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A recently proposed history formalism is used to de¯ne temporal entanglement in quantum
systems, and compute its entropy. The procedure is based on the time-reduction of the history
density operator, and allows a symmetrical treatment of space and time correlations. Temporal
entanglement entropy is explicitly calculated in two simple quantum computation circuits.
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1. Introduction

There are by now a number of proposals for de¯ning and characterizing temporal
entanglement.1–7 Using the history formalism developed in Refs. 8 and 9, we intro-
duce in this note a time-reduced history density matrix. This tool allows for a sym-
metrical treatment of spatial and temporal entanglement, much in the spirit of the
approach of Refs. 1, 2 and 7, but within a di®erent framework to describe quantum
states over time.

Since the work of Feynman10,11 (see also Dirac12), there have been various for-
mulations of quantum mechanics based on histories, rather than on states at a given
time. A very partial list of references, relevant for this paper, is given in Refs. 13–28.

Here, we use the history vector formalism introduced in Ref. 9, leading to a simple
de¯nition of history density operator for a quantum system. Taking \space" or
\time" partial traces of this operator yields reduced density operators, and these can
be used to characterize space or time entanglement between subsystems.

The history vector lives in a tensor space H!H " " " !H, where every H corre-
sponds to a particular time ti. The Born rules for probabilities and collapse are
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extended to history vectors in a straightforward way. Every history vector has a
pictorial representation in terms of allowed histories, and its collapse after a mea-
surement sequence entails the disappearance of some histories. As discussed in Ref. 9,
this formalism is well suited to de¯ne entanglement of histories, and compute their
density matrices and corresponding von Neumann entropies.

This approach is similar in spirit to the one advocated in Refs. 24–28, but with
substantial di®erences. In Refs. 24–28, the scalar product between history states
depends on chain operators containing information on evolution and measurements.
In our framework, the algebraic structure does not depend on the dynamics, and all
possible histories (not only \consistent" sets) correspond to orthonormal vectors in
H!H " " " !H. The dynamical information is instead encoded in the coe±cients
(amplitudes) multiplying the basis vectors.

This paper is arranged as follows. We summarize the formalism in Sec. 2. In Sec. 3,
the space-reduced history density operator is recalled, and in Sec. 4 we introduce its
time-reduced analog. The corresponding von Neumann entropy, discussed in Sec. 5,
can be used to detect time correlations. In Sec. 6, we derive temporal entanglement
entropies in two examples taken from quantum computation circuits. Section 7
concludes.

2. History Vector Formalism

2.1. History vector

A quantum system over time, together with measuring devices that can be activated
at times t1; . . . ; tn, is described by a history vector living in n-tensor space
H! " " " !H:

j"i ¼
X

!

Að ;!Þj!1i! " " " ! j!ni; ð2:1Þ

where ! ¼ !1; . . . ;!n is a sequence of possible measurement results (a \history"),
obtained at times t1; . . . ; tn, and j!ii are a basis of orthonormal vectors for H at each
time ti. If the !i eigenvalues are nondegenerate, j!ii are just the eigenvectors of the
observable(s) measured at time ti. For simplicity, we assume here nondegenerate
eigenvalues (for the general case see Ref. 9). The product ! has all the properties of a
tensor product. The coe±cients Að ;!Þ are the history amplitudes, computed as

Að ;!Þ ¼ h!njUðtn; tn&1ÞP!n&1
Uðtn&1; tn&2Þ " " "P!1

Uðt1; t0Þj i ð2:2Þ

with j i ¼ initial state (at t0). P!i
is the projector on the eigensubspace of !i, and

Uðtiþ1; tiÞ is the evolution operator between times ti and tiþ1.
The data entering the history vector (2.1) are therefore:

– System data: evolution operator (or Hamiltonian), initial state j i.
– Measuring apparatus data: which observables are measured at di®erent times ti.
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2.2. Probabilities

Using standard Born rules, it is straightforward to prove that the joint probability
pð ;!Þ of obtaining the sequence !1; . . . ;!n in measurements at times t1; . . . ; tn is
given by the square modulus of the amplitude Að ;!Þ. If one de¯nes the history
projector

