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Abstract: Corticosteroids such as Dexamethasone (DEX) are commonly licensed for therapy in meat
animals due to their known pharmacological properties. However, their misuse aimed to achieve
anabolic effects is often found by National Residues Control Plans. The setup of a complementary
“biomarker based” methods to unveil such illicit practices is encouraged by current European
legislation. In this study, the combined use of molecular and histological quantitative techniques
was applied on formalin fixed paraffin embedded (FFPE) muscle samples to assess the effects of
illicit DEX treatment on veal calves. A PCR array, including 28 transcriptional biomarkers related
to DEX exposure, was combined with a histochemical analysis of muscle fiber. An analysis based
on unsupervised (PCA) and supervised (PLS-DA and Kohonen’s SOM) methods, was applied in
order to define multivariate models able to classify animals suspected of illicit treatment by DEX.
According to the conventional univariate approach, a not-significant reduction in type I fibres was
recorded in the DEX-treated group, and only 12 out of 28 targeted genes maintained their expected
differential expression, confirming the technical limitations of a quantitative analysis on FFPE samples.
However, the multivariate models developed highlighted the possibility to establish complementary
screening strategies, particularly when based on transcriptional biomarkers characterised by low
expression profiles.

Keywords: gene expression; food safety; glucocorticoids; histology; muscle; Kohonen’s neural
networks; PLS-DA; veal calves

1. Introduction

Official controls on the residues of illicit growth promoters and other misused autho-
rised drugs in meat products, both marketed within the European Community (EU) and
imported from Third Countries, are strictly regulated to preserve consumer safety. Never-
theless, the illicit misuse of these compounds to increase animal production has still been
detected by National Residues Control Plans (NRCPs) and Europol investigations, often
revealing how easily steroids are accessed in illegal markets by easy-profit prone breeders.

Indeed, a broad range of illicit practices have been unveiled during the years by the
cited control activities, but, unfortunately, similarly to sports doping, novel formulations
based on both new designer drugs and already known performance enhancers are also
continuously developed for farm animals [1,2]. Consequently, a constant update of new
methods and techniques is needed, at both screening and confirmation levels.

In the list of misused substances found by NRCP surveys, authorised drugs such as
corticosteroids are also often reported [3], being administered in illicit practices at low doses
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for long periods and beyond the expected withdrawal times, and/or in combination with
other prohibited substances such as sex steroids, B2-agonists, etc. Among corticosteroids,
Dexamethasone (DEX) is one of the most common drugs and is licensed for therapy in both
humans and animals due to its known immunomodulation and anti-inflammatory properties.

In Italy, in 2008, the Italian Ministry of Health introduced the histological plan as a
complementary strategy for the control of growth-promoting molecules misuse. The objec-
tive of this monitoring activity was to verify whether the samples from the slaughterhouses
exceeded a predefined prevalence threshold level for illicit treatment with corticosteroids
at the national level [4,5].

Indeed, as remarked by EFSA since 2013, the establishment of complementary diagnos-
tic methods, based on biological effects and biomarkers of exposure to anabolic substances,
could be useful to update current tests available in NRCPs [6]. In this context, the recent
implementation of untargeted strategies, holistic approaches and “omics” technologies to
unveil animal doping cases seems to be highly promising [1,7]. Moreover, the definition of
panels of discriminant biomarkers, identified through different untargeted metabolomic,
proteomic and transcriptomic analyses, could facilitate the establishment of cheaper and
scalable diagnostic tests needed during field investigations [8–10].

Additionally, regarding DEX effects on cattle, different transcriptomics and proteomic
studies have been proposed to firstly identify candidate biomarkers of exposure [11–14]
and then validate their application in field samples [15,16]. However, the attempts to merge
different sources of biological information to enhance the detection of such illicit practices,
e.g., a combination of image analysis, immunohistology and gene expression studies, are
currently limited to other classes of growth promoters such as sex steroids [17].

The aim of the work was therefore to combine the output of a Real Time PCR array,
designed to quantify expression levels of multiple transcriptional biomarkers related to
DEX exposure, with a histochemical measurement of muscle fibres. This coupled molec-
ular/histological quantitative approach was applied on the same muscle samples that
were formalin-fixed, paraffin-embedded (FFPE) and collected during an animal trial per-
formed to assess the effects of illicit treatment with DEX on veal calves. The use of a
multivariate analysis was tested to identify an optimal set of histological and/or transcrip-
tional biomarkers that are able to classify animals suspected of illicit treatment by steroids,
i.e., DEX.

2. Materials and Methods
2.1. Sample Selection

Archived paraffin blocks of bovine biceps brachii muscle samples, from a previous
animal trial to study the effects of DEX illicit administration [18], were retrieved from
the tissue bank of the National Reference Centre for Biological Investigation of Anabolic
Substances in producing animals (CIBA).

