAg, : {p:q!A;rlAy,
r:p?is) : rp?iq}

!

V3
{p = qlA;riAg; 1Ay,
r:p?Ag;p?As)

D QA TIAL; A,
r:p?Ag;p?As)

V4
{r:p?Ay;p?Az;8!A3,8 1243}

Fig. 3: Flow relation between events of SV(N) in Example 6.

events v3 and v’3 share s :: q?A;,. Moreover vi#v;, for each i, j = 1,2,3, whereas

v and v3 are concurrent, and so are v, and v;. The event v4 has two conflicting
sets of causes {v1,1v2,v3} and {v],v},v}}, and the nonempty configurations are
il fvi, val, vy, val, {VerZ/VS} and {vy,v2,v3,v4}, as well as {v]}, { 1,v2} vl
i, vy, vitand {vi,v), v}, va). Let X = {v1,vo,v3,v4} and X’ = {v],v7, v}, v4}. Note
that the event v4 has two concurrent causes in both X and X’. The proving
sequences are:
Vi, ViV2, Vi;V3, V1;V2;V3, V1,V3;V2,  V1;V2;V3; Ve, V1;V3,V2; V4
Vi, VVy, VIV, VVRVE, VVRVY, ViV VEiVa,  VVEVaiva
Note that there are two proving sequences corresponding to the conﬁguration X
(and similarly for X" and each of the configurations {v1,v2,vs} and {v], v}, v3}).
A graphical representation of SV(N) is given in Figure 2, where the arrows
represent the flow relation < and the vertical dotted line for # indicates that all

the events on the left of the line are in conflict with all the events on the right.

The next example shows that the relations of flow and conflict on network
events are not necessarily disjoint.




Example 6. Let N be the network
PLa!A; rAs; rA@qIA”; rAL; A, T gl p?A+p?A” T r[p?A1; p?A2; S!As T s[r2As 1.
Then SV(N) has seven network events:

vi={p:=qld,qup?A} vi={p=ql,qup?A’}
va ={p = QA rlAg, 1 p?Ag} vy ={p = qIA;rAL 1 p2Ay)
v3 ={p:: qIA; AL A, 1 p2Ag; p?A,) vy ={p = QA% AL AL, 1 p?Ag; p2As}

vy = {r p?Aq;p?A2; S!S, S i r?As)

We have vi < v; fori = 2,3 and v; < v4 for j = 2,3. Similarly, we have v < v/
fori=2,3 and 1/;. < vy for j = 2,3. Moreover v; #v;. for each i,j = 1,2,3. Finally,
we have v, < v3 and v} < v}, and also the cross flows v, < v} and v}, < vs.
Since we have also v, #v] and v/ #v3, this shows that the two relations < and
# are not disjoint. The nonempty configurations are {11}, {v1,v2}, {v1,v2, v3} and
{v1,v2,v3,v4}, as well as {vi}, {v},vi}, (v}, v}, vi} and {v],v}, v}, v4}. The proving
sequences are:

Vi, Vi,V2, Vi,V2,V3, Vi,V2,V3,V4
vy, Vv, VEVRLVE, Vvhvivs
A graphical representation of SV(N) is given in Figure 3, where we use the same
conventions as for Example 5.

5 Global Types

Global types are built from choices among atomic communications.

Definition 17 (Global types). Global types G are defined by:

G :==p—q:HigA;G |GG | utG | t | End
where Aj # Ay forall j,h €1, j # h, i.e. messages in choices are all different.

Sequential composition (;) has higher precedence than choice (&). Recursion
must be guarded by atomic communications and it is treated equi-recursively.
While there is no syntactic restriction on parallel composition of global types,
our definition of projection will enforce that the component types have disjoint
sets of participants. When [ is a singleton, a choice p — q : HjcA;; G; will be

rendered simply as p 5 q; G. In writing global types, we omit the final End.

