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Abstract: Musculoskeletal disorders are common among older adults, affecting mobility and quality
of life. Effective rehabilitation is essential, but the implementation of programs faces challenges.
Traditional methods often necessitate in-person assessments, which can be difficult for older adults
with mobility limitations. Telerehabilitation offers a solution, bringing therapy closer to patients.
However, the accurate remote monitoring of health and performance remains a challenge. This study
addresses this gap by developing and validating the System for Tracking and Evaluating Performance
(STEP). STEP is a hardware-software system that automates physical performance tests, eliminating
the need for constant expert supervision. The system focuses on three standard tests: the Six-Minute
Walking Test (6MWT), the Ten-Meter Walking Test (10MWT), and the 30-s Sit-to-Stand Test (30STS).
Validation compared results from the STEP app with in-person assessments by physicians for patients
undergoing rehabilitation after knee or hip arthroplasty. The study found strong positive correlations
between the app’s results and the physicians’ assessments for all tests. These findings demonstrate
the STEP system’s potential as a reliable tool for remote physical performance assessment. Further
research is needed to explore its integration into clinical practice and cost-effectiveness in reducing
the need for operator assistance in monitoring patients with physical limitations.

Keywords: wearable devices; telemedicine; cloud computing; sensors

1. Introduction

The global population is rapidly aging, leading to a significant rise in the elderly popu-
lation [1,2]. An increase in life expectancy is often accompanied by a decline in health [3–6];
thus, maximizing the quality of life for elderly people becomes crucial. Rehabilitation
plays a vital role in achieving this goal. An important part of it is tracking recovery from
injuries and surgeries, which are common among the elderly. Through continuous assess-
ment of physical performance and health status, rehabilitation protocols can be tailored to
individual needs, ultimately improving quality of life.

Standardized tools like submaximal exercise tests (e.g., Six-Minute Walking Test) [7] offer
a safe and practical way to assess various health aspects in patients with limitations during
rehabilitation programs. These tests operate below a person’s maximum capacity, ensuring
safety and practicality for a broader range of patients, especially the elderly population
targeted in this study. In contrast, other exercise tests, such as maximal tests (e.g., ergometer
test), push patients to their physical limits and require close in-person monitoring [7].
Given these considerations, the physicians involved in the study selected three submaximal
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tests for implementation in STEP: Six-Minute Walking Test (6MWT), Ten-Meter Walking Test
(10MWT), and Sit-to-Stand Test (30STS).

Although alternative submaximal tests can provide more granular data points, the se-
lected tests prioritize patient safety and offer a practical approach to evaluating key aspects
of patient health, including endurance, aerobic capacity, lower body strength, and fall
risk [8–13]. These three tests require minimal equipment and are readily accessible for
patients to perform. In contrast, the submaximal Wingate test [14] provides a more precise
estimate of aerobic capacity and lower body strength but requires specialized equipment
and expertise. These reasons make the 6MWT, the 10MWT, and the 30STS ideal for use in
various settings and with patients with diverse physical capabilities.

Despite this, standard tests often require supervision, limiting testing frequency and
potentially missing performance fluctuations [15–19]. However, testing remains essential
because patients can be unreliable in self-reporting [20–24]. The rise of telemedicine (remote
healthcare delivery using technology) [25,26] and home-based rehabilitation technologies
offers promise for overcoming these limitations [27–31].

Telemedicine enables testing in daily environments, potentially enhancing real-world
applicability while maintaining result accuracy and allowing for the collection of additional
data [32]. In this context, accurate sensor technology is critical. While some existing
solutions require controlled settings [33,34], smartphones with built-in sensors (gyroscope,
accelerometer, camera) offer a promising alternative due to their widespread availability
and diverse functionalities, suitable for various submaximal tests [28–30,35–37].

Concerning the submaximal test development for telemedicine, studies have focused
on the widespread use of inertial sensors, like those in smartphones, to monitor gait and
other technologies for vital signs, specifically during the 6MWT [38]. However, developing
mobile applications specifically designed to automate 10MWT and 30STS tests, with acces-
sibility as a core principle, is an under-explored area within the current research literature.
Aside from the limitations of the individual studies, we could not find any study focusing
on multiple tests and integrating solutions for data exchange and analysis.

Considering the need to autonomously perform submaximal tests in health facilities
and at home through easily accessible technologies, we propose a System for Tracking and
Evaluating Patient Performance (STEP). STEP is a system composed of hardware and software
components, aiming to automate the execution of submaximal tests using the resources
available on a standard smartphone, eliminating the need for expert supervision. The STEP
system also uploads the collected results and information online to easily keep track of
the patient.

To assess reliability, the STEP system was validated during the rehabilitation of knee
and hip replacement patients. Test results from the app were compared to those collected
in person by physicians. Minimal discrepancies between the two methods were considered
indicative of STEP’s effectiveness.

This paper is structured as follows: Section 2 describes the selected tests along with
some related work on their automation; Section 3 describes the development of the software,
the study execution, the approach validation, and the data analysis; Section 4 presents the
obtained results, while Section 5 discusses a few notes in detail and goes over future works;
Section 6 presents the study conclusions.

2. Background

The STEP system revolves around submaximal tests, safe and practical methods for
assessing various aspects of a patient’s health without reaching maximum capacity [39].
This approach is preferred for patients with physical limitations due to age or medical
procedures [7]. For the STEP system, the physicians involved in the study selected three
submaximal tests:

• The Six-Minute Walking Test (6MWT), shown in Figure 1a, in which the patient is
asked to walk back and forth on a flat surface (usually 30 m long) for six minutes.
The patient is instructed to cover the greatest possible distance within the time limit,
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turning around at the end of the walkway and stopping to rest as needed before
resuming the walk [9]. The test result is the walked distance in meters.

• The Ten-Meter Walking Test (10MWT), shown in Figure 1b, in which the patient is
asked to walk on a 10 m path, the first 2 m of which are used for acceleration and the
last 2 for deceleration [40]. The test result is the walking speed calculated on the six
central meters.

• The Sit-to-Stand Test (30STS), shown in Figure 1c, in which the patient is asked to stand
up from a chair and sit back down for as many repetitions as possible, measuring
the completed repetitions in a given time (or the time the patient took to complete a
given amount of repetitions) [10]. The test result is the amount of time or the number
of repetitions.