P! ¼ j!1ih!1j! " " " ! j!nih!nj ð2:3Þ

the familiar formula holds

pð ;!Þ ¼ h"jP!j"i ¼ jAð ;!Þj2 ð2:4Þ

generalizing Born rule to measurement sequences. The probabilities pð ;!Þ satisfy
X

!

pð ;!Þ ¼
X

!

jAð ;!Þj2 ¼ 1 ð2:5Þ

due to completeness relations for the projectors P!i
and unitarity of the evolution

operators. As a consequence, the history vector is normalized:

h"j"i ¼
X

!

jAð ;!Þj2 ¼ 1: ð2:6Þ

De¯ning the chain operator:

C ;! ¼ P!n
Uðtn; tn&1ÞP!n&1

Uðtn&1; tn&2Þ " " "P!1
Uðt1; t0ÞP ð2:7Þ

sequence probabilities can also be expressed as

pð ;!Þ ¼ TrðC ;!C
†
 ;!Þ: ð2:8Þ

Note. The operator P! de¯ned in (2.3) projects onto the history state
j!1i! " " " ! j!ni. One might wonder how to realize physically this basis history state.
It must be such that a sequence of measurements will yield with certainty the
values !1; . . . ;!n. This state can be realized by an appropriate choice of
Hamiltonians governing the system in between measurement times. More precisely,
the corresponding evolution operators Uðtiþ1; tiÞ must be such as to connect the
vectors j!ii, j!iþ1i, i.e. j!iþ1i ¼ Uðtiþ1; tiÞj!ii (to obtain j"i ¼ U j#i, it su±ces to
choose U of the form

P
kjukihvkj, where juki and jvki are orthonormal bases, and

j"i ¼ ju1i, j#i ¼ jv1i). These evolution operators have no relation with the U 's en-
tering the amplitudes (2.2), and only serve the purpose of preparing the basis history
states.

2.3. Sum rules

Note that
X

!n

pð ;!1;!2; . . . ;!nÞ ¼ pð ;!1;!2; . . . ;!n&1Þ: ð2:9Þ

Entropy of temporal entanglement
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However, other standard sum rules for probabilities are not satis¯ed in general. For
example, relations of the type

X

!2

pð ;!1;!2;!3Þ ¼ pð ;!1;!3Þ ð2:10Þ

hold only if the so-called decoherence condition is satis¯ed:

TrðC ;!C
†
 ;$Þ þ c:c: ¼ 0 when ! 6¼ $ ð2:11Þ

as can be checked on the example (2.10) written in terms of chain operators, and
easily generalized. If all the histories we consider are such that the decoherence
condition holds, they are said to form a consistent set,13 and can be assigned prob-
abilities satisfying all the standard sum rules.

Note. An example of consistent histories is provided by the two examples of Sec. 6,
while nonconsistent sets are necessary to describe e.g. the simpli¯ed Mach–Zehnder
interferometer or the three box \paradox," as discussed in Ref. 8. Writing out con-
dition (2.11) in detail, one sees that a consistent set is obtained if the projectors P!i

,

evolved to a common time tj, do commute. This means

½P!iþ1
;Uðtiþ1; tiÞP!i

Uðti; tiþ1Þ) ¼ 0; ð2:12Þ

implying that the observables measured at di®erent times, once evolved to a common
time, must commute. This is not the only criterion for a consistent set: for example if
all histories contained in the history vector have di®erent j!ni ¯nal state, it is im-

mediate to check that the set is orthogonal in the sense of TrðC ;!C
†
 ;$Þ ¼ 0 when

! 6¼ $. This happens in the two examples in Sec. 6. For detailed considerations on
consistent sets, see Ref. 14.

However histories do not form in general a consistent set: interference e®ects
between them can be important, as in the case of the double slit experiment. For
this reason, in our history formalism, we do not limit ourselves to consistent sets.
Formula (2.4) for the probability of successive measurement outcomes holds true in
any case.