Briefly, 2 month old Friesians male calves were recruited, randomly divided into two
groups and reared for about 4 months. One month before slaughtering, one group was
orally treated with dexamethasone 21-phosphate disodium salt at a dose of 0.4 mg/day per
animal for 20 days, according to a presumed anabolic protocol of treatment, and the other
group was kept as control and treated with a placebo. The animals were all slaughtered at
about 7 months in an EC certified slaughterhouse approximately 10 days after the last drug
administration; control animals were slaughtered after the treated ones. The experiment
was carried out in accordance with the European Council Directive 2010/63/EU 86/609
(D.Lgs 26/2014) and was authorised by the Italian Ministry of Health and the Ethics
Committee of the University of Turin. At the end of the sampling procedure, the carcasses
of the treated animals were destroyed according to the relevant legislation (Directive
2003/74/EC). The study was a randomised controlled blind clinical trial. The biceps brachii
muscle samples were collected at the slaughterhouse and immediately fixed in 10% neutral
buffered formaldehyde and transferred to the laboratory.
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Further and comprehensive information regarding the animal trial is available in the
work of Richelmi et al., 2017 [18].

Forty FFPE muscle samples (15 controls + 25 DEX treated) from the cited animal
trial were randomly chosen for microscopy and transcriptomics investigations, plus two
additional FFPE samples from calves treated with a therapeutic dose of DEX. The authorised
therapeutic schedule foreseen was dexamethasone 21-phosphate disodium salt (2 mg/kg
of live weight for three consecutive days. These two samples were not included in model
calculations (see Section 2.5) but were used for external prediction. A total of 42 FFPE
samples was therefore considered in the study (see Section 3).

2.2. Histological Analysis

The samples were collected and oriented along the transverse fibre sectioning. Muscle
samples were fixed in 10% neutral buffered formaldehyde, routinely processed, embedded
in a paraffin box, sectioned in 3–5 µm slices and stained with haematoxylin and eosin (HE)
to verify the correct orientation of the fibres. Only the samples correctly orientated and
without alterations were selected for the morphometric analysis. The selected samples
were then sectioned in 3–5 µm slices for the immunohistochemistry analysis. Sections were
incubated in a buffer solution at pH 6 at 97 ◦C for 30 min to reduce the nonspecific binding
of the secondary antibodies; then, they were incubated at room temperature in a humid
chamber for 1 h with a 1:50 solution of a monoclonal antibody specific for the slow myosin
heavy chain type 1 (MHC1) to detect type 1 fibres (MAB1628; Millipore, Burlington, VT,
USA). After washing, the EnVision System Kit (Agilent Dako, Santa Clara, CA, USA) for
polyclonal and monoclonal antibodies was used as the detection system. The immune
reactions were visualised by applying a 3,3′-diaminobenzidine (DAB) chromogen solution
(Dako) for 4′ (Agilent Dako, Santa Clara, CA, USA).

All sections were analysed using optical microscopy and images were captured using
a Nikon DS-Fi1 colour digital camera (Nikon Europe BV Instruments, Amsterdam, The
Netherlands). For each slide, 25 muscle fibre diameters were measured after manual selec-
tion in 5 randomly selected 200× fields digital images (5 fibres in each image) (Figure 1).
The NIS-Elements 4.5. software (Nikon Europe BV Instruments, Amsterdam, The Nether-
lands) was used to analyse the images. To overcome the distortion that may occur when a
muscle fibre is cut obliquely, the “lesser diameter” was measured [19].

2.3. RNA Extraction

The total RNA was isolated from the same FFPE muscle samples used for the his-
tological analysis and optimised procedures for long-term archived FFPE tissues were
applied [20]. Briefly, 10 sections, of 8 µm thickness, were cut and processed with the
miRNeasy FFPE kit (Qiagen, Düsseldorf, Germany), quantified with Qubit BR-RNA kit
(Thermo Fisher Scientific, Waltham, MA, USA) and successively checked using Bioanalyzer
2100 (Agilent, Santa Clara, CA, USA) with the total RNA 6000 Nano kit (Agilent) for the
RNA integrity number (RIN) and DV200 estimation.

2.4. Retro Transcription, Preamplification and Taqman Custom Arrays

A custom Taqman Real Time PCR Array (project number 4351372, Thermo Fisher
Scientific) was designed on 96-wells optical plates to quantify the expression levels of the
28 genes that were identified in previous studies as related to the DEX exposure [11,14,15].
The Taqman assays for four reference genes, required for data normalisation (Table 1), were
also spotted on the array. The chosen Real Time plate layout allowed for the analysis of
each sample in triplicate in each PCR run (3 × 32 targets).



