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Abstract
A formalism is proposed to describe entangled quantumhistories, and their entanglement entropy.
We define a history vector, living in a tensor spacewith basis elements corresponding to the allowed
histories, i.e. histories with nonvanishing amplitudes. The amplitudes are the components of the
history vector, and contain the dynamical information. Probabilities ofmeasurement sequences, and
resulting collapse, are given by generalized Born rules: they are all expressed bymeans of projections
and scalar products involving the history vector. Entangled history states are introduced, and a history
densitymatrix is defined in terms of ensembles of history vectors. The corresponding history entropies
(and history entanglement entropies for composite systems) are explicitly computed in two examples
taken fromquantum computation circuits.

1. Introduction

Formulations of quantummechanics based on histories, rather than on states at a given time, have their logical
roots in thework of Feynman [1, 2] (see also the inspirational Chapter 32 ofDirac’s book [3]), and could be seen
as generalizations of the path-integral approach. A list with the referencesmore relevant for the present work is
given in [4–20].

We have seen in [20] how to define a history operator on theHilbert space of a physical system, in terms of
which to compute probabilities of successivemeasurements at times t1,Ktn. In the present notewe introduce a
history vector, living in a tensor space    ... , where every corresponds to a particular ti. This vector
contains the same information as the history operator, but ismore suited to define entanglement of histories,
and compute their densitymatrices and corresponding vonNeumann entropies.

This approach is similar in spirit to the one advocated in ref.s [15]–[19], but with substantial differences. In
[15]–[19] the scalar product between history states depends on chain operators containing information on
evolution andmeasurements. In our framework the algebraic structure does not depend on the dynamics, and
all possible histories (not only ‘consistent’ sets) correspond to orthonormal vectors in    ... . The
dynamical information is instead encoded in the coefficients (amplitudes)multiplying the basis vectors.

The Born rules for probabilities and collapse are extended to history vectors in a straightforwardway. Every
history vector has a pictorial representation in terms of allowed histories, and its collapse after ameasurement
sequence entails the disappearance of some histories. In this sensemeasurement ‘alters the past’, but never in a
way to endanger causality. As an illustration, the formalism is applied to the entangler-disentangler and the
teleportation quantum circuits.

The content of the paper is as follows. Chain operators and probabilities formultiplemeasurements at
different times are recalled in section 2. Section 3 introduces history amplitudes, an essential ingredient in the
definition of the history vector, given in section 4. The generalized Born rules for probabilities of outcome
sequences and collapse are derived, using appropriate projectors on the history vector. In section 5we propose a
definition for history entanglement, based on a tensor product between history states. Section 6 deals with
densitymatrices, constructed using ensembles of history vectors. This allows the computation of history
entropy, and history entanglement entropy for composite systems. Two examples based on quantum
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computation circuits are provided in section 7, andwe calculate their history entanglement entropy. Section
8 contains some conclusions.

2. Chain operators and probabilities

As recalled in [20], probabilities of obtaining sequencesα= α1,α2,Kαn ofmeasurement results, starting from
an initial state |ψ〉, can all be expressed in terms of a chain operatorCψ,α. This operator encodesmeasurements at
times t1,Ktn corresponding to projectors ¼a aP P,

n1
, and unitary time evolution betweenmeasurements:

( ) ( ) ( ) ( )=y a a a a y- - --C P U t t P U t t P U t t P, , , 2.1n n n n, 1 1 2 1 0n n 1 1

with t0< t1<L< tn−1< tn andPψ= |ψ〉〈ψ|. The aP
i
are projectors on eigensubspaces of observables,

satisfying orthogonality and completeness relations:

( )åd= =a b a b a
a

aP P P I P, 2.2,i i i i i

i

i

andU(ti+1, ti) is the evolution operator between times ti and ti+1.
The probability of obtaining the sequenceα is given by

( ) ( ) ( )†y a a = y a y ap Tr C C, , 2.3n1 , ,

and could be considered the ‘probability of the history’ψ,α1,L αn.We can easily prove that the sumof all these
probabilities gives 1:

( ) ( )†å =
a

y a y aTr C C 1 2.4, ,

by using the completeness relations in (2.2) and unitarity of theU(ti+1, ti) operators.We alsofind

( ) ( ) ( ) å y a a a y a a a=
a

-p p, , , , , , , , 2.5n n1 2 1 2 1

n

However other standard sum rules for probabilities are not satisfied in general. For example relations of the type

( ) ( ) ( )å y a a a y a a=
a

p p, , , , , 2.61 2 3 1 3

2

hold only if the so-called decoherence condition is satisfied:

( ) ( )† a b+ = ¹y a y bTr C C c c when. . 0 2.7, ,

as can be checked on the example (2.6)written in terms of chain operators, and easily generalized. Note that for
chain operators the following is trivially true:

( )/å =
a

y a a y a a a¼ ¼ ¼C C 2.8, , , , ,

i

n i n1 1

due toå =a aP I
i i .

If all the histories we consider are such that the decoherence condition holds, they are said to form a
consistent set, and can be assigned probabilities satisfying all the standard sum rules.