2.4. Scalar and tensor products in history space

Scalar and tensor products in history space, i.e. the vector space spanned by the basis
vectors j!1i! " " " ! j!ni, can be de¯ned as in ordinary tensor spaces.
Scalar product:

ðh!1j! " " " ! h!njÞðj$1i! " " " ! j$niÞ * h!1j$1i " " " h!nj$ni ð2:13Þ

and extended by (anti)linearity on all linear combinations of these vectors. This also
de¯nes bra vectors in history space.
Tensor product:

ðj!1i! " " " ! j!niÞðj$1i! " " " ! j$niÞ * j!1ij$1i! " " " ! j!nij$ni ð2:14Þ

L. Castellani
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and extended by bilinearity on all linear combinations of these vectors. No symbol is
used for this tensor product to distinguish it from the tensor product ! involving
di®erent times tk.

This tensor product allows a de¯nition of product history states, which are de¯ned
to be expressible in the following form:

X

!

Að";!Þj!1i! " " " ! j!ni

 !
X

$

Að#; $Þj$1i! " " " ! j$ni

 !

ð2:15Þ

or, using bilinearity:
X

!;$

Að";!ÞAð#; $Þj!1$1i! " " " ! j!n$ni ð2:16Þ

with j!i$ii * j!iij$ii for short. A product history state is thus characterized by
factorized amplitudes Að ;!;$Þ ¼ Að";!ÞAð#; $Þ. If the history state cannot be
expressed as a product, we de¯ne it to be history entangled. In this case, results of
measurements on system A are correlated with those on system B and viceversa.

2.5. History density matrix

A system in the history state j"i can be described by the history density matrix:

% ¼ j"ih"j ð2:17Þ

a positive operator satisfying Trð%Þ ¼ 1 (due to h"j"i ¼ 1). A mixed history state
has density matrix

% ¼
X

i

pij"iih"ij ð2:18Þ

with
P

ipi ¼ 1, and fj"iig an ensemble of history states. Probabilities of measuring
sequences ! ¼ !1; . . . ;!n in history state % are given by the standard formula:

pð!1; . . . ;!nÞ ¼ Trð%P!Þ ð2:19Þ

cf. Eq. (2.4) for pure states.

3. Space-Reduced Density Matrix

Consider now a system AB composed by two subsystems A and B, and devices
measuring observables Ai ¼ Ai + I and Bi ¼ I +Bi at each ti. Its history state is

j"ABi ¼
X

!;$

Að ;!; $Þj!1$1i! " " " ! j!n$ni; ð3:1Þ

where !i;$i are the possible outcomes of a joint measurement at time ti of Ai and Bi.
The amplitudes Að ;!;$Þ are computed using the general formula (2.2), with pro-
jectors

P!i;$i
¼ j!i;$iih!i;$ij ¼ j!iih!ij+ j$iih$ij ð3:2Þ

Entropy of temporal entanglement
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corresponding to the eigenvalues !i;$i. The density matrix of AB is

%AB ¼ j"ABih"ABj
¼

X

!;$;! 0;$ 0

Að ;!;$ÞAð ;! 0;$ 0Þ,ðj!1$1i! " " " ! j!n$niÞðh! 0
1$

0
1j! " " " ! h! 0

n$
0
njÞ:

ð3:3Þ

We de¯ne space-reduced density matrices by partially tracing on the subsystems:

%A * TrBð%ABÞ; %B * TrAð%ABÞ: ð3:4Þ

In general, %A and %B will not describe pure history states anymore. These reduced
density matrices can be used to compute statistics for measurement sequences on the
subsystems. Taking for example the partial trace on B of (3.3) yields:

%A ¼
X

!;! 0;$

Að ;!; $ÞA,ð ;! 0;$Þðj!1i! " " " ! j!niÞðh! 0
1j! " " " ! h! 0

njÞ ð3:5Þ

a positive operator with unit trace. The standard expression in terms of %A for Alice's
probability to obtain the sequence ! is

pð!Þ ¼ Trð%AP!Þ ð3:6Þ

with

P! ¼ ðP!1
+ IÞ ! " " " ! ðP!n

+ IÞ; P!i
¼ j!iih!ij: ð3:7Þ

The prescription (3.6) yields

pð!Þ ¼
X

$

jAð ;!; $Þj2 ¼
X

$

pð!;$Þ; ð3:8Þ

i.e. the probability for Alice to obtain the sequence ! in measuring the observables
Ai.

