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Abstract

The key role played by host-microbiota interactions on human health, disease onset and

progression, and on host response to treatments has increasingly emerged in the latest

decades. Indeed, dysbiosis has been associated to several human diseases such as obe-

sity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington

and Alzheimer’s disease (AD), although whether causative, consequence or merely an epi-

phenomenon is still under investigation. In the present study, we performed a metabologe-

nomic analysis of stool samples from a mouse model of AD, the 3xTgAD. We found a

significant change in the microbiota of AD mice compared to WT, with a longitudinal diver-

gence of the F/B ratio, a parameter suggesting a gut dysbiosis. Moreover, AD mice showed

a significant decrease of some amino acids, while data integration revealed a dysregulated

production of desaminotyrosine (DAT) and dihydro-3-coumaric acid. Collectively, our data

show a dysregulated gut microbiota associated to the onset and progression of AD, also

indicating that a dysbiosis can occur prior to significant clinical signs, evidenced by early

SCFA alterations, compatible with gut inflammation.

Introduction

In the last decades, a revolution has emerged in the study, understanding, and interpretation

of the role of microorganisms that intimately interact with our body, the microbiota. In
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particular, those who reside permanently in the gastrointestinal tract (intestinal microbiota)

are now considered to participate in the biochemical and physiological activities of the human

body as an ‘additional body organ’ [1]. Indeed, gut microbiota consists of trillions of microor-

ganisms ranging from bacteria to archaea, fungi, protozoa, and viruses [1] with the total num-

ber of those organisms being extremely higher than the total number of cells in the human

body. Intestinal microbiota provides protective, structural, and metabolic functions, although

a full comprehension of the activities of this highly complex ecosystem is still under investiga-

tion [2]. Consequently, it appears as an essential organ influencing human health and patho-

logical processes, such as inflammation, infections, and tumors [2].

It is important to note that although confined to a specific location in the body, the gastro-

intestinal (GI) tract, this additional organ is able to interact effectively not only with specific

tissues of the GI, such as the intestinal epithelium, but it actively affects other distant organs,

such as the central nervous system, in the so-called ‘gut-brain axis’, bidirectionally. Indeed, the

involvement of the gut microbiota in neurological disorders such as, but not limited to, autism

is now widely accepted [3].

Among healthy subjects there is a high variability in the composition of the intestinal

microbiota; established early in life, within the first 2–3 years of the child’s life, it remains rela-

tively unchanged for the rest of the human lifespan [4–7]. Similarly to other organs, a malfunc-

tion or dysregulation of the intestinal microbiota has a strong impact on the functions of the

whole organism. However, although dysbiosis has been evidenced in several human diseases,

such as obesity, coronary heart disease, diabetes, and inflammatory bowel disease [8], the key

question is still: is gut dysbiosis a cause (or a contributing cause) or consequence of these dis-

orders? There is no simple answer to this question, and it may depend on the specific disease.

Therefore, it is very important to characterize the extent of dysbiosis, as this could be useful for

adopting alternative strategies for disease management.

The role of the gut microbiota in neurodegenerative disease is an emerging research field.

Recently, Parkinson’s disease patients showed a different gut microbiota than healthy controls

[9], and growing evidence also points to gut microbiota dysbiosis in Alzheimer’s disease (AD)

patients and mouse models [10–12]. A deep characterization of the gut microbiota and metab-

olites, such as short fatty acids and amino acids, will help in a better understanding of the etio-

pathology of AD. Thus, using a recently introduced metabologenomic approach [13] we

analyzed complex intestinal microbial ecosystems in a deterministic (3xTgAD) mouse model

of familial AD.

Materials and methods

Animals

Homozygous 3xTgAD mice (B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax1;

n = 4) were compared to WT controls (B6129SF2/J; n = 4). WT and AD mice were co-housed

at weaning (until the end of the experiments), to minimize intrinsic microbiota composition

diversity, and food and water were provided ad libitum. Fecal samples were freshly collected at

weaning (T0), at 2 (T1) and 6 (T2) months, placed on dry ice until sampling was complete,

and immediately stored at -80˚C.

