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Abstract

A formalism is proposed to describe entangled quantum histories, and their entanglement entropy.
We define a history vector, living in a tensor space with basis elements corresponding to the allowed
histories, i.e. histories with nonvanishing amplitudes. The amplitudes are the components of the
history vector, and contain the dynamical information. Probabilities of measurement sequences, and
resulting collapse, are given by generalized Born rules: they are all expressed by means of projections
and scalar products involving the history vector. Entangled history states are introduced, and a history
density matrix is defined in terms of ensembles of history vectors. The corresponding history entropies
(and history entanglement entropies for composite systems) are explicitly computed in two examples
taken from quantum computation circuits.

1. Introduction

Formulations of quantum mechanics based on histories, rather than on states at a given time, have their logical
roots in the work of Feynman [1, 2] (see also the inspirational Chapter 32 of Dirac’s book [3]), and could be seen
as generalizations of the path-integral approach. A list with the references more relevant for the present work is
givenin [4-20].

We have seen in [20] how to define a history operator on the Hilbert space H of a physical system, in terms of
which to compute probabilities of successive measurements at times 4, ...t,. In the present note we introduce a
history vector, living in a tensor space H ® H ... ® H, where every H corresponds to a particular f;. This vector
contains the same information as the history operator, but is more suited to define entanglement of histories,
and compute their density matrices and corresponding von Neumann entropies.

This approach is similar in spirit to the one advocated in ref.s [15]-[ 19], but with substantial differences. In
[15]-[19] the scalar product between history states depends on chain operators containing information on
evolution and measurements. In our framework the algebraic structure does not depend on the dynamics, and
all possible histories (not only ‘consistent’ sets) correspond to orthonormal vectorsin H ©® H ... © H.The
dynamical information is instead encoded in the coefficients (amplitudes) multiplying the basis vectors.

The Born rules for probabilities and collapse are extended to history vectors in a straightforward way. Every
history vector has a pictorial representation in terms of allowed histories, and its collapse after a measurement
sequence entails the disappearance of some histories. In this sense measurement ‘alters the past’, but neverina
way to endanger causality. As an illustration, the formalism is applied to the entangler-disentangler and the
teleportation quantum circuits.

The content of the paper is as follows. Chain operators and probabilities for multiple measurements at
different times are recalled in section 2. Section 3 introduces history amplitudes, an essential ingredient in the
definition of the history vector, given in section 4. The generalized Born rules for probabilities of outcome
sequences and collapse are derived, using appropriate projectors on the history vector. In section 5 we propose a
definition for history entanglement, based on a tensor product between history states. Section 6 deals with
density matrices, constructed using ensembles of history vectors. This allows the computation of history
entropy, and history entanglement entropy for composite systems. Two examples based on quantum
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computation circuits are provided in section 7, and we calculate their history entanglement entropy. Section
8 contains some conclusions.

2. Chain operators and probabilities

Asrecalled in [20], probabilities of obtaining sequences & = a1, iy, ... v, of measurement results, starting from
an initial state |¢)), can all be expressed in terms of a chain operator Cy, ,. This operator encodes measurements at
times t, ...t, corresponding to projectors P,,,...P, ,and unitary time evolution between measurements:

Cw,a = pa,,U(tn’ tnfl) Pan,l U(tnfl) tnfz) Pa1 U(tl) tO)PL (21)

withty <t; <--- <t,_; < t,and Py, = |¢)(1|. The P, are projectors on eigensubspaces of observables,
satisfying orthogonality and completeness relations:

Pa,-Pﬂ,- = 6&,-,@13(1',-) I= Z P(l,‘ (2.2)

Q;

and U(#; 1, 1;) is the evolution operator between times ¢;and t; , ;.
The probability of obtaining the sequence « is given by

P, ap,--a) = Tr(CpaCy ) (2.3)

and could be considered the ‘probability of the history’ ¢, vy, - -+ v,,. We can easily prove that the sum of all these
probabilities gives 1:

Y Tr(CyoCl,) =1 (2.4)

by using the completeness relations in (2.2) and unitarity of the U(#; 1, t;) operators. We also find

Zp(w) Qq, aZ)"')an) = p(/l/)’ Qq, a2)"')an71) (25)

,

However other standard sum rules for probabilities are not satisfied in general. For example relations of the type