Foods 2022, 11, 1810 4 of 16Foods 2022, 11, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Selection and measurement (green lines) of muscle fibre for diameters calculations in ran-
domly chosen fields. 

2.3. RNA Extraction 
The total RNA was isolated from the same FFPE muscle samples used for the histo-

logical analysis and optimised procedures for long-term archived FFPE tissues were ap-
plied [20]. Briefly, 10 sections, of 8 μm thickness, were cut and processed with the miR-
Neasy FFPE kit (Qiagen, Düsseldorf, Germany), quantified with Qubit BR-RNA kit 
(Thermo Fisher Scientific, Waltham, MA, USA) and successively checked using Bioana-
lyzer 2100 (Agilent, Santa Clara, CA, USA) with the total RNA 6000 Nano kit (Agilent) for 
the RNA integrity number (RIN) and DV200 estimation. 

2.4. Retro Transcription, Preamplification and Taqman Custom Arrays 
A custom Taqman Real Time PCR Array (project number 4351372, Thermo Fisher 

Scientific) was designed on 96-wells optical plates to quantify the expression levels of the 
28 genes that were identified in previous studies as related to the DEX exposure [11,14,15]. 
The Taqman assays for four reference genes, required for data normalisation (Table 1), 
were also spotted on the array. The chosen Real Time plate layout allowed for the analysis 
of each sample in triplicate in each PCR run (3 × 32 targets). 

Table 1. List of selected targets for Gene expression study, reference sequences, amplicon sizes and 
supplier references for each Taqman assay. Reference gene for data normalisation marked with *. 

Taqman Assay ID Gene Ref. Seq Amplicon Size 
Bt03218086_m1 RPLP0 * NM_001012682.1 71 bp 
Bt03238680_m1 FGL2 NM_001046097.1 93 bp 
Bt03241948_m1 TBP * NM_001075742.1 87 bp 
Bt03238185_m1 C7 NM_001045966.1 59 bp 
Bt03262383_m1 CCDC80 NM_001098982.2 63 bp 
Bt03263026_m1 CRISPLD2 NM_001100299.1 55 bp 
Bt04298466_m1 FKBP5 NM_001192862.1 65 bp 
Bt03216009_m1 MMP2 NM_174745.2 65 bp 

Figure 1. Selection and measurement (green lines) of muscle fibre for diameters calculations in
randomly chosen fields.

Table 1. List of selected targets for Gene expression study, reference sequences, amplicon sizes and
supplier references for each Taqman assay. Reference gene for data normalisation marked with *.

Taqman Assay ID Gene Ref. Seq Amplicon Size

Bt03218086_m1 RPLP0 * NM_001012682.1 71 bp
Bt03238680_m1 FGL2 NM_001046097.1 93 bp
Bt03241948_m1 TBP * NM_001075742.1 87 bp
Bt03238185_m1 C7 NM_001045966.1 59 bp
Bt03262383_m1 CCDC80 NM_001098982.2 63 bp
Bt03263026_m1 CRISPLD2 NM_001100299.1 55 bp
Bt04298466_m1 FKBP5 NM_001192862.1 65 bp
Bt03216009_m1 MMP2 NM_174745.2 65 bp
Bt03230953_m1 MYOC NM_174118.2 74 bp
Bt04318503_g1 RASD1 NM_001206261.2 107 bp
Bt03217338_m1 SULT1A1 NM_177521.2 73 bp
Bt07108870_s1 CYP1A1 XM_002696635.5 129 bp
Bt03235950_m1 CCL24 NM_001046596.2 69 bp
Bt04298185_m1 PFKFB4 NM_001192835.1 69 bp
Bt03218751_m1 C1QA NM_001014945.2 65 bp
Bt03210913_g1 GAPDH * NM_001034034.2 66 bp
Bt03230996_g1 HSPA8 NM_174345.4 83 bp
Bt03257092_m1 MEDAG NM_001083660.1 67 bp
Bt03217196_g1 OXT NM_176855.1 113 bp
Bt03224615_g1 PPIA * NM_178320.2 76 bp
Bt03252282_m1 IGF1 NM_001077828.1 65 bp
Bt03223166_m1 MYH1 NM_174117.1 74 bp
Bt03244740_m1 MYOD1 NM_001040478.2 84 bp
Bt03258929_m1 MYOG NM_001111325.1 85 bp
Bt03223133_m1 MYF5 NM_174116.1 77 bp
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Table 1. Cont.