The triple-transgenic (3xTgAD) mouse strain is a widely used and represents a valuable

model to study AD-related molecular mechanisms because it develops both Aβ and tau brain

pathology [14]. This strain exhibits age-dependent neuroanatomical and cognitive parallels to

AD, including Aβ plaque formation, neurofibrillary tangles, and memory deficits, making it

relevant to AD in humans. Intracellular Aβ accumulation is detected in brain regions as early

as 3–4 months of age. Extracellular Aβ deposits appear by six months in the frontal cortex and
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become more extensive by twelve months. Synaptic transmission and long-term potentiation

(LTP) are impaired by 6 months, and hyper-phosphorylated tau is detected at 12–15 months

[14]. All mice were housed in autoclaved cages (2 WT+2AD/cage) in a specific pathogen free

(SPF) Animal Facility (at IIT, Genova, IT), with twelve-hour light/dark cycles (i.e., light from

7:00 am to 7:00 pm). All procedures were approved by the local Ethics Committee for Animal

Welfare (IACUC No 1766AA.33 - 748/2017-PR) and conformed to the European Community

regulations for animal use in research (2010/63 UE).

Metagenomics

The metagenomic analysis was performed by the ‘Metagenomic’ facility, and data analysis was

performed by the ‘Bioinformatics’ facility at CAAD (University of Piemonte Orientale,

Novara, IT).

DNA isolation. Fecal samples were thawed at room temperature and microbial DNA was

isolated using the QIAmp1 PowerFecal1 Pro DNA isolation kit (Qiagen), according to the

manufacturer’s instructions. The yield and quality of bacterial DNA was determined by a

NanoDropTM 2000 spectrophotometer (Thermo Fisher Scientifics Inc). The quantity was

assessed using an InvitrogenTM QubitTM 1X dsDNA HS Assay Kit (Invitrogen) and a Qubit

4 fluorometer (Invitrogen).

16S gene sequencing. Purified DNA samples were subjected to 16S rRNA metagenomics

analysis to compare the distribution and relative or absolute abundance of microbial consortia

in the original fecal samples at the relevant time points. Analysis was performed using the

Microbiota Solution B Kit, a Next Generation Sequencing (NGS) in vitro molecular test,

CE-IVD marked. Polymerase chain reaction (PCR) amplification of the V3-V4-V6 hypervari-

able regions of bacterial 16S rRNA was obtained by employing degenerated primers, according

to the manufacturer’s instructions. PCR products were purified using Agencourt AMPure XP

magnetic beads (Beckman Coulter Inc., Brea, CA, USA) and indexes were added in a subse-

quent step. The hypervariable V3-V4-V6 regions of the bacterial 16S rRNA were amplified

according to the manufacturer’s instructions.

The DNA concentration of the libraries was measured fluorometrically and samples were

pooled in equimolar concentrations. The final 16S rRNA amplicon libraries were sequenced

on a MiSeq Illumina1 sequencing platform (Illumina, CA, USA) using a MiSeq Reagent Kit

v2 Nano cartridge for a 2x250 paired-end sequencing.

The amplicon length (840 bp) provided an average coverage of 60,482 total reads per sam-

ple (range 25,460–120,886).

Analysis of 16S rRNA gene sequences. Raw 16S rRNA reads have been analyzed using Micro-

bat, a tool for 16S reads taxonomic assignment developed by SmartSeq, a spin-off of the Pie-

monte Orientale University. The resulting OTU table of Microbat reporting relative

abundance values of each taxa was used to produce pie charts at phylum taxonomic level.

Resulting OTU table of Microbat containing raw reads counts assigned to each taxa was then

filtered on a reads number cutoff� 5 in at least one sample, while unclassified OTUs have

been discarded in all the subsequent analysis. The resulting filtered OTU table was then pro-

cessed using the webtool Microbiomeanalyst [18] with the following parameters (default

where not specified):

Data Filtering: No low count filter; No variance filter.

Data Normalization: no Data rarefying; Data scaling = Total Sum scaling; Data

transformation = Do not transform my data.

Abundance Profiling: data are shown at “Family” taxonomic level. Taxa resolution: All taxa

are shown, small taxa have not been merged.
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Alpha Diversity Profiling & Significance Testing: Diversity measure = Shannon; Statistical

Method = Mann-Withney/Kruskal-Wallis.

Beta Diversity Profiling & Significance Testing: Distance method = Jensen-Shannon Diver-

gence; Statistical method = PERMANOVA.

