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Abstract: The process of wound healing is intricate and tightly controlled, involving a number of
different cellular and molecular processes. Numerous cellular functions, especially those related
to wound healing, depend critically on calcium ions (Ca2+). Ca2+ channels are proteins involved
in signal transduction and communication inside cells that allow calcium ions to pass through cell
membranes. Key Ca2+ channel types involved in wound repair are described in this review.
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1. Introduction

Wound healing is a complex and dynamic process that typically occurs in distinct
phases [1].

In order to reduce blood loss, the first reaction to an injury is vasoconstriction and
the creation of a blood clot. The initial clot is formed primarily by platelets, which also
initiate the coagulation cascade. Next, debris, bacteria, and injured tissue are eliminated
from the wound site by inflammatory cells that invade it, mostly neutrophils. Macrophages
are then recruited to further clean the wound and release growth factors that initiate the
tissue repair process [2].

The provisional matrix is formed by collagen, which is produced by fibroblasts that
migrate to the wound site. The process of angiogenesis, or the growth of new blood vessels,
supplies oxygen and nutrients to aid in tissue healing. As they multiply and spread out,
epithelial cells cover the surface of the wound. Fibroblasts continue to deposit collagen and
eliminate extra tissue, which results in the remodelling of the collagen matrix. Scar tissue
grows and the strength of the wound rises [3].

2. The Role of Calcium Signalling during Wound Repair

In several phases of wound healing, calcium (Ca2+) signalling plays a crucial role in
coordinating the cellular reactions necessary for tissue restoration. Processes including
cell migration, proliferation, and extracellular matrix remodelling are coordinated by the
dynamic fluctuations in intracellular calcium levels [4].

When a wound occurs, there is often a fast increase in intracellular calcium levels
in the cells surrounding the injury site [5]. This rapid influx of Ca2+ can be triggered by
mechanical forces, changes in membrane potential, or the activation of cell surface receptors
in response to injury. Then, Ca2+ signals play a central role in guiding the migration of
various cell types to the wound site, including fibroblasts, immune cells, and epithelial
cells [6–8] (see Figure 1).
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Figure 1. Ca2+ signals play a central role in guiding the migration of cell types to the wound site. See
text for more details. Created with BioRender.com.

Furthermore, the cytoskeletal dynamics required for cell migration and movement
toward the injured location are regulated by calcium-dependent signalling pathways.
Immune cells are drawn to the wound site during the inflammatory phase of wound healing
in order to remove debris and stop infection. Immune cells are activated in response to
calcium signalling, which aids in guiding their migration to the site of injury. Ca2+ signals
also regulate the process of phagocytosis, which is crucial for the removal of dead cells,
debris, and pathogens from the wound. Last but not least, intracellular calcium levels
influence the cytoskeletal changes necessary for engulfing and digesting foreign particles [9].
Additionally, during the proliferative phase of wound healing, Ca2+ signalling stimulates
cell multiplication. The regrowth of tissue is really made possible by elevated Ca2+ levels
activating signalling pathways that promote cell division [10,11]. Ca2+ signals are also
necessary for activating myofibroblasts, leading to the contraction necessary for wound
closure [12]. Some calcium-dependent enzymes, such as matrix metalloproteinases (MMPs),
are crucial for remodelling the extracellular matrix during the later stages of wound repair.
So, Ca2+ signals regulate the activity of MMPs, influencing the breakdown of damaged
matrix components and the deposition of a new matrix, allowing for correct wound and
tissue repair [13]. The coordinated migration and division of epithelial cells at the margins
of wounds during re-epithelialization are facilitated by calcium-dependent mechanisms [7].

In conclusion, the process of calcium signalling during wound healing is complex
and dynamic. It plays a role in the timely repair of damaged tissue by participating
in the following processes: cell migration, inflammation, proliferation, contraction, and
extracellular matrix remodelling.