Participants of global types are defined inductively as follows:
part(p — q: Big/Ai; Gi) = {p, g} U Ui part(Gi)
part(ut.G) = part(G) part(t) = part(End) = 0
The projection of a global type onto participants is given in Figure 4. As
usual, projection is defined only when it is defined on all participants. Because
of the simplicity of our calculus, the projection of a global type, when defined,
is simply a process. The projection of a choice type on the sender produces an
output process sending one of its possible messages to the receiver and then
acting according to the projection of the corresponding branch. Similarly for the
projection on the receiver, which produces an input process. Projection of a choice
type on the other participants is defined only if it produces the same process

10



for all the branches of the choice. This is a standard condition for multiparty
session types. The projection of a parallel global type Gy || G, on a participant p
is undefined if p appears in both G; and G;. Otherwise there are two possibilities:
1) if p appears in G; but not in Gj, for i # j, then (G1 || G2) ['p yields the projection
of G; on p; 2) if p appears in neither G nor Gy, then (G || Gy) I'p yields 0.

From now on we will only consider projectable global types.

The definition of well-typed network is given in Figure 5. We first define a
preorder on processes, P < P’, saying when a process P can be used where we expect
process P’. In particular, P < P’, if either P is equal to P’ or they are both input
processes receiving messages from the same participant, P may receive more
messages than P’ and after receiving the same message the process P continues
with a process that can be used when we expect the corresponding one in P’. The
double line indicates that the rule is interpreted coinductively [45] (Chapter 21).
A network is well typed with global type G, if all its participants have associated
processes that behave as specified by the projections of a global type. In Rule
[NET], the condition part(G) C {p; | i € I} ensures that all participants of the
global type appear in the network. Moreover it permits additional participants
that do not appear in the global type, allowing the typing of sessions containing
P O] for a fresh p— a property required to guarantee invariance of types under
structural congruence of networks.

Example 7. The networks of Examples 2, 3, 5 and 6 can be typed respectively by
G =utp—-q:(A;tAN)
’ /\1 AZ /\3
G =p>qgg->ornr-s
G” =peq:(A;pgr;qgs;rgsEEA’;pgr;qgs;rgs)
G.”’:p—>q;()\;pﬂ>r;pgr;rgsEElA’;pgr;pgr;rgs)
The network of Example 4 instead cannot be typed.

To formalise the classical properties of Subject Reduction and Session Fidelity
[33,34], we use the standard LTS for global types given in Figure 6. Rule [Icomm]
is justified by the fact that in a projectable global type p — q : HjcA;; Gi, the

LieP?A;Gi M ifr=q,
(p —q: EIEIAU Gl) rr = @,‘dq!Ai; Gi rr ifr= P,
Gilr ifG;[r =Gj[rforallijel

(G111G2)Ip =Gilpif p ¢ part(G)) for {i, j} = {1,2}

X:.G if p € part(G
(ut.G)rp:{g‘ e iffpepart@ % Endrp=o0

otherwise

Fig. 4: Projection of global types onto participants.
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Pi<Q i€l Pi<Q; i€l

0 < 0[S-0] [S-IN] [S-ouT]
Zieropp?Ai Py < Ligip?A; Q; B, pA; P < B, piA; Q;
P;<Glp;, i€l part(G)Cipiliel}
[NET]
F [ Lol Pi1: G

Fig. 5: Preorder on processes and network typing rule.

pAjq . G = G'i
p—q:Higri;Gi— G;  jel [Ecomm] — [Pcomm]
G 1G,— Gi I G2

G- G iel part(@)nip,ql=0

[Icomm]

p—q:Hic1;G65p - q: BHigra; G

Fig. 6: LTS for global types.

behaviours of the participants different from p and q are the same in all branches,
and hence they are independent from the choice and may be executed before it.

Theorem 2 (Subject Reduction). If - N : G and N = N/, then G = G’ and
FN G

Theorem 3 (Session Fidelity). If+ N : Gand G = G/, then N = N’ and v N’ : G'.

6 Event Structure Semantics of Global Types

We define now the event structure associated with a global type. The events of
this PES will be equivalence classes of particular sequences of communications.

Let o denote a finite (and possibly empty) sequence of atomic communications,
and Seq denote the set of these sequences.

Definition 18 (Permutation equivalence). The permutation equivalence on Seq is
the least equivalence ~ such that

g-a1 a0 ~ o-ap-ar-o’ if part(ar) Npart(az) =0
We denote by [o]. the equivalence class of the sequence o, and by Seq/~ the set of
equivalence classes on Seq. Note that [e]. = {€} € Seq/~, and [a]. = {a} € Seq/~ for
any . Moreover |o’| = |o] for all o’ € [o]., where | - | yields the length of the sequence.