Taqman Assay ID Gene Ref. Seq Amplicon Size

Bt03224711_g1 MYF6 NM_181811.2 57 bp
Bt03248872_m1 NR4A2 NM_001076208.1 60 bp
Bt04317546_g1 MT2A NM_001075140.1 87 bp
Bt04315715_m1 FSIP1 NM_001193138.2 69 bp
Bt03256973_m1 GALNT9 NM_001083641.1 59 bp
Bt03247326_m1 GAD1 NM_001075756.2 57 bp

AR2W94D LIPG XM_002697766.5 115 bp

The total RNA from the extracted samples (2.5 µg) was reverse transcribed to a final
volume of 20 µL with the SuperScript-IV Vilo kit (Thermo Fisher Scientific). The cDNA
from each sample was then preamplified with Taqman Preamp Master Mix and Custom
preamp primers pool (Thermo Fisher Scientific) according the manufacturer’s guidelines,
which were as follows: hold stage of 10 min at 95 ◦C, 14 cycles of 15 s at 95 ◦C and 4 min
at 60 ◦C, followed by final denaturation and Taq polymerase inactivation step (99 ◦C for
10 min). The conclusive Real Time PCR step on preamplified cDNAs (tenfold diluted in
TE buffer) was performed using the Taqman Fast Advance Master Mix (Thermo Fisher
Scientific) and a StepOne Plus Real-Time PCR System (Thermo Fisher Scientific) with the
following thermal cycling conditions (fast ramp mode): two consecutive holding stages
(2 min at 50 ◦C and 2 min at 95 ◦C), followed by 40 cycles of 1 s at 95 ◦C and 20 s at 60 ◦C
(final reaction volume in each well: 10 µL).

2.5. Data Analysis

The collected histological data were analysed using Prism software 6.01 (GraphPad
software, Inc. San Diego, CA, USA). The Shapiro–Wilk test was used to test the normality of
the data distribution before the statistical analyses. The data were described by mean and
standard deviation (SD). Morphometry analysis-related differences were also assessed by
unpaired t-test and p-values < 0.05 were considered statistically significant. Relative quan-
tification (RQ) of the 28 selected transcripts was performed using the ∆∆Cq method [21].
Preliminary analysis and filtering of Cq values was performed with the GeneEx 6.1 software
(MultiID Analyses AB, Göteborg, Sweden), by the evaluation of mean, standard deviation,
and outlier identification. Specifically, a threshold value of 32 Cq was applied to all the
collected gene expression data, as suggested by the Taqman Array supplier (Thermo Fisher
Scientific) when the cDNA preamplification step was performed. To evaluate the stability
of the reference genes, Genorm and Normfinder analyses were applied [22,23].

The fold changes of all biomarkers for both the control and treated groups of muscle
samples were reported using the log2 scale ± confidence interval (CI) at 95%. The signifi-
cance of recorded fold changes was assessed by one-way ANOVA with Tukey’s post hoc
test (* p < 0.05).

A multivariate statistical approach was then applied to all the collected data, consisting
of a pattern recognition approach, followed by a classification analysis, to verify the ability
of the measured variables in classifying control vs. DEX-treated samples. The analysis was
carried out on the following two datasets:

− RQ dataset, consisting of 52 gene expression profiles described by 30 variables each,
achieved from the analysis of 37 samples (see Section 3) plus several randomly cho-
sen technical replicates at different dilution levels, in order to test and exclude a
significant quantification bias due to the cDNA preamplification step, as described
by Korenková et al. [24]. This whole dataset comprised 12 controls and 23 treated
samples, plus two more samples from animals treated with a therapeutic dose of
dexamethasone. These two samples were used for external prediction and were not
included in the model calculations;

− RQhisto dataset, including the RQ variables recorded by the gene expression analysis
and the results obtained by the histologic analysis, i.e., the average, the median
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and the standard deviation of the measurements taken for each sample. The total
number of analysed samples in this hybrid genomic and microscopic dataset was
lower than in the genomic only (RQ) dataset, since suitable and well-oriented muscular
fibres from the respective paraffin-embedded blocks used for the microscopy analysis
with complete gene expression profiles were not available for all samples. The final
RQhisto dataset therefore consisted of 35 samples described by 33 variables. This
dataset comprised 12 controls, 22 treated samples and just 1 sample treated with a
therapeutic dose of dexamethasone, that was exploited for external prediction and
was not included in the model calculation.

Gene expression data in both datasets were firstly normalised according to Genorm
and NormFinder results, then treated using Principal Component Analysis [25], Partial
Least Squares—Discriminant Analysis (PLS-DA) [8,25,26] and Supervised Kohonen’s Self
Organising maps [27].

2.5.1. Principal Component Analysis (PCA)

PCA [25] is a multivariate pattern recognition method which provides a new set of
orthogonal variables called Principal Components (PC), obtained as linear combinations of
the original variables. PCA provides the following two tools for data analysis: the scores,
i.e., the projections of the samples on the space given by the PCs, and the loadings, i.e.,
the coefficients of each variable in the linear combination describing each PC. Both scores
and loadings can be analysed graphically by representing them on the space given by two
PCs at a time, to identify groups of samples with a similar behavior (score plot) and the
reasons for the observed grouping and correlations between the variables (loading plot).
More details can be found in [25].