3. Calcium Channels Involved in Wound Repair

Ca2+ channels are essential components in wound repair, playing a crucial role in
mediating the influx of calcium ions into cells. Various Ca2+ channels regulate the dynamic
fluctuations in intracellular calcium levels, which aid in the cellular processes that are
coordinated during the various stages of wound healing.

Here we describe key types of Ca2+ channels involved in wound repair (see also
Figure 2).
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Figure 2. Key type of Ca2+ channels. See text for more details. PM: plasma membrane; ER: endoplas-
mic reticulum. Created with BioRender.com.

3.1. Voltage-Gated Calcium (VGCC) Channels

Voltage-gated calcium channels (VGCCs) are trans-membrane proteins. A membrane
potential depolarization can activate them [14] causing the conversion of membrane elec-
trical signals to intracellular Ca2+ transients [15]; this condition leads to the activation of
several physiological events.

VGCCs are composed of different subunits called α1, β, γ, and α2δ [16]. The α1
subunits possess four homologous components with six trans-membrane sections [17]; these
include trans-membrane segments S1–S4 which form the voltage-sensing unit, whereas S5
and S6 comprise pore 1 [18]. Cell membranes depolarize, when stimulated, and as a result,
action potentials happen. The changes in potential are perceived by the voltage-sensing
module, which mediates Ca2+ influx [19]. Ca2+ has an important function as a universal
second messenger; as a consequence, it can stimulate many physiological phenomena,
including cell death, gene expression, hormone secretion, muscle contraction, and synaptic
transmission [15,19].

VGCCs have 10 subtypes, and they can be combined into families: Cav1, Cav2, and
Cav3. The first subfamily is composed of L-type calcium channels. They are stimulated
at high voltage to perform long-lasting and large ion currents [20]. The second subfamily,
Cav2, is divided into R-type, N-type and P/Q-type based on their functions [21,22]. Con-
versely, the final subfamily, Cav3 channels, is T-type Ca2+ channels that conduct transient
currents when activated at low voltages [21,23]. It was discovered that VGCCs are located
on epidermal keratinocytes. The Ca2+ ions’ influx into epidermal keratinocytes defers the
barrier rescue (as demonstrated by Denda et al. [24]); on the contrary, nifedipine adminis-
tration, R-(+)-BAY K8644 or verapamil, VGCC inhibitors, hastens the healing. When the
skin barrier is damaged, its electric potential changes; this condition is able to generate
negative electric potentials to help with the repair of the skin barrier [25]. According to
these findings, VGCCs are linked to skin homeostasis and have a detrimental effect on the
restoration of the skin barrier [26].

3.2. Transient Receptor Potential (TRP) Channels

Ion channels known as transient receptor potential (TRP) channels are a broad family
that is involved in perceiving and reacting to a range of environmental stimuli, such as
pressure, temperature, and chemical signals. These channels play a significant role in
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wound healing by contributing to processes such as inflammation, cell migration, and pain
perception.

At first, TRP genes were described in Drosophila melanogaster. A study showed that in
the sight-impaired mutant fly, there is a transitory response to continuous light [26] rather
than a prolonged one [27]. However, the trp gene structure and the TRP protein localization
were recognized later [28].

Currently, in humans, research has identified around thirty TRP-related genes and
twenty-seven different TRP channels [29]. TRP channels play an important role in com-
munication between cells; in addition, their activities are dependent on cell type. For
example, in neural cells, the activation of TRP channels could induce depolarization and
the induction of electric potential. Moreover, TRP channels control intracellular calcium
concentrations in non-excitable cells. This mechanism is associated to growth and the
differentiation of keratinocytes, thus influencing the skin barrier [30]. Originally, TRP
channels were defined as “polymodal cellular sensors” [31–33]; now, they are recognized
to be “promiscuous pleiotropic molecules” activated by several stimuli [34–36].

TRP channels are divided into various subtypes based on their structure, i.e., TRPN
(Drosophila NompC), TRPA (ankyrin), TRPC (canonical), TRPM (melastatin), TRPML (mu-
colipin), TRPP (polycystin), and TRPV (vanilloid) [28,37,38]. Recently, Li et al. identified,
in yeast, another TRP family and called it TRPY [29].