(a) Six-Minute Walking Test
(b) Ten-Meter Walking Test

(c) Ten-Meter Walking Test

Figure 1. Graphic depiction of selected submaximal tests.

A substantial body of research has investigated the three tests we will be focusing
on, with the 6MWT receiving the most attention. In a recent study [41], the authors asked
healthy university students to perform the 6MWT using the EasyMeasure app to measure
distances through the camera. This study encountered several issues which often prevented
users from completing the test. In a similar study [42], the authors asked participants to
perform the 6MWT while using an app to count steps to estimate the total distance using
regression with other variables like age, height, and weight. Despite the promising results
on healthy subjects, this approach may not translate to patients with an irregular gait, as
sole reliance on step count during the test can be unreliable in these cases.

Other research studies have focused on developing mobile applications that can
perform the tests autonomously. For instance, Cheng et al. [43,44] developed and validated
an app to perform the 6MWT autonomously by detecting gait features. The authors of
another study [45] also developed an app for the same purpose, using the accelerometer on
a smartphone to count steps and collecting additional information from patients, such as
heart rate and rate of perceived exertion on the Borg scale [46,47]. Scherrenberg et al. [48]
tackled the same problem using GPS and Google Fit data. Capela et al. [49] detected walk
distance and gait features through the smartphone’s accelerometer and gyroscope sensors.

Another study automates the 6MWT using GPS outdoors and smartphone sensors for
indoor direction changes [50]. Mainly, in order to calculate the indoor distance, the app
uses smartphone sensors to detect direction changes, which are then multiplied by the
length of the path on which the test is performed. In contrast, the remaining distance
walked after the last direction change is estimated using the time median or the average
step length. Despite smartphone-based 6MWT automation in these studies, results show
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limitations. For example, one of the studies mentioned earlier [44] reports a 5.87% walk
distance average error, which, on an average distance for 70 to 79 years old patients of
350–400 m [51], means an error of about 22 m. Additionally, studies lack an evaluation of
patients exhibiting gait abnormalities.

The existing literature regarding the 10MWT and the 30STS is diminished, but still
shows some interesting studies. A recent study [52] used an application to measure gait
parameters during a 10MWT performed under supervision. In contrast, Saito et al. [53]
attempted to create an app to automate the 10MWT for the general public. The implementa-
tion requires time-critical patient interaction that could prove problematic in a rehabilitation
scenario and skew the results.

Several studies [54–56] utilize the non-automated 30STS for data collection. The tests
in these studies were performed under supervision, but the sensors worn by patients
provided more data for analysis. The supervised 30STS is also used in more complex
health-monitoring systems [57,58]. In the existing literature, there are a few studies [34,59]
where a wearable sensor and a smartwatch are used, respectively, to allow the test to be
performed autonomously. While these are steps in the right direction, they only focused on
one test, and the devices used were less widespread than a generic smartphone.

A comprehensive review of the existing literature reveals critical research gaps: the
absence of applications capable of automating the 10MWT and 30STS tests using readily
accessible devices and the lack of solutions that integrate all the tests, which would facilitate
a more comprehensive monitoring of rehabilitation patients.

3. Materials and Methods

We developed a native Android mobile application that automates the tests using
the device’s sensors. The app allows users to customize a few parameters to better fit
each patient and the environment in which the tests are performed. Moreover, it provides
different solutions to simplify the process, like voice commands to begin and end a test.
We also developed a system around the STEP app to ease data storage and retrieval for
analysis and validation.

The entire architecture is depicted in Figure 2. The specifics of each architectural com-
ponent are detailed in the following section, Section 3.1, and the algorithms implemented
for each test are explained in Section 3.2.

Figure 2. STEP system in architecture. The image depicts the STEP system’s components: a cloud-
based server (right) for data storage, the STEP app (left) for test execution and result collection, and a
dashboard web app to visualize the results.

3.1. Hardware and Infrastructure

The main app runs on a smartphone, shown on the left side of Figure 2. Specifi-
cally, although the app was tested on multiple devices, we mostly used a Xiaomi Redmi
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Note 11. This smartphone is equipped with a triaxial accelerometer and a triaxial gyroscope.
Unfortunately, the exact models of the sensors are not available online.

The app is designed to connect to other nearby devices using Bluetooth Low Energy
(BLE) to collect additional data about the patients. In this paper, we describe the use of
one specific device in this role: the Viatom CheckMe O2. The Viatom Checkme O2 is a
wrist oximeter that measures blood oxygen levels and heart rate in real time, among other
features that are not crucial in this context. Hardware-wise, the device uses a ring sensor to
collect oxygen saturation and heart rate data. At the same time, the main unit is a bracelet
containing a BLE 4.0 chip, a 3.7v 130 mAh rechargeable battery, an accelerometer and
a small OLED display. It also has an Ingress Protection (IP) rating of 22 and an internal
memory able to store up to 40 h of recording data.

The app can receive data from this device through a BLE connection and the Generic
ATTribute (GATT) [60] protocol. BLE is a wireless communication technology designed
for low-power devices over short distances. It supports two types of devices: peripheral
devices, which broadcast data packets (advertisements), and central devices, which scan
for these advertisements to discover nearby peripherals (and connect to them if necessary).
GATT defines how BLE devices exchange data. It organizes data into attributes (e.g., heart
rate) grouped into services. Each service contains characteristics (e.g., the characteristic of
heart rate) identified by Universally Unique Identifiers (UUIDs). Operations include reading,
writing and enabling real-time updates from characteristics.

In this framework, the smartphone on which the app is installed acts as a central
device. The smartphone discovers, connects, and sends commands to the CheckMe O2,
acting as a peripheral device, which in turn answers by sending the current heart rate and
oxygen saturation values. This feature is used during the execution of the 6MWT to collect
values throughout the entire duration of the test and track meaningful variations.

The app can be configured with patient data and send test results by communicating
with the server through HyperText Transfer Protocol over Secure Socket Layer (HTTPS) (see
Figure 2, right side). HTTPS is an extension of the Hypertext Transfer Protocol (HTTP), a state-
less application-level protocol used for exchanging data over the internet that operates in a
client-server model. HTTPS ensures secure communication through encryption and au-
thentication mechanisms. With HTTPS, data is encrypted during transmission, protecting
against eavesdropping and tampering. Additionally, it relies on trusted third-party digital
certificates to verify the server’s authenticity.