Differential Abundance Analysis Methods (RNA-Seq methods): Algorithm: DESeq2;

Adjusted P.value cutoff = 0.1 and |log2FC| > 1.

Hierarchical Clustering & Heatmap visualization: Distance measure = Pearson; Clustering

Algorithm = Complete.

Relative Abundance graph was calculated using MicrobiomeAnalyst tool “stacked bar/area

plot”.

For longitudinal investigations, only differential taxa present in AD samples have been con-

sidered interesting, while differential taxa present also in the same longitudinal comparison

with the same trend in WT samples have been filtered out. Differential taxa have been subse-

quently plotted with Heatmap Clustering function of MicrobiomeAnalyst.

Metabolomics. Metabolomic analysis was performed by the ‘Metabolomics & Proteomics’

facility at CAAD (University of Piemonte Orientale, Novara, IT).

Methyl tert-butyl ether (MTBE), N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA), meth-

oxamine, hexadecane, propanoic acid d2 and tridecanoic acid were purchased from Merck

(Darmstad, Germany). Pyridine, water and acetonitrile were from VWR (Milano, Italy). Meth-

anol and isopropanol were from Scharlab (Barcelona, Spain). Commercial mix standard of

free fatty acids including acetic acid, propanoic acid, butanoic acid, isobutyric acid (propanoic

acid, 2-methyl), isovaleric acid (butanoic acid, 3-methyl) and valeric acid (pentanoic acid)

were from Restek (Bellefonte, PA).

SCFAs were extracted from 30 mg of fecal sample. Briefly, 300 μL of water and 16 μL of the

internal standard propanoic acid d2 (20,5 ppm) and 5 μL of tridecanoic acid (500 ppm) were

added. The sample was then homogenized with FastPrep-24 5G (MP Biomedicals, USA) for 40

s at 6.0 m/s and vortexed at 1000 rpm at 4˚C for 30 minutes. The sample centrifuged at 21.1 x

g for 30 minutes at 4˚C. 100 μL of supernatant were placed in a new tube, bringing the pH to 2

using 6 M HCl. For the extraction of SCFAs 140 μL of MTBE were added and the tube was

placed on a rotator for 15 minutes at 40 rpm, followed by a centrifugation for 10 minutes at

4˚C at 21.1 x g. Then, 100 μL of the organic phase, that contains the SCFAs, were analyzed

with bi-dimensional gas chromatography coupled to mass spectrometry (GCxGC-TOFMS).

The remaining water phase solution was then subjected to a second extraction described in the

following paragraph. Calibration curve for the absolute quantification of the main SCFAs were

also built [15,16].

The remaining aqueous phase, that contains other small molecules such as amino-acids,

sugars, medium and long fatty acids, was extracted again using methanol-isopropanol-acetoni-

trile. Briefly, 100 μL of water from the first liquid-liquid extraction were subjected to a second

extraction using 1 mL mixture of acetonitrile (ACN), methanol (MeOH) and water 3:3:2. The

sample was vortexed for 15 seconds and centrifuged for 15 minutes at 20˚C at 14.5 x g. One

mL of the supernatant was placed in a new tube and dried in a speed-vacuum and then placed

at -20˚C until derivatization. The sample was finally derivatized with methoximation (20 μL of

methoxamine, 80˚C, 20 min) and silylation (90 μL of N,O-Bis(trimethylsilyl)trifluoroaceta-

mide, 80˚C, 20 min) prior the GCxGC-TOFMS analysis [17].

GCxGC-TOFMS analysis. For the analysis, a LECO Pegasus BT 4D GCxGC-TOFMS instru-

ment (Leco Corp., St. Josef, MI, USA) equipped with a LECO dual stage quad jet thermal mod-

ulator was used. The GC part of the instrument was an Agilent 7890 gas chromatograph

(Agilent Technologies, Palo Alto, CA), equipped with a split/splitless injector. The first dimen-

sion column was a 30 m Rxi-5Sil (Restek Corp., Bellefonte, PA) MS capillary column with an
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internal diameter of 0.25 mm and a stationary phase film thickness of 0.25 μm for metabolite

from aqueous solution, while for SCFAs analysis the column was a 30 m DB-FATWAX-UI

(Agilent Technologies, Santa Clara, CA) with a diameter of 0.25 mm and a film thickness of

0.25 μm, and the second dimension chromatographic columns was a 2 m Rxi-17Sil MS (Restek

Corp., Bellefonte, PA) with a diameter of 0.25 mm and a film thickness of 0.25 μm. High-

purity helium (99,9999%) was used as the carrier gas with a flow rate of 1.4 mL/min. 1 μL of

sample was injected in splitless mode at 250˚C. The temperature program for metabolites anal-

ysis was as follows: the initial temperature was set at 70˚C for 2 minutes, then ramped 6˚C/min

up to 160˚C, 10˚C/min up to 240˚C, 20˚C/min to 300 and then held at this value for 6 minutes.