In general, histories do not form a consistent set: interference effects between them can be important, as in
the case of the double slit experiment. For this reasonwewill not limit ourselves to consistent sets. Formula (2.3)
for the probability of successivemeasurement outcomes holds true in any case.

3. Amplitudes

If ∣ ∣a a= ñáaP n nn
, i.e. the eigenvalueαn is nondegenerate, the chain operator can bewritten as

∣ ( ) ∣ ( )a y a y= ñ áy aC A , 3.1n,

where

( ) ∣ ( ) ( ) ( )∣ ( )y a a y= á ña a- - --A U t t P U t t P U t t, , , , 3.2n n n n n1 1 2 1 0n 1 1

is the amplitude of the historyψ,α, and

∣ ( )∣ ( ) ( ) ( )†y a y a= =y a y aA Tr C C p, , 3.32
, ,

This easily generalizes to the case of a gn-degenerate eigenvalueαn, with corresponding (orthonormal)
eigenvectors |αn, i〉 (i= 1,Kgn):
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∣ ( ) ∣ ∣ ( )∣ ( ) ( ) ( )†å åa y a y y a y a= ñ á = =y a y a y aC i A A Tr C C p, , , , , 3.4
i

n i
i

i,
2

, ,

the amplitudesAi(ψ,α) being given by formula (3.2)where 〈αn| is substituted by 〈αn, i|.
A scalar product between chain operators can be defined as

( ) ( ) ( )†ºy a y b y a y bC C Tr C C, 3.5, , , ,

All the properties of a (complex) scalar product hold, in particular

( ) ( ) ⟺ ( )y a= = =y a y a y aC C p C, , 0 0 3.6, , ,

Note: if we divide the setα1,Kαn−1 into two complementary sets a a¼,i im1
and a a¼,j jp1

withm+ p= n− 1,
then

( ) ( ) ( )å y a a a y a a a¼ = ¼
a a¼

-A A, , , , , , 3.7n n i i n
,

1 1

j jp

m

1

1

because of the completeness relations in (2.2). This just rephrases property (2.8) for chain operators, with the
difference thatαn is never summed on since it enters the amplitude (3.2) as a bra rather than as a projector.

4.History vector, probabilities and collapse

Consider a physical system in the state |ψ〉 at time t0 and devices that can be activated at times t1,Ktn tomeasure
given observables, with projectors on eigensubspaces as in (2.2). Before anymeasurement, the system can be
described by a history vector, living in n-tensor space

∣ ( )∣ ∣ ( ) å y a a aYñ = ñ ñ
a

A , ... 4.1n1

where the coefficientsA(ψ,α) are given by the amplitudes of the historiesα= α1,Kαn, computed as in the
previous section, and |αk〉 are a basis of orthonormal vectors at each time tk. If no degeneracy was present, these
vectors would be just the eigenvectors of the observable(s)measured at time tk. If theαk (k< n) eigenvalues are
degenerate, the information on degeneracy is lost in the symbol |αk〉, but is contained in the amplitudeA(ψ,α),
where the projectors aP

k
on the eigensubspaces are present. In caseαn is degenerate, the sumonα in (4.1)must

include the degeneracy index i, and (4.1)will be short for

∣ ( )∣ ∣ ∣ ( )  å y a a a aYñ = ñ ñ ñ
a

-A i, ... , 4.2
i

i n n
,

1 1

Note : In the followingwewill assume for simplicity thatαn is nondegenerate: all the results generalize easily to
the degenerate case, usually by summing on the index i.

The ‘time product’ehas all the properties of a tensor product. The symbol⊗ (or just a blank)will be
reserved for tensor products between states of subsystems at the same time tk. The vector is normalized since

∣ ∣ ( )∣ ( )å y aáY Yñ = =
a

A , 1 4.32

The history content of the system is defined to be the set of historiesα= α1,Kαn contained in |Ψ〉, i.e. all
histories having nonvanishing amplitudes.

Probabilities ofmeasuring sequencesα= α1,Kαn are given by the familiar formula

( ) ∣ ∣ ∣ ( )∣ ( )y a y a= áY Yñ =ap A, , . 4.42

with

∣ ∣ ∣ ∣ ( ) a a a a= ñá ñáa ... 4.5n n1 1

Formula (4.4)holds for sequences ofmeasurements occurring at all times t1,Ktn.
What is the effect of a sequence ofmeasurements with resultsα1,Kαn on the systemdescribed by |Ψ〉?We

can characterize this effect as a collapse of the history vector, implementedmathematically by a . This projection
collapses the state |Ψ〉 into the basis vector |α1〉e ...e |αn〉up to a phase:

∣ ⟶ ∣
∣ ∣

∣ ∣ ( ) a aYñ
Yñ

áY Yñ
= ñ ña

a




... 4.6n1

The basis vector describes a system that has been ‘completelymeasured’with resultsα1,Kαn. Another sequence
ofmeasurements of the same observables at times tiwould yield the same resultsα1,Kαnwith probability one,
according to the rule (4.4).