The events associated with a global type, called global events and denoted by
¥,y’, are equivalence classes of particular communication sequences that we call
pointed. Intuitively, all communications in a pointed sequence are causes of some
subsequent communication. Formally:
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Definition 19 (Pointed communication sequence). A communication sequence
o=aq - - ay, n >0, is said to be pointed if

foralli, 1 <i<mn, part(a;) N Uj<j<, Part(a;) # 0
Note that the condition of Definition 19 must be satisfied only by the a; with
i < n, thus it is vacuously satisfied by any communication sequence of length 1.

Example 8. Let a1 = pA1Q, az = rA;s and a3 = rAzp. Then 07 = a1 and 03 =
a1 - @y - a3 are pointed sequences, while 0, = a3 - a is not a pointed sequence.

Definition 20 (Global event). Let 0 = ¢’ - a be a pointed communication sequence.
Then y = [o]. is a global event with communication «, notation comm(y) = a.

Notice that comm(-) is well defined due to the following proposition, where
last(o) denotes the last communication of ¢.

Proposition 4. Let ¢ be pointed communication sequence. If 6 ~ o’, then ¢’ is a pointed
communication sequence and last(o) = last(co”).

In order to interpret global types as ESs, we define a form of prefixing of a global
event by a communication, in such a way that the result is again a global event.

Definition 21 (Causal prefixing of a global event by communications). The
causal prefixing of a global event by a nonempty sequence of communications is defined
as follows:

1. The causal prefixing of a global event by a communication is defined by
[PAqQ - o). ify =][o]. and pAq- o is a pointed sequence
otherwise

2. The mapping o naturally extends to communication sequences
(@-0)oy=ao(ocoy) o#e

pAQoy =

Definition 22 (Event Structure of a Global Type). The event structure of global
type G is the triple

S9(G) = (FE(C), <, #)
where:

1. GE(Q) is defined by induction on the structure of G as follows:
(a) GS(p — q: BigiAi; Gi) = UierlipAialt U Uierfpriq o yi 1 i € GE(G))
() GG || Gz) = GB(G1) U G(Gr),
(c) GE(End) = &(t) = 0;
(d) GE(ut.G) = GEGlut.G/t));
2. the < relation on the set of events GE(G) is given by:
[c]. < [0']~ if 00" ~ ¢ for somec”;
3. the # relation on the set of events GE(G) is given by:
[o]. # [0’]. if 0 ~ 01-PAQ-02 and ¢’ ~ 01 -pPA'qQ- 0 forsomeoy,02,05,p,9, A, A’
such that A # A'.

Note that, due to Clause 1d of Definition 22, the set GE(G) is denumerable.
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7 : 71

{pAq) : {pA’q}

/ ’

V2 4

N 3
{pAg-pAir} pAq qus : pA'q pAlr {pA'q-qAss)

\, {pAqQ- p/\lr qus rAss, / : \ {pA’q p/\lr q)\zs rAss, */

pAQ-gAzs - pAsr-rAss) pA’q-qAzs- pAir-riss}

Fig.7: Relation between events of S9(G”) in Example 9.

Example 9. Let G; = p M qr A S;r A pand G, =r X S;p My qr A p. Then
&(C1) = &(Gr) = {y1,72,y3} where

yi={phal  y2={rdss}  y3={pAiq-rdss-risp,riss- pAiq-risp}
with y1 < y3 and y, < y3. The configurations are {1}, {y2} and {y1, 2, 3} and
the proving sequences are

V1 V2 V1,Y2 V2;71 Y1,Y2;)3 V2;71,7)3
If G’ is as in Example 7, then GE(G’) = {y1, )2, ¥3} where
y1={phal  y2={pMq-ad2rt  y3 ={pAiq-gdar-riss}

with y1 < 92 < y3. The configurations are {y1}, {y1, 72} and {y1, 2, 73}. Thereis a
proving sequence corresponding to each configuration. Notice that G” types the
network of Example 3.