The secondary column was maintained at +5˚C relative to the GC oven temperature of the

first column. The temperature program for SCFAs was as follows: the initial temperature was

40˚C for 2 minutes, then ramped 7˚C/min up to 165˚C, 25˚C/min up to 240˚C, maintained

for 5 minutes. The secondary column was maintained at +5˚C relative to the GC oven temper-

ature of the first column. Electron impact ionization was applied (70 eV). The ion source tem-

perature was set at 250˚C, the mass range was 40 to 300 m/z with an extraction frequency of 32

kHz, for the SCFAs analysis, while for the metabolites the mass range was 25 to 550 m/z. The

acquisition rates were 200 spectra/s. The modulation periods for both programs were 4s for

the entire run. The modulator temperature offset was set at +15˚C relative to the secondary

oven temperature, while the transfer line was set at 280˚C Chromatograms were acquired in

TIC (total ion current) mode. Peaks with signal-to-noise (S/N) value lower than 500.0 were

rejected. ChromaTOF version 5.31 was used for raw data processing. Mass spectral assignment

was performed by matching with NIST MS Search 2.3 libraries adding Fiehn Library. Com-

mercial mix standard of free fatty acids composed by acetic acid, propanoic acid, propanoic

acid 2-methyl, butanoic acid, butanoic acid 3-methyl and pentanoic acid was run individually

and EI spectra were matched against the NIST library. The calibration curves of the SCFAs

were obtained using excels, while the analytical results obtained from untargeted metabolo-

mics were processed and compared with the opensource software MetaboAnalyst 5.0 (www.

metaboanalyst.org). Data were integrated using M2IA opensource web server (http://m2ia.

met-bioinformatics.cn/).

Statistical analysis. Alpha diversity statistical analysis was performed using Mann-Withney/

Kruskal-Wallis with MicrobiomeAnalyst web tool. Beta diversity statistical significance was

measured using PERMANOVA statistical test again in MicrobiomeAnalyst web tool. Statisti-

cally different taxa have been individually tested using DESeq2 algorithm using |log2FC|>1

and padj <0.1 as cut-offs.

Firmicutes/Bacteroidetes ratio statistically significance has been calculated using ANOVA

with GraphPad software.

Statistical analysis of metabolomic data was performed through MetaboAnalyst 5.0. No

data filtering was applied to raw data. The areas from untargeted analysis were normalized by

the sum and then mean-centered, while no more data transformation have been performed.

The hierarchical cluster analyses heat map was calculated using Euclidean distance and Ward’s

linkage. Changes between two groups of samples were calculated with unpaired fold change

(FC) analysis, computing the ratios between two groups means. FC threshold of 1.3 has been

set to discriminate significative changes between the two groups, while the statistical signifi-

cance was calculated using parametric t-test with GraphPad software. The molecules with a p-

value threshold less than or equal to 0.05 have been selected as possible markers.

Metabolo-genomics data integration was performed using M2IA. The functional network

analysis was based on Weighted gene co-expression network analysis (WGCNA) algorithm,

chosen to collapse co-abundant metabolites into different clusters. The final correlation
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between metabolite clusters and microbial functional modes with phenotype information was

investigated using Spearman correlation.

Results

Here, we sought to study the overall composition of the microbiota in a mouse model recapitu-

lating the progression of Alzheimer’s disease, the 3xTgAD mice, compared with matched WT

controls. Metagenomics and metabolomics were used to deeply characterize the alterations of

microbial species and small molecules in the gut. Fig 1A (upper panel) shows our experimental

layout, in which animals were maintained in a specific pathogen free animal facility and stools

from 4 wild type (WT) and 4 3xTgAD mice were collected at weaning (T0), 2 months (T1) and

6 months (T2).

