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Simple Summary: A growing body of research has shown the connection between gut microbiota
and colorectal cancer. However, most studies analyze fecal microbiota, which do not reliably represent
the bacterial populations associated with colon mucosa. We analyzed the microbiota and metabolome
directly collected from the surface of colon polyps, and showed different bacterial and metabolite
signatures that discriminate between patients with low- and high-grade dysplastic polyps. We
identified bacterial genera and species that are enriched in the early stages of tumor development and
may act as drivers of carcinogenesis. Moreover, we revealed that differences in metabolite profiles
accompanied the changes in bacterial composition associated with tumor stage, and that gut bacteria
are involved in the production and consumption of significantly altered metabolites. Our findings
pave the way for future mechanistic investigations to elucidate the role of specific bacteria in colon
carcinogenesis and to design preventative measures based on microbiota modulation.

Abstract: According to the driver–passenger model for colorectal cancer (CRC), the tumor-associated
microbiota is a dynamic ecosystem of bacterial species where bacteria with carcinogenic features
linked to CRC initiation are defined as “drivers”, while opportunistic bacteria colonizing more
advanced tumor stages are known as “passengers”. We reasoned that also gut microbiota-associated
metabolites may be differentially enriched according to tumor stage, and be potential determinants
of CRC development. Thus, we characterized the mucosa- and lumen-associated microbiota (MAM
and LAM, respectively) and mucosa-associated metabolites in low- vs. high-grade dysplastic colon
polyps from 78 patients. We show that MAM, obtained with a new biopsy-preserving approach, and
LAM differ in composition and α/β-diversity. By stratifying patients for polyp histology, we found
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that bacteria proposed as passengers by previous studies colonized high-grade dysplastic adenomas,
whereas driver taxa were enriched in low-grade polyps. Furthermore, we report altered “mucosa-
associated metabolite” levels in low- vs. high-grade groups. Integrated microbiota-metabolome
analysis suggests the involvement of the gut microbiota in the production and consumption of these
metabolites. Altogether, our findings support the involvement of bacterial species and associated
metabolites in CRC mucosal homeostasis in a tumor-stage-specific manner. These distinct signatures
may be used to distinguish low-grade from high-grade dysplastic polyps.

Keywords: mucosa-associated microbiota; lumen-associated microbiota; microbiota-derived
metabolites; gut; colon polyp; colorectal cancer; driver bacteria; passenger bacteria

1. Introduction

Colorectal cancer (CRC) is among the most prevalent cancers worldwide, with more
than 1.9 million cases and 935,000 deaths in 2020 [1]. Its multifactorial etiology includes ge-
netic, environmental, and life-style factors. In most cases, CRC develops from adenomatous
polyps, which show different grades of dysplasia during tumor progression.

Mounting evidence indicates that changes in the gut microbiota play an important
role in colon carcinogenesis [2].

The bacterial driver–passenger model for CRC proposes that bacterial species have
distinct temporal associations with colorectal tissues according to their role in CRC patho-
genesis [3–5]. Driver bacteria are found in the initial stages of carcinogenesis and are,
therefore, thought to play a role in CRC initiation by different mechanisms: production
of genotoxic substances, disruption of the function of tumor suppressor proteins, such as
E-cadherin, production of metabolites that increase the proliferation of enterocytes and
opportunistic microbial pathogens, and induction and maintenance of the inflammatory
process [3,4,6]. Passenger bacteria are instead opportunistic pathogens involved in CRC
progression [3,7]. One of the most studied driver bacteria is the enterotoxigenic strain of
Bacteroides fragilis (ETBF) that can facilitate the initiation of pre-malignant lesions through
the release of enterotoxins (BFTs) [3]. The epithelial response to B. fragilis toxins induces
E-cadherin cleavage, resulting in enhanced barrier permeability, Wnt/β-catenin, and NF-κB
signaling [8]. Importantly, tumor-susceptible mice (ApcMin/+) colonized by ETBF strains
are used as a model of microbial-induced colon tumorigenesis [9]. Another example of
driver bacteria is represented by Escherichia coli strains harboring the polyketide synthase
(PKS) genomic island and capable of synthesizing the genotoxic virulence factor colibactin,
which induces double-strand DNA breaks [10].

Given that the tumor microenvironment (TME) changes during the oncogenic process,
pathogenic driver bacteria can be numerically overwhelmed and gradually replaced by
passenger bacteria that acquire a growth advantage in the tumor context. These opportunis-
tic pathogens, which otherwise would not be able to colonize healthy colorectal tissues,
exploit the altered metabolism of the tumor colonocytes to proliferate [3,4]. Passenger
bacteria may also be actively involved in cancer progression, though their relevance is still
unclear [3,4,11].

Another mechanism through which microbiota can influence CRC development is the
production of various metabolites [12,13]. It is, in fact, widely accepted that microbiota-
derived metabolites play a crucial role in host physiology and disease development, and
that their abundances may vary according to tumor stage. Among the most heavily
studied microbiota-derived metabolites in CRC, are short-chain fatty acids (SCFAs) and
bile acids (BAs) [14]. In particular, deoxycholic acid, which is a secondary bile acid, can
cause inflammation and promote intestinal tumorigenesis in ApcMin/+ mice [15]. Bile acid
is involved in tumor progression through the activation of the NF-κB pathway, which
promotes cell growth and survival [16]. Moreover, gut-associated metabolites may directly
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alter the gut microbiota composition by promoting the proliferation of specific bacteria, in
particular that of passengers [17].

A number of studies have performed integrated analyses on lumen-associated mi-
crobiota (LAM) and metabolome from fecal or serum samples to characterize the role of
bacteria and associated metabolites in the pathogenesis of CRC [18–20]. However, data are
scant on gut mucosa-associated microbiota (MAM) and mucosa-associated metabolome.

The emerging consensus is that the composition of gut MAM differs from that of LAM,
with only a few species being present in both compartments [21–25].