ZP(% Qap, i, OZ3) = P(T/J: Qaq, 043) (26)

hold only if the so-called decoherence condition is satisfied:
Tr(ng,(yclz)g) +cc.=0 when a=( 2.7)

as can be checked on the example (2.6) written in terms of chain operators, and easily generalized. Note that for
chain operators the following is trivially true:

Z Cw,al,...a,, = Cw,al,...(/k,',.”a,, (2.8)
Q;
duetoy >, B, = I.
Ifall the histories we consider are such that the decoherence condition holds, they are said to form a
consistent set, and can be assigned probabilities satisfying all the standard sum rules.
In general, histories do not form a consistent set: interference effects between them can be important, as in
the case of the double slit experiment. For this reason we will not limit ourselves to consistent sets. Formula (2.3)
for the probability of successive measurement outcomes holds true in any case.

3. Amplitudes
If P, = |ay) (@), ie. the eigenvalue «,, is nondegenerate, the chain operator can be written as
Cora = la) AW, @) (] (3.1)
where
AW, a) = (Ut ta-1) B, Ultuos ta2) - By Ut 00)|¥) (32)
is the amplitude of the history ¥, o, and
AW, )P = Tr(Cy,aCJ,) = P, @) (3.3)

This easily generalizes to the case of a g,,-degenerate eigenvalue «,,, with corresponding (orthonormal)
eigenvectors |ay,, 1) (i=1,...g,):
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Cpa = Y lom AW, ) (Y], Y |AiW, @) = Tr(CyaCl,) = p(¥), @) (3.4)

1 1

the amplitudes A;(1), ) being given by formula (3.2) where («,,| is substituted by (a,, i|.
A scalar product between chain operators can be defined as

(Cyr Cp) = Tr(CpaCy) 5) (3.5)

All the properties of a (complex) scalar product hold, in particular
(Cypor Cpa) =p(W, ) =0 &=  Cya=0 (3.6)

Note: if we divide the set vy, ...v,_; into two complementary sets o;,...v;, and .. aj withm+p=n—1,
then

ST AW, e, ) = A, ey 1) (3.7)

Qj

jpee

because of the completeness relations in (2.2). This just rephrases property (2.8) for chain operators, with the
difference that a, is never summed on since it enters the amplitude (3.2) as a bra rather than as a projector.

4. History vector, probabilities and collapse

Consider a physical system in the state |1)) at time t, and devices that can be activated at times f;, ...t, to measure
given observables, with projectors on eigensubspaces as in (2.2). Before any measurement, the system can be
described by a history vector, living in n-tensor space

1) = YA, @)la) © ... lay) b

where the coefficients A(1), «) are given by the amplitudes of the histories « = ay, ..., computed as in the
previous section, and |y ) are a basis of orthonormal vectors at each time f;. [f no degeneracy was present, these
vectors would be just the eigenvectors of the observable(s) measured at time #;. If the oy (k < n) eigenvalues are
degenerate, the information on degeneracy is lost in the symbol |ay), but is contained in the amplitude A(¢), ),
where the projectors P, on the eigensubspaces are present. In case o, is degenerate, the sum on v in (4.1) must
include the degeneracy index i, and (4.1) will be short for

V) = ZAi(¢’ D) © ... © lay_y) © |y, i) (4.2)

Note: In the following we will assume for simplicity that o, is nondegenerate: all the results generalize easily to
the degenerate case, usually by summing on the index i.

The ‘time product’ ® has all the properties of a tensor product. The symbol ® (or just a blank) will be
reserved for tensor products between states of subsystems at the same time #;. The vector is normalized since

(U0) = > IA@W, o) =1 (4.3)
«

The history content of the system is defined to be the set of histories &« = v, ... v, contained in | V), i.e. all
histories having nonvanishing amplitudes.

Probabilities of measuring sequences & = a, ..., are given by the familiar formula

P, @) = (V[R|¥) = AW, a)|*. (4.4)
with
P, = |Oz1> <041| ©.0 Ian> <an| (4.5)

Formula (4.4) holds for sequences of measurements occurring at all times t1, ...,

What is the effect of a sequence of measurements with results vy, ..., on the system described by [¥)? We
can characterize this effect as a collapse of the history vector, implemented mathematically by IP,. This projection
collapses the state | ) into the basis vector |a;) ® ... ® |a,) up to a phase:

Pl ¥)

W) —
(VIF )

=) © ... ® |ay) (4.6)

The basis vector describes a system that has been ‘completely measured’ with results vy, ... v, Another sequence
of measurements of the same observables at times ¢; would yield the same results vy, ...y, with probability one,
according to the rule (4.4).