2.5.2. Partial Least Squares Discriminant Analysis (PLS-DA)

Partial Least Squares (PLS) [8,25,26] is a multivariate regression method correlating
a series of descriptors (X variables) to one or more experimental responses (Y variables):
the method searches for latent variables (LVs), similar to principal components, built on
the X variables which mostly correlate to LVs calculated on the Y variable(s). PLS-DA, a
modification of PLS, is devoted to classification purposes. The classification performances
were evaluated on the basis of several parameters, which are as follows: accuracy %, Non-
Error-Rate % (NER %), sensitivity, specificity and precision [28]. Here, PLS-DA was applied
to the RQ dataset and RQhisto dataset independently, after autoscaling. The results were
calculated both in fitting and in cross-validation, eliminating at each iteration 20% of all the
samples (1000 iterations).

2.5.3. Kohonen’s Self Organizing Maps (Kohonen’s SOMs)

Kohonen’s SOMs [27] are artificial neural networks capable of solving complex prob-
lems by simulating the functioning of the human brain. They are based on an auto-
associative unsupervised algorithm, whereby the input data are presented to the network
which groups them depending on their similarity. This similarity can be general (based
on all the variables) or local (based on a subset of the variables employed to describe the
problem). Kohonen’s SOMs are based on a single layer of neurons, usually arranged in
a square (top layer) where the samples appear grouped at the end of the learning phase.
Below each neuron of the top layer, there is a column of cells, one for each descriptor
(X variables, here the signals), which contain the weights of the network. During each
learning epoch, every sample is presented in turn to the network. For each sample, the
distance between the sample and every column of weights is calculated. The column with
the minimum distance is considered as the winning neuron. The weights of this neuron are
modified so that at the subsequent cycle, the distance of the same sample from the winning
neuron is the smallest. A similar correction is applied to the neurons in the neighbourhood
of the winner but the correction decreases with the distance and usually also decreases with
the number of epochs. At the beginning, the whole network is affected by the corrections
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while in the last cycles only the winning neuron is corrected. Similarly, at the beginning, the
learning rate, i.e., the amount of correction introduced, is larger than in the last cycles. The
aim of Kohonen learning is to map similar signals to similar neuron positions. The final
result is a map of neurons, where the most similar samples are in the same cell or in close
cells. The weights below each neuron provide insight into the reason for the clusterisation
of the objects.

Kohonen’s networks can also be trained in a supervised manner to provide sample
classification (Supervised Kohonen networks—SKN) [27], whereby the input (X) map
and the output (Y) map are combined in an input–output map that is trained in the
same way standard Kohonen’s maps. Here, SKN was run with the following settings:
toroidal boundary, batch algorithm, hexagonal topology, random initialization of weights,
learning rate decreasing linearly from 0.5 to 0.01, a top map with 8 × 8 neurons and
200 training epochs.

2.6. Software for Multivariate Data Analysis

PCA and PLS-DA were carried out with Matlab R2014a (The Mathworks, Natick, MA,
USA), utilizing the in-house-developed routines and the Classification Toolbox from Milano
Chemometrics [28]; Kohonen SOMs were built with the Kohonen and CP-ANN (Counter
propagation artificial neural network) toolbox for MATLAB from Milano Chemometrics [29].
Graphical representations were carried out using Matlab, Statistica v.7 (Statsoft Inc., Tulsa,
OK, USA) and Excel 2016 (Microsoft Corporation, Redmond, WA, USA).

3. Results
3.1. Histological Analysis

Only thirty five out of forty two samples selected for the gene expression study
were also suitable for the morphometry analysis, four samples showed an incorrect fibre
orientation, and one further sample was excluded since it presented eosinophilic myositis.
No significant differences were identified between the diameter measure of the fibres in the
canonical univariate analysis (p > 0.05). Descriptive statistics of the morphometry analysis
are reported in Table 2.

Table 2. Descriptive statistics of morphometry analysis performed on 34 samples (22 from DEX illicit
treated animals, 12 from controls). Data of the only sample from an animal treated with therapeutic
dose of dexamethasone are not reported.

Parameters DEX Control

Samples 22 12
Mean 40.5 44.6

SD 9.0 7.5
SEM 2.1 2.5

Minimum 23.6 33.3
Median 39.1 46.4

Maximum 54.8 59.9

3.2. Gene Expression Analysis

The RNA extraction was correctly performed on 37 of 42 FFPE samples from the animal
trial. The RIN number of all extracts ranged between 2.1 and 5.4 and DV200 scores of all
samples were between 30% and 50%, confirming the high fragmentation of RNA extracted
from FFPE muscle samples. This evidence was further validated by the amplification
profiles collected for the 32 targeted genes: four targets (OXT, GALNT9, FISIP1 and GAD1)
in some samples had Cq values over the cut-off for pre-amplified cDNA (>32 Cq).