A partialmeasurement at times ¼t t,i im1
(m< n) yielding the sequence a a¼,i im1

likewise projects the state
vector |Ψ〉 into

3
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∣ ∣
∣ ∣

( )Y ñ =
Yñ

áY Yñ
a

a

a




4.7

where now a is the projector on the sequence a a¼,i im1
, i.e. a tensor product of identity operators and

projectors at times ¼t t,i im1
:

∣ ∣ ∣ ∣ ( )      a a a a= ñá ñáa I I I... ... ... 4.8i i i im m1 1

Then |Ψα〉 is given, up to a normalization, by the expression (4.1)where the sumonα involves only the times tj
different from ¼t t,i im1

, the rest of theαʼs being fixed to the values a a¼,i im1
.

The projected history vector |Ψα〉 can be used to compute conditional probabilities. The probability of
obtaining the results b b¼,j jp1

at times ¼t t,j jp1
, given that a a¼,i im1

are obtained at times ¼t t,i im1
(with j1,Kjp

and i1,Kim having no intersection, and union coincidingwith 1,Kn), is given by

( ∣ ) ∣ ∣ ( )b a = áY Y ña b ap 4.9

Finally, to compute probabilities for sequences a a¼,i im1
in partialmeasurements at times ¼t t,i im1

, we need a
‘shorter’history vector with a reduced number of factors in thee product corresponding to the subset ¼t t,i im1

.
This vector can be obtained from ∣Yña (with a as in (4.8)) by using a further projection  , defined on the basis
vectors as:

∣ ∣ ∣ ∣ ( )   a a a añ ñ º ñ ñ¼ ... ... 4.10i i n i i, 1m m1 1

if ¼t t,i im1
contains tn, and as

∣ ∣ ∣ ∣ ∣ ( )    a a a a añ ñ º ñ ñ ñ¼ ... ... 4.11i i n i i n, 1m m1 1

if ¼t t,i im1
does not contain tn. For example

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )     a a a a a a a añ ñ ñ ñ ñ = ñ ñ ñ 4.121,3,5 1 2 3 4 5 1 3 5

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )     a a a a a a a añ ñ ñ ñ ñ = ñ ñ ñ 4.131,2 1 2 3 4 5 1 2 5

The action of  is then extended by linearity on any |Ψ〉. Applying it to the vector ∣Yña yields, when ¼t t,i im1

contains tn:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∣ ( )∣ ∣

( ) ∣ ∣ ( ) ∣ ∣ ( )

 

   

å

å

y a a a

y a a a y a a a a

Yñ = ñ ñ

= ñ ñ = ¼ ñ ñ

a
a a

a a

¼ ¼
¼

¼

  A

A A

, ...

, ... , , ... 4.14

i i i i n

i i i i i i

, ,
,

1

,

m m

j jp

j jp

m m m

1 1

1

1

1 1 1

wherewe have used equation (3.7) in the second line. Then the probability ∣ ( )∣y a a¼A , ,i i
2

m1
of obtaining the

partial sequence a a¼,i im1
can be expressed as a scalar product

( ) ∣ ( )∣ ∣ ∣ ( )†y a a y a a¼ = ¼ = áY Yña a¼ ¼  p A, , , , 4.15i i i i i i i i
2

, ,m m m m1 1 1 1

where ∣ ∣ † a aá á ¼... n i i1 , m1
is the conjugate of (4.10) or (4.11). Note that

( )†º¼ ¼ ¼  4.16i i i i i i, , ,m m m1 1 1

is a hermitian operator in n-tensor space, withmatrix elements

∣ ∣ ∣ ∣ ( )    a a b b d dá á ñ ñ = a b a b¼... ... 4.17n i i n1 , 1m i i im im1 1 1

When ¼t t,i im1
does not contain tn,αnmust be contained in a a¼,j jp1

, andwe have

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∣ ( )∣ ∣

( ) ∣ ∣ ∣

( ) ∣ ∣ ∣ ( )

 

  

  

å

å å

å

y a a a

y a a a a

y a a a a a a

Yñ = ñ ñ

= ñ ñ ñ

= ¼ ñ ñ ñ

a
a a a

a a a

a

¼ ¼
¼

¼

-

-

  A

A

A

, ...

, ...

, , , ... 4.18

i i i i n

i i n

i i n i i n

, ,
, ,

1

,

m m

j jp n

n j jp

m

n

m m

1 1

1 1

1 1

1

1 1

The sequence probability ∣ ( )∣y a a¼A , ,i i
2

m1
is given by the same scalar product:

∣ ∣ ∣ ( )∣ ∣ ( )∣ ( )å y a a a y a aáY Yñ = ¼ = ¼a a
a

¼   A A, , , , , 4.19i i i i n i i,
2 2

m

n

m m1 1 1
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in virtue of relation (2.5). Thereforewe have established the formula

( ) ∣ ∣ ( )y a a¼ = áY Yña a¼  p , , 4.20i i i i,m m1 1

for any partial sequence a a¼,i im1
.

Note:whenm= 0 (and thereforeαn is contained in a a¼,j jp1
), =a identity in tensor space and  projects

on tn. The projected vector in (4.18) becomes ( )∣y a aå ña A , n nn
and is just the (usual) state vector |ψ(tn)〉 of the

system at time tn, since

∣ ( ) ( )∣ ∣ ∣ ( )∣ ( )∣ ( )å åy y a a y y a añ = ñ = ñá ñ = ñ
a a

t U t t U t t A, , , 4.21n n n n i n n0 0

n n

1

In conclusion, probabilities for (sequences of)measurements at any times can be computed via scalar products
involving appropriate projections of the history vector |Ψ〉.