Based on their similarity to Drosophila TRP, the channels are classified into two groups:
group 1, which includes TRPA, TRPM, TRRPV, and TRPC and shows the greatest paral-
lelism with Drosophila trp genes; and group 2, which consists of TRPM and TRPP, TRP
receptors that are more dissimilar to Drosophila TRP receptors [29]. TRP channels are im-
plicated in the activation of immune cells during the inflammatory phase of wound healing.
Some TRP channels, such as TRPV1, TRPV3, and TRPA1, are expressed in immune cells and
can be activated by inflammatory mediators. The activation of TRP channels in immune
cells can lead to the release of pro-inflammatory cytokines and the modulation of immune
responses [39]. TRP channels are expressed in sensory neurons, and their activation can
contribute to pain perception and the transmission of sensory signals associated with tissue
injury. Other TRP channels, including TRPV4, have been implicated in the regulation of
blood vessel function. TRPV4 activation, for instance, can lead to the release of vasodilatory
factors, influencing blood flow to the wound site and supporting the delivery of nutrients
and immune cells [40].

Based on available data, it appears that many TRP channels [41] are connected to
cutaneous conditions like psoriasis, acne vulgaris, atopic dermatitis (AD), cutaneous malig-
nancies, dermatitis of various kinds, and hair development abnormalities [42].

3.2.1. TRPC

The TRPC group of receptors is composed of seven members (indicated as TRPC1
to 7), and they are strictly correlated to TRP channels described in Drosophila. These
receptors, which are non-specific cation channels found in both nervous and non-nervous
cells, play a crucial role in controlling intracellular Ca2+ entry in response to both normal
and pathological stimuli [43]. An increase in Ca2+ entry leads to membrane depolarization
and a rise in the cytosolic Ca2+ concentration ([Ca2+]c), both of which have detrimental
consequences on cellular functions [44]. Research has highlighted the TRPC’s role in
myocardial injuries and in diabetic kidney diseases [45,46]. TRPC inhibition shields the
podocytes and cardiac cells’ activity; as a result, TRPC could be an auspicious target. In
addition, TRPCs are similarly localized in the epidermal cells [47], and some authors have
shown an involvement in Darier’s disease by the modulation of keratinocyte differentiation
and proliferation [48].

During foetal development, TRPC1 expression is higher in the liver and kidney than
in the brain; however, following birth, it is primarily found in the ovary, heart, testes, and
some areas of the brain [49].
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In humans, TRPC2 is considered a pseudogene [28]. TRPC1 contributes to the dif-
ferentiation of keratinocytes through the regulation of the Ca2+ influx [50]. TRPC1 on the
endothelial cell membrane is able to interact with both vascular endothelial growth factor
(VEGF)/VEGF receptor 2, controlling plasma membrane permeability and Ca2+ influx, and
with soluble α-Klotho (e.g., vascular-protective and antioxidant molecule), thus playing a
significant role in the maintenance of endothelial cell integrity [51].

TRPC6 expression, instead, is facilitated by non-canonical TGF-β signalling through
p38 and Serum Response Factor (SRF). TRPC6 triggers the calcineurin (a calcium-sensitive
phosphatase), which causes trans-differentiation induction in myofibroblasts [52]. The
granulosum and spinosum stratum keratinocytes are the primary epidermal cell types that
contain TRPC6. However, TRPC6 is not expressed in basal layer keratinocytes, because this
channel is able to modulate Ca2+-dependent differentiation [53]. In addition, hyperforin,
contained in Saint John’s wort, can induce TRPC6 to improve ATP-Ca2+ signalling and
Ca2+ entry in skin cells, thus participating in skin repair [54]. In the same way, some
data suggest that in gingival keratinocytes, TRPC4 is present in the cytoplasm and in the
plasma membrane, regulating the calcium-sensing receptor (CaSR)-induced increase in
intracellular [Ca2+] [55].