The system’s server consists of a series of Node.js [61] modules and two databases.
Node.js is a runtime environment for the execution of server-side JavaScript code. While,
at the core, it is built using the microservices architecture principles to ease maintenance
and scalability, the server components run on a single Ubuntu 18.04 virtual machine hosted
on Chameleon Cloud [62] for the limited scope of this study. Chameleon Cloud is a
computing platform available for research purposes that provides computational resources
and infrastructure for experimentation.

The backend logic resides within the Node.js modules, with the primary ones out-
lined below.

• Main application programming interface (API)—Two modules, based on the Representa-
tional State Transfer (RESTful) principles, handle all HTTPS requests and interact with
the rest of the system accordingly. The API is built using Express.js [63]. Express.js is a
Node.js library that provides a minimalistic framework for API creation. Its popularity
made it a standard for Node.js backends, and it is part of several stacks like MEAN
(MongoDB, Express, Angular, Node).

• Database interaction—Each main module that interacts with a database does so through
one of these modules, created as an abstraction layer between logic and data. They
connect to the database, perform queries, and return the results.

• Authentication—This module is an abstraction layer between the server logic and
Firebase Auth [64], the third-party authentication service we used. It uses the Node.js
library provided by Firebase to verify tokens sent to the server in HTTPS requests.
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• Hosting—This module is the web application used to manage patients and view results
in a clinical setting. It provides a simple API to receive HTTPS requests and return the
web application as a response.

On the rightmost side of Figure 2, two databases are shown: the first one is a relational
MySQL [65] database used for structured data about patients, the second one is a document
MongoDB [61] database used to store test results and time series from the heart rate and
oxygen saturation data.

Although the backend (the server side of the application that manages data, performs
calculations, and interacts with databases) is used for data upload and download, it is
optional for automating tests, since that is carried out entirely on the smartphone. The result
is shown at the end of each test, as seen in Figure 2. The smartphone mockup shows an
example of what is visible at the end of a test, specifically the 30STS. The number of
completed repetitions is displayed at the top, along with the duration of the test. Since
this test was executed in the as many repetitions as possible in a given time mode, the time
was set at 30 s. The starting configuration for this test is visible at the center of the screen.
The orange button at the top saves the results to the server if the user wishes. The buttons
at the bottom connect to other devices (to collect additional data) and set the preferred
method for starting the test.

While the system has been designed to be used in a clinical study setting, in order
to validate the test automation methods, it can easily be adapted to be used in daily life
settings by both physicians and patients, with the latter being able to seamlessly continue
the rehabilitation process at home without the need for assistance. In greater detail, users
could use the app “as a service” by taking advantage of the infrastructure we created,
creating their own, or using one created by a third party following the same principles
described here.

Although available on Google Play, the app is undergoing internal testing at the
moment of writing and can only be downloaded by the people involved. It will be made
public on the same platform at the end of this process. Furthermore, even if we developed
an Android application, the same functionalities can be achieved on any device matching
the hardware requirements.

3.2. Algorithms

Although similar, the three tests are based on fundamentally different movements and
constraints. Therefore, while the smartphone remains the primary tool for automating the
tests, how it is employed changes for each test. This section will review the algorithms
implemented in each case, how the smartphone and its sensors are used, and how the final
result is computed.

The STEP algorithms are applied to the sensor data without additional processing or
filtering. In more detail, the Android platform performs a simple calibration on the sensor
data, which, for the accelerometer, consists of temperature compensation, online bias cali-
bration, and online scale calibration. At the same time, the gyroscope includes temperature
compensation, online scale compensation, and online bias calibration. Preliminary testing
showed no issues in processing the samples as returned by the Android system; therefore,
we did not process them any further. While the Android API offers methods for retrieving
uncalibrated sensor data, we determined it would not benefit our specific use case.

3.2.1. Six-Minute Walking Test

Our approach for this test is based on a few algorithms proposed in the existing
literature [49,50]. Using the accelerometer, gyroscope, and timer present on a smartphone,
an estimation of the total walking distance is returned at the end of 6 min.

The accelerometer is used to detect steps. While Android often provides a step counter,
especially on newer devices, we implemented this functionality so that the app could work
on older devices as well. This sensor is sampled at 30 Hz, obtaining a value for each axis at
each interval. By applying a vector sum to these values, we get the magnitude representing
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the total acceleration affecting the device at any given time. The resulting signal includes the
influence of gravity, which is not filtered out. The algorithm works accordingly, knowing
the magnitude will have a value of 1 G or 9.81 m/s2 when the smartphone is at rest. Since
the user is not expected to perform any other daily activity during the test, such as sitting
down, the resulting acceleration signal is only used to detect steps and breaks. Walking
generates a distinctive pattern in the signal, with clear peaks, and a simple threshold-based
algorithm is reliable enough for this scenario.

Figure 3 shows an example of a signal along with the two thresholds. When the
magnitude crosses the high threshold on the way up, a new step is counted, and no other
steps will be counted until the signal crosses the low threshold on the way down. At that
point, the algorithm will wait for the signal to cross the high threshold again. A simple
calibration procedure, described below, was implemented in the app to find the best pair of
thresholds for the user automatically.

Figure 3. Overall acceleration (magnitude) generated during a walk (blue) with two example
thresholds (red) that could be used in the algorithm. The three peaks correspond to three steps.

Using the gyroscope, sampled at 20 Hz, the direction changes at the ends of the path
can be detected. The sample returned by the gyroscope, made up of three values, is the
speed of the rotation along each of the three axes, which, if integrated, can return the
rotation completed by the device in a given time window. Examining only the samples
from the axis perpendicular to the ground and including them in a time window allows the
algorithm to detect if a user performed a 180° turn within a given time. When this event is
detected, a new direction change will be counted.

To minimize missed detections (false negatives), initial tests indicated a threshold
below 180° was necessary. After further testing, a value of 140° proved to be a good balance
between catching true turns and avoiding false positives. This value is thus used as the
default, but, as discussed below, it can also be customized for each patient by manually
changing the parameter. Similarly, a time window of 6 s proved to be the right fit for most
patients during testing and was made the default, but this parameter can also be manually
changed. For instance, the algorithm may need more time to accurately detect turns for a
patient struggling to turn at the end of the path.