Based on the aforementioned evidence, the aim of this study was to characterize
the temporal association of MAM and their metabolites with low-grade vs. high-grade
dysplastic colon polyps—which represent two distinct stages of the adenoma–carcinoma
sequence—and to ascertain their role in neoplastic development. For this purpose, we have
devised a new technique that allows the collection of bacteria and metabolites from the
adenoma’s surface without jeopardizing tissue integrity.

The analysis of MAM and mucosal-associated metabolome, according to the histologi-
cal classification of colon polyps, reveals the preponderance of potential driver bacteria in
low-grade dysplastic polyps, while potential passenger bacteria are enriched in high-grade
dysplastic ones. The bacteria classification is based on previous reports, where candidate
drivers or passengers were proposed [3,4], albeit no functional experiments were performed
to show that these bacteria play a direct role in malignancy. We also report differences
in the metabolite relative abundances between the two study groups, suggesting that
these signatures may be used to distinguish colon polyps according to histology. Finally,
integrated analysis of MAM and metabolites shows either positive or negative correlations
between enriched bacteria and specific classes of metabolites, supporting the involvement
of the gut microbiota in the production and consumption of these metabolites.

2. Materials and Methods
2.1. Patients Enrollment

Patients (n = 78, males = 45; females = 33) were recruited before colonoscopy at the
Gastroenterology Unit of Maggiore della Carità University Hospital (Novara, Italy). All the
patients undergoing colonoscopy signed an informed consent form. After colonoscopy, only
patients with polyps larger than 10 mm, older than 18 years were included in this study.
The other exclusion criteria were prebiotic, probiotic or antibiotic consumption within
one month before fecal sample (LAM) collection. Previous gastro-intestinal conditions
that could modify the gut microbiota were evaluated, including diverticula, cholecystec-
tomy and previous polyp occurrence and reported in Tables 1 and S1. All the patients
used laxatives before colonoscopy, as required by the procedure. A team that includes
13 medical operators of the same Unit, all using the same working procedures, per-
formed all the colonoscopies, and a single nurse collected all the microbiome and the
metabolome samples.

2.2. Sample Collection

To collect MAM and associated metabolites, e-NAT™ (COPAN, Brescia, Italy) swabs
or dry swabs, respectively, were used to gently brush the polyp surfaces without compro-
mising their tissue integrity. Samples were stored at −80 ◦C until 16S rRNA tag sequencing
and metabolite extraction. Bowel preparation could alter gut microbiota and metabolome
composition [26]. Nagata and colleagues in 2019 showed that after 14 days, both microbiota
and metabolome are completely restored [27]. Therefore, for LAM analyses, fecal samples
were collected from the patients 14 days after colonoscopy, aliquoted and stored at −80 ◦C
until microbial DNA isolation and sequencing.
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Table 1. Clinical features of the patients. Statistically significant p-values (p < 0.05) are in bold.

Clinical Features Patients
n = 78 (%)

Patients with
Low-Grade Dysplastic Polyps

n = 44 (%)

Patients with
High-Grade Dysplastic Polyps

n = 34 (%)
p-Value

Gender
Female 33 (42.3%) 21 (47.7%) 12 (35.3%)

0.3Male 45 (57.7%) 23 (52.3%) 22 (64.7%)

BMI (body mass index)
Normal weight 34 (43.6%) 20 (45.4%) 14 (41.2%)

0.7Overweight or obese 44 (56.4%) 24 (54.6%) 20 (58.8%)

Age
Median (IQR) 61 (58–70) 61 (58–68) 62 (56–70) 0.9

Polyp size mm
Median (IQR) 14 (10–23) 12 (10–16) 15 (12–25) 0.02

Type of polyp
Tubular 28 (35.9%) 21 (47.7%) 7 (20.6%)

0.005
Villous 3 (3.8%) 1 (2.3%) 2 (5.9%)
Tubulo-villous 40 (51.3%) 16 (36.4%) 24 (70.6%)
Others 7 (9.0%) 6 (13.6%) 1 (2.9%)

Previous gastrointestinal
conditions
Diverticulitis 26 (33.3%) 19 (43.2%) 7 (20.6%)

0.2
Previous polyp occurrence 8 (10.2%) 6 (13.6%) 2 (5.9%)
IBD 1 (1.3%) 0 1 (2.9%)
Previous cholecystectomy 5 (6.4%) 4 (9.1%) 1 (2.9%)
Slight mucosal inflammation 1 (1.3%) 0 1 (2.9%)

Polyp localization
Right colon 18 (23.1%) 11 (25.0%) 7 (20.6%)

0.8Left colon 52 (66.7%) 28 (63.6%) 24 (70.6%)
Transversal colon 8 (10.2%) 5 (11.4%) 3 (8.8%)

BMI: body mass index; IQR: interquartile range; IBD: inflammatory bowel disease.

Patient nutritional habits were evaluated with the validated European Prospective
Investigation into Cancer and nutrition (EPIC) questionnaire on nutrition [28]. The ques-
tionnaire is composed of 16 categories and questions about 266 different items, including
simple foods and recipes, to understand the food frequency intake. The questionnaire was
completed online and analyzed, and the intake frequency was transformed in grams/day.
We analyzed and compared the consumption of the most important nutrients in low- vs.
high-grade dysplasia groups (Table S2).

2.3. Histology

After removal, polyps were included in neutral buffered formalin for at least 24 h
and then included in paraffin. Sections were cut at 4-µm thickness and stained using
hematoxylin-eosin. Polyps were oriented using a stereo microscope and cut alongside
the major axis, identifying, if possible, the base implant. All polyps (i.e., tubular, vil-
lous, tubulovillous, sessile-serrated) were evaluated by an expert pathologist (R.B.) at the
University Hospital Pathology Unit in Novara, Italy. Patients with low-grade dysplas-
tic adenomas were included in the “low-grade” group, while patients with high-grade
dysplastic adenomas were included in the “high-grade” group (Table 1).