Additionally, certain TRPC group members can interact with one another and even
perform sophisticated functions; for example, TRPC3 can take action as a STIM1 (stromal
interaction molecule)-dependent store-operated Ca2+ channel (SOCCs) only, interacting
with TRPC1, while, in the presence of TRPC4, TRPC6 acts only as a STIM1-dependent
channel [56]. Through changes in the Ca2+ level, STIM1 affects TRPC4 and TRPC1, which
in turn control store-operated Ca2+ entry and impact the maturation of epidermal cells and
the establishment of the epidermis barrier [57].

3.2.2. TRPV

TRPVs are responsive to several signals coming from tissue damage and their trigger
is often recognized as pain. According to the literature, thermo-TRP channels such as
TRPV1-4 are triggered by heat. The TRPV is another subgroup of TRP channels, and it is
composed of six members (TRPV1-6) [29]. On the cells of basal and supra-basal healthy
human skin, TRPV1-4 immunoreactivity has been recognized, and these groups have been
suggested to be thermo-sensory receptors [58,59]. TRPV5 and TRPV6 have been recognized
as calcium ion channels present in epithelial cells; on the contrary, TRPV1-4, considered
nociceptors, are able to sense the damaging signals [60]. In addition to sensing protons (low
pH), toxic heat, and capsaicin, TRPV1 may also react to UV stimulation [61]. Hair shaft
elongation and keratinocyte proliferation are inhibited by TRPV1 activation. This condition
conducts early hair follicle regression and consequent cellular death by apoptosis [62].
The AEA (anandamide) application promotes cell death by Ca2+ entry through TRPV1
and blocks epidermal proliferation by the increase in intracellular Ca2+ levels [63]. In
developed human primary keratinocytes, TRPV1 inhibition prevents PAR-2 (proteinase-
activated receptor-2) from triggering the SLIGKV peptide, which causes the depletion of
the Ca2+ storage and the release of inflammatory mediators [64]. These works show that
the over-activation of TRPV1 inhibits keratinocytes’ proliferation during inflammation.

TRPV is regulated by temperature, by ligands, such as probenecid and cannabinoids,
and by lipids. TRPV2 and TRPV1 have in common a high sequence identity (>50%), but
TRPV2 displays a higher sensitivity for activation and the temperature threshold than
TRPV1 [65]. However, different from TRPV1, there is little information regarding TRPV2
expression in human epithelial cells. Furthermore, no information on epithelial cells is
available on the physiological role of TRPV2 [59]. Nevertheless, in vitro studies (on rat
models) about wound healing have shown that compounds targeting TRPV2 channels could
improve excessive wound contraction through the differentiation of dermal fibroblasts and
the blocking of the release of TGF-β1 [66].

TRPV3 is mostly found in skin keratinocytes, where it senses pain and warmth. It
is sensitive to warm temperatures (below 33 ◦C) [67,68]. TRPV3 activation enhances
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prostaglandin E2, nerve growth factor, thymic stromal lymphopoietin (TSLP), and inter-
leukin (IL)-33 production in human keratinocytes and increases scratching behaviour in
mice [69]. The triggering of TRPV3 can also encourage an important pro-inflammatory
response by the means of the NF-κB pathway [70]. Some works have also described that
in the tissues of pruritic burn scars, TRPV3 and TSLP expression have improved [71];
moreover, TRPV3 stimulates the differentiation of myofibroblast, collagen secretion, and
the expression of TSLP via the TRPV3-Smad2/3 signalling pathway [72]. These results
propose a link between pruritus diseases and TRPV3. For this reason, TRPV3 inhibition
could be of great interest for therapy. Also, TRPV4 can also be triggered by temperatures
under 33 ◦C [73,74], and it was originally portrayed to be a mechano- or osmo-sensor [75].