On the other hand, the probability for Alice to obtain the sequence !1; . . . ;!nwith
no measurements on Bob's part is in general di®erent from (3.8). Indeed, the history
vector of the composite system is di®erent, since only Alice's measuring device is
activated, and reads

j"ABi ¼
X

!

Að ;!Þj!1i! " " " ! j!ni; ð3:9Þ

where the amplitudes Að ;!Þ are obtained from the general formula (2.2) using the

projectors P!i
of (3.7). Here, the reduced density operator %A is simply

%A ¼
X

!;! 0

Að ;!ÞAð ;! 0Þ,j!1i! " " " ! j!nih! 0
1j! " " " ! h! 0

nj ð3:10Þ

(the trace on B has no e®ect, since history vectors contain only results of Alice), and
the probability of Alice ¯nding the sequence ! is

pð!Þ ¼ Trð%AP!Þ ¼ jAð ;!Þj2 ð3:11Þ
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di®ering in general from (3.8). Indeed
P

$Að ;!; $Þ ¼ Að ;!Þ because of the com-

pleteness relation (at each time ti)
P

$j$iih$ij ¼ I, so that

pð!Þ ¼ jAð ;!Þj2 ¼
X

$

Að ;!; $Þ

!!!!!

!!!!!

2

ð3:12Þ

di®ering, in general, from (3.8).
In fact, the probabilities (3.8) and (3.12) coincide only when the evolution oper-

ator is factorized U ¼ UA + UB, i.e. when A and B do not interact.9 Thus, if there is
no interaction, Bob cannot communicate with Alice by activating (or not activating)
his measuring devices.

4. Time-Reduced Density Matrix

Partial traces of the history density matrix can be taken also on the Hilbert spacesHi

corresponding to di®erent times tfkg ¼ tk1 ; . . . ; tkp , p < n. We call the resulting den-

sity matrices, involving only the complementary times tfjg ¼ tj1 ; . . . ; tjm (i.e. with

j1; . . . ; jm and k1; . . . ; kp having no intersection, and union coinciding with 1; . . . ;n),

time-reduced density matrices. They are used to compute sequence probabilities
corresponding to measurements at times tfjg, given that measurements are performed

also at times tfkg without registering their result. Thus, they describe statistics for an

experimenter that has access only to the measuring apparatus at times tfjg, while the

system gets measured at all times ti ¼ t1; . . . ; tn.
Consider a system described by the (pure) history vector (2.1). Its density matrix is

% ¼
X

!;! 0

Að ;!ÞAð ;! 0Þ,j!1i! " " " ! j!nih! 0
1j! " " " ! h! 0

nj: ð4:1Þ

Dividing the set ! ¼ !1; . . . ;!n into the complementary sets !fjg ¼ !j1 ; . . . ;!im and

!fkg ¼ !k1 ; . . . ;!kp , the fjg-time-reduced density matrix is de¯ned by

%fjg ¼ Trfkg% ¼
X

!fjg;!
0
fjg

X

!fkg

Að ;!fjg;!fkgÞA,ð ;! 0
fjg;!fkgÞj!fjgih! 0

fjgj ð4:2Þ

with j!fjgi * j!j1i! " " " ! j!jmi. Using the standard formula, we ¯nd the probability

for the sequence !fjg

pð!fjgÞ ¼ TrðP!fjg%
fjgÞ ¼

X

!fkg

jAð ;!fjg;!fkgÞj2; ð4:3Þ

where P!fjg is the projector on the (sub)history !fjg, given by Eq. (2.3) with the !'s

in !fjg.