If G” is as in Example 7, then GE(G”) = {y1, V], V2, V5, V3, V3, V4, Vy} where
={pAat  yp=ipAal 2 =ipAa-plirt  y; = {pAg-plir)
73 = {PAQ - qAzs) 75 ={PA'q - gqAss)
ya = {pAQ - pAir- gz - rAss, pAQ - gAas - pAsr - rAss}
= {pA’q- pAir- ghzs - rAss, pA’q - qAss - pAsr - rAss)

withy1 <92 <ys, 71 <y3<ysand y; <y, <y, 7] <75 <y, The configura-
tions are {7/1 }/ {7//1}/ {7/1/ VZ}/ {)/{, 7/5}, {)/1, 7/3}1 {Vi/ )/g}/ {Vlf V2, 7/3}1 {Vir )/'2/ )/é}/ and
1,72, 73,74l v1, 75,75 vyl The configurations with less than three elements
correspond to only one proving sequence, while the others correspond to two
proving sequences each. Notice that G” types the network of Example 5. A
graphical representation of S9(G”) is given in Figure 7, where the arrows rep-
resent the covering relation of <. Note that the event structure is prime and so
conflict is hereditary. Indeed, since the events maintain their complete history
the events y, and y; are in conflict.

Proposition 5. Let G be a global type. Then SY(G) is a prime event structure.

Observe that while our interpretation of networks as FESs exactly reflects
the concurrency expressed by the syntax of networks, our interpretation of
global types as PESs exhibits more concurrency than that given by the syntax
of global types. This is because the parallel composition of global types is only
defined when its arguments have disjoint participants, and thus it cannot be
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used to specify concurrency between two forking paths that may join again,
e.g., two concurrent events that are both causes of a third event, as 1 and y, in
&E(G1) = G(Gy) in the above Example 9.

7 Equivalence of the two Event Structure Semantics

We establish now our main result for typed networks, namely the isomorphism
between the domain of configurations of the FES of the network and the domain of
configurations of the PES of its global type. We start by stating the correspondence
between the communication sequences of networks and the proving sequences
of their event structures. To this end, we introduce some auxiliary definitions.

Definition 23 (Truncation of a communication sequence). Let ¢ = a3 --- ay
be a communication sequence with n > 0. For each i = 1,...,n + 1, we define
0li=det @1 - - aj-1 to be the ith truncation of o, where by convention ay --- aj—1 = € if
i = 1. Note that 6|,,.1 = 0.

Definition 24 (Projection). The projection of the communication sequence ¢ on
participant p, notation o+ p, is the process event defined by:

1. (pAq-0)»>p =qA-c-p;

2. (QAp-0)+>p =q?A-0% p;

3. (rAs-o)=>p =0 pifp#r,s;

4. e p =e
It is easy to verify that if part(a;) N part(az) = 0, then (a1 - a) = p = (a2 1) = P
for all p. Therefore o ~ ¢’ implieso+> p =0’ + p.
Definition 25 (Network events from communications). If 0 = a; --- a, i5 a
communication sequence with part(a;) = {p;, i}, we define the sequence of network
events corresponding to o by

nec(o) = vi;- - ;vu

where vi = {p; ©: 0lis1 9 Pi, Qi 2 0lisn o Qi) for 1 <i<n.

Itisimmediate to see that, if 0 = pAq, then nec(c) is theevent {p :: q!A,q :: p?A}.
Lemma1l. Let N5 N

1 Ifip:nqun} e N6(N'), then{p o1 -1, 0% q -1} € NE(N);
2. nec(o) is a proving sequence in SN(N).

Lemma 2. If vy;--- ;v, is a proving sequence in SN(N), then N 5 N’ where o =
comm(vy) - - - comm(vy,).

Similar relations hold between reductions of global types and their events.

Definition 26 (Global events from communications). If o = a3 - -+ a, is a com-
munication sequence, we define the the sequence of global events corresponding to
o by

gec(o) = yi;- 5
where y; = olio[a;]~ for1 <i < n.
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Lemma 3. Let G5 G'.

1. If y e G&(G), then g o y € G&(G);
2. gec(o) is a proving sequence in S9(G).

Lemma4. If y1;--- ;y, is a proving sequence in S9(G), then G 5 G’ and ¢ =
comm(yy) - - -comm(yy,).

To prove our main theorem we will also use the following separation result
from [9] (Lemma 2.8 p. 12):

Lemma 5 (Separation[9]). Let S = (E, <, #) bea flow event structureand X, X’ € C(S)
be such that X C X'. Then there exist e € X'\ X such that X U {e} € C(S).

We may now show the correspondence between the configurations of the
FES of a network and the configurations of the PES of its global type.
Let =~ denote isomorphism on domains of configurations.