TRPV4 is largely expressed in the whole body [76]. TRPV4-deficient mice show an
impaired epidermal barrier, non-physiological actin rearrangements, insufficient strati-
fication, and leaky cell–cell junctions [77]. Ammar et al. discovered that the migration
and the proliferation of wild-type oesophageal keratinocytes were slower than in those
with TRPV4 knockout [78]. Moreover, TRPV4 has been emphasized [79] as being required
for the TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts. The
siRNA knockdown of a TRPV4-specific antagonist, called AB159908, dramatically blocked
TGFβ1-induced differentiation. TRPV5 and TRPV6 are both present at the apical portion of
the cell membranes of Ca2+-transporting epithelia, and they are calcium-selective channels,
helping as access receptors in trans-epithelial Ca2+ passage [80].

TRPV6, which participates in the formation of the skin barrier, plays an important func-
tion, under high extracellular Ca2+ levels, in the terminal differentiation mechanism [81].
Additionally, TRPV6-deficient keratinocytes display a decrease in the ability to flatten the
strong connections between neighbouring cells [82].

3.2.3. TRPA

Only one member of this family, TRPA1, is found in sensory neurons as well as non-
neuronal cells (including epithelium and hair cells), and it can be activated by harmful
external stimuli and low temperatures [83]. Furthermore, TRPA1 regulates the biological
function of epidermal cells, like the TRPV subfamily members [42]. For example, the TRPA1
topical application agonists showed increased barrier recovery [84]. A recent work also
demonstrated that the inhibition of TRPA1 can reduce skin oedema and pro-inflammatory
cytokine levels [85].

Furthermore, activated TRPA1 is correlated with irritant contact dermatitis symptoms,
such as itching, pain, and neurogenic inflammation [86]. All this information suggests that
TRPA1 plays a central role in inflammation and skin injury.

3.2.4. TRPM

The TRPM subfamily is composed of eight variable members, intrinsic membrane
proteins, i.e., TRPM1-8 [87]. Except for TRPM4 and 5, TRPMs are Ca2+-permeable cation
channels [88,89]. Human epidermal melanocytes express TRPM1, which has been demon-
strated to be essential for the pigmentation process [90,91]. Similar to how TRPV1 is an
extremely effective heat detector, TRPM8 is more susceptible to cold in the environment [30].
Contrarily, as TRPM8 is not activated by dibutyl phthalate, it is unlikely to contribute to
phthalate-induced cutaneous hypersensitivity [92]. Until today, TRPM8 did not show a link
to skin homeostasis or dermatitis [93]. However, the activation of it can prevent the pro-
duction of CGRP in colon tissue and stop chemically induced irritation [94]. Additionally,
it causes a rise in pro-inflammatory cytokines in the blood of normotensive rats [95].

3.3. Inositol 1,4,5-Trisphosphate Receptor and Ryanodine Receptor

Ca2+ release from intracellular storage, mostly ER/SR, is mediated by intracellu-
lar ligand-gated Ca2+ release channels. Two strictly related groups of intracellular Ca2+

release channels have been identified: the ryanodine receptor (RyR) and the inositol 1,4,5-
trisphosphate receptor (IP3R). Although they are found in all cell types, the Purkinje cells
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of the cerebellum have the highest densities of IP3R channels, whereas the RyR is the main
Ca2+ release channel in striated muscle.

There are various functional matches between RyR and IP3R channels [96] thanks
to similar physiology and structural homology. In cells, the concentration of Ca2+ in
the cytoplasm is about 100 nM, lower than the level of Ca2+ in the ER Ca2+ store and
extracellular Ca2+ concentration. Cytoplasmic Ca2+ concentration may be momentarily
increased by the trigger of RyR and IP3R. The activity of IP3R channels is regulated by a
coupled interaction between the binding of its primary ligands, IP3 and Ca2+. Furthermore,
in response to a variety of extracellular cues, including hormones, growth factors, light,
neurotrophins, neurotransmitters, and odorants, IP3 is a second messenger produced by
phosphoinositide turnover [97]. TRPC1 cooperates with IP3R and PLCgamma1, inducing
the SOC activation in human skin cells as indicated by Tu et al. [47]. In addition, Schmitt
et al. [98] recently demonstrated that phospholipase C (PLC) inhibition blocks IP3R Ca2+

release. When IP3 binds to IP3R, it releases Ca2+ from intracellular storage and raises the
concentration of free Ca2+ in the cytoplasm, which stimulates a variety of cellular processes,
from growth to death and from secretion to contraction [99].