A partial measurement at times ¢;,...t;, (m < n)yielding the sequence c;,...«;, likewise projects the state
vector |¥) into
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Pal¥)

W) = —=
ALY

(4.7)

where now B, is the projector on the sequence «;,...q;, ,1.e. atensor product of identity operators and
projectors at times ¢;,...t;, :

B,=10®..0ap)la| ©I® ..o |ay,){a| @106 .. (4.8)

Then |¥,,) is given, up to a normalization, by the expression (4.1) where the sum on avinvolves only the times #;
different from t;,...t; , the rest of the a’’s being fixed to the values c;,...«;,,.

The projected history vector |¥,,) can be used to compute conditional probabilities. The probability of
obtaining the results 3;,...3; attimes t;,...t; , given that ;,...cv;,, are obtained at times t;,...;,, (withjy, ... jp

and iy, ...i,, having no intersection, and union coinciding with 1, ...n), is given by
p(Bla) = (Wo| P W) (4.9)

Finally, to compute probabilities for sequences c;,...;, in partial measurements at times ¢;,...t; , weneed a
‘shorter” history vector with a reduced number of factors in the ® product corresponding to the subset t;,.. .t;, .
This vector can be obtained from P,|¥) (with B, as in (4.8)) by using a further projection P, defined on the basis
vectors as:

Pi. i) © .. ©lay) =lay) © .. O |as,) (4.10)
if t;,...t; containst,, and as
Pi, i) © o © lay) = lag) © .o © lai,) © |oy) (4.11)
if t;,...t;, does not contain t,. For example
Piaslan) © |ag) © las) © |ag) © |as) = |an) © |as) © |as) (4.12)
Piolar) © laa) © laz) © laa) © |as) = |aw) © |az) © |as) (4.13)

The action of P is then extended by linearity on any | ). Applying it to the vector B,|U) yields, when t; ,...1;
contains t,:

P inBal®) = Pi iy Y. AW, a)|ag) © ... © |ag)

Qjp---Qj

P Xy

=1 Y AW o) |lay) © ... ©la;,) =AW, qjp...qi) i) © .. © |oy,) (4.14)
Qjpy-o

where we have used equation (3.7) in the second line. Then the probability |A (¢, c,...q;,)|* of obtaining the
partial sequence ;,...q;, can be expressed as a scalar product

P, Qi) = AW, iy )P = (VIBP] Py Bal ) (4.15)
where (o] ® ... ©® (anl’Pz,”_im is the conjugate of (4.10) or (4.11). Note that
Qiy..in = P i Piin (4.16)
is a hermitian operator in n-tensor space, with matrix elements
(]l © ... © Qi |B1) © o © 1Bn) = by, bais,, (4.17)

When t;,...t; does not contain t,, &, must be contained in « o Qs and we have

P inBal®) = Pip i Y AW, @) © . O o)

Qjppe Xyl

=3 2 AW @[l © . ola,) © la)

@y \ Q- @y

= ZA(¢, Qe Oy ) ) @ e © Ja,) © |y (4.18)

Uy

The sequence probability [A (), cv,...«;, )| is given by the same scalar product:
<\II|E¥QI'1,A.AimEi|lI’> = Z IA (¢’ Qe O an) |2 = |A (d)a Q.. -aim) |2 (419)

n
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in virtue of relation (2.5). Therefore we have established the formula
P, ajy...a;) = (VEQ,. i, Pal¥) (4.20)

for any partial sequence a,...q;,.

Note: when m = 0 (and therefore c, is contained in ... v jp), = identity in tensor space and P projects
ont,. The projected vector in (4.18) becomes 3, A (%), ) |cv,) and is just the (usual) state vector |i)(t,,)) of the
system at time t,,, since

W)(tn» = U(ty ) |¢> = Z Ian> <an| U (ti to) |1/1> = Z A, ay) |an> (4.21)
(’Yﬂ ("Yl

In conclusion, probabilities for (sequences of) measurements at any times can be computed via scalar products

involving appropriate projections of the history vector | V).