The walked distance, and therefore the test result, is estimated in the following way.
Since the length of the path on which the test is performed is known (and customizable,
along with other parameters, as explained below), at each change of direction, a full length
can be added to the partial result. We can also estimate the length of a step by dividing,
at each change of direction, the walked distance up to that point by the number of steps
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taken since the test started or, to account for the variability of steps as the test goes on,
the path length can be divided by the number of steps taken between the two most recent
completed rotations. At the end of the six minutes, the remaining distance covered since the
last rotation can be estimated by multiplying the number of steps taken after the rotation
by the estimated step length.

This approach offers numerous benefits and means to better fit the algorithm to
different environments and patients. Firstly, patients can wear the smartphone anywhere
on their body according to their preference and comfort, as long as it is in a vertical
position. Moreover, several customizable parameters can be set, such as path length, test
duration, minimum angle needed to detect a rotation, maximum time window to detect a
rotation, and the two thresholds used in the step-counting algorithm, whose value can be
set manually or by performing a short calibration.

The calibration procedure must be performed at least once before the 6MWT but can be
performed multiple times, independently from the tests, and the user is guided through the
different stages. In order to perform the calibration, the patient has to wear a smartphone
the same way they would during a 6MWT. After starting the calibration, the patient is asked
to walk freely in the same conditions in which a 6MWT would take place (on a straight,
flat path). During this stage, the patient can take as many steps as they wish, as long as
they take at least 30. A higher amount would improve the accuracy of the step counter
used in the 6MWT. The user should also count the number of steps or have somebody
assisting them in order to type in an accurate estimate when prompted by the app at the
end of this stage. After this, the new thresholds will be computed and shown to the user,
and the app will ask whether to save or discard them. Internally, the calibration algorithm
uses the signal recorded by the accelerometer during the free walk and the number of steps
manually inserted to find the pair of thresholds that, if used on the signal by the same
algorithm used during the 6MWT for step detection, would return the closest number of
steps to the one typed in. The calibration algorithm tries different pairs of thresholds in a
finite range, returning the best-performing pair as a result.

3.2.2. Ten-Meter Walking Test

Since no existing study proposed an algorithm compatible with our goals, we explored
different approaches and found the following to be the best: using the smartphone camera,
the STEP app can detect two colored plastic implements positioned against a wall and
aligned with the three sections of the test (as shown in Figure 4b), to return, at the end of it,
the time to complete the central portion of the path and, therefore, the walking speed.

The algorithm for this test works by detecting the right colors in the right place. Two
items of the same color must be placed against a wall on the 2 and 8-m mark, one at each
mark. To prevent the width of the items from interfering with the results, the item at
the 2-m mark should be placed with one edge on the mark and the other one towards
the start line, while the other item should be placed with one edge on the 8-m mark and
the other one towards the finish line. The target color has to be chosen according to the
different colors that can be found when looking in the direction of the wall so as to avoid
the detection of false positives. The easiest way to accomplish this is to find a color that
does not appear in the field of view and that is in contrast to any other color visible in that
direction, cut two rectangular pieces out of a plastic sheet of that color, and hang them on a
wall parallel to the walking direction.

For the 10MWT, the patient wears the smartphone with the camera facing out in a
direction perpendicular to the walking path. The camera is used to record a short video
from before the beginning of the test to after its end. The video will then be split into
single frames and analyzed after the test. Each frame can be classified as either a Frame
containing the Target Color (FTC) or a frame without it. Considering the duration of each
frame is known, counting the number of frames without the target color between two FTCs
enables us to compute how long it took the patient to walk from the first colored implement
to the second one. In order to find which frames contain the target color, the algorithm
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compares a subset of the pixels in each frame with the target color in the HSV color space.
The colors are processed in this color space to prevent variable light conditions from having
an effect on the comparison. Using the HSV color space allows us to set different values
and thresholds for each dimension (hue, saturation, and value). A color is classified as the
target color if the following constraints are met:

• The smallest distance between the current hue and the target one is below the
hue threshold.

• The distance between the current saturation and the target one is below a satura-
tion/value threshold.

• The distance between the current and target values is below a saturation/value threshold.

(a) (b)
Figure 4. (a) The pattern in which a subset of the pixels in a frame are selected for comparison.
(b) A hallway where patients performed the Ten-Meter Walking Testduring the study. The two
colored plastic implements are highlighted. Different lighting conditions around the implements are
also visible.

In order to speed up the analysis at the end of the test, only some of the pixels in each
frame are considered according to the size of the frame. Figure 4a shows the pattern used
to select the pixels to compare. We found this sample to represent the entire frame since,
if the colored implement is big enough and regularly shaped, it is unlikely to miss all of the
pixels evaluated. Only one pixel has to match for the entire frame to be classified as FTC.

Each time a FTC is found, its timestamp in the video is estimated using the frame
duration and its position in chronological order. The returned time between the two imple-
ments is the longest timestamp difference between two consecutive FTCs. The following
points help explain why this method returns the correct time.

• When the patient starts the test at the 0 m mark, the target color is not in the camera’s
field of view.

• When the first FTC is recorded at the 2 m mark, there are no previous FTCs. If the test
ended at this point, an error would be returned, because at least two FTCs are needed.

• When the following FTCs are recorded, they are all at a frame duration distance in
time from each other. If the longest time between two consecutive FTCs is equal to a
frame duration, an error is returned because, most likely, only one of the implements
was detected during the test.

• When the patient is walking between the two implements, no FTCs should be recorded,
and this is what increases the time between consecutive FTCs.

• When an FTC is re-recorded at the 8 m mark, it means the patient has reached the
second implement. The returned result is the timestamp difference between this FTC
and the previous one.

• After the 8 m mark, no more FTC should be recorded.
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This method allows the patient to wear the smartphone anywhere on their body,
as long as the camera is facing out towards the wall on which the colored implements are
positioned, and no body parts cover the camera, even temporarily. A noteworthy benefit of
this method is that, once the test is started, the patient can focus on performing at their best
without having to interact with the device until after the end of the test. The app allows for
the customization of a few parameters to improve the algorithm’s reliability in different
environments, such as path length, target color (which can be set using the camera), hue
threshold, and saturation/value threshold.

3.2.3. Sit-to-Stand Test

One way to track repetitions during the 30STS involves monitoring the thigh’s angle
of movement. This method offers two benefits: it can distinguish between sitting and
standing movements and help assess whether the range of motion during a repetition is
sufficient to be considered valid.