On the other hand, if no measurements are performed at complementary times
tfkg, the probability for the same sequence !fjg is simply

pð!fjgÞ ¼ jAð ;!fjgj2 ð4:4Þ

Entropy of temporal entanglement
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in general di®ering from (4.3), see the discussion on sum rules after (2.9). Can this
di®erence be used to violate causality? More precisely, can a future measurement by
Alice be detected by herself in the past? The answer is of course negative, but the
formal reason is interesting. It is based on the marginal rules of Sec. 2.3: no di®erence
arises in the probabilities for an experimenter having access to measurement results
up to time t, whether the system gets measured or not at times t 0 > t, due to the
validity of formula (2.9) that reproduces a classical sum rule. When t 0 < t this for-
mula does not hold, and indeed past measurements have a veri¯able impact on
present statistics. This asymmetry in time is entirely due to the particular marginal
rules for quantum probabilities of sequences.

5. Temporal Entanglement

5.1. Time tensor product between histories

The \time" tensor product ! introduced in Sec. 2.1 can be extended to a time tensor
product between histories, in contradistinction with the product de¯ned in Sec. 2.4,
which could be referred to as a \space" tensor product.

The de¯nition is given by the merging rule:

j!fjgi! j!fkgi * j!figi ð5:1Þ

with fjg and fkg having no intersection and union equal to fig. For example

ðj!1i! j!3i! j!5iÞ ! ðj!2i! j!6iÞ ¼ j!1i! j!2i! j!3i! j!5i! j!6i: ð5:2Þ

We then denote j"i as a time-separable history state if it can be expressed as a
time product of two history states:

j"i ¼ j"1i! j"2i ð5:3Þ

in analogy with the \space" product history state of Sec. 2.4. Similarly, we ¯nd here
that a history state

j"i ¼
X

!fig

Að ;!figÞj!figi ð5:4Þ

is time-separable if and only if the amplitudes factorize

Að ;!figÞ ¼ Að ;!fjgÞAð ;!fkgÞ ð5:5Þ

with fjg and fkg having no intersection and union equal to fig.
As a consequence, probabilities factorize and there are no temporal

correlations between measurement results !fjg and !fkg. If the amplitudes do not

factorize, we call the history state a temporally entangled history state. Note that a
time-separable state can still contain entangled sub-histories, exactly as a (space)
separable state in a composite system AB can still be entangled within the sub-
systems A and B.

L. Castellani
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5.2. Temporal entanglement entropy

History entropy has been de¯ned in Ref. 9 as the von Neumann entropy associated to
the history state %:

Sð%Þ ¼ &Trð% log %Þ: ð5:6Þ

We have seen in Ref. 9 that when % describes a (pure) space entangled system, partial
traces of % describe mixed history states. The same happens for (pure) time entangled
systems: partial time-traces yield reduced density matrices describing mixed states.
Examples taken from quantum computation circuits are discussed in the following
section.

We call temporal entanglement entropy the von Neumann entropy corresponding
to the time-reduced density matrix.

6. Examples

In this section, we examine two examples of quantum systems evolving from a given
initial state, and subjected to successive measurements. They are taken from simple
quantum computation circuits, where unitary gates determine the evolution between
measurements. Only two gates are used: the Hadamard one-qubit gate H de¯ned by

Hj0i ¼ 1ffiffiffi
2

p ðj0iþ j1iÞ; Hj1i ¼ 1ffiffiffi
2

p ðj0i& j1iÞ ð6:1Þ

and the two-qubit CNOT gate:

CNOTj00i ¼ j00i; CNOTj01i ¼ j01i; CNOTj10i ¼ j11i;

CNOTj11i ¼ j10i:
ð6:2Þ

6.1. Entangler

The two-qubit entangler circuit of Fig. 1, with initial state j00i, produces the

entangled state j#i ¼ 1ffiffi
2

p ðj00iþ j11iÞ:

Fig. 1. Entangler circuit, and history graph for initial state j00i.
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The history state that describes the system together with its measuring devicesa at
times t1 and t2 is

j"i ¼ Að00; 00; 00Þj00i! j00iþ Að00; 10; 11Þj10i! j11i; ð6:3Þ

where

Að00; 00; 00Þ ¼ h00jCNOTj00ih00jH + Ij00i ¼ 1ffiffiffi
2

p ; ð6:4Þ

Að00; 10; 11Þ ¼ h11jCNOTj10ih10jH + Ij00i ¼ 1ffiffiffi
2

p ð6:5Þ

are the only nonvanishing amplitudes. This simple system exhibits both space and
time entanglement. Space entanglement is due to (ordinary) entanglement in the
¯nal state at t2. Time entanglement is due to temporal correlations: the outcomes of
measurements at t1 are correlated with the outcomes at t2. In other words, the history
amplitudes Að00;!1$1;!2$2Þ do not space-factorize as Að0;!1;!2ÞAð0;$1;$2Þ, and
do not time-factorize as Að00;!1$1ÞAð00;!2$2Þ.
Note that the two histories in Fig. 1 are orthogonal, i.e. TrðC †

00;10;11C00;00;00Þ ¼ 0, and

therefore form a consistent set.
The history density matrix of the system is given by

% ¼ 1

2
ðj00i! j00iþ j10i! j11iÞðh00jj! h00jþ h10j! h11jÞ: ð6:6Þ

The space-reduced density matrices are

%A ¼ TrBð%Þ ¼
1

2
½ðj0i! j0iÞðh0j! h0jÞ þ ðj1i! j1iÞðh1j! h1jÞ); ð6:7Þ

%B ¼ TrAð%Þ ¼
1

2
½ðj0i! j0iÞðh0j! h0jÞ þ ðj0i! j1iÞðh0j! h1jÞ); ð6:8Þ

i.e. mixed history states, to be expected since % is a pure space-entangled history
state.b

The time-reduced density matrices are

%f1g ¼ Trf2g% ¼ 1

2
ðj00ih00jþ j10ih10jÞ; ð6:9Þ

%f2g ¼ Trf1g% ¼ 1

2
ðj00ih00jþ j11ih11jÞ; ð6:10Þ

i.e. mixed history states (in this case states corresponding to a single time), to be
expected since % is a pure time-entangled history state.

The history entropy corresponding to % is Sð%Þ ¼ 0 since % is a pure history

state, while the space and time entanglement entropies are Sð%AÞ ¼ Sð%BÞ ¼ 1 and

Sð%f1gÞ ¼ Sð%f2gÞ ¼ 1 since they all have two eigenvalues equal to 1
2.

aWe consider here measurements in the computational basis.
bThese quantum mixtures would be called, in D' Espagnat's29 terms, \improper" mixtures. See however
Refs. 30 and 31 for a critique on the distinction between proper and improper mixtures.
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6.2. Teleportation

The teleportation circuit32 is the three-qubit circuit given in Fig. 2, where the upper
two qubits belong to Alice, and the lower one to Bob.
The initial state is a three-qubit state, tensor product of the single qubit j#i ¼
!j0iþ $j1i to be teleported and the two-qubit entangled Bell state j$00i ¼
1ffiffi
2

p ðj00iþ j11iÞ. The history vector contains 8 histories (a consistent set):

j"i ¼ 1

2
ð!j000i! j000i! j000iþ !j000i! j000i! j100i

þ $j100i! j110i! j010i& $j100i! j110i! j110i
þ !j011i! j011i! j011iþ !j011i! j011i! j111i
þ $j111i! j101i! j001i& $j111i! j101i! j101i ð6:11Þ

the amplitudes being given by

Að#+ $00;!1;!2;!3Þ ¼ h!3jH1P!2
CNOT1;2P!1

j#+ $00i: ð6:12Þ

For example

Að#+ $00; 000; 000; 000Þ ¼ h000jH1j000ih000jCNOT1;2j000ih000j#+ $00i ¼ !=2;

ð6:13Þ

where H1 * H + I + I and CNOT1;2 * CNOT+ I.