5. History entanglement

Itis useful to define a tensor product between history vectors of subsystems. On the basis history vectors the
product acts as

(o) ©@ . © la))(B) © oo © 1Bn) = ) |B1) © .. © o) |Bn) 5.1

and is extended by bilinearity on all linear combinations of these vectors. No symbol is used for this tensor
product, to distinguish it from the tensor product ® involving different times .
This allows a definition of product history states, which are defined to be expressible in the form:

(Z AW, d)|ag) © ... © I%))(Z AW, PIBY) © ... © I5n>) (5.2)
«a 8

or, using bilinearity:

ZA(Z/% Oé)A(i/f, /B)lal/81> ©..0 |an6n> (5-3)
o,

with |, 3;) = |o;)| ;) for short. A product history state is thus characterized by factorized amplitudes A(1), v,
B) = AW, AW, B).

If the history state cannot be expressed as a product, we define it to be history entangled'. In this case, results
of measurements on system A are correlated with those on system B and viceversa. Indeed if the amplitudes A(¢),
a, ) in the history state

[UAB) =S~ A(, a, B)|aif) @ .. © |anBu) (5.4)
a3

are not factorized, the probability for Alice to obtain the sequence a if Bob obtains the sequence 3 depends on (3,
and viceversa, this probability being proportional to |A(), a, 3)|*. On the other hand, if the history state
is a product (5.2), the probability for Alice is |A(¢), a)|* and does not depend on 3 (and likewise for Bob).

We have the following criterion for history entanglement: starting from an initial state |1)) at ¢, we examine
all intermediate states of the system at times t;, given by repeated application of the evolution operators U(t;,
t;_1). Ifatleast one of these intermediate states is an entangled state, then the history state of the system is
entangled. This is because an entangled state at time ¢;implies a correlation between measurements at time t;,
which would be impossible if the history amplitudes for Alice and Bob measurements were factorized. Note that
an entangled initial state |¢/) does not necessarily imply history entanglement, since U(#,, t,) could disentangle it.

The history vector (5.4) describes a bipartite system where the observables being measured at times t; are
local observables of the form A; ® I, I ® B;, with eigenvalues «; and [3; respectively. This is not the most general
history state of a bipartite system: the observables can be chosen to be global operators C; acting on the whole AB,
with eigenvalues ;. Then the history state reads:

UAE =S AW, V) © . © |y (5.5)
.

In this case we cannot extract from |U**) individual histories for the subsystems A and B.
Finally, the correlations in an entangled history system can be distinguished from the ‘classical’ correlations
due to a statistical ensemble of history states, as discussed in next section.

This entanglement is quite different from the one considered in ref.s [15]-[18], where it involves superpositions of history states (without
need of a composite system), and should be considered as a temporal entanglement.
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6. Density matrix and history entropy

A system in the pure history state | ) has the density matrix:

p= 1) (Y 6.1)
apositive operator satisfying Tr (p) = 1(due to (¥|¥) = 1). A mixed history state has density matrix
p =2 pIW) (W (6.2)

with Y;p; = 1,and {|¥;) } an ensemble of history states.
Probabilities of measuring sequences o = ay, ..., in history state p are given by the standard formula:

play,...a,) = Tr(p By) (6.3)

(cfequation (4.4) for pure states).
A (partial) measurement as the one considered in equation (4.7) projects the density matrix in the usual way:

P p B
po— = W) (= 2L (6.4)
Tr(p )
and the probability of obtaining the partial sequence «;,...c;, is given by
plais...ci,) = Tr(p FaQi,...i, Fo) (6.5)

cfformula (4.20).
Ifameasurement is performed on [¥) = ¥ A1), )|}, but the result remains unknown, the density matrix
becomes

b= = TIAG PN () (60

and describes a mixed history state.
Consider now the following two history states:
(1) the pure history state:

) = > A, a)la) (6.7)
where |@) = |a;) ® ... ® |ay,). Its density matrix is
Ppure = [0) (W] = > AW, A, oYF|a) (] (6.8)
(2) the mixed history state
Prixed = Z|A(¢, O4)|2|05> <Oé| (69)

The probabilities of obtaining a sequence « are the same for the two states, so they cannot be distinguished
by a sequence of measurements at times #, ..., Recall the similar situation for ordinary state vectors, where

for example the mixed state p,; ., = %|0> o] + % |1) (1| can be distinguished from the pure state

Ppure = %(|o> + 1)) ((0]+(1]) by measurements in a basis different from the computational one. For history

states however we must stick to the given set of observables at each time f;, which defines the history vector.
Indeed the measuring devices are part of the history description of the quantum system. One can change
description by changing the measuring apparati, but then one must compute the new amplitudes for the new
histories. There is no straightforward operation on the old history state that relates it to the new one”.