2.4. MAM and LAM Analyses

Microbial DNA for MAM analyses were extracted from e-NAT™ swabs with QIAamp®

DNA Microbiome kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions.
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LAM analyses were performed on microbial DNA extracted from fecal samples us-
ing QIAamp® PowerFecal® Pro DNA kit (Qiagen, Hilden, Germany), according to the
manufacturer’s instructions. The yield and quality of microbial DNA was determined
using a NanoDrop™ 2000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA,
USA). The quantity was assessed with Invitrogen™ Qubit™ 1X dsDNA HS Assay Kit
(Invitrogen Co., Thermo Fisher Scientific Inc.) using a Qubit 4 fluorometer (Invitrogen).

To avoid contaminations, microbial DNA extraction for MAM and LAM was per-
formed in sterile conditions, using a laminar flow cabinet and sterile reagents and materials.
E-NAT™ swabs not brushed on any tissue were used as negative controls for microbial
DNA extraction and 16S rRNA sequencing.

MAM and LAM samples were subjected to 16S rRNA amplicon sequencing analysis
using Microbiota Solution B Kit, a next-generation sequencing (NGS) in vitro molecular test,
CE-IVD marked (Arrow Diagnostics Srl, Genoa, Italy). Polymerase chain reaction (PCR)
amplification of the V3-V4-V6 hypervariable regions of bacterial 16S rRNA was obtained
by using the patented degenerate primer sets within the Arrow Microbiota Solution B
kit (cod. AD-002.024), according to the manufacturer’s instructions. PCR products were
purified using Agencourt AMPure XP magnetic beads (Beckman Coulter Inc., Brea, CA,
USA), and indexes were added in a subsequent step. The hypervariable V3-V4-V6 regions
of the bacterial 16S rRNA were amplified according to the manufacturer’s instructions.

The DNA concentration of the libraries was fluorometrically measured and samples
were pooled in equimolar concentrations. The final 16S rRNA amplicon libraries were
sequenced on a MiSeq Illumina® sequencing platform (Illumina, San Diego, CA, USA)
using a MiSeq Reagent Nano Kit v2 cartridge for a 2 × 250 paired-end sequencing.

2.5. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt)

Functional abundances were predicted using the Phylogenetic Investigation of Com-
munities by Reconstruction of Unobserved States (PICRUSt2) software 2.0 [29]. Pathways
differentially abundant between low- and high-grade dysplastic polyps were detected
using the STAMP software [30]. Pathways with p-value < 0.05 were identified as sig-
nificant after false discovery rate (FDR) correction. We consulted the MetaCyc website
(https://metacyc.org/, accessed on 26 September 2022) to identify the products of each
pathway which emerged from the PICRUSt analysis.

2.6. Mucosa-Associated Metabolome

Small molecules were extracted and analyzed as reported in our previous validated
method [31]. Briefly, short chain fatty acid (SCFA) extraction from dry swabs was performed
first using water and sonication and then liquid-liquid extraction with methyl tert-butyl
ether (MTBE). Methanol-isopropanol-acetonitrile was then used to extract other metabolites
(i.e., amino acids, sugars, long fatty acids, and medium fatty acids) from the aqueous phase.
The internal standards deuterated propanoic acid (1 ppm), tridecanoic acid (0.5 ppm)
and hexadecane (1 ppm) were also added. SCFAs and small molecules were analyzed
by bidimensional gas chromatography mass spectrometry GCXGC/TOFMS (BT 4D, Leco
Corp., St. Josef, MI, USA), as described in our previous work [31]. The samples were
analyzed using both targeted and untargeted approaches. Briefly, SCFAs were quantified
using a targeted analysis performed with internal standards and external calibration curves,
as previously reported [31]. For the untargeted analysis, peaks with signal-to-noise (S/N)
value lower than 500.0 were rejected. ChromaTOF version 5.31 was used for raw data
processing and mass spectral assignment was performed by matching with NIST MS Search
2.3 libraries adding Fiehn Library. Identification of molecules was also performed using an
in-house library built with commercial mix standards that contain hundreds of molecules.
As the polyp mean area was different between the low- and high-grade dysplasia groups
(median (IQR) 12 (10–16) mm vs. 15 (12–25) mm; p-value ≤ 0.05), normalization was
performed by dividing the metabolites’ abundances by the value of the area of each
analyzed polyp, with the limit of the type and shape of the polyps. Measurements were

https://metacyc.org/


Cancers 2023, 15, 3065 6 of 21

performed at the time of colonoscopy with graph paper. The internal standards that
were spiked in each sample, were used for instrument stability monitoring and data
normalization. In addition, small molecule levels from untargeted analysis were also
normalized by total sum of abundances. To study a possible correlation between polyp-
associated microbiota and its metabolites, the metabolome analysis was integrated with
MAM using M2IA, an open-source web server. The hierarchical clustering heat map
analysis was performed through MetaboAnalyst software 5.0 (www.metaboanalyst.ca,
accessed on 17 December 2021) using the Euclidean distance as distance measure and the
Ward method as clustering method. Only modulated metabolites (p-value < 0.05 and fold
change > 1.3 or <0.769) were used. Metabolomics data are shown in Table S3.

2.7. Raw Sequence Processing

Raw sequences obtained from MAM and LAM DNA were processed using the soft-
ware MicrobAT Suite v1.2.1 (SmartSeq srl, Novara, Italy), based on the Ribosomal Database
Project (RDP) database. MicrobAT (SmartSeq s.r.l.) is a standalone software based on
client/server system. Through a graphical interface developed in Java, the user can load
the FASTQ files, download the raw data of the analysis and print the reports of the sam-
ples. The first step is a cleaning of the reads obtained from the FASTQ file using custom
algorithms that remove the short sequences (read length < 200 nt) and sequences with
a low quality (average Phred quality score [32] < 25). High-quality sequences are then
aligned with the reference database, i.e., RDP database release 11-update 5 [33]. During
this taxonomic assignment process, only the reads with minimum sequence length that
align with reference ≥80% and similarity threshold ≥97% were associated, by the analysis
system, with the species taxonomic level. Finally, the software generates absolute abun-
dance tables and three files (OTU, taxonomy, metadata) used as input for the subsequent
analyses [34,35].