As in the entangler example, here too the history state is space and time entangled.
The partial traces of the history density matrix % ¼ j"ih"j yield the density matrix
for Alice:

%A ¼ TrBð%Þ ¼
1

2
j"ih"jþ 1

2
j#ih#j ð6:14Þ

Fig. 2. Teleportation circuit, and history graph for initial state ð!j0iþ $j1iÞ + 1ffiffi
2

p ðj00iþ j11iÞ.
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with

j"i ¼ 1ffiffiffi
2

p ð!j00i! j00i! j00i& !j00i! j00i! j10iþ $j10i! j11i! j01i

& $j10i! j11i! j11iÞ;

j#i ¼ 1ffiffiffi
2

p ð!j01i! j01i! j01i& !j01i! j01i! j11iþ $j11i! j10i! j00i

& $j11i! j10i! j10iÞ

ð6:15Þ

and the density matrix for Bob:

%B ¼ TrAð%Þ ¼
1

2
ðj0i! j0i! j0ih0j! h0j! h0jþ j1i! j1i! j1ih1j! h1j! h1jÞ:

ð6:16Þ

As expected, both reduced history density operators describe mixed states. They
both have two nonzero eigenvalues equal to 1=2, and the (space) entanglement en-

tropy is therefore Sð%AÞ ¼ Sð%BÞ ¼ & 1
2 log 1

2 &
1
2 log 1

2 ¼ 1.

Next, we compute the time-reduced density matrices. We can take partial traces
of % over any combination of t1; t2; t3. For example taking the partial trace over t1 and
t2 yields the time-reduced density matrix for the system at time t3:

%f3g ¼ Trt1;t2ð%Þ ¼
j!j2
2

ð½þ00) þ ½þ11)Þ þ j$j2
2

ð½&10) þ ½&01)Þ; ð6:17Þ

where ½-00) indicates the projector on the vector 1ffiffi
2

p ðj0i- j1iÞj00i, etc. This density

matrix describes a mixed state. Its eigenvalues are j!j 2
2 ; j!j

2

2 ; j$j
2

2 ; j$j
2

2 , and therefore the

time entanglement entropy is

Sð%f3gÞ ¼ &j!j2 log j!j2 & j$j2 log j$j2 þ 1: ð6:18Þ

Setting p ¼ j!j2, the entropy SðpÞ ¼ 1& p log p& ð1& pÞ logð1& pÞ is maximum and
equal to log 2þ 1 ¼ 2 when p ¼ 1=2, and is minimum and equal to 1 when p ¼ 0; 1.

Taking the partial trace on the time complementary to t1; t2, i.e. on t3, yields the
time-reduced density matrix:

%f1;2g ¼Trt3ð%Þ ¼
j!j2
2

ð½000! 000) þ ½011! 011)Þ þ j$j2
2

ð½100! 110) þ ½111! 101)Þ;

ð6:19Þ
where ½000! 000) is the projector on the history vector j000i! j000i, etc. This re-

duced density matrix has, as expected, the same eigenvalues as %f3g, and corresponds
therefore to the same time entanglement entropy.

Finally, taking the partial trace of % on t2, t3 yields the time-reduced history
density matrix:

%f1g ¼ Trt2;t3ð%Þ ¼
j!j2
2

ð½000) þ ½011)Þ þ j$j2
2

ð½100) þ ½111)Þ ð6:20Þ
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corresponding again to the same time entanglement entropy as in (6.18). Note that if
no measurements are performed at t2; t3 the history density matrix at t1 remains the
same as in (6.20), due to quantum marginal rules of type (2.9). Indeed performing or
not measurements at t > t1 cannot change statistics at t1.

7. Conclusions

The history formalism of Ref. 9 permits a symmetrical treatment of space and time
correlations, based on the reduced history density operator. The same history density
% can be partially traced both on space and time subsystems: in fact space and time
partial tracings commute, so that the resulting reduced density does not depend on
the order of the tracings, and describes the statistics of an observer having limited (in
space and time) access to the system. Despite the similarity in computing space and
time correlations, the history formalism is not Lorentz covariant since the evolution
operators entering the history state vector evolve the system in time, and not in
space. On the other hand, a Lorentz covariant history formalism would be conceiv-
able in the description of geometric theories like gravity, where indeed one has
evolution operators both in time and space.
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