But then, how can we distinguish between the two history states (6.8) and (6.9) ? There is a way, by using
partial measurements. Indeed the probability of obtaining a given partial sequence «,,...;,, given by formula
(4.20), takes different values for the states (6.8) and (6.9). In the pure state this probability reads:

2

p(ail)-“)aim) = Tr(ppurgpa(@il,...impa) = |A(’(/}) ail)-“’aim) |2 = Z A(’L/)a Oé) (610)

Qjp---Qjy

Trying to express |«;) in terms of eigenvectors of other observables in (4.1) leads to wrong history amplitudes, as one can easily verify in the
case of a qubit with evolution t, — #; — t,.
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whereas for the mixed state:

(i) = Tr(pied B Qi i B) = D AW, @) (6.11)

aj

jo- X

with aj,...a A complementaryto a,...,q;,. Thus the difference is due to sum of square moduli being different
from square modulus of sum, and we can experimentally distinguish between Ppure and pyuxed-

Consider now a system AB composed by two subsystems A and B, and devices measuring observables
A; = A; ® I'and B; = I ® B;ateach t;. Its history state is

|\IIAB> = ZA(Q/}’ «a, ﬁ)|a161> ©.0 |an/8n> (6-12)
o,

where «;, 3; are the possible outcomes of a joint measurement at time ¢; of A and B. The amplitudes A(¢), o, 3)
are computed using the general formula (3.2), with projectors

P, = lovi, Bi) (i, Bil = lau) (ail @ |8:) (Bl (6.13)
corresponding to the eigenvalues «;, 3;. The density matrix of AB is
pAB — |\I/AB> <\I’AB|
= Z A(¢: Q, /B)A(¢1 O‘/> 6/)*|a1ﬂ1> ©.0O Ianﬂn> <04151| ©.0O <anﬂn| (6-14)
a,Ba,6

Applying here the discussion of the preceding paragraph, we see that if (6.12) describes an entangled state, the
correlations between Alice avand Bob (3 sequences can be distinguished from correlations due to a statistical
ensemble.

We can define reduced density matrices by partially tracing on the subsystems:

AB), pB = T (p"B) (6.15)

pt = Tr(p

In general p* and p” will not describe pure history states anymore.

This definition makes sense only if the reduced density matrices can be used to compute statistics for
measurements on the subsystems. Note that the history vector describes joint measurements on A and B, and
therefore the probability for Alice to obtain a particular sequence vy, ..., in measuring A on her subsystem
must be computed taking into account that also B gets measured (the result being unknown to Alice). This
probability is therefore given by the sum

p@ => pla, B) =D AW, a, B)I? (6.16)
ol Io]

Let us check that we obtain the same answer using the reduced density operator for Alice. Taking the partial trace
on B of (6.14) yields:

pt= 3 AW, o, AW, o/, Blar) © ... © lag) (@] © ... © (ol (6.17)

a,al,3
a positive operator with unit trace. The standard expression in terms of p** for Alice’s probability to obtain the
sequence v is
p(@) = Tr(p"By) (6.18)

with

]P)a = (Pa] ®I) (ORENO; (Ryn ® I): Pa,-: |ai> <Oé,'| (619)
Itis immediate to verify that indeed the probability as computed in (6.18) coincides with (6.16), and therefore
the definition (6.15) gives the correct density matrices for the subsystems.