Determining the angle of the thigh can be more challenging when the sensors are
placed on different body parts. Likewise, attempting to detect repetitions through alter-
native data, like acceleration, poses similar difficulties. Placing the smartphone on the
thigh, instead, allows for monitoring all the rotations experienced by the device, accurately
determining the precise stage of the current repetition performed by the user. We have
developed an algorithm that uses a gyroscope to do this.

In greater detail, the gyroscope is sampled at 30 Hz. Since the smartphone is worn
lengthwise on the thigh (either flat in the front or on the side), the rotational values along
the two axes orthogonal (perpendicular) to the thigh can be derived by employing the same
processing approach explained in Section 3.2.1.

The patient can wear the smartphone in a pocket on the front or the side of the thigh
and can also choose to start the test sitting or standing. When the test starts, the initial
position is regarded as the baseline position. Therefore, any deviation from this will be
regarded as part of a repetition. For each axis, an integral, which is equal to zero at the
starting position, is updated over time by adding the angular velocity of each sample. Thus,
by integrating angular velocity over time, we obtain angular displacement. This way, two
opposite movements cancel each other out. After a new sample is obtained and the two
integrals are updated, their absolute values are then added together to get the Total Rotation
(TR). The algorithm monitors this value and compares it with different thresholds.

The entire movement is divided into four stages to ease the detection of a complete
repetition. To better describe each stage, an example of a test where the patient starts in
the sitting position will be used. As the patient stands up and moves through the range of
motion, the TR increases until it reaches the Repetition Threshold (RT). At that point, the first
half of the repetition is completed, and the algorithm moves from the first stage to the
second one. In the second stage, the algorithm waits until a change of direction is detected,
which happens when the patient reaches the standing position and reverses the motion.

The shift in direction is detected when the difference between the maximum value of
TR reached during the repetition, and the current one is greater than the Direction Threshold
(DT) set to 10°. When that happens, the algorithm moves on to stage three, sets the integrals
and the TR back to zero, and adds to them the difference between the value they had at the
direction change and the ones they have now, so as to not waste a portion of the repetition
equal to the DT. The third stage mirrors the first one and waits until the RT is crossed again.
This will happen when the patient is almost sitting; at this point, a complete repetition is
counted before moving on to stage four. This last stage mirrors stage two and waits for
a change in direction, at which point the algorithm will move on to the first stage of the
new repetition.

This implementation allows patients to perform the test in two ways: maximum
repetitions in a given time or minimum time to complete a given number of repetitions.
Either way, the gyroscope and a timer keep track of repetitions and time. The algorithm uses
a few parameters that can be customized to better fit different patients and environments,
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such as test mode (for maximum reps or minimum time) with either the time or repetition
limit and the RT.

3.3. Study

The application and its supporting system have been validated on real patients during
their post-surgery rehabilitation. Individuals undergoing hip or knee replacement recovery,
with their altered gait patterns, presented an excellent evaluation group for the STEP
system. This enabled a direct comparison of the system’s results with those obtained in
person by physicians across diverse ranges and conditions.

3.3.1. Participants

A consecutive series of patients referred to the Physical and Rehabilitative Medicine
Department of the Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo,
Alessandria, Italy, were assessed for eligibility from January 2023 to June 2023. To be
eligible, the study participants had to meet the following inclusion criteria:

A. Older people (over 60 years old), according to the definition by World Health Organi-
zation [66].

B. Recent hip or knee replacement surgery within the past two weeks.
C. Ability to walk without operator assistance.
D. Ability to stand up from a chair without operator assistance.
E. Ability to read and understand the Italian language.
F. Read and signed the informed consent.

The exclusion criteria were:

A. Dementia or cognitive impairment assessed with a Mini-Mental State Examination
score < 24 [67].

B. Pain at rest assessed with Numerical Rating Scale scoring below 4 points.
C. History of metabolic, cardiovascular, pulmonary, neurological or other pathological

comorbidities affecting physical performance.
D. Anemia.
E. Premorbid bed-bound.

The eligibility was assessed by a multidisciplinary team composed of an expert physi-
cian specializing in physical medicine and rehabilitation and a physiotherapist with years
of expertise in orthopedic rehabilitation. The clinical trial protocol was performed in ac-
cordance with the Declaration of Helsinki [68] and pertinent National and International
regulatory requirements. The study was approved by the Institutional Review Board of the
Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
(ASO.RRF.23.01; protocol number 14570). All the participants carefully read and signed a
written informed consent before the study began.

3.3.2. Protocol

All patients were treated with a standard rehabilitation protocol. The 6MWT, the 10MWT
and the 30STS were performed at baseline (T0), where a specialized physician also assessed
useful information about the patients, and after a rehabilitation period (T1). All tests
were overseen by a seasoned physiotherapist specializing in the comprehensive evaluation
of patients with musculoskeletal conditions, who also collected the results personally
by timing and measuring. These results constitute the In-Person Assessments (IPA) used
as reference in the validation. All parameters were initially set, and calibrations were
conducted before the tests, with provisions for additional calibrations at a later stage if
required. Following each test, all Results Returned by the App (RRA) underwent immediate
error checks to provide improved feedback and a comprehensive understanding of any
potential malfunctions. Subsequently, these results were uploaded to the server. Following
data collection for each test, validation involved a straightforward comparison to quantify
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the agreement between the STEP app’s results and the reference values. A smaller difference
indicated stronger performance by the STEP app.

The 6MWT was performed following the American Thoracic Society guidelines [69].
In addition, the rate of perceived exertion (assessed by the Modified Borg Scale) and the
peripheral capillary oxygen saturation were measured [70]. During the test, the patients
wore both the smartphone (on the thigh) to compute the results and the Viatom CheckMe
O2 to collect heart rate and oxygen saturation data during the test, as shown in Figure 5.

During the 10MWT, the patient’s walk from the 2 m line to the 8 m line was recorded.
Similarly, the app presented the duration rather than the speed, for direct comparison. Cal-
culating the speed based on the time and known distance was considered straightforward
and fell outside the scope of the validation. The walking speed (m/s) was determined by
dividing the distance covered by the time taken to traverse it. The test was performed four
times, two times at a comfortable speed (slow 10MWT) and two times at the fastest possible
speed (fast 10MWT). The final results used for validation and analysis were the means of
each pair of results [71].

The 30STS was performed using a chair with a seat height of 43.2 cm from the floor.
The chair was positioned against a wall in order to prevent movements during the test.
The patients had to complete as many repetitions as possible in 30 s. The score was given
as the total number of full stands (body erect and straight) performed by the patient [10].