Metagenomic analysis of the gut microbiome composition in the 3xTgAD

mouse model of Alzheimer’s disease

The microbiota composition was characterized by means of 16S sequencing, with analysis per-

formed at different taxonomical levels, allowing for a complete dissection of the full microbiota

according to a variety of parameters. DNA from each sample was extracted and sequenced as

reported in the Materials and Methods section.

We then evaluated the relative abundance of each taxa in each sample, at the phylum level

(pie charts shown in Fig 1A, bottom panel). As expected, results highlighted a major contribu-

tion of both Firmicutes (F) and Bacteroidetes (B) in the composition of the microbiota, at all

time points evaluated, in both WT and AD mice with a similar F/B ratio trend at T0 (1.2 WT

vs 1.1 AD) and T1 (1.1 WT vs 1.0 AD), comparing WT and AD. Interestingly, while a physio-

logical increase in the F/B ratio was evidenced in both groups of animals at T2, a reduced

increase in the AD group at 6 months (2.6 WT vs 1.7 AD) indicates a lower per-centage of Fir-

micutes, compared to WT littermates (ANOVA one-way, p<0.05, Fig 1B). Moreover, an

increase in the Candidatus Saccharibacteria phylum was also found in the microbiota of AD

animals at T2 (0.002%±0.127% WT vs 0.258%±0.100% AD; DESeq2 statistical test:

log2FC = 7.926, FDR = 2.20E-8), together with an increased presence of Proteobacteria

(0.220%±0.059% WT vs 0.944%±0.183% AD), although not statistically significant.

In addition, microbiota alterations were in depth investigated by analyzing the data at the

family taxonomic rank. Fig 1C shows a stacked bar chart representing the relative abundance

of each family across samples, at each time point. This analysis revealed a very heterogenous

presence of Erysipelotrichaceae (Firmicutes phylum) in both WT and AD mice at weaning

(15.59%±17.45% and 13.42%±10.52% respectively), with a consistent decrease that was

observed at both 2 (DESeq2 statistical test: log2FC = -3.3074, FDR = 0.096 WT-T0 vs WT-T1)

and 6 (DESeq2 statistical test: log2FC = -2.787, FDR = 0.008 WT-T1 vs WT-T2) months in

WT mice (2.73%±2.13% WT-T1 and 0.25%±0.12% WT-T2, respectively). On the contrary, an

increased trend in the presence of this family was evident at 2 months in AD mice (although

not statistically significant) with a decrease observed at 6 months (13.42%±10.52 AD-T0,

24.29%±2.97% AD-T1, 0.70%±0.46% AD-T2; DESeq2 statistical test: log2FC = -6.469,

FDR = 1.51E-15 in AD-T1 vs AD-T2), but still higher compared to WT (0.70%±0.46% AD-T2

vs 0.25%±0.12% WT-T2; although not statistically significant). In parallel, the Bacteroidetes

family of Porphyromonadaceae appears to be predominant (about 50%) at both T0 and T1 in

AD and WT samples, while decreasing at T2, with a similar trend in both AD and WT.

On the contrary, Lactobacillaceae (Firmicutes) show an increased trend at T2 in both AD

and WT (at a similar extent), compared to both T0 and T1 (Fig 1C).
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Fig 1. Global 16S metagenomics profiling. A) Schematic representation of study design (upper panel); Abundance profiles of

microbes (percentage) in mice stool at the phylum taxonomic rank (bottom panel); samples were named as reported in experimental

design. B) The Firmicutes/Bacteroidetes ratio was calculated in each animal at the indicated time point T0, T1 and T2, and plotted

individually (upper panels) or grouped (bottom panel). An ANOVA analysis was performed using all groups. �p<0,05; ��� p<0,001.

It is important to note that a statistical difference was only observed compared WT T1 vs WT T2 groups, and WT T2 vs AD T2
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To better understand the differences among samples, we then evaluated two statistical

parameters commonly used to address the variability in metagenomic samples: the alpha and

beta diversity. Alpha diversity at family taxonomic level across samples was calculated with the

Shannon index and reported in Fig 1D. This analysis evidenced a significant different biodi-

versity of WT and AD samples at T0 (Mann Whitney test: p-value <0.05), while becoming

similar at T1, and indicating a divergent trend at T2.