Statistical analysis regarding variations within the bacterial communities was per-
formed using MicrobiomeAnalyst software 1.0 (Comprehensive Statistical, Visual, and
Meta-Analysis of Microbiome data) [36].

Firstly, a data integrity check was performed by the online software to show the
information collected. Secondly, taxa having zero reads across all the samples or appearing
in only one sample were removed by default. Finally, a low-count filter was applied to
remove taxa containing less than 30 (LAM vs. MAM comparison) or 10 reads (low- vs.
high-grade dysplasia comparison) in at least 20% of samples.

2.8. Statistical Analysis

Fisher’s exact test was used to compare the groups, as reported in Table 1.
Heat tree analysis was used to compare statistically significant differences between the

groups, i.e., MAM vs. LAM, low- vs. high-grade dysplastic polyps. This method, performed
through R metacoder package [37], uses hierarchical structure of taxonomic classifications
to quantitatively (median abundance) and statistically (non-parametric Wilcoxon Rank
Sum test) depict taxon differences among communities, using color and size of nodes.

To compare MAM with LAM, data were summarized using α- or β-diversity indexes.
Three α-diversity metrics were used: the observed number, the Shannon index, and the
Simpson index. The first index evaluates the number of unique taxa observed in each
sample, considering only richness. The last two are based on not only richness but also
evenness, which represents the abundance of a given microorganism. We performed α-
diversity analysis using the phyloseq package [38], and results were plotted across samples
and depicted as box plots for each group.

Beta diversity analysis, used to compare the different composition between the analysis
groups, was calculated by Bray–Curtis distance, and the results were visualized in two
plots through principal coordinate analysis (PCoA). In the plots, each point represents
the entire microbiome of a single sample. The statistical significance of the differences in

www.metaboanalyst.ca
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β-diversity between groups (MAM vs. LAM; low- vs. high-grade dysplastic polyps) was
evaluated using permutational ANOVA (PERMANOVA).

Linear discriminant analysis effect size (LDA-LEfSe) was used to identify signatures
at different taxonomic levels, characterizing each different group (MAM vs. LAM, low-
vs. high-grade dysplastic polyps). This method estimates both statistical significance and
biological consistency (effect size). Firstly, it uses the Kruskal–Wallis sum-rank test to
identify taxa that are statistically different between groups. Subsequently, LEfSe applies
LDA to calculate the effect size of each differentially abundant feature. Features with
p < 0.05 and an LDA score > or <2 were considered taxa able to discriminate between the
two groups. For mucosal-adherent and luminal microbiota comparison, the false discovery
rate (FDR) was used to correct for multiple testing, and taxa with p-values < 0.05 were
considered statistically significant. The p-values adjusted for the FDR are indicated as
q-values.

For the correlation analyses between polyp-associated microbiota and metabolites,
Spearman’s rank correlation coefficient was calculated using the M2IA web server with
default settings.

3. Results
3.1. Characterization of LAM and MAM in Patients with Colon Polyps

Contrary to other sample collection protocols that cause the degradation of the biop-
sies to obtain microbiota and metabolites, we have developed a new approach that al-
lows us to analyze the microbiota and metabolome adherent to the polyp surface with-
out compromising the integrity of the biopsies, a key requisite to perform an accurate
histological analysis.

Seventy-eight patients (45 males, 33 females) with polyps larger than 10 mm were
recruited before colonoscopy at the Gastroenterology Unit of the University Hospital
Maggiore della Carità in Novara, Italy. The clinical features of this study population are
shown in Table 1. We did not find any statistically significant difference between low- and
high-grade groups regarding previous gastro-intestinal conditions and polyp localization
(Table 1). Since diet can influence the gut microbiota composition, we compared nutrient
consumption between patients with low- and high-grade dysplastic polyps. We did not
find any statistically significant difference in the daily consumption of fiber, lipids, red and
processed meat, fruit and vegetables, as shown in Table S2.

MAM samples were collected by gently brushing the surface of the resected polyp
with an e-NATTM swab, which allows the preservation of the nucleic acids until extraction,
whereas LAM-containing specimens were isolated from feces using a standard approach
(see Methods). Subsequently, MAM and LAM samples were subjected to 16S rRNA se-
quencing, yielding an average number of reads of 53,028.73 and 67,479.96, respectively.
After applying a low-count filter to remove taxa showing less than 10 reads, we obtained
165 taxa from the MAM samples and 202 from the LAM ones. These genomic sequences
were included in the BioProject MIMEC Project_Swab PRJNA783496 and MIMEC Project_
Fecal PRJNA783535 available in the NCBI database https://submit.ncbi.nlm.nih.gov/subs/
sra/SUB11427238/overview, accessed on 17 December 2021 and https://submit.ncbi.nlm.
nih.gov/subs/sra/SUB11420448/overview, accessed on 17 December 2021, respectively. The
α-diversity indexes—which include the observed number (Figure 1a), the Shannon (Figure 1b)
and the Simpson (Figure 1c) indexes—show that LAM is characterized by a significantly
higher mean species diversity than that of MAM (p < 0.05).