Genorm and NormFinder analyses revealed RPLP0 and HSP8A as the most stable
genes for data normalisation.
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The differentially expressed genes (DEG), defined by the comparison of the normalised
expression levels from DEX-treated and control groups, are reported with the associated
p-values in Figure 2.
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Of the 28 biomarkers originally selected for array design, only 12 targets plus two
genes tested as reference genes were found to be still differentially expressed (DE) in the
analysed FFPE muscle samples (Figure 3).
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3.3. Multivariate Analysis
3.3.1. PCA

PCA was applied to both the RQ and RQhisto datasets after autoscaling (mean centring
followed by unit variance normalisation). In both cases, the first four PCs explain more
than 60% of the overall information (see Supplementary Material Table S1), showing a
considerably correlated data structure. PCA shows in both cases that the samples separated
along PC1, with controls having negative scores and treated samples demonstrating more
positive scores along the first PC. The samples treated by the therapeutic dose appeared
within the group of controls (Figure 4).
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dataset (B,D), after autoscaling.

Looking at the corresponding loading plots, both datasets reveal variables at positive
loadings on PC1 (e.g., C1QA, GAD1, MYF6) to be characterised by larger signals in illicitly
treated samples and lower signals in controls, while variables at negative loadings on PC1
(e.g., FGL2, KKBP5, GAPDH, IGF1, MYF5, CCL24, TBP, MYOD1, MEDAG, RASD1) show
an opposite behavior. The subsequent PCs do not show a clear separation of the samples
into groups and are not shown.

3.3.2. PLS-DA

PCA highlighted the possibility of identifying the two groups of samples (controls
and DEX treated ones) by means of the most significant PCs in an unsupervised approach.
PLS-DA was therefore applied to both RQ and RQhisto datasets separately to identify
biomarkers of the illicit treatment with a supervised approach. Notwithstanding the re-
duced size of the datasets, the supervised approach, coupled to cross-validation procedures,
was able to identify the candidate biomarkers more reliably.

PLS-DA was therefore applied on both datasets, using a cross-validation procedure
with the elimination of 20% of the samples from the training set at each validation step,
with 1000 repetitions. For both datasets, the best results in cross-validation were obtained
with 2 LVs in the final model. In both cases, the class of the samples corresponding to
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the therapeutic dose were not included in model calculations but were exploited for an
external prediction.

The two models show satisfactory performances in fitting (NER% about 90%) and
a slightly decreased level of performance in cross-validation (about 86–88%) (Table 3)
according to the NER%, the accuracy and the values of precision, specificity and sensitivity
calculated for the two classes. The misclassifications were six for the RQ dataset and four
for the RQhisto dataset. In both cases, the misclassifications were within the illicit treatment
class. In particular, of the six samples misclassified by PLS-DA applied to the RQ dataset,
four were the same specimens wrongly classified as untreated samples in the RQhisto
dataset analysis.

Table 3. Classification performances in fitting and cross-validation for PLS-DA applied to the RQ
dataset (a) and to the RQhisto dataset (b), reporting Non-Error-Rate % (NER), Accuracy %, Sensitivity,
Specificity and Precision.

Datasets Model NER% Accuracy% Groups Precision Sensitivity Specificity

RQ

Fitting 91.43 88.00
Control 71.43 100 82.86

Dex 100 82.86 100

Cross-validation 89.91 84.91
Control 66.24 100 78.56

Dex 100 78.56 100

RQhisto

Fitting 90.91 88.24
Control 75.00 100 81.82

Dex 100 81.82 100

Cross-validation 86.93 83.71
Control 69.13 98.12 75.74

Dex 98.64 75.74 98.12

The score plot of the first two LVs (Figure 5) shows that, for both datasets, control
samples were quite well separated from the illicitly treated samples, by means of the first
two LVs, with controls expressing negative scores on both LVs and the illicitly treated
samples divided into the following two groups: one with positive scores on LV2 and the
other with positive scores on LV1.
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The samples characterised by a therapeutic dose, not included in the model calcu-
lations, were predicted by both models as belonging to the control class. In both cases,
positive coefficients correspond to variables with higher values in samples treated by illicit
doses of dexamethasone and lower values in control samples; however, variables char-
acterised by negative coefficients show instead an opposite behaviour. The plot of the
coefficients for the RQhisto dataset reveals that the three variables related to histology do
not show high coefficients and seem not to play a relevant role in the final model. Among
the variables characterised by a relevant coefficient in the final models, CYP1A1, CRISPLD2,
MT2A, GAPDH and PPIA showed the highest negative coefficients and therefore appear
to be more expressed in the control samples, while GALNT9, MYOG, MYF6 and MMP2
showed the highest positive coefficients and were therefore more expressed in the illicit
treatment. The only difference between the two models consists of the variables charac-
terised by the highest positive coefficients that, in the case of the RQhisto dataset, do not
include MYF6 and MMP2.