On the other hand, the probability for Alice to obtain the sequence v, ..., with no measurements on Bob’s

partis different from (6.16). Indeed, the history vector of the composite system is different, since only Alice’s
measuring device is activated, and reads

[UAB) = 3" A(h, )]ar) © ... @ |ou) (6.20)

where the amplitudes A(¢, o) are obtained from the general formula (3.2) using the projectors P, of (6.19). Here
the reduced density operator p* is simply

pt =" AW, AW, )Fl) © ... © law) (] © ... © (au (6.21)

(the trace on B has no effect, since history vectors contain only results of Alice), and the probability of Alice
finding the sequence o is
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p@) = Tr(p"R) = 1AW, ) (6.22)
differing in general from (6.16).
Note: the amplitudes in (6.20) can also be computed as A(1), &) = Y A1, o, ) due to
Y518 (Bl = I — X5 B, 5, = Py, ® I. Thus the difference of the two situations described above is due to
2

STIAW, a, B = (6.23)

B8

Z A@, a, B)
3

in general. In particular cases the equality sign holds, for example when the evolution operator is factorized
U= U"® U, i.e. when A and B do not interact.
Finally, we can define the system history (von Neumann) entropy as

S(pAB) = —pABlog pP (6.24)
and, when p%is a pure history state, the history entanglement entropies for subsystems A and B:
S(p") = —pAlogp?, S(pP) = —pPlogp? (6.25)

Allknown properties of von Neumann entropy hold, since they depend on p*** being a positive operator with
unit trace, and p*, p® reduced density operators obtained by partial tracing. Some of these properties will be
verified in the examples of next section.

7. Examples

In this section we examine two examples of quantum systems evolving from a given initial state, and subjected to
successive measurements. They are taken from simple quantum computation circuits’ where unitary gates

determine the evolution between measurements. Only two gates are used: the Hadamard one-qubit gate H
defined by:

1 1

H|0) = 0) + 1)), H|1l) = 0) — |1 7.1
10) ﬁ(” 1) 1) ﬁ(l> 1)) (7.1)

and the two-qubit CNOT gate:
CNOT|00) = [00), CNOT|01) = |01), CNOT|10) = |11), CNOT|11) = |10} (7.2)

Quantum computing circuits in the consistent history formalism have been discussed for example in [5, 21].

7.1. Entangler-disentangler
Consider the circuitin figure 1. If the initial state (at ) is |00), the history state of the system before any
measurements (at times t,, ...t,) is given by

1
%) = 2(100) © [00) © 00) © [00) + [00) © [00) ® |00) © [10)
+ 110) © [11) ® [10) ® |00) — |10) ® [11) ® |10) ® |10)) (7.3)
the amplitudes being given by formula (3.2), i.e.
A(00, 00, 00, 00, 00) = (00](H ® I)|00) (00]CNOT]00) (00|CNOT]00) (00| (H & I)|00) = +%

A(00, 00, 00, 00, 10) = (10|(H @ 1)]00) (00]CNOT]00) (00| CNOT|00) (00|(H ® I)|00) = +%

A(00, 10, 11, 10, 00) = (00|(H © I)]10) (10]CNOT|11) (11|CNOT]|10) (10|(H © I)|00) = +%
A(00, 10, 11, 10, 10) = (10[(H © I)]|10) (10]CNOT|11) (11|CNOT]10) (10|(H © I)|00) = —% (7.4)

These amplitudes (or equivalently the history vector | ') encode all the necessary information to compute
probabilities, according to the rules of section 4. For example the probability of measuring any of those four
sequences is 1/4, whereas the probability of measuring 10 at t, without measurements at ;, t,, t5 is zero (the two
histories with 10 at t, have opposite amplitudes and therefore interfere).

The history content of the system before measurements is displayed in diagram a) of figure 1. Measurements
by Alice project the state |¥) and reduce its history content as shown in diagrams b) and c).

The unmeasured state |¥) is history entangled, whereas the projected |¥,,) after Alice measurements in
diagramsb) and c) is a product history state.

3 . . .
A review on quantum computation can be found for ex. in [22] .
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sl LH]
Fany Fany
A\ AN
to tq to t3 ty
: 00 : 00 : 00 00
) 00 . . . 10
a : 10 : 11 i 10 00
: : : 10
: : : 00
b) 00 .00 00 : 00 : 00
. A : : 10
00 : 10 : : 10 X
: P11
¢) ; S W 10
Figure 1. The entangler - disentangler circuit, and some history diagrams for initial state |00): (a) no measurements, or Bob measures 0
att;; (b) Alice measures 0 at ;; (c) Alice measures 1 at t,. Black triangles indicate measurements.