https://submit.ncbi.nlm.nih.gov/subs/sra/SUB11427238/overview
https://submit.ncbi.nlm.nih.gov/subs/sra/SUB11427238/overview
https://submit.ncbi.nlm.nih.gov/subs/sra/SUB11420448/overview
https://submit.ncbi.nlm.nih.gov/subs/sra/SUB11420448/overview
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(a) The observed index is a richness-based measure showing the number of unique taxa present
in each sample. The box plot shows the difference in observed species between MAM (red) and
LAM (blue) samples (p = 1.17 × 10−4). (b,c) Shannon and Simpson indexes are based on richness
(i.e., numbers of species) and evenness (i.e., abundance of microorganisms). The two different
box plots show significant differences between MAM (red) and LAM (blue) samples (Shannon:
p = 3.49 × 10−10, Simpson: p = 1.05 × 10−11). (d) β-diversity analysis shows a significant separation
between MAM (red) and LAM (blue) samples (p < 0.001). Principal coordinates analysis (PCoA),
based on Bray–Curtis distance matrix, shows the different microbial composition between the two
groups. This is achieved by comparing the changes in presence/absence or abundance of thousands
of species and by summarizing how “similar” or “dissimilar” they are. The X-axis explains 23.9%
of the variability between samples, while the Y-axis explains 14.3%. The statistical significance of
the clustering pattern was calculated using permutational ANOVA (PERMANOVA). (e,f) Linear
discriminant analysis effect size (LDA-LEfSe) showing families (e) and genera (f) enriched in LAM
(blue, on the right, LDA-score > 3) or MAM (red, on the left, LDA-score < −3).

Next, we assessed the β-diversity indexes of MAM vs. LAM by principal coordinates
analysis (PCoA) using the Bray–Curtis distance matrix. As shown in Figure 1d, LAM
displays a tighter clustering compared to that of MAM. The statistical significance of the
clustering pattern was confirmed by permutational ANOVA (PERMANOVA)
(p < 0.001, Figure 1d).

Compared to MAM, LAM shows a phylum enrichment of Firmicutes (Bacillota)
(51.30% vs. 39.03%), Bacteroidetes (Bacteroidota) (22.03% vs. 7.30%), and Verrucomi-
crobia (Verrucomicrobiota) (1.72% vs. 1.00%) (p < 0.05) (Figure S1a,b). Conversely, MAM
displays a phylum enrichment of Proteobacteria (Pseudomonadota) (15.91% vs. 2.52%) and
Actinobacteria (Actinomycetota) (11.79% vs. 6.27%) (Figure S1a,b). The two groups (MAM
vs. LAM) show statistically significant differences at phylum, class, order (Figure S1c–e),
and at family and genus level (Figure 1e,f).
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LDA LEfSe analysis was carried out to identify the bacterial genera that were enriched
in the LAM or MAM samples (Table S4). In agreement with the phylum results, all genera
included in the Bacteroidetes (Bacteroidota) and Verrucomicrobia phyla and most genera
included in the Firmicutes phylum (Bacillota) are significantly enriched (p < 0.05) in LAM
compared with MAM, whereas most genera included in Proteobacteria (Pseudomonadota)
and Actinobacteria (Actinomycetota) are more abundant in MAM samples (Table S4).

Overall, these data suggest that patients’ MAM differs from LAM, possibly because
MAM is more related to the localized changes occurring near the polyps and more depen-
dent of tumor stage, while LAM is representative of all bacterial species present in the gut.
Thus, even though LAM has a higher number of species (α-diversity), most of these latter
are shared among patients regardless of tumor stage.

3.2. Identification of Mucosa-Associated Bacterial Signatures Distinguishing Low-Grade from
High-Grade Dysplastic Colorectal Polyps

Since bacteria in close contact with enterocytes may play an important role in colon
carcinogenesis, we focused our attention on polyp-associated microbiota. In particular, we
asked whether the MAM characterizing low-grade dysplastic polyps would be enriched
in driver bacteria, which influence the initial stages of carcinogenesis, whereas MAM of
high-grade dysplastic polyps would be enriched in passenger species.

By stratifying patients according to histology (low-grade vs. high-grade dysplasia), we
identified two genera (Pelomonas and Phascolarctobacterium) enriched in low-grade, while the
potential passenger genus Anaerococcus [4] was enriched in high-grade dysplastic polyps
(Figure 2a). Moreover, we found the potential driver species, Bacteroides fragilis [3] and five
other species (i.e., Bacteroides spp., Beta proteobacterium, unclassified Phascolarctobacterium,
unclassified Erysipelotrichaceae incertae sedis, and Phascolarctobacterium faecium) enriched
in low-grade dysplastic polyps (p < 0.05), whereas the two potential passenger species,
unclassified Anaerococcus and Streptococcus anginosus [4], were enriched in high-grade
dysplastic polyps (Figure 2b). Thus, as we hypothesized, known candidate driver taxa are
only enriched in MAM of low-grade dysplastic polyps, while known candidate passenger
taxa are only enriched in MAM of high-grade dysplastic polyps. It must be considered that
candidate driver or passenger classification is based on previously suggested classifications,
lacking validation by functional experiments.
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Figure 2. Linear discriminant analysis effect size (LDA-LEfSe) showing (a) bacterial genera and
(b) species enriched in MAM high- (yellow, LDA score > 2) vs. low-grade dysplastic adenomas (green,
LDA score < −2). This method incorporates statistical significance (Kruskal–Wallis) with biological
consistency (effect size). The length of the bar represents a log10 transformed LDA score. This value
is positive if the bacterial species is enriched in the first compared to the second group and negative
if the second group shows enrichment compared to the first group. A significance level of p < 0.05
and an LDA score of 2 are used to determine the species best characterizing each phenotype.
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Similar differences in MAM between low- and high-grade dysplastic polyps were
observed by analyzing the phylogenetic heat tree (Figure S2).

It is noteworthy that the analysis of LAM also revealed different signatures for genera
and species in high- and low- grade dysplastic groups (Figure S3).

3.3. Comparison of Mucosa-Associated Metabolome between High-Grade and Low-Grade
Dysplastic Colorectal Polyps

Next, we asked whether there was an association between tumor stage and the com-
position of the mucosa-associated metabolome. To answer this question, we identified the
metabolome adherent to the polyps through a high-throughput metabolomics approach
recently described by our group [31]. Of note, metabolites in the gut can derive from
bacteria, endogenous compounds, or exogenous dietary components [39–41].