Additionally, IP3R controls Ca2+ in a biphasic manner, meaning that it is activated
at low concentrations (up to 0.3 µM) and suppressed at higher values (0.5–1 µM) [100].
However, IP3R function is also controlled by accessory Ca2+-independent proteins, redox
potential, ATP, and Mg2 [101]. In the nervous system and muscle, RyRs have a prominent
part in intracellular calcium level regulation. RyR1 is hardly found in epidermal differenti-
ated layers, according to Sumiko et al. [84]. RyR2 is similarly found in differentiated sheets,
specifically in the border layer between the stratum corneum and the granular layer.

Moreover, RyR3 is found on skin cells; however, differentiated layers express it more
strongly. Another study highlighted that the RyRs’ inhibition can promote in vivo wound
repair, while in a keratinocyte cell line (i.e., HaCaT cells), wound closure is enhanced by an
RyR antagonist, dantrolene [102]. These studies propose that in the epidermis, RyRs are
linked with both epidermal barrier homeostasis and the differentiation of epithelial cells.
In addition, some therapeutic effect may be obtained by the application of RyR antagonists.

3.4. Store-Operated Ca2+ Channels

The release of Ca2+ from ER could be activated by IP3 (inositol 3-trisphosphate), a
crucial second messenger, producing ER Ca2+ release to the cytosol, as the intracellular
Ca2+ main store [103]. According to a hypothesis on capacitive Ca2+ entry, the plasma mem-
brane’s Ca2+ channels are activated when Ca2+ reserves are emptied, helping to replenish
the stores. This supposition was later called SOCE (store-operated Ca2+ entry) [104]. Differ-
ent works also recognized that SOCE not only allows Ca2+ to refill deposits but can produce
constant Ca2+ signals itself that induce such crucial activities as cellular metabolism, exo-
cytosis, and gene expression [103,105]. On the other hand, some proteins are identified as
Ca2+ sensors for SOCE; they are called stromal interaction molecules (STIMs, in particular
STIM1 and STIM2). When Ca2+ store reduction is perceived, STIMs will move to the cell
membrane and turn on ORAI Ca2+ channels, the store-operated Ca2+ channels [104,106,107].
Furthermore, SOCE can be activated by STIM-activating enhancers. For example, STIMATE,
which is found in the ER membrane, can migrate to ER–PM junctions and assist SOCE
there [108]. SOCE plays a role in several physiological events like cell metabolism, gene
expression, and cancer development.

ORAI1 was revealed to be largely located in the lower epidermal sheet where it works
in regulating epithelial cells’ polarized motility and proliferation [109]. It was found that
either STIM1 or ORAI1 knockdown can intensely impair SOCE; this condition causes
early keratinocyte differentiation, the impaired expression of keratin1, and the blocking of
HaCaT cells’ growth in low Ca2+ [110]. Moreover, reduced SOCE in ORAI1-, ORAI2-, and
ORAI1/2-deficient immune cells, for instance neutrophils, affects numerous cell functions,
such as leukotriene expression, degranulation, phagocytosis, and reactive oxygen species
(ROS) generation [111].
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In the same way, ORAI1 and ORAI2 can form a heteromorphic channel complex,
where ORAI2 reduces ORAI1 function and mitigates SOCE, while ORAI2 optimizes SOCE
magnitude to inflect immune reactions [112].