5.History entanglement

It is useful to define a tensor product between history vectors of subsystems.On the basis history vectors the
product acts as

(∣ ∣ )(∣ ∣ ) ∣ ∣ ∣ ∣ ( )     a a b b a b a bñ ñ ñ ñ º ñ ñ ñ ñ... ... ... 5.1n n n n1 1 1 1

and is extended by bilinearity on all linear combinations of these vectors. No symbol is used for this tensor
product, to distinguish it from the tensor producte involving different times tk.

This allows a definition of product history states, which are defined to be expressible in the form:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )∣ ∣ ( )∣ ∣ ( )   å åy a a a y b b bñ ñ ñ ñ

a b
A A, ... , ... 5.2n n1 1

or, using bilinearity:

( ) ( )∣ ∣ ( ) å y a y b a b a bñ ñ
a b

A A, , ... 5.3n n
,

1 1

with |αiβi〉≡ |αi〉|βi〉 for short. A product history state is thus characterized by factorized amplitudesA(ψ,α,
β)= A(ψ,α)A(ψ,β).

If the history state cannot be expressed as a product, we define it to be history entangled1. In this case, results
ofmeasurements on systemA are correlatedwith those on systemB and viceversa. Indeed if the amplitudesA(ψ,
α,β) in the history state

∣ ( )∣ ∣ ( ) å y a b a b a bY ñ = ñ ñ
a b

A , , ... 5.4AB
n n

,
1 1

are not factorized, the probability for Alice to obtain the sequenceα if Bob obtains the sequenceβ depends onβ,
and viceversa, this probability being proportional to |A(ψ,α,β)|2. On the other hand, if the history state
is a product (5.2), the probability for Alice is |A(ψ,α)|2 and does not depend onβ (and likewise for Bob).

We have the following criterion for history entanglement: starting froman initial state |ψ〉 at t0, we examine
all intermediate states of the system at times ti, given by repeated application of the evolution operatorsU(ti,
ti−1). If at least one of these intermediate states is an entangled state, then the history state of the system is
entangled. This is because an entangled state at time ti implies a correlation betweenmeasurements at time ti,
whichwould be impossible if the history amplitudes for Alice andBobmeasurements were factorized. Note that
an entangled initial state |ψ〉 does not necessarily imply history entanglement, sinceU(t1, t0) could disentangle it.

The history vector (5.4) describes a bipartite systemwhere the observables beingmeasured at times ti are
local observables of the formAi⊗ I, I⊗ Bi, with eigenvaluesαi andβi respectively. This is not themost general
history state of a bipartite system: the observables can be chosen to be global operatorsCi acting on thewhole AB,
with eigenvalues γi. Then the history state reads:

( )∣ ∣ ( ) å y g g gY = ñ ñ
g

A , ... 5.5AB
n1

In this case we cannot extract from |ΨAB〉 individual histories for the subsystemsA andB.
Finally, the correlations in an entangled history system can be distinguished from the ‘classical’ correlations

due to a statistical ensemble of history states, as discussed in next section.

1
This entanglement is quite different from the one considered in ref.s [15]–[18], where it involves superpositions of history states (without

need of a composite system), and should be considered as a temporal entanglement.
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6.Densitymatrix andhistory entropy

A system in the pure history state |Ψ〉has the densitymatrix:

∣ ∣ ( )r = YñáY 6.1

a positive operator satisfying ( )r =Tr 1 (due to 〈Ψ|Ψ〉= 1). Amixed history state has densitymatrix

∣ ∣ ( )år = YñáYp 6.2
i

i i i

with∑ipi= 1, and {|Ψi〉} an ensemble of history states.
Probabilities ofmeasuring sequencesα= α1,Kαn in history state ρ are given by the standard formula:

( ) ( ) ( )a a r¼ = ap Tr, 6.3n1

(cf equation (4.4) for pure states).
A (partial)measurement as the one considered in equation (4.7) projects the densitymatrix in the usual way:

⟶ ∣ ∣
( )

( )r r
r
r

= Y ñáY =a a a
a a

a

 
Tr

6.4

and the probability of obtaining the partial sequence a a¼,i im1
is given by

( ) ( ) ( )a a r¼ = a a¼  p Tr, 6.5i i i i,m m1 1

cf formula (4.20).
If ameasurement is performed on |Ψ〉=∑αA(ψ,α)|α〉, but the result remains unknown, the densitymatrix

becomes

⟶ ∣ ( )∣ ∣ ∣ ( )år r y a¢ = Y ñáY
a

a aA , 6.62

and describes amixed history state.
Consider now the following two history states:
(1) the pure history state:

∣ ( )∣ ( )å y a aYñ = ñ
a

A , 6.7

where |α〉≡ |α1〉e ...e |αn〉. Its densitymatrix is

∣ ∣ ( ) ( ) ∣ ∣ ( )år y a y a a a= YñáY = ¢ ñá ¢
a a¢

A A, , 6.8pure
,

*

(2) themixed history state

∣ ( )∣ ∣ ∣ ( )år y a a a= ñá
a

A , 6.9mixed
2

The probabilities of obtaining a sequenceα are the same for the two states, so they cannot be distinguished
by a sequence ofmeasurements at times t1,Ktn. Recall the similar situation for ordinary state vectors, where

for example themixed state ∣ ∣ ∣ ∣r = ñá + ñá
1

2
0 0

1

2
1 1mixed can be distinguished from the pure state

(∣ ∣ )( ∣ ∣)r = ñ + ñ á +á
1

2
0 1 0 1pure bymeasurements in a basis different from the computational one. For history

states howeverwemust stick to the given set of observables at each time ti, which defines the history vector.
Indeed themeasuring devices are part of the history description of the quantum system.One can change
description by changing themeasuring apparati, but then onemust compute the new amplitudes for the new
histories. There is no straightforward operation on the old history state that relates it to the new one2.

But then, how canwe distinguish between the two history states (6.8) and (6.9) ? There is away, by using
partialmeasurements. Indeed the probability of obtaining a given partial sequence a a¼,i im1

, given by formula
(4.20), takes different values for the states (6.8) and (6.9). In the pure state this probability reads:

( ) ( ) ∣ ( )∣ ( ) ( )åa a r y a a y a¼ = = ¼ =a a
a a

¼
¼

  p Tr A A, , , , , , 6.10i i pure i i i i,
2

,

2

m m m

j jp

1 1 1

1

2
Trying to express |αi〉 in terms of eigenvectors of other observables in (4.1) leads towrong history amplitudes, as one can easily verify in the

case of a qubit with evolution t0 → t1 → t2.
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whereas for themixed state:

( ) ( ) ∣ ( )∣ ( )åa a r y a¼ = =a a
a a

¼
¼

  p Tr A, , , 6.11i i mixed i i,
,

2
m m

j jp

1 1

1

with a a¼,j jp1
complementary to a a¼, ,i im1

. Thus the difference is due to sumof squaremoduli being different
from squaremodulus of sum, andwe can experimentally distinguish between rpure and ρmxed.

Consider now a systemAB composed by two subsystemsA andB, and devicesmeasuring observables
= Ä A Ii i and = Ä I Bi i at each ti. Its history state is

∣ ( )∣ ∣ ( ) å y a b a b a bY ñ = ñ ñ
a b

A , , ... 6.12AB
n n

,
1 1

whereαi,βi are the possible outcomes of a jointmeasurement at time ti of  and . The amplitudesA(ψ,α,β)
are computed using the general formula (3.2), with projectors

∣ ∣ ∣ ∣ ∣ ∣ ( )a b a b a a b b= ñá = ñá Ä ñáa b , , 6.13i i i i i i i i,i i

corresponding to the eigenvaluesαi,βi. The densitymatrix of AB is

∣ ∣
( ) ( ) ∣ ∣ ∣ ∣ ( )   å

r
y a b y a b a b a b a b a b

= Y ñáY

= ¢ ¢ ñ ñá á
a b a b¢ ¢

A A, , , , ... ... 6.14

AB AB AB

n n n n
, , ,

1 1 1 1*

Applying here the discussion of the preceding paragraph, we see that if (6.12)describes an entangled state, the
correlations betweenAliceα andBobβ sequences can be distinguished from correlations due to a statistical
ensemble.

We can define reduced densitymatrices by partially tracing on the subsystems:

( ) ( ) ( )r r r rº ºTr Tr, 6.15A
B

AB B
A

AB

In general ρA and ρBwill not describe pure history states anymore.
This definitionmakes sense only if the reduced densitymatrices can be used to compute statistics for

measurements on the subsystems.Note that the history vector describes jointmeasurements onA andB, and
therefore the probability for Alice to obtain a particular sequenceα1,Kαn inmeasuringA on her subsystem
must be computed taking into account that also B getsmeasured (the result being unknown toAlice). This
probability is therefore given by the sum

( ) ( ) ∣ ( )∣ ( )å åa a b y a b= =
b b

p p A, , , 6.162

Let us check thatwe obtain the same answer using the reduced density operator for Alice. Taking the partial trace
onBof (6.14) yields:

( ) ( )∣ ∣ ∣ ∣ ( )   år y a b y a b a a a a= ¢ ñ ñá ¢ á ¢
a a b¢

A A, , , , ... ... , 6.17A
n n

, ,
1 1*

a positive operator with unit trace. The standard expression in terms of ρA for Alice’s probability to obtain the
sequenceα is

( ) ( ) ( )a r= ap Tr 6.18A

with

( ) ( ) ∣ ∣ ( )   a a= Ä Ä = ñáa a a a P I P I P, 6.19i in i1

It is immediate to verify that indeed the probability as computed in (6.18) coincides with (6.16), and therefore
the definition (6.15) gives the correct densitymatrices for the subsystems.