Metabolome analysis of 59 (34 low- vs. 25 high-grade) out of 78 patients (19 samples
were unavailable) uncovered 41 metabolites that allowed us to distinguish between high-
and low-grade dysplastic polyps (fold change, FC > 1.3 enriched in high-grade or FC < 0.769
depleted in high-grade; p < 0.05). In high-grade polyps, we found a higher concentration
of SCFAs, such as butyric acid (FC = 3.7; p < 0.05) and isobutyric acid (FC = 3.5; p < 0.05),
lactic acid (FC = 1.9; p < 0.05), the nucleobase uracil (FC = 3.6; p < 0.01), and several amino
acids, such as threonine (FC = 8.2; p < 0.01), serine (FC = 2.8; p < 0.05), α-aminobutanoic
acid (FC = 5.6; p < 0.05). Other differentially abundant metabolites included erythronic acid
(FC = 0.7; p < 0.05), L-threitol (FC = 1.9; p < 0.05), pyroglutamic acid (FC = 4.7; p < 0.05), and
hydroquinone (FC = 2.8; p < 0.01) (Figures S4 and S5).

The hierarchical clustering heat map (Figures 3a and S6) shows the distribution of the
metabolites that are statistically different between low- (green) and high-grade (yellow)
dysplastic polyps. The partial least square discriminant analysis (PLS-DA) reported in
Figure 3b shows the presence of a metabolic signature associated with low- (green) or
high-grade (yellow) dysplastic polyps.

3.4. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt) in Low-Grade vs. High-Grade

PICRUSt analysis was performed to predict the metabolic function of bacteria found
differently enriched in the low- or the high-grade group. PICRUSt analysis on MAM
identified 17 different pathways statistically enriched in low- or high-grade dysplastic
polyps (4 enriched in low-grade and 13 enriched in high-grade). We show these pathways
in Table 2. We consulted the MetaCyc website (https://metacyc.org/, accessed on 26
September 2022) to identify the products of each pathway which emerged from the PICRUSt
analysis. In particular, in Figure S7, we show the mixed acid fermentation pathway and
superpathway of the pyrimidine ribonucleosides salvage, which were enriched in the
high-grade group.

3.5. Integration of MAM and Polyp-Adherent Metabolome Data

In order to investigate which bacterial taxa and small molecules/metabolite classes
were mainly responsible for the overall associations with the histological grade of polyps,
the individual correlations between genus level, bacterial abundance profile, class level,
and individual metabolite level intensity profile were analyzed using the M2IA open-source
web server.

https://metacyc.org/
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Figure 3. (a) Hierarchical clustering heat-map showing different metabolite distributions between
low- (green) and high-grade (yellow) dysplastic polyps. All the metabolites listed show a statistically
significant difference between low and high-grade dysplasia groups (p < 0.05). Higher concentrations
are reported in red, while low levels are in blue (auto-scaled data). (b) Partial least square discriminant
analysis (PLS-DA) showing different metabolite distribution between low- (green) and high-grade
(yellow) dysplastic polyps.
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Table 2. Pathways differently enriched in patients with low- (green) or high-grade (yellow) dysplastic
polyps, obtained by PICRUSt analysis. * Pathway described in article Discussion.

Pathway Description p-Value
Superpathway of adenosylcobalamin salvage

from cobinamide I
(COBALSYN-PWY)

Vitamin biosynthesis 8.54 × 10−3

Adenosylcobalamin biosynthesis from
adenosylcobinamide-GDP I (PWY-5509) Vitamin biosynthesis 0.016

Superpathway of adenosylcobalamin salvage
from cobinamide II (PWY-6269) Vitamin biosynthesis 2.78 × 10−3

Sucrose degradation IV (sucrose
phosphorylase) (PWY-5384) Carbohydrate degradation 0.035

Mixed acid fermentation
(FERMENTATION-PWY) * Carbohydrate degradation 5.94 × 10−3

Superpathway of tetrahydrofolate
biosynthesis and salvage (FOLSYN-PWY) Vitamin biosynthesis 0.036

Superpathway of tetrahydrofolate
biosynthesis (PWY-6612) Vitamin biosynthesis 0.034

Superpathway of thiamine diphosphate
biosynthesis II (PWY-6895) Vitamin biosynthesis 0.034

Superpathway of purine nucleotides de novo
biosynthesis II

(DENOVOPURINE2-PWY)
Nucleotides synthesis 6.73 × 10−3

Superpathway of guanosine nucleotides de
novo biosynthesis II (PWY-6125) Nucleotides synthesis 0.028

Superpathway of pyrimidine ribonucleosides
salvage (PWY-7196) * Nucleotides synthesis 7.02 × 10−3

Superpathway of guanosine nucleotides de
novo biosynthesis I (PWY-7228) Nucleotides synthesis 0.036

Superpathway of purine nucleotides de novo
biosynthesis I (PWY-841) Nucleotides synthesis 0.038

Superpathway of pyrimidine ribonucleotides
de novo biosynthesis (PWY0-162) Nucleotides synthesis 0.031

Incomplete reductive TCA cycle (P42-PWY) Reductive TCA cycle 0.017

PreQ0 biosynthesis (PWY-6703) Secondary metabolite
biosynthesis 0.049

Pyrimidine deoxyribonucleotides de novo
biosynthesis II (PWY-7187)

Nucleoside and nucleotide
synthesis 0.019

As shown in Figure 4, PLS-DA revealed the presence of specific microbiota and
metabolic signatures associated with low- (green) and high-grade dysplasia (yellow).

The correlations between modulated genera, significant metabolite classes, and their
relative individual metabolites (FC > 1.3 or <0.769, p < 0.05) were performed using 16S
sequencing and metabolomic data obtained from the analysis of low- and high-grade
polyps. Spearman’s rank correlations were calculated between the relative concentration
of metabolite classes and the abundance of bacterial taxonomic groups. More than two
hundred significant bacteria-metabolite class correlations were identified at the genus level.
Fifty-six of these were positive correlations, while 158 were negative correlations (Figure 5).
Aromatic compounds were negatively correlated with Pelomonas, Phascolarctobacterium, and
Bacteroides, to which B. fragilis belongs (Figure 5). Pelomonas and Phascolarctobacterium were
also negatively correlated with organonitrogen compounds.
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4. Discussion

In this study, we have analyzed 78 colon polyp patients with the aim of correlating the
composition of their gut microbiota and associated metabolome with tumor development.
To this end, we devised a novel sampling strategy that enables the collection of mucosa-
associated microbiota and metabolome without jeopardizing tumor integrity. By integrating
these data, we identified bacteria and metabolites involved in colorectal cancer in a tumor-
stage-specific manner.