Lastly, the safety was recorded by the registration of adverse events, and the Global
Perceived Effect scale was used to characterize patient satisfaction regarding this treat-
ment [72].

Figure 5. A patient standing at one end of the 30 m hallway, getting ready to begin the Six-Minute
Walking Test(6MWT). The patient is wearing a smartphone running the STEP app (A) and the
CheckMe O2 device with the ring sensor (B).

4. Results

This section presents the data analysis collected from the study described in the
previous section.
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The data sample used for the analysis was composed of 15 females (51.7%) and
14 males (48.3%), characterized by a mean age of 70.0 ± 11.0 years and mean BMI of
27.1 ± 4.19 kg/m2. Most of the patients included were surgically treated by total hip arthro-
plasty (21 patients; 72.4%), while seven patients (24.1%) were treated with knee arthroplasty
and 1 with unicompartmental knee arthroplasty. The causes of the surgery were coxarthro-
sis (17; 58.6%), gonarthrosis (7; 24.1%), and osteonecrosis (1; 3.4%) or fracture (4; 13.8%). In
order to validate the algorithms used by the STEP app, we performed a statistical compar-
ison of IPA and RRA. In addition, we performed a statistical analysis of test results and
medical records to find patterns or behaviors that show clinically relevant information.

4.1. Data Validation and Reliability

In this section, we present the validation results, performed by comparing RRA and
IPA and including a correlation analysis. Then, we conclude this section by reporting the
data reliability assessment. The sample size was estimated following the recommendation
by Hobart et al. about validation studies [73]. As a result, the sample size of at least
25 patients was needed to have an alpha error of 0.05 and a power (1-Beta) of 0.85.

To validate the algorithm and ensure RRA could be considered clinically comparable to
IPA, several metrics were calculated by comparing RRA with IPA to enhance performance
quantification. Table 1 shows the most significant metrics among the ones computed for
validation. These metrics were calculated in the following ways. The Mean absolute difference
is the average of the absolute values of the differences between each RRA and IPA. The
Absolute difference standard deviation is the standard deviation computed on the absolute
values of the differences between each RRA and IPA. The Smallest absolute difference is the
smallest value among the absolute values of the differences between each RRA and IPA.
For each test, it is the error in the RRA closest to the IPA. The Largest absolute difference is
the largest value among the absolute values of the differences between each RRA and IPA.
In other words, for each test, it represents the error in the RRA furthest from the IPA. The
Mean percentage error is the average of the absolute values of the differences between each
RRA and IPA expressed as a percentage of the IPA. The relative RRA is subtracted from
each IPA, and the absolute value of the result is computed. This is then expressed as a
percentage of the IPA. The average of these percentages for each test is then calculated.
These results are discussed in Section 5.

Table 1. Validation results for the Six-Minute Walking Test (6MWT), Ten-Meter Walking Test (10MWT),
fast and slow, and 30-Second Sit-to-Stand Test (30STS).

Metric 6MWT (m) 10MWT
Fast (s)

10MWT
Slow (s) 30STS (reps)

Mean absolute difference 1.90 1.08 1.20 0.06
Absolute difference
standard deviation 1.90 0.83 0.79 0.31

Smallest absolute difference 0 0.25 0.26 0
Largest absolute difference 10.09 4.34 4.78 2

Mean percentage error 1.35 11.55 9.72 0.67
[reps] = Repetitions.

To validate STEP app results further, we performed a correlation analysis for each
test to assess the strength of the relationship. Pearson correlation coefficient (r) with 95%
confidence intervals was used to assess the correlation between IPA and RRA, which was
considered as poor (r < 0.5), moderate (r ranging between 0.5 to <0.75), good (r ranging
between 0.75 to 0.9), or excellent (r > 0.90). A p-value lower than 0.05 was considered statis-
tically significant. The correlation analysis showed strong positive relationships between
RRA and IPA for all tests. Figure 6 shows the graphs representing the analysis results, also
discussed below. In addition, for each test, physicians involved in the project provided
data that further corroborated the previously observed consistency between app-collected
data and their In-Person data, specifically at the patient improvement analysis level.
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Figure 6. Correlation plots between In-Person Assessment (IPA) and Results Returned by the App
(RRA) data.

An excellent correlation (r) was shown between 6MWT-IPA and 6MWT-RRA both at
T0 (r = 0.9981; p = 0.000067) and T1 (r = 0.9981; p = 000078). Also, according to the physicians
involved, an excellent correlation was presented in terms of distance improvement (T1-T0)
measured after the rehabilitation treatments (r = 0.9982; p = 1.248 ×10−34).

In accordance, an excellent correlation was also found between fast 10MWT-IPA and fast
10MWT-RRA at both time points (T0: r = 0.9769; p = 00021; T1: r = 0.9669; p = 6.148 ×10−14).
Concurrently, an excellent correlation was also confirmed in terms of velocity improve-
ments (T1-T0) after the rehabilitation intervention (r = 0.9336; p = 1.713 ×10−20) as analyzed
by physicians.

Moreover, a strong correlation was observed between slow 10MWT-IPA and slow
10MWT-RRA at both time points (T0: r = 0.9943; p = 9.447 ×10−37; T1: r = 3.643 ×10−15;
p < 0.0001). Furthermore, the physician’s analysis showed a significant correlation regard-
ing velocity improvements (T1-T0) following the rehabilitation intervention (r = 0.9966;
p = 2.257 ×10−23).

Lastly, the statistical correlation between 30STS-IPA and 30STS-RRA is elevated, as in
the other tests at T0 (r = 0.9821, p = 3.973 ×10−21) and after the rehabilitation intervention
(r = 0.9960, p = 1.604 ×10−23), indicating a strong and direct correlation between the two
variables. In addition, based on the physicians’ analysis, the improvements between T0
and T1 in terms of repetition number for both 30STS-IPA and 30STS-RRA were significantly
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correlated (r = 9952; p = 1.248 ×10−34), indicating a clear and consistent relationship
between the variables.

Regarding data reliability, we performed a test–retest procedure for each type of test
to verify the consistency of repeated measurements. Unfortunately, patients could not
accomplish this during the study because of the quick onset of fatigue, so the test–retest
was performed by a healthy subject. Each type of test was performed five times by the
same subject to achieve a consistent score on each occasion. For each execution, both
RRA and IPA were collected. Considering the controlled execution environment, it is
unsurprising that the errors observed comparing RRA and IPA were minimal, negligible,
and consistently smaller than those encountered during the study. We focus on measure-
ment variability rather than discussing the errors already addressed during validation.
The inherent variability in test execution prevents results from being consistently identical.