On the other hand, the probability for Alice to obtain the sequenceα1,Kαn with nomeasurements on Bob’s
part is different from (6.16). Indeed, the history vector of the composite system is different, since only Alice’s
measuring device is activated, and reads

∣ ( )∣ ∣ ( ) å y a a aY ñ = ñ ñ
a

A , ... 6.20AB
n1

where the amplitudesA(ψ,α) are obtained from the general formula (3.2) using the projectors aP
i
of (6.19). Here

the reduced density operator ρA is simply

( ) ( ) ∣ ∣ ∣ ∣ ( )   år y a y a a a a a= ¢ ñ ñá á
a a¢

A A, , ... ... 6.21A
n n

,
1 1*

(the trace onB has no effect, since history vectors contain only results of Alice), and the probability of Alice
finding the sequenceα is
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( ) ( ) ∣ ( )∣ ( )a r y a= =ap Tr A , 6.22A 2

differing in general from (6.16).
Note: the amplitudes in (6.20) can also be computed asA(ψ,α)=∑βA(ψ,α,β) due to
∣ ∣ ⟶b bå ñá = å = Äb b a b aI P Ii i ,i i i i i

. Thus the difference of the two situations described above is due to

∣ ( )∣ ( ) ( )å åy a b y a b¹
b b

A A, , , , 6.232

2

in general. In particular cases the equality sign holds, for examplewhen the evolution operator is factorized
U=UA⊗UB, i.e. whenA andB donot interact.

Finally, we can define the system history (vonNeumann) entropy as

( ) ( )r r r= -S log 6.24AB AB AB

and, when ρAB is a pure history state, the history entanglement entropies for subsystemsA andB:

( ) ( ) ( )r r r r r r= - = -S Slog , log 6.25A A A B B B

All known properties of vonNeumann entropy hold, since they depend on ρAB being a positive operator with
unit trace, and ρA, ρB reduced density operators obtained by partial tracing. Some of these properties will be
verified in the examples of next section.

7. Examples

In this sectionwe examine two examples of quantum systems evolving from a given initial state, and subjected to
successivemeasurements. They are taken from simple quantum computation circuits3 where unitary gates
determine the evolution betweenmeasurements. Only two gates are used: theHadamard one-qubit gateH
defined by:

∣ (∣ ∣ ) ∣ (∣ ∣ ) ( )ñ = ñ + ñ ñ = ñ - ñH H0
1

2
0 1 , 1

1

2
0 1 7.1

and the two-qubitCNOT gate:

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )ñ = ñ ñ = ñ ñ = ñ ñ = ñCNOT CNOT CNOT CNOT00 00 , 01 01 , 10 11 , 11 10 7.2

Quantumcomputing circuits in the consistent history formalismhave been discussed for example in [5, 21].

7.1. Entangler-disentangler
Consider the circuit infigure 1. If the initial state (at t0) is |00〉, the history state of the systembefore any
measurements (at times t1,Kt4) is given by

∣ (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

     

     

Yñ = ñ ñ ñ ñ + ñ ñ ñ ñ

+ ñ ñ ñ ñ - ñ ñ ñ ñ

1

2
00 00 00 00 00 00 00 10

10 11 10 00 10 11 10 10 7.3

the amplitudes being given by formula (3.2), i.e.

( ) ∣( )∣ ∣ ∣ ∣ ∣ ∣( )∣

( ) ∣( )∣ ∣ ∣ ∣ ∣ ∣( )∣

( ) ∣( )∣ ∣ ∣ ∣ ∣ ∣( )∣

( ) ∣( )∣ ∣ ∣ ∣ ∣ ∣( )∣ ( )

= á Ä ñá ñá ñá Ä ñ = +

= á Ä ñá ñá ñá Ä ñ = +

= á Ä ñá ñá ñá Ä ñ = +

= á Ä ñá ñá ñá Ä ñ = -

A H I CNOT CNOT H I

A H I CNOT CNOT H I

A H I CNOT CNOT H I

A H I CNOT CNOT H I

00, 00, 00, 00, 00 00 00 00 00 00 00 00 00
1

2

00, 00, 00, 00, 10 10 00 00 00 00 00 00 00
1

2

00, 10, 11, 10, 00 00 10 10 11 11 10 10 00
1

2

00, 10, 11, 10, 10 10 10 10 11 11 10 10 00
1

2
7.4

These amplitudes (or equivalently the history vector |Ψ〉) encode all the necessary information to compute
probabilities, according to the rules of section 4. For example the probability ofmeasuring any of those four
sequences is 1/4, whereas the probability ofmeasuring 10 at t4 withoutmeasurements at t1, t2, t3 is zero (the two
histories with 10 at t4 have opposite amplitudes and therefore interfere).

The history content of the systembeforemeasurements is displayed in diagram a) offigure 1.Measurements
byAlice project the state |Ψ〉 and reduce its history content as shown in diagrams b) and c).

The unmeasured state |Ψ〉 is history entangled, whereas the projected |Ψα〉 after Alicemeasurements in
diagrams b) and c) is a product history state.