It is well known that the intestinal microbiota may compromise the mucosal barrier,
cross the epithelium, and interact with immune cells, causing local inflammation, cancer
induction and progression [2]. Thus, colon cancer microbiota has been generally character-
ized by using samples collected during surgery to look for bacteria that infiltrate the tumor
and shape its microenvironment. We reasoned that this approach would identify mostly
passenger bacteria, including not only bacteria with a role in cancer progression, but also
those that simply thrive in the cancer microenvironment. Because we wanted instead to
identify driver bacteria, we decided to focus on colon adenomas, i.e., benign tumors that
have just began the adenoma–carcinoma sequence. Since adenomas are usually excised
at colonoscopy to undergo the necessary histological analyses and diagnostic procedures,
we devised a strategy that preserved tumor integrity. Our aim was, thus, to investigate
whether the surface of intestinal adenomas hosts bacteria that influence cell transformation,
given that the bacterial species and metabolites in contact with enterocytes may play an
important role in colon carcinogenesis [42,43]. A drawback of this approach is that we
cannot compare our samples with healthy neighboring mucosa, since the healthy mucosa
is not removed during colonoscopy and therefore is not available for the collection of
microbiota and metabolites by brushing.

By comparing the composition of MAM with that of LAM—the former obtained from
swabs brushed against the polyp surface, while the latter isolated from fecal samples—we
show that the α-diversity indexes (i.e., observed, Shannon, and Simpson) of LAM are
significantly higher than those of MAM (Figure 1a–c), and that LAM displays tighter
clustering compared to MAM (Figure 1d), in good agreement with previous studies on
biopsies from healthy individuals [22,24,44,45].

Despite having higher diversity levels, LAM appears to be more homogeneous than
MAM, as shown in Figure 1d (p < 0.001). Indeed, LAM displays enrichment of the phyla
Firmicutes (Bacillota), Bacteroidetes (Bacteroidota), and Verrucomicrobia, while MAM
mainly consists of Proteobacteria (Pseudomonadota) and Actinobacteria (Actinomycetota)
(Figure S1). Overall, we found 49 genera that were increased in LAM or MAM samples
(q < 0.05) (Table S4), consistent with our data at the phylum level. Our findings are also in
good agreement with a study by Tang and colleagues [45] showing that, among individuals
without gastrointestinal symptoms undergoing routine screening colonoscopies, the phyla
Firmicutes (Bacillota) and Bacteroidetes (Bacteroidota) were enriched in LAM, whereas
Proteobacteria (Pseudomonadota) were more abundant in biopsy samples. Moreover,
analyzing healthy subjects, Ringel and colleagues found that LAM was enriched with
Firmicutes (Bacillota)—in agreement with our results and those of Eckburg et al. [23]—and
Actinobacteria (Actinomycetota) and less populated by Bacteroidetes (Bacteroidota) and
Proteobacteria (Pseudomonadota)—consistent with our results—compared to MAM [22].
In agreement with our data, the mucosal samples analyzed by Sun and colleagues showed
an enrichment of Propionibacterium (phylum Actinobacteria) and Escherichia (phylum Pro-
teobacteria) compared to stool samples [24]. The discrepancy in abundance of some phyla
between these literature data and our results can be explained by the fact that our analyses
were performed on patients with low- or high-grade dysplastic colorectal polyps, whereas
the published data were on healthy subjects. Moreover, differences in experimental proce-
dures such as sampling and extraction protocols, or data analysis could have influenced the
results [24,45]. It is also possible that our swab-brushing procedure may lead to discrepancy
in MAM composition detection compared to the commonly used biopsies.
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We have then characterized the composition of MAM and associated metabolome
in colon polyp patients stratified according to their tumor histology (high- vs. low-grade
dysplasia). We show that MAM from the low-grade dysplasia group has a larger number of
Pelomonas and Phascolarctobacterium than that of patients with high-grade dysplastic polyps
(Figure 2a). Interestingly, Pelomonas is associated with the onset of multifocal atrophic gas-
tritis and intestinal metaplasia, well established premalignant gastro-intestinal lesions [46],
and is enriched in LAM of CRC patients receiving chemotherapy and/or radiotherapy
treatment [47], while Phascolarctobacterium is enriched in stool samples of patients with
CRC compared to healthy subjects [48]. Overall, our results show that Pelomonas and
Phascolarctobacterium are more abundant in low-grade vs. high-grade dysplasia, which
supports the hypothesis that these microorganisms may function as driver bacteria during
CRC pathogenesis; however, functional experiments are needed to support this possibility.

At the species level, we detected enrichment of Bacteroides fragilis and Bacteroides spp.
on the surface of low-grade polyps compared to high-grade adenomas (Figure 2b). Thus,
it is tempting to speculate that these species may play a role in CRC tumor initiation.
Intriguingly, enterotoxigenic B. fragilis is a well-known driver of CRC [3] due to its onco-
genic properties. Among the species found enriched in the low-grade dysplasia group,
we also found unclassified Erysipelotrichaceae incertae sedis, a species that belongs to the
Erysipelotrichaceae family. Interestingly, the levels of intestinal Erysipelotrichaceae are reduced
in the LAM of patients with advanced colon adenomas compared to healthy subjects [49],
and increased in hyperplastic polyps compared to adenocarcinomas [47]. Lastly, bacteria
belonging to this family play an important role in inflammation [50] and are associated
with increased levels of inflammatory markers involved in tumor growth, invasion, and
metastasis [51]. The lack of Fusobacteria enrichment in our samples can be explained by the
fact that Fusobacterium spp. colonize more advanced CRC tissues [52].