3.3.3. Supervised Kohonen’s Self Organising Maps

Kohonen’s supervised SOMs were then applied to both datasets separately, with the
following setup: a top map of 8× 8 hexagonal neurons, toroidal boundary, batch algorithm,
random initialization of weights, learning rate decreasing linearly from 0.5 to 0.01 and
200 training epochs [27]. The data were autoscaled prior to range scaling. The results in
fitting and cross-validation (20% of the samples eliminated from the training set at each
iteration, 1000 iterations) for both datasets are given in Table 4.

Table 4. Classification performances in fitting and cross-validation for Supervised Kohonen Networks
applied to the RQ dataset (a) and to the RQhisto dataset (b), reporting Non-Error-Rate % (NER),
Accuracy %, Sensitivity, Specificity and Precision.

Datasets Model NER % Accuracy % Groups Precision Sensitivity Specificity

RQ

Fitting 100 100
Control 100 100 100

Dex 100 100 100

Cross-validation 87.67 88.59
Control 78.49 85.37 89.97

Dex 93.48 89.97 85.37

RQhisto

Fitting 100 100
Control 100 100 100

Dex 100 100 100

Cross-validation 87.46 87.72
Control 78.64 86.70 88.23

Dex 92.99 88.23 86.70

For both datasets, the results in fitting are better than PLS-DA, thereby providing
the perfect classification of all the samples, while the models show acceptable predictive
abilities in cross-validation, slightly better than PLS-DA. In both cases, the samples with
therapeutic doses were predicted in the control class.

The top maps obtained for both datasets are represented in Figure 6. In both cases, the
two classes appear well separated from each other: similar samples are contained in the
same neuron or in nearby neurons on the top map.

The results of the PCA applied to the weights calculated for each neuron of the top
map and each variable for RQ dataset and RQhisto dataset, respectively, are reported in
Figure 7. The score plot reports the neurons of the top map in different colours, where blue
circles correspond to neurons attributed to controls while red circles correspond to neurons
attributed to dexamethasone-treated samples. The first and the third PCs appear in both
cases to be the best ones to separate the two groups of neurons. The corresponding loading
plots report the weights of the original variables in the space given by the same PCs. For the
RQ dataset (Figure 7A,B), control neurons have positive scores for PC1 and negative ones for
PC3. These samples show high signals for variables MT2A, TBP, GAPDH, CRISPLD2, PPIA,
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CYP1A1, MEDAG, and low signals for variables MYF6, CCDC80, MYOC, 1QA, GAD1, C7,
GALNT9; however, dexamethasone-treated samples show an opposite behaviour.
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neurons attributed to controls while red circles correspond to neurons attributed to dexamethasone-
treated samples.
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For the RQhisto dataset (Figure 7C,D), control neurons have negative scores on PC1
and positive ones on PC3. These samples show high signals for variables MT2A, MYF5,
PGL2, FKBP5, CYP1A1, RASD1, PPIA, CCL24, GAPDH and small signals for variables
MYF6, C1QA, OXT, GAD1, FSIR1, CCDC80, MYOC; however, dexamethasone-treated
samples show an opposite behaviour.

4. Discussion

The detection and quantification of transcriptional biomarkers in FFPE samples is
known to be biased by the fragmentation and degradation grade of nucleic acids induced by
formalin [30]. Moreover, the profiling of transcripts characterised by low basal expression
levels and/or strong down-regulation induced by the investigated illicit treatment could
add further confounding variance to the quantitative analysis, overcoming in some cases
the sensitivity of PCR-based methods (e.g., late Cq values, higher SD, etc.). Consequently,
the reproducibility of the applied molecular methods needs to be carefully assessed through
the application of sufficient technical and biological replicates [31].

In our study, the choice of as-short-as-possible amplification regions for all the consid-
ered transcripts (see Table 1) and cDNA preamplification strategies was therefore adopted
by testing different dilutions of the preamplified samples, in order to obtain the maximum
possible consistency of the recorded quantification data, following previous experience of
profiling multiple transcriptional biomarkers in FFPE liver samples [8]. The use of more
expensive Taqman chemistry instead of cheaper fluorescent dsDNA dyes-based assays,
combined with cDNA preamplification, led to successful gene-expression profiling in FFPE
muscle samples.