Theorem 4. If+ N : G, then D(SN(N)) =~ D(SY(G)).

Proof. By Lemma 2 if vq;--- ;v, is a proving sequence of SM(N), then N 5N
where ¢ = comm(vy) - --comm(v,,). By applying iteratively Subject Reduction
(Theorem2) G5 G’ and + N’ : G'. By Lemma 3(2) gec(o) is a proving sequence
of S9(G).

By Lemma 4 if y1; - - - ;y, is a proving sequence of SY9(G), then G 2 G’ where
o = comm(yy) - --comm(y,). By applying iteratively Session Fidelity (Theorem 3)
N N’ and - N’ : G’. By Lemma 1(2) nec(o) is a proving sequence of SV (N).

Therefore we have a bijection between D(SV(N)) and D(S89(G)), given by
nec(o) <> gec(o) for any o generated by the (bisimilar) LTSs of N and G.

We show now that this bijection preserves inclusion of configurations. By
Lemma 5 it is enough to prove that if vq;---;v, € C(SN(N)) is mapped to
Y15 vn € C(S9(Q)), then vy -+ ;vy;v € CSN(N)) iff y1;--- 5 yusy € C(S9(Q)),
where y1; -+ ;¥4 v is the image of vq; - - - ; v,; v under the bijection.

Suppose o = comm(vy) - - -comm(v,) = comm(y1) - - - comm(yy,).

Let comm(v) = a. By Lemma 2, if vq;--- ;v,;v is a proving sequence of
SN(N), then N 5 Ny = N’. Then we getv={puo-a=p,q:o-as q}by
Lemma 1(1). By Definition 25 nec(o - @) = vy;- -+ ;v,;v. By applying iteratively
Subject Reduction (Theorem 2) G = Gy — G’ and + N’ : G’. By Definition 26
gec(o - @) = y1;-++ ;¥w;v- By Lemma 3(2) gec(o - a) is a proving sequence of
SY(G).

Let now comm(y) = a. By Lemma 4, if y1; - -+ ; ;) is a proving sequence of
SY9(G), then G 5 Gy = G’. By Lemma 3(1) we have y = [0 0 a].. By Definition 26
gec(o - a) = y1;-++ ;Vn; y- By applying iteratively Session Fidelity (Theorem 3)
NS NyS N and F N : G. By Definition 25 nec(o - @) = vy;--- ;vy;v. By
Lemma 1(2) nec(o - a) is a proving sequence of SV (N).
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8 Related Work and Conclusions

Event Structures (ESs) were introduced in Winskel’s PhD Thesis [50] and in the
seminal paper by Nielsen, Plotkin and Winskel [42], roughly in the same frame
of time as Milner’s calculus CCS [40]. It is therefore not surprising that the rela-
tionship between these two approaches for modelling concurrent computations
started to be investigated very soon afterwards. The first interpretation of CCS
into ESs was proposed by Winskel in [51]. This interpretation made use of Stable
ESs, because PESs, the simplest form of ESs, appeared not to be flexible enough
to account for CCS parallel composition. Indeed, since CCS parallel composition
allows for two concurrent complementary actions to either synchronise or occur
independently in any order, each pair of such actions gives rise to two forking
computations: this requires duplication of the same continuation process for
each computation in PESs, while the continuation process may be shared by
the forking computations in Stable ESs, which allow for disjunctive causality.
Subsequently, ESs (as well as other nonsequential “denotational models” for
concurrency such as Petri Nets) have been used as the touchstone for assess-
ing noninterleaving operational semantics for CCS: for instance, the pomset
semantics for CCS by Boudol and Castellani [7, 8] and the semantics based on
“concurrent histories” proposed by Degano, De Nicola and Montanari [25,23,
24], were both shown to agree with an interpretation of CCS processes into some
class of ESs (PESs for [23, 24], PESs with non-hereditary conflict for [7] and FESs
for [8]). Among the early interpretations of process calculi into ESs, we should
also mention the PES semantics for TCSP (Theoretical CSP [11,43]), proposed by
Goltz and Loogen [39] and generalised by Baier and Majster-Cederbaum [2], and
the Bundle ES semantics for LOTOS, proposed by Langerak [38] and extended
by Katoen [36]. Like FESs, Bundle ESs are a subclass of Stable ESs. We recall the
relationships between the above classes of ESs (the reader is referred to [10] for
separating examples):
Prime ESs C Bundle ESs C Flow ESs C Stable ESs C General ESs

More sophisticated ES semantics for CCS, based on FESs and designed to
be robust under action refinement [1,22,29], were later proposed by Goltz and
van Glabbeek [28]. Importantly, all the above-mentioned classes of ESs, except
General ESs, give rise to the same prime algebraic domains of configurations, from
which one can recover a PES by selecting the complete prime elements.