With regard to the metabolome, we succeeded in identifying 41 metabolites differen-
tially associated with low- and high-grade dysplasia groups, with 29 of them previously
found enriched in LAM of CRC patients compared to healthy subjects [48,53–58]. These
findings confirm and extend our previous work on tumor-associated metabolites isolated
from 20 patients [31]. More specifically, we found erythronic acid (FC = 0.7) (Figure S4)
enriched in low- compared to high-grade dysplastic polyps, a metabolite produced by
bacteria from the Actinobacteria (Actinomycetota) and Proteobacteria (Pseudomonadota)
phyla [56]. Fittingly, we found enrichment of the aforementioned genus Pelomonas, which
belongs to Proteobacteria (Pseudomonadota), in low-grade dysplastic polyps.

In contrast, microbiota analyses of high-grade dysplastic adenomas showed an enrich-
ment of the genus Anaerococcus (Figure 2b), that was found significantly enriched in CRC
tissues and is considered a potential passenger genus [4]. Further functional studies are
needed to evaluate the role of Anaerococcus in cancer progression.

As expected, our results indicate a gradual replacement of the potential driver bacteria
by the potential passenger bacteria in high-grade adenomas. These microorganisms are
opportunistic pathogens—possibly involved in CRC progression—taking advantage of the
changes occurring in the TME to colonize it even further. In fact, we did not identify any
enrichment of potential passenger genera or species in low-grade dysplastic samples. In
this regard, a limitation of the present work is that we cannot classify bacteria as driver or
passenger based on our results, but rather must rely on previously suggested classifications,
which, however, are often based on disease–bacteria correlations and not on functional
experiments at a mechanistic level.

Upon analysis of the polyp-associated metabolome, we found L-serine (FC = 2.8)
and threonine (FC = 8.2) enriched in high- vs. low-grade dysplastic polyps (Figure S4).
Interestingly, Garza et al. have recently published a computational model explaining
the association between passenger bacteria and CRC metabolites, such as L-serine and
threonine [17]. These authors suggest that changes in metabolite composition may allow
opportunistic passenger bacteria to colonize tumor sites [17]. Moreover, a more recent
study has shown that L-serine is required for CRC cell proliferation, and that dysregu-
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lation of serine metabolism is closely related to the occurrence and development of this
tumor [59]. Two other metabolites found enriched in the high-grade dysplasia group were
lactic acid (FC = 1.9) and butyric acid (FC = 3.7) (Figure S4), which may both derive from
the aerobic glycolysis occurring in CRC cells and/or the metabolism of gut bacteria. In fact,
cancer cells are able to perform aerobic glycolysis even under oxygen availability, thereby
producing lactate from pyruvate [60,61], a phenomenon known as the Warburg effect [62].
Due to this metabolic switch to aerobic glycolysis, cancer cells are unable to efficiently
metabolize butyrate, the primary energy source of normal colonocytes. On the other hand,
as aforementioned, our samples from the high-grade dysplasia group displayed increased
levels of Anaerococcus spp. (Figure 2b), which belongs to the phylum Firmicutes (Bacillota)
known to be a major source of butyric acid and lactic acid [63].

PICRUSt analysis on MAM identified four pathways statistically enriched in low-
grade and 13 in high-grade dysplasia groups. Interestingly, the high-grade group showed
an enrichment of the mixed acid fermentation pathway and superpathway of pyrimi-
dine ribonucleosides salvage. The first one leads to the production of lactic acid, while
the second one of uracil, both metabolites enriched in high-grade dysplastic polyps
(Figures S4 and S7). It is worth noting that the PICRUSt analysis provides only a pre-
diction of the functions of the bacterial community.

The integration of bacterial genera and metabolite class data, crucial to understanding
the relationship between bacterial genera and metabolite classes [64], shows that the two
genera, Pelomonas and Phascolarctobacterium, enriched in the low-grade dysplasia group, are
negatively correlated with organonitrogen compounds (Figure 5). Interestingly, betaine,
carnitine, and choline, whose high levels in the plasma of human subjects have been
shown to reduce CRC risk [65], are organonitrogen compounds. In particular, they all
are trimethylamine (TMA) precursors that can be metabolized to trimethylamine-N-oxide
(TMAO) by Phascolarctobacterium [66]. TMAO is known to promote CRC progression not
only through N-Nitroso compounds formation [67], which leads to DNA damage, but
also via the production of reactive oxygen species (ROS) [68]. Thus, it is possible that an
increase in Pelomonas and Phascolarctobacterium, as demonstrated by the present study, may
ultimately lead to the downregulation of betaine, carnitine, and choline as the latter may be
used by the bacteria to produce TMA and consequently, TMAO. Unfortunately, the method
used for the analysis of mucosal-adherent metabolome is not suitable for the quantification
of TMAO, so further analyses are needed to confirm this hypothesis.

Lastly, the genera, Pelomonas, Phascolarctobacterium, and Bacteroides, the latter of which
comprises the species B. fragilis, (Figure 5), showed a negative correlation with benzene and
benzene derivatives, which include benzoic acid and its substituted derivatives endowed
with HDAC inhibitory activity [69]. Thus, it is conceivable that the decrease in benzene
and derivatives may be involved in CRC development.

5. Conclusions

In conclusion, our findings (summarized in Figure 6), based on a novel sampling
strategy, support the hypothesis of a direct and indirect involvement of the gut microbiota
and their metabolites in CRC initiation and early progression, since we found different
signatures in low-grade dysplastic polyps compared with high-grade ones, which represent
more advanced stages of the adenoma–carcinoma sequence. Our results also stress the
importance of analyzing tumor-associated microbiota and metabolome to identify key
carcinogenic pathogens, whereas luminal-derived data, although still essential as clinical
markers, only seem to recapitulate the general gut environment.
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