These findings suggest a potential relationship between ORAI proteins and the im-
munological and barrier functions of the skin. ORAI demonstrates the capacity to interfere
with TRP channels. It was discovered that TRPV1 and ORAI1 connect and translocate
closely to one another at the cell membrane. Rapid calcium-dependent ORAI1 inactiva-
tion is triggered by Ca2+ entering the cell through TRPV1 channels, and this controls cell
mobility and wound healing [113].

3.5. Mechanosensitive Ion Channels

Various ion channels are sensitive to mechanical forces, and their activation can lead to
an influx of calcium ions. Mechanosensitive channels play a role in transducing mechanical
signals associated with tissue injury into biochemical responses, contributing to the early
phases of wound repair [114].

Mechanosensitive ion channels are a class of membrane proteins that play a crucial role
in sensing mechanical stimuli and converting them into electrical signals. These channels
are found in various cell types and organisms, from bacteria to mammals, and they are
essential for numerous physiological processes [115]. Mechanosensitive ion channels are
typically integral membrane proteins that form pores across the cell membrane [116].
Changes in membrane tension or deformation can directly influence the conformation of
these channels, leading to the opening or closing of the ion-conducting pore. The opening
of mechanosensitive channels allows for the passage of ions (e.g., sodium, potassium,
calcium) across the membrane, leading to changes in membrane potential and cellular
responses. Mechanosensitive ion channels are diverse and can be classified into different
families based on their structure and properties.

Piezo channels are a family of mechanosensitive ion channels that have been identified
as key players in transducing mechanical forces into cellular signals. One important aspect
of Piezo channels is their role in calcium entry. There are two known members of the
Piezo family: Piezo1 and Piezo2. These channels are large trans-membrane proteins with a
unique structure, forming a trimeric complex that functions as a mechanically gated ion
channel [117]. Piezo channels are directly stimulated by mechanical stimuli, such as shear
stress or membrane tension. The mechanical force applied to the cell membrane induces
conformational changes in Piezo channels, leading to the opening of a non-selective cationic
pore, allowing for the influx of ions. Piezo channels are permeable to calcium ions, and their
activation results in a rapid and substantial influx of calcium into the cell [118]. During
wound healing, cells need to migrate into the wounded area to replace damaged tissue
and proliferate to fill the gap. Mechanosensitive ion channels, by sensing mechanical cues,
can influence cell migration. Changes in mechanical forces associated with the wound
may activate these channels, triggering signalling pathways that guide the movement of
cells towards the wound site. Studies have shown that Piezo1 channels are involved in cell
migration, which is crucial for closing wounds [117]. Additionally, they may play a role in
the regulation of vascular development and blood flow, impacting the delivery of nutrients
and oxygen to the wound site [119].

Mechanosensitive channels may contribute to the cellular responses that mediate
tissue remodelling. The channels can be involved in transducing mechanical signals that
guide the deposition and organization of extracellular matrix components [120].

4. Conclusions

Wound repair is often a burden to the patient, usually restraining well-being. Conse-
quently, real wound repair, without scars, deserves to be an important aim in dermatol-
ogy [121]. Calcium ions are recognized to play a pivotal role in cellular communication.
Although efforts have been made to completely understand the role of Ca2+ in wound
healing, we have limited information on how, in the wound bed, Ca2+ is controlled through
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various growth factors, vitamin D or hormones [122]. Similarly, research on the effects of
Ca2+ released from platelets, scaffolds, or dressings on cellular activity, wound healing,
and tissue remodelling is lacking, despite experimental models suggesting the critical
importance of Ca2+ management at the wound site [123]. Some data show the potential of
adding Ca2+ into functional dressings or incorporating the ion as a biomolecule in scaffolds
to hasten wound healing.

In summary, certain studies have demonstrated the possibility of utilizing and regu-
lating Ca2+ release from scaffolds in order to hasten the healing process of wounds [124].
However, more preclinical and clinical evidence are needed to support the results of the
research on the ability to modify Ca2+ signalling in the wound area in order to improve
tissue restoration and healing.
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