Fig 1E represents a PCA plot showing the beta diversity across samples at family taxonomic

level indicating differences among the experimental groups (Permanova test: p-value < 0.05);

colored ellipses highlight groups that will undergo further analyses at genus level.

Stemming from these considerations, we moved our attention to the Genus level, and we

particularly investigated possible modulation in the microbiota of AD mice, among the follow-

ing three comparisons: T0 versus T2 (Fig 2A), T1 versus T2 (Fig 2B), and AD vs WT at T2

(Fig 2C).

Data reported in Fig 2 summarizes the main results of these comparisons. The left boxplots

panels show the alpha diversity at the genus level for the indicated samples, calculated with the

Shannon index, while the right panels show unsupervised hierarchical clustering of only differ-

ential genera among the respective comparisons (AD-T0 vs AD-T2 –Fig 2A–or AD-T1 vs

AD-T2 –Fig 2B, or AD-T2 vs WT-T2 –Fig 2C). In the heatmaps (right panels), data were cor-

rected by subtracting the genera showing the same trend in both WT and AD samples. Differ-

ent genera have been calculated using DESeq2 RNA-Seq approach with MicrobiomeAnalyst

(padj <0.1 |log2FC| >1) [18].

This analysis revealed a significant change in genera populations at T2 samples in AD mice

(compared to T0), with an increase in Saccharibacteria, Anaerotruncus, Vampirovibrio, and

Alistipes while a reduction in Dorea, Anaerostipes, Hallella, and Ruminococcus 2 was

observed (DESeq2 |log2FC|>1 & FDR<0.1).

Importantly, data reported in Fig 2C (right panel) identify a sort of ‘genera signature’ in AD

samples (evaluated at 6 months—T2), genera significantly different in AD vs WT mice and

consisting in a prevalence of Roseburia, Saccharibacteria, Clostridium, Odoribacter, Bacter-

oides, and Vampirovibrio, while a consistent decrease in Anaerostipes, Catonella, Ruminococ-

cus, and Shuttleworthia is also evident (DESeq2 |log2FC|>1 & FDR<0.1). The beta diversity

of groups compared in Fig 2 was also evaluated and reported in (S1 Fig).

Gut metabolome profile is altered in 3xTgAD mice

Metabolomic analysis of fecal samples showed a strong alteration of intestinal metabolome

profile in AD mice, compared to the WT group. A total of 17, 14 and 20 molecules were modu-

lated between the two groups of samples at weaning (T0), two (T1) and six (T2) months,

respectively. The hierarchical clustering heatmap and the principal component analysis (PCA)

reported in Fig 3A and 3B indicate the presence of a ‘microbiota metabolic signature’ associ-

ated to the Alzheimer’s Disease at six months (T2). A detailed list of molecules differently

modulated at six months between AD and WT groups is reported in S1 Table. This analysis

revealed that Capric, benzeneacetic acid, levulinic, 4 hydroxy benzeneethanol and hydrocin-

namic acid were up-regulated in AD mice, while hexadecenoic acid, octadecanoic acid, and

3-phenylpropanol were under-represented (Fig 3C).

groups. C) Relative abundance profiles of microbes in mice stool at family taxonomic rank. D) Boxplots showing alpha diversity

(Shannon index) values across experimental conditions at family taxonomic rank. E) PCA plot based on Jensen-Shannon divergence

values across experimental conditions at family taxonomic rank. � p<0.05.

https://doi.org/10.1371/journal.pone.0273036.g001
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Short chain fatty acids (SCFAs) analysis revealed a longitudinal modulation in both AD

and WT groups. Indeed, although some significant differences were already present at wean-

ing, such as acetic, propanoic and 2-methyl propanoic acid, and levels of both acetic and buta-

noic acid are still higher in AD mice at six months, compared to WT, a dramatic and

significant decrease of both acetic and propionic acid is however evident in the AD group, in a

time-dependent manner (Fig 4). These results suggest that SCFAs abundance changes in the

Fig 2. AD progression drives global perturbations in the microbiota. A) Differences at the genus taxonomic rank in mice stool microbiota between T2 and

T0 time points, for AD samples. Plots show alpha diversity (Shannon index) for the samples considered and the corresponding heatmap of the differentially

modulated genera. B) Differences at the genus taxonomic rank in mice stool microbiota between T1 and T2 time points, for AD samples. Plots show alpha

diversity (Shannon index) for the samples considered and the corresponding heatmap of the differentially modulated genera. C) Differences at the genus

taxonomic rank in mice stool microbiota between WT samples and AD samples at T2 time points. Plots show alpha diversity (Shannon index) for the samples

considered and the corresponding heatmap of the differentially modulated genera.

https://doi.org/10.1371/journal.pone.0273036.g002
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gut microbiota composition may occur in the early stages of the disease, while becoming more

evident with the disease progression.