Although minor behavioral changes by the subject during testing can influence the
outcome, it is crucial to recognize that these alterations impact both IPA and RRA equally.
Therefore, even without multiple identical test results for direct comparison, we can analyze
the test–retest data to determine whether the differences observed in RRA data align with
those in the IPA data, considering the ground truth results. For this analysis, we compare
the standard deviation of RRA with that of IPA, computed separately for each type of test
and reported in Table 2.

Table 2. Standard deviation for the Six-Minute Walking Test (6MWT), Ten-Meter Walking Test
(10MWT), and 30-s Sit-to-Stand Test (30STS) for both measuring methods, computed from the results
collected during a test–retest procedure.

Measurement Type 6MWT (m) 10MWT (s) 30STS (reps)

IPA 4.02 0.15 0.84
RRA 5.9 0.15 0.84

[IPA] = In-Person Assessments, [RRA] = Results Returned by the App, [reps] = repetitions.

The results demonstrate high comparability between RRA and IPA, showing consistent
measurements by the app. In more detail, the 6MWT showed a higher variability, which can
be attributed to the longer test duration affecting both RRA and IPA. The 10MWT, on the
contrary, is a short test and shows little variability among repeated executions. Finally,
while the 30STS exhibits some variability, both measurement types share the same standard
deviation value because all results in the test–retest data were identical.

Finally, we compared the measurements from both the accelerometer and gyroscope
sensors on the smartphone with the ones collected by the same type of sensors on another
device. Specifically, we used the B-L475E-IOT01A IoT node by STMicroelectronics [74],
a microcontroller board featuring an ARM Cortex-M4-based STM32L4 low-power MCU
and, among other components, an accelerometer and a gyroscope (LSM6DSL). We as-
sessed the consistency over time by comparing data collected at two different points under
identical conditions, and we observed a high correlation, indicating strong reliability.

4.2. Additional Data Analysis: Exploring Correlations between Patient Data and App Data

This section delves into the application’s broader potential by exploring patient and
app data correlations. This analysis represents an exploratory extension of the initial project
scope, leveraging the application’s data collection capabilities. The correlation analysis was
performed using linear regression. Linear regression is a fundamental statistical method used
to uncover and measure connections among multiple factors [75]. By fitting a straight line to a
collection of data points, this approach enables us to discern the underlying trend and generate
forecasts based on this pattern. When applied as a knowledge tool in healthcare treatments,
linear regression results provide a data-driven foundation for tailoring interventions and
optimizing patient outcomes [76]. This analytical approach could help healthcare operators
fine-tune treatment strategies to improve patient well-being.
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The STEP app was validated in a real-world setting with data collected from actual
patients. Therefore, these data could provide clinically relevant information. Consequently,
we use linear regression to investigate whether any RRAs correlate with the patient’s
physical factors (e.g., age, surgeries). Backward elimination was used to select the patient
physical factors most strongly associated with each sub-maximal test. Backward elimination
is a statistical method for selecting variables in a multiple-regression model [77]. It starts
with all of the model’s variables and then removes them one by one until the remaining
variables are statistically significant [78]. For each test, we performed a multiple linear
regression with each test (e.g., 6MWT) as the dependent variable and age, weight, height,
diagnosis, surgery, and body mass index (BMI) as the independent variables.

Table 3 presents an example of the results of a linear regression analysis applied to
the 6MWT. The listed variables are those that, based on their p-values, are statistically
significantly associated with the test (p-value <= 0.05). From a statistical perspective, this
indicates that the 6MWT test can be affected by the patient’s medical characteristics, such
as the type of diagnosis. However, this relationship is weak, as the standard error exceeds
the commonly used range of 10% of the coefficient value. Therefore, it is important to
clarify that the relationships between the data we will present below are only possible
interpretations that require confirmation with more data collected by the application.

Table 3. Linear Regression Six-Minute Walking Test.

Variable Coeff Std. Error t-Ratio p-Ratio

Const 0.36 0.21 1.71 0.1008
Age −0.73 0.29 −2.57 0.0176

Overweight 0.28 0.13 2.14 0.0435
Normalweight 0.49 0.13 3.72 0.0012
Gonarthrosis 0.51 0.16 3.14 0.0047
Coxarthrosis 0.36 0.15 2.39 0.0256

According to the model presented in Table 3, the 6MWT score decreases by 0.73 points
for each additional year of patient age. The relationship between the 6MWT score and
the other categorical variables is diverse, depending on the presence or absence of each
variable. For example, a patient with a normal weight has a 6MWT score of 0.21 points
higher than someone overweight. Similarly, a patient diagnosed with gonarthrosis has a
6MWT score of 0.15 points higher than someone with coxarthrosis.

The above analysis was also performed using all data obtained from the other tests.
However, only one independent variable had a statistically significant value compared
to the rest of the tests. Table 4 shows the related independent variable that obtained the
minimum p-value for each test and the corresponding correlation coefficient.

Table 4. Independent variables statistically relevant for each test.

Test Independent Variable p-Value Coefficient

6MWT1 [BMI] Normal Weight 0.0012 0.49
6MWT2 [BMI] Overweight 0.2024 −0.13

10MWT1F [D] Fracture 0.0948 0.30
10MWT2F [BMI] Overweight 0.0871 0.16
10MWT1S [D] Fracture 0.0053 0.38
10MWT2S [BMI] Normal Weight 0.0529 −0.18

30STS1 [BMI] Normal Weight 0.0148 0.25
30STS2 [BMI] Normal Weight 0.0368 0.28

[BMI] = body mass index, [D] = diagnosis.

In general, the results of the analysis suggest a notable association between body mass
index (BMI) and results from most submaximal tests. This is plausible, given that a person’s
morbidity can influence the results of these tests [79]. This type of information obtained
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from the STEP application could be helpful for clinicians, as it allows for the adaptation of
tests to be better aligned with or more tailored to the specific characteristics of patients.

5. Discussion

The STEP application demonstrated its ability to automate the tests reliably and ac-
curately, emphasizing its potential as a dependable and valuable tool. As shown in the
Results section, the study revealed compelling results in reliability, validation, and correla-
tion between Results Returned by the App and In-Person Assessments.