3
A review on quantum computation can be found for ex. in [22] .

8

Phys. Scr. 96 (2021) 055217 LCastellani



The reduced density operator for Alice beforemeasurements is

( ) ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

           

           

           

           

r rº = YñáY =

ñ ñ ñ ñá á á á + ñ ñ ñ ñá á á á

+ ñ ñ ñ ñá á á á + ñ ñ ñ ñá á á á

+ ñ ñ ñ ñá á á á + ñ ñ ñ ñá á á á

- ñ ñ ñ ñá á á á - ñ ñ ñ ñá á á á

Tr Tr

1

4
0 0 0 0 0 0 0 0

1

4
0 0 0 1 0 0 0 1

1

4
1 1 1 0 1 1 1 0

1

4
1 1 1 1 1 1 1 1

1

4
0 0 0 0 0 0 0 1

1

4
0 0 0 1 0 0 0 0

1

4
1 1 1 0 1 1 1 1

1

4
1 1 1 1 1 1 1 0 7.5

A
B

AB
B

or, in simplified notations:

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )r =
ñ + ñ á +á

+
ñ - ñ á -á1

2

0000 0001

2

0000 0001

2

1

2

1111 1110

2

1111 1110

2
7.6A

where |0000〉≡ |0〉e |0〉e |0〉e |0〉 etc. This density operator describes amixed history state, with an ensemble
of two history vectors

∣ ∣ ∣ ∣ ∣ ∣ ( )+ ñ =
ñ + ñ

- ñ º
ñ - ñ

000
0000 0001

2
, 111

1111 1110

2
7.7

with equal probabilities= 1/2. The reduced densitymatrix can be used to compute statistics for Alice
measurements. TheAB system entropy is zero, since it is in a pure state, but the entropy corresponding to ρA

(the entropy ‘seen’ byAlice) is

( )( ) ( ) ( )r r r= - = - =S Tr log 2
1

2
log

1

2
1 7.8A A A

since ρA has two nonzero eigenvalues equal to
1

2
. This is consistent with ρA describing amixed history state.

The reduced density operator for Bob is easily computed:

( ) ∣ ∣ ∣ ( )r r= = ñá + ñá ñTr
1

2
0000 0000

1

2
0100 0100 7.9B

A
AB

describing a statistical ensemble of the two histories |0000〉 and |0100〉with equal probabilities= 1/2, and
history entropy S(ρB)= S(ρA)= 1.

Note that withoutmeasurements the circuit is simply the identity circuit for two qubits, so the initial state 00
can only propagate to 00 at time t4. The situation is different when intermediatemeasurements are performed, as
depicted in diagrams b) and c). In these cases also the state 10 at time t4 becomes available.

Figure 1.The entangler - disentangler circuit, and some history diagrams for initial state |00〉: (a)nomeasurements, or Bobmeasures 0
at t1; (b)Alicemeasures 0 at t1; (c)Alicemeasures 1 at t2. Black triangles indicatemeasurements.
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7.2. Teleportation
The teleportation circuit [23] is the three-qubit circuit given infigure 2, where the upper two qubits belong to
Alice, and the lower one to Bob.

The initial state is a three-qubit state, tensor product of the single qubit |χ〉= α|0〉+ β|1〉 to be teleported

and the 2-qubit entangled Bell state ∣ (∣ ∣b ñ = ñ + ñ
1

2
00 1100 . Before anymeasurement, the history vector

contains 8 histories:

∣ ( ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ( )

   

   
   
   

a a

b b
a a
b b

Yñ = ñ ñ ñ - ñ ñ ñ

+ ñ ñ ñ - ñ ñ ñ
+ ñ ñ ñ - ñ ñ ñ
+ ñ ñ ñ - ñ ñ ñ

1

2
000 000 000 000 000 100

100 110 010 100 110 110

011 011 011 011 011 111

111 101 001 111 101 101 7.10

the amplitudes being given by

( ) ∣ ∣ ( )c b a a a a c bÄ = á Ä ña aA H P P, , , CNOT 7.1100 1 2 3 3 1 1,2 002 1

For example

( ) ∣ ∣ ∣ ∣ ∣ ( )c b c b aÄ = á ñá ñá Ä ñ =A H, 000, 000, 000 000 000 000 CNOT 000 000 2 7.1200 1 1,2 00

whereH1≡H⊗ I⊗ I andCNOT1,2≡CNOT⊗ I. For themomentwedonot take into account theX andZ gates,
activated by the results ofAlicemeasurements at t3. The history vectorhas the representation given infigure 2(a).

Suppose now that Alicemeasures her two qubits at time t3, without any priormeasurement. To compute
probabilities we needfirst to compute ∣Yña 3

whereα3 can take the four values 00, 01, 10, 11. For example, if
α3= 00, then ( ) = Äa I I P I003

, and

∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )   a b
Yñ = ñ ñ ñ + ñ ñ ña =

2
000 000 000

2
111 101 001 7.13003

Figure 2.Teleportation circuit: (a)nomeasurements; (b)Alicemeasures 00 at time t3; (c) at time t3 Alicemeasures 00 andBob
measures 1.
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Projecting on t3 yields

∣ ∣ ∣ ( )a b
Yñ = ñ + ña = 

2
000

2
001 7.143 003

so that

( ) ∣ ∣ (∣ ∣ ∣ ∣ ) ( )†y a a b= = áY Yñ = + =a a= =  p , 00
1

4

1

4
7.153 00 3 3 00

2 2
3 3

The other three outcomes forα3 have the same probability=1/4.
Once Alice has obtained 00 at t3, corresponding to the projector = ÄaP P I003