The reduced density operator for Alice before measurements is
pA = Trg(pB) = T V) (¥|=

il0> ®10) ® [0) @ [0)(0] ® (0] ® (0] ® (0] + im) ® 10) ® 10) ® [1)(0] ® (0] ® (0] ® (1]
FI) O 1) © 1) © 011 (11 (116 (0 + 41) 0 1) © 1) © Hale (16 1 e {1
#2100 ©10) © 10) © 10)(01 © (0] © (0] © (1] + £10) © 10) © 10) © 1) (0] © (0] © (0] @ (0

—im O e oo oo d] - i|1> oMol e e e 1o 7.5

or, in simplified notations:

4 1]0000) + [0001) (0000|+(0001]  1]1111) — [1110) (1111|—(1110]
2 V2 V2 2 V2 V2

where |0000) = |0) ® |0) ® |0) ® |0) etc. This density operator describes a mixed history state, with an ensemble
of two history vectors

(7.6)

0000 0001 1111) — |1110
000 4 ) — 10000) +looon) ) — o)

V2 V2

with equal probabilities = 1/2. The reduced density matrix can be used to compute statistics for Alice
measurements. The AB system entropy is zero, since it is in a pure state, but the entropy corresponding to p**
(the entropy ‘seen’ by Alice) is

(7.7)

S(p*) = =Tr(p*logp*) = —2(% log%) =1 (7.8)

since p” has two nonzero eigenvalues equal to —. This is consistent with p** describing a mixed history state.

The reduced density operator for Bob is easily computed:
1 1
pB = Ty (p"P) = ~10000) (0000] + —10100) (0100) (7.9)

describing a statistical ensemble of the two histories |0000) and |0100) with equal probabilities = 1/2, and
history entropy S(p By = S(pA) =1.

Note that without measurements the circuit is simply the identity circuit for two qubits, so the initial state 00
can only propagate to 00 at time #,. The situation is different when intermediate measurements are performed, as
depicted in diagrams b) and ¢). In these cases also the state 10 at time #, becomes available.

9
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X) L H
L/
o) { 1
X7
to t1 to t3
. . 000
000 . 000 v~ 100
100 . 110 010
) : : 110
a : : 011
011 : 011 : 111
111 . 101 . 001
: N——101
. . 000
000 D000
) 111 ) 001
c) : :
111 : 101 : 001
A
Figure 2. Teleportation circuit: (a) no measurements; (b) Alice measures 00 at time #3; (c) at time #; Alice measures 00 and Bob
measures 1.

7.2. Teleportation

The teleportation circuit [23] is the three-qubit circuit given in figure 2, where the upper two qubits belong to
Alice, and the lower one to Bob.

The initial state is a three-qubit state, tensor product of the single qubit | x) = «|0) + 3|1) to be teleported
. 1 .
and the 2-qubit entangled Bell state | 3pg) = il (100) + |11). Before any measurement, the history vector

contains 8 histories:

W) = %(04000) ® [000) © |000) — «[000) ® [000) & |100)

+ 4]100) ® |110) ® [010) — £]100) ® |110) ® |110)
+ a011) ® [011) ® [011) — a|011) © |011) ® |111)
+ G111) © |101) ® [001) — B|111) ® |101) ® |101) (7.10)
the amplitudes being given by

A(X ® Boo, a1y @z, 3) = (as|Hi B,,CNOT 2P, [x @ Boo) (7.11)
For example

A(x ® Boo, 000, 000, 000) = (000]FH;|000) (000|CNOT; ,/000) (000]x ® Boo) = cv/2 (7.12)

where H; = H® I ® Iand CNOT, , = CNOT ® I. For the moment we do not take into account the X and Z gates,
activated by the results of Alice measurements at 3. The history vector has the representation given in figure 2(a).
Suppose now that Alice measures her two qubits at time #3, without any prior measurement. To compute

probabilities we need first to compute P,,|¥) where a5 can take the four values 00, 01, 10, 11. For example, if
a3 =00,thenP,, =T ® I ® (P ® I),and

Py,—00l¥) = %|000> ® 1000) ® [000) + %111) ® |101) ® [001) (7.13)

10
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Projecting on t; yields

g

PiBy, — ool) = %|ooo> + 5'001> (7.14)

so that
. 1 1
p(?/), a3 = 00) = <\I/|Pm - 00P$P3P&3 - 00|\I/> = Z(lOLIZ -+ |5|2) = Z (715)

The other three outcomes for a3 have the same probability=1/4.
Once Alice has obtained 00 at t3, corresponding to the projector P,, = Py ® I, the history vector collapses
into

I0,) = 1010 Pw® DY) _ «[000) ® |000) ® [000) + B|111) ® [101) @ |001) (7.16)

JUII O TG (Py® DIT)

and corresponds to the diagram b) in figure 2. With this vector we can compute the conditional probabilities that
Bob measures 0 or 1 at #3, given that Alice has measured 00:

P(05004) = (DI © I © I ® Po|¥,) = |af?