Interestingly, the analysis of polar metabolites performed on the aqueous phase extraction

showed an alteration of amino acids levels in the AD group at 6 months, compared to the WT

group (Fig 5A and 5B). Indeed, the abundance of threonine, serine, valine, isoleucine,

Fig 3. Metabolic profile at six months in AD mouse. A) Score plot of principal component analysis (PCA) showing two distinct groups, the WT (light blue)

and the AD mouse model (red). B) Hierarchical clustering heat-map of the most modulated metabolites, C) box plot of modulated molecules at six months

(T2), expressed as ‘normalized intensity’, corresponding to normalized abundance of the molecules reported in the heatmap (panel B). � p<0.05; �� p<0.01; ���

p<0.001.

https://doi.org/10.1371/journal.pone.0273036.g003
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phenylalanine and aspartic acid were lower in stools from AD mice compared to WT matched

controls (Fig 5C).

Although to date there are no evidences associated to a lowering of these amino acids level

in stools of mouse or human subjects with AD, an alteration of amino acids distribution dur-

ing the worsening of AD has already been reported in the brain from AD patients [19]. Our

findings suggest that a dysregulated ‘gut-brain axis’ might be involved in AD progression [20].

Intestinal microbiota and metabolome correlations in Alzheimer’s

Disease–a Metabologenomic analysis

In order to investigate which bacterial taxa and metabolite-classes or individual metabolite

were responsible for the overall associations between gut microbiota and metabolome, the

individual correlations between genus-level bacterial abundance profiles, class-level and indi-

vidual metabolite-level intensity profiles, using the M2IA opensource web server, were per-

formed (Fig 6A). Firstly, the correlations between modulated genera distribution, significant

metabolite-classes abundances and their relative individual metabolites (FC>1.3, p-

value<0.05) were performed using metagenomic and metabolomic data obtained from the gut

analysis at six months. All the data were used for the analysis and no statistical restrictions

were used.

Three genera from the Bacteroidetes phylum (Odoribacter, Barnesiella and Bacteroides), a

genus from the Candidatus Saccharibacteria phylum (Saccharibacteria genera incertae sedis)

Fig 4. Short-chain fatty acids modulations over time. Box plots with p-values of acetic acid, butanoic acid, 3-methyl butanoic acid, valeric acid, propanoic

acid, and 2-methyl propanoic acid at weaning (T0), at two months (T1), and at six months (T2). � p<0.05; �� p<0.01; ��� p<0.0005.

https://doi.org/10.1371/journal.pone.0273036.g004
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and a genus from Firmicutes phylum (Roseburia) showed significant negative correlations

with the classes of amino acids and phenylpropanoic acid under-represented in AD at T2,

while significant positive correlations were reported with benzene and substituted derivatives,

fatty acyls and carboxylic acids (Fig 6B). In the individual metabolite correlation heat map (Fig

6C) the above-mentioned genera showed positive correlations with four metabolites (red) and

negative correlations with eight molecules (blue).

Fig 5. Metabolic profile of small molecules from aqueous phase extraction of AD mouse fecal samples, at six months. A) Score plot of principal

component analysis (PCA) showing two distinct groups, the WT (light blue) and the AD mouse model (red). B) Hierarchical clustering heat-map of the most

modulated metabolites. C) Box plot of modulated amino acids and phloretic acid at six months (T2), expressed as ‘normalized intensity’, corresponding to

normalized abundance of the molecules reported in the heatmap (panel B). � p<0.05; �� p<0.01; ��� p<0.0005.