More recently, ES semantics have been investigated for the m-calculus by
Crafa, Varacca and Yoshida [17,48, 18] and by Cristescu, Krivine and Varacca [19-
21]. Other causal models for the m-calculus had already been put forward by
Jategaonkar and Jagadeesan [35], by Montanari and Pistore [41], by Cattani and
Sewell [16] and by Bruni, Melgratti and Montanari [12]. The main new issue,
when addressing causality-based semantics for the n-calculus, is the implicit
causality induced by scope extrusion. Two alternative views of such implicit
causality had been proposed in previous work on noninterleaving operational
semantics for the m-calculus, respectively by Boreale and Sangiorgi [6] and by
Degano and Priami [26]. Essentially, in [6] an extruder (that is, an output of a
private name) is considered to cause any action that uses the extruded name,
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whether in subject or object position, while in [26] it is considered to cause only
the actions that use the extruded name in subject position. Thus, for instance, in
the process P = va (b{a) | c{(a) | a), the two parallel extruders are considered to be
causally dependent in the former approach, and independent in the latter. All the
causal models for the ri-calculus mentioned above, including the ES-based ones,
take one or the other of these two stands. Note that opting for the second one
leads necessarily to a non-stable ES model, where there may be causal ambiguity
within the configurations themselves: for instance, in the above example the
maximal configuration contains three events, the extruders b(a), c(a) and the
input on 4, and one does not know which of the two extruders enabled the input.
Indeed, the paper [18] uses non-stable ESs. The use of non-stable ESs (General
ESs) to express situations where a computational step can merge parts of the
state is advocated for instance by Baldan, Corradini and Gadducci in [3]. These
ESs give rise to configuration domains that are not prime algebraic, hence the
classical representation theorems have to be adjusted.

In our simple setting, where we deal only with single sessions and do not
consider session interleaving nor delegation, we can dispense with channels
altogether, and therefore the question of parallel extrusion does not arise. In this
sense, our notion of causality is closer to that of CCS than to the more complex one
of the m-calculus. However, even in a more general setting, where participants
would be paired with the channel name of the session they pertain to, the issue of
parallel extrusion would not arise: indeed, in the above example b and ¢ should
be equal, because participants can only delegate their own channel, but then they
could not be in parallel because of linearity, one of the distinguishing features
enforced by session types. Hence we believe that in a session-based framework
the two above views of implicit causality should collapse into just one.

We now briefly discuss our design choices. Our calculus uses synchronous
communication - rather than asynchronous, buffered communication - because
this is how communication is modelled in ESs, when they are used to give
semantics to process calculi. Concerning the choice operator, we adopted here
the basic (and most restrictive) variant for it, as it was originally proposed for
multiparty session calculiin [33]. This is essentially a simplifying assumption, and
we do not foresee any difficulty in extending our results to a more general choice
operator allowing for different receivers, where the projection is more flexible
thanks to a merge operator [34]. Finally, concerning subtyping, we envisaged to
use the standard preorder on processes, in which a process with fewer outputs is
smaller than a process with more outputs. Session Fidelity becomes weaker, since
the reduction of global types only assures the reduction of networks, possibly
with a different atomic communication. The main drawback is that Theorem 4
would no longer hold, and the domains of network configurations would only
be embedded in the domains of their global type configurations.

As regards future work, we plan to define an asynchronous transition system
(ATS) [4] for our calculus, along the lines of [10], and show that it provides a
noninterleaving operational semantics for networks that is equivalent to their
FES semantics. This would enable us also to investigate the issue of reversibility,
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jointly on our networks and on their FES representations, since the ATS semantics
would give us the handle to unwind networks, while the corresponding FESs
could be unrolled following one of the methods proposed in existing work on
reversible event structures [44, 21, 30, 31].
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