While several studies concentrate on healthy individuals or patients with cardiopul-
monary diseases (both usually exhibiting standard gait patterns), our study was conducted
on patients surgically treated for total hip or knee arthroplasty. The nature of the tests
makes them harder to perform correctly when the patients are injured or recovering af-
ter surgery. Despite these challenges, the application demonstrated remarkable efficacy
across this heterogeneous patient cohort, providing further evidence for the robustness and
reliability of the implemented algorithms.

A comprehensive review of the relevant literature revealed no prior studies validating
the use of wearable digital tools for gait assessment in patients undergoing total hip or knee
arthroplasty. This suggests that the current investigation is the pioneer of such validation
efforts. Although this can be seen as a merit of the study, more patient diversity is needed
to generalize the results to other populations.

The study faced challenges due to the patients’ use of walking aids. Some patients
switched aids between trials, significantly impacting the gait signal. This necessitated
recalibration to optimize the 6MWT algorithm. For example, a patient using a walker
initially exhibited a low error (0.23 m) which increased (4.41 m) after switching to crutches
for the second trial without recalibration. This highlights the impact of walking aids
on algorithm performance. Implementing recalibration after any aid change improved
outcomes. The process customizes the parameters for each individual, enhancing resilience
in suboptimal conditions. A recent case with comparable conditions, which included a
recalibration before the second trial, showed errors of 0.71 m and 0.03 m despite using
different aids in the two trials.

The validation of the data obtained automatically by the app showed significant
consistency with those obtained by the physicians. Beyond initial validation, the quality
of the results can be further verified by comparing them with the minimum detectable
change of each test reported in the existing literature. Compared to the minimal detectable
changes reported in the literature (e.g., 33.5–82 m for 6MWT [80,81], three repetitions for
30STS [82], 0.22–0.23 m/s for TMT [83]), our mean absolute errors were significantly lower
(1.9 m, 0.06 repetitions, 0.06 m/s, 0.1 m/s), indicating high agreement with physician
measurements. No clinically significant errors were found.

Regarding the STEP limitations, the first one is related to the small number of patients,
which made it harder to obtain meaningful results from the data analysis. After collecting
a larger dataset, we will be able to explore novel analysis techniques and leverage machine
learning algorithms. This comprehensive practice has the potential to augment the estab-
lished analyses outlined in the previous section, potentially leading to the generation of
more statistically robust and dependable findings.

A potential source of discrepancy in STEP 6MWT results is the inherent limitation of
visual assessments using hallway markers for the collection of the In-Person Assessments
used as reference. Since these measurements are rounded to the nearest meter, any decimal
value generated by the app appears as an error. Future validation efforts could incorporate
measuring wheels for control measurements to address this limitation and achieve a more
accurate comparison.

Our validation process highlighted the Ten-Meter Walking Test (10MWT) as the area
with the most significant potential for improvement. While the underlying algorithm
demonstrates reliability, its usability could be enhanced. The results indicate that error rates
increase with test duration, with the app consistently underestimating the actual walking
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time. These discrepancies can be attributed to factors such as excessive patient-to-wall
distance or improper smartphone placement. Under these conditions, the initial colored
marker may appear in later frames, even after the patient has crossed the 2 m line. At the
same time, the second marker may appear earlier. Consequently, the final frame with the
first marker and the initial frame with the second marker appear closer in time than the
actual test duration. Despite these challenges, the results remain sufficiently close to control
measurements, reaffirming the algorithm’s overall reliability.

Ensuring accurate distance measurement to set up the environment remains a chal-
lenge, especially in home use scenarios, and the current 10MWT implementation requires
a one-time setup that could be complex for some users. Involving a relative or caregiver
in the initial setup process can significantly alleviate this hurdle. Following this initial
assistance, patients should be able to perform subsequent tests independently. Future
iterations of the app could explore visual cues or on-screen instructions to simplify the
setup process further or establish a reliable method that involves an easier setup. Moreover,
the space required to perform these tests might limit the widespread adoption of this
technology. Lastly, the app’s suitability for independent home use by patients depends on
individual circumstances. Physicians should evaluate each patient to determine if the app
is appropriate for remote monitoring.

This study identified areas for improvement that will be addressed in future research.
To ensure robust and statistically significant data, we will test the app across diverse
demographic cohorts and target a broader patient population in our recruitment efforts.
These future studies, along with our results, will serve two purposes: application improve-
ment and suitability verification for home-based healthcare settings, fulfilling the project’s
initial objectives.

Considering the application’s utility as a telemedicine tool, our future endeavors
involve the integration of additional features to further enhance its capability in accurately
assessing the user’s health status. To this end, new tests, including balance assessments,
could be automated. Moreover, the application of sensors during these tests could facilitate
the extraction of additional features, such as vertical acceleration in the 30STS or gait
analysis in the 6MWT, in addition to their primary role in computing and delivering the
test results.

Upon the system’s successful validation, physicians and patients can extend this
application beyond routine clinical usage. Its utility in research studies could facilitate
seamless data collection of physical performance and its multilevel interactions with
patient characteristics, diet, and disease severity, which could have crucial implications in
rehabilitation management.

6. Conclusions

Assessing physical performance is crucial for rehabilitation, but frequent, accurate,
and efficient monitoring remains challenging. While technology offers solutions, ensuring
reliable test results can be difficult. This paper presented the System for Tracking and
Evaluating Performance (STEP), a telemedicine tool developed to automate submaximal
tests, minimizing the need for assistance and expert supervision in rehabilitation protocols.
STEP integrates a smartphone application leveraging built-in sensors for automated test
execution and a server infrastructure for data storage and visualization, streamlining the
process for patients and healthcare providers. The validation involved a comparative study,
where patients performed tests using the app while an expert monitored and manually
recorded results. STEP demonstrated high accuracy, consistently producing minimal
errors below clinically significant thresholds. These findings suggest STEP’s potential
to significantly improve test accessibility for patients, particularly those with mobility
limitations, and potentially reduce healthcare resource utilization. Further research is
warranted to confirm these benefits in larger and more diverse populations. Additionally,
future efforts will focus on simplifying setup and execution procedures.
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Overall, this study reinforces existing literature on remote physical performance assess-
ment challenges while introducing a novel, validated solution with promising implications
for future research and improved rehabilitation monitoring.
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