P(15]004) = (Wl © T © I @ Py|¥,) = |5 (7.17)

To find the (usual) state vector of the system at time t; we project |¥,,) on #; with the use of the P; projector:
W) = P5l) = ]000) + 5]001) = [00)(al0) + fGI1)) (7.18)

and we see that Bob’s qubit is in the correctly teleported state | x) = «|0) + 3|1).

Similar arguments hold if Alice obtains 01 or 10 or 11. In these cases Bob’s qubit at time ¢; is found to be in
states that can be transformed into | ) using X and Z gates, represented by the Pauli matrices o,.and o, on the (|
0),]1)) basis.

Finally, if at time #; Alice measures 00 and Bob measures 1, the history vector |¥) collapses into

IO16 (Pyp® P)|Y)

Vo) =
VU ©T® (P @ PIT)

= |111) ® |101) ® [001). (7.19)

and corresponds to the diagram c) in figure 2.

The unmeasured history vector |¥) in (7.10) is entangled. The history vector |¥,,) in (7.16) after Alice
measures 00 is likewise entangled, even if the (usual) state of the system at ¢; is a product state. Only the history
state (7.19) isa product history state (| 11) ® [10) ® [00)) @ (]1) ® |1) ® |1)).

Density matrix and entropy

The von Neumann entropy for the system before measurements is zero, since the system is in a pure history
state. The reduced history density matrix for Bob, before any measurement, is given in terms of the history
vector |¥) in (7.10):

p? = T (W) (V) = %(|0> ©10) @ [0)(0] ® {0 © (0] + |1) © 1) © [1){1] © (1] © (1]) (7.20)

and does not depend on «v and 3. It describes a mixed history state, with corresponding von Neumann
entropy S(p?) = log2 = 1.

If Alice measures her two qubits, without communicating her result, the density matrix of the system
becomes

P8 =3 IAG, NP () (7.21)
Y

(the sum on 7yis over the 8 histories contained in the history vector |¥)) yielding a matrix with 4 eigenvalues
equal to |a|*/4 and 4 eigenvalues equal to | 3|>/4. Then the von Neumann entropy is
ABy _ 21 |of? 2] 18 _ 21 2 2] 2

S(p™) = ~laP log == — 1P log =1 = —laf logla* — 3P logl P + 2 (7.22)
Setting p = |a*, the entropy S(p) = 2 — plogp — (1 — p)log(l — p)is maximum and equal to
log2 + 2 = 3when p =1/2,and is minimum and equal to 2 when p =0, 1.

The reduced density matrix for Bob computed from (7.21) coincides with the one before measurements by

Alice given in (7.20), as expected, since Alice’s act of measuring cannot be detected by Bob (only the two qubits of
Alice are interacting). The corresponding von Neumann entropy is therefore the same: S(p®) = —log(1/2) = 1.
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8. Conclusions

History amplitudes, or equivalently chain operators, contain all the information necessary to compute probabilities of
outcome sequences when measuring a given physical system. In the paper [20] we proposed a pictorial way to
represent the history content (i.e. the set of all histories with nonvanishing amplitudes) encoded in a history operator,
acting on the Hilbert space 7 of physical states. In the present paper amplitudes are used to construct a history vector,
living in a tensor product of multiple H copies, in terms of which all probabilities can be expressed via projections
and scalar products.

The formalism proposed here has two advantages with respect to the usual state vector description of a physical
system:

(1) it provides a convenient way to keep track of all possible histories of the system, and of their reduction due to
measurements. This can be translated into graphs that facilitate intuition on how the system behaves under
unitary time evolution and measurements at different times.

(2) it allows the definition of history entanglement, history entropy, and history entanglement entropy for
composite systems.
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