, the history vector collapses
into

∣ ( )∣
∣ ( )∣

∣ ∣ ∣ ∣ ∣ ∣ ( ) 
 

   a bY ñ =
Ä Yñ

áY Ä Yñ
= ñ ñ ñ + ñ ñ ña

I I P I

I I P I
000 000 000 111 101 001 7.1600

00

and corresponds to the diagramb) infigure 2.With this vector we can compute the conditional probabilities that
Bobmeasures 0 or 1 at t3, given that Alice hasmeasured 00:

( ∣ ) ∣ ∣ ∣ ∣
( ∣ ) ∣ ∣ ∣ ∣ ( )

 
 

a
b

= áY Ä Y ñ =
= áY Ä Y ñ =

a a

a a

p I I I P

p I I I P

0 00

1 00 7.17

B A

B A

0
2

1
2

Tofind the (usual) state vector of the system at time t3 we project |Ψα〉 on t3 with the use of the 3 projector:

∣ ∣ ∣ ∣ ∣ ( ∣ ∣ ) ( )a b a bY¢ñ = Y ñ = ñ + ñ = ñ ñ + ña 000 001 00 0 1 7.183

andwe see that Bob’s qubit is in the correctly teleported state |χ〉= α|0〉+ β|1〉.
Similar arguments hold if Alice obtains 01 or 10 or 11. In these cases Bob’s qubit at time t3 is found to be in

states that can be transformed into |χ〉 usingX andZ gates, represented by the Paulimatricesσx andσz on the (|
0〉, |1〉) basis.

Finally, if at time t3 Alicemeasures 00 andBobmeasures 1, the history vector |Ψ〉 collapses into

∣ ( )∣
∣ ( )∣

∣ ∣ ∣ ( ) 
 

 Y ñ =
Ä Yñ

áY Ä Yñ
= ñ ñ ña

I I P P

I I P P
111 101 001 . 7.1900 1

00 1

and corresponds to the diagram c) infigure 2.
The unmeasured history vector |Ψ〉 in (7.10) is entangled. The history vector |Ψα〉 in (7.16) after Alice

measures 00 is likewise entangled, even if the (usual) state of the system at t3 is a product state. Only the history
state (7.19) is a product history state (|11〉e |10〉e |00〉)⊗ (|1〉e |1〉e |1〉).


Densitymatrix and entropy

The vonNeumann entropy for the systembeforemeasurements is zero, since the system is in a pure history

state. The reduced history densitymatrix for Bob, before anymeasurement, is given in terms of the history
vector |Ψ〉 in (7.10):

(∣ ∣) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )       r = YñáY = ñ ñ ñá á á + ñ ñ ñá á áTr
1

2
0 0 0 0 0 0 1 1 1 1 1 1 7.20B

A

and does not depend onα andβ. It describes amixed history state, with corresponding vonNeumann
entropy ( )r = =S log 2 1B .

If Alicemeasures her two qubits, without communicating her result, the densitymatrix of the system
becomes

∣ ( )∣ ∣ ∣ ( )år y g g g= ñá
g

A , 7.21AB 2

(the sumon γ is over the 8 histories contained in the history vector |Ψ〉) yielding amatrix with 4 eigenvalues
equal to |α|2/4 and 4 eigenvalues equal to |β|2/4. Then the vonNeumann entropy is

( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )r a
a

b
b

a a b b= - - = - - +S log
4

log
4

log log 2 7.22AB 2
2

2
2

2 2 2 2

Setting p= |α|2, the entropy ( ) ( ) ( )= - - - -S p p p p p2 log 1 log 1 ismaximumand equal to
+ =log 2 2 3when p= 1/2, and isminimumand equal to 2when p= 0, 1.

The reduced densitymatrix for Bob computed from (7.21) coincides with the one beforemeasurements by
Alice given in (7.20), as expected, since Alice’s act ofmeasuring cannot be detected by Bob (only the two qubits of
Alice are interacting). The corresponding vonNeumannentropy is therefore the same: ( ) ( )r = - =S log 1 2 1B .
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8. Conclusions

History amplitudes, or equivalently chainoperators, contain all the informationnecessary to compute probabilities of
outcome sequenceswhenmeasuring a givenphysical system. In thepaper [20]weproposed apictorialway to
represent thehistory content (i.e. the set of all historieswithnonvanishing amplitudes) encoded in ahistory operator,
acting on theHilbert space of physical states. In thepresent paper amplitudes are used to construct a history vector,
living in a tensor product ofmultiple copies, in termsofwhich all probabilities canbe expressed viaprojections
and scalar products.

The formalismproposedherehas twoadvantageswith respect to theusual state vectordescriptionof aphysical
system:

(1) it provides a convenient way to keep track of all possible histories of the system, and of their reduction due to
measurements. This can be translated into graphs that facilitate intuition on how the systembehaves under
unitary time evolution andmeasurements at different times.

(2) it allows the definition of history entanglement, history entropy, and history entanglement entropy for
composite systems.
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