However, a lack of reproducibility, late Cq and/or no amplification was observed
in some of the analysed samples, especially for the following targets: OXT, GALNT9,
FISIP1 and GAD1. Therefore, according to the conventional univariate approach, only
12 of the analysed targets maintained significant (p < 0.05) differential expression levels
(Figures 2 and 3), being characterised by a broader CI in comparison with the fold changes
described by previous studies on fresh/frozen or RNAlater muscle tissues [11,13–15].

Therefore, with the application of different multivariate approaches, namely pattern
recognition analysis (PCA) and classification methods (PLS-DA and Kohonen’s supervised
SOMs), all the biological information coming from the whole RQ dataset was considered,
providing a promising classification of the untreated (control) and DEX therapeutic treated
samples (predicted by both models as belonging to the control group), with only a few
misclassified samples. In particular, during cross-validation with Kohonen’s SOMs, six
samples appeared to be misclassified in the group of anabolic DEX-treated samples, while
the fitting of the models was perfect.

The application of PLS-DA helped to identify the candidate biomarkers in a more
reliable way with respect to PCA, through the exploitation of a supervised approach
coupled to cross-validation strategies which helped in the identification of candidate
biomarkers. This is also highlighted by the fact that some of the variables with significant
loadings on PC1 in the PCA analysis (e.g., GAD1, C1QA shown in Figure 4) were not
characterised by a very high coefficient in the PLS-DA models (Figure 5); the significant
LVs in PLS-DA did not signify the same results as PCs in PCA, highlighting that the two
methods achieve different goals, i.e., the directions of maximum variance identified by PCA
do not completely correspond to the most discriminant directions identified by PLS-DA.

Comparing the results of PLS-DA and supervised Kohonen’s SOMs, the classification
performances reached by Kohonen’s SOMs indicate better results both in fitting and in
cross-validation, particularly for the accuracy of classification and the parameters calcu-
lated for each class (Precision, Sensitivity, Specificity). For the variables characterised as
discriminating, a certain overlapping between the two methods was observed, since the
variables identified as the most relevant in PLS-DA (those with the largest absolute value of
the coefficient) were also identified as relevant by Kohonen’s SOMs; however, ANNs (Arti-
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ficial neural networks) identified some additional variables as relevant for classification,
e.g., CCL24, GAPDH, RASD1, FGL2, MYOD1, MEDAG, FKBP5.

The applied tools were indeed limited by the reduced number of analysed samples;
consequently, to increase the prediction capabilities of the described multivariate models,
additional biological information on the analysed samples was added by means of the
histological characterisation of the muscle fibres, for which it is known that adaptive
changes can occur in response to variations in the pattern of neural stimulation, loading
conditions, availability of substrates, and hormonal signals [32].

Our results indicate a not-significant reduction in type I fibres; these data can be
justified because it was previously reported that type 2 muscle fibres are more pronounced
than type 1 fibres due to a chronic exposure to excess glucocorticoid [32].

The choice to study only type 1 fibres was made because the biceps brachii of bovines
contains a large percentage of type I myofibers [33]. Moreover, immunohistochemical
studies were performed on paraffin-embedded sections, normally used only to evaluate
inflammation and to identify the morphology of invading inflammatory cells [34]. This
technical aspect may have influenced the results.

Accordingly, the fusion of different datasets (transcriptional and histological biomark-
ers), for the same DEX-treated and control FFPE muscle samples, revealed only a small
improvement in the developed models in terms of fitting and cross-validation perfor-
mances, with a slight reduction in the number of misclassified samples (from six to four
samples) when RQ and RQhisto dataset performances were compared (Tables 3 and 4).
However, this first attempt to join different layers of biological information (mRNA levels
and morphometric features on the same FFPE blocks) underscores the potential of a more
extensive chemical description of the system, as already reported by other authors in differ-
ent research fields [35]. Further evaluations on larger sample sets are therefore necessary to
verify the performances of the tested models.

5. Conclusions

The present study confirmed that a gene expression analysis can be successfully ap-
plied on FFPE muscle samples, and that it can, in the future, be used to update the current
Italian histological NRCP, to contrast both the illicit administration of unauthorised drugs
(sex steroids, Beta-Agonists, etc.) and misuse of authorised drugs such as corticosteroids [4].
The multivariate approach revealed, once again, the possibility to set up complementary
screening strategies similarly to what has already been developed for other food commodi-
ties [8], to obtain more biological information for sample classification in comparison to
the common univariate approach and to promote the reliable profiling of transcriptional
biomarkers when characterised by “challenging to quantify” low expression levels. The
choice of muscular tissues could also help to develop novel control activities for third-
country imported meat in the future, where the conventional sampling of target organs and
biological fluids for illicit growth-promoters detection (gonads, sexual accessory glands,
thymus, thyroids, liver, urine, blood, etc.) is often not possible.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11121810/s1, Table S1: Rates (%) of explained and cumulative
explained variance by the first six PCs calculated for RQ dataset and RQhisto dataset.
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