https://doi.org/10.1371/journal.pone.0273036.g005
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Fig 6. Metabologenomics. A) Workflow of the study. Fecal samples from WT and 3xTG mice at weaning, two and six

months were collected and analyzed using metabolomic and metagenomic approaches. Metabolome and metagenome

profiles were then analyzed and integrated to explore microbiome variations potentially associated with the

progression of the disease. B) Circos plot of Spearman correlation between metabolite-phyla (left panel) and class-

metabolites-phyla (right panel). A positive correlation is distinguished by red lines, while a negative correlation by
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The complex relationship between microbes and metabolites was then explored by per-

forming a correlation functional network analysis. Five microbes at the genus level belonging

to the Firmicutes, Bacteroidetes and Candidatus Saccharibacteria phyla had the most signifi-

cant correlations with metabolites, as reported in Fig 7. Interestingly, these five genera (Rose-

buria, Odoribacter, Barnesiella, Bacteroides, and Saccharibacteria incertae sedis) are negatively

correlated with amino acids abundances, as well as phloretic and 3-3-hydroxyphenylpropanoic

acids, which are characterized by a strong negative correlation with Odoribacter and Rose-

buria, respectively.

Discussion

The study of microbiota and, particularly, dysbiosis associated with human diseases is revolu-

tionizing our ideas and modifying the clinical management of many disorders, offering new

opportunities to treat patients. Although full development of the individual gut microbiota is

achieved within the first 2–3 years of life, with limited fluctuations in its composition during

life in healthy individuals, dysbiosis has been documented in several pathological conditions.

In particular, gut dysbiosis has been observed in human diseases characterized by gut inflam-

mation such as Celiac Disease, Cystic Fibrosis, Obesity, IBD, diabetes, colon cancer, and more

[21–23]. Although whether cause or consequence of disease onset is still under deep investiga-

tion, rebalancing gut microbiota by using prebiotics, probiotics, nutraceuticals or fecal trans-

plants seems to have a positive impact on some disease onset/progression, at least in animal

models [12,24,25]. Thus, a deep knowledge of gut microbiota modifications associated with

specific disorders will help us to better understand the disease and to increase our opportuni-

ties to treat patients.

A longitudinal metagenomic and metabolomic analysis of stools samples from a mouse

model of AD (3xTgAD), compared to matched WT controls, revealed a dysregulated micro-

biota and metabolites composition in 6 months-old mice. Our analysis revealed a slight and

similar fluctuation of the F/B ratio in both AD and WT groups of mice at weaning and 2

months, while a significant divergence was observed between the groups at 6 months, a time

coincident with the progression of the pathology, in this mouse model (S2 Fig) [14]. In parallel,

an increase in the Candidatus Saccharibacteria phylum was also found in the microbiota of

AD animals at 6 months. Both these data indicate a potential increase in the gut inflammation,

previously documented in AD patients [26]. A link between Candidatus Saccharibacteria and

patients affected by IBD, potentially correlating with increased gut inflammation, have also

been reported [27]. Moreover, in patients affected by AD, an increase in the presence of Pro-

teobacteria was described in the literature, with a similar trend that was also observed in our

AD mouse model at 6 months [11].

In line with these results, an increase in the presence of Erysipelotrichaceae, which belongs

to the Firmicutes phylum, was also observed in AD mice at 6 months. A similar trend was

described in patients affected by IBD [28], which further suggests a potential inflammatory sta-

tus of the gastrointestinal tract of AD mice, compared to WT, associated with disease

progression.

Alpha and beta diversity are useful methods to evaluate the microbiota biodiversity. This

analysis revealed a significant difference in biodiversity of WT and AD samples at weaning,

green lines. C) Hierarchical heat maps with Spearman correlation between bacterial genera and metabolites (left

panel), and with bacterial genera and metabolites-classes (right panel). The red color indicates a positive correlation,

while the blue color indicates a negative correlation. The darker color indicates more statistical significance. Symbol �

and �� indicates correlation coefficients smaller than 0.05 or 0.01, respectively.

https://doi.org/10.1371/journal.pone.0273036.g006
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Fig 7. Functional network analysis of microbiota-metabolome correlations. Metabolites and microbes are represented as red circles and blue ovals. Their

positive and negative correlations are indicated using red and green lines, respectively. In the upper panel is reported the network correlation between

metabolites and genera, while in the bottom panel is reported the functional network between metabolite-classes and phyla.

https://doi.org/10.1371/journal.pone.0273036.g007
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while becoming similar at two months, and diverging again at 6 months. The initial divergent

biodiversity might be explained since AD and WT mice derived by different mothers housed

in different cages. To reduce this potential confounding factor, AD and WT mice were co-

housed at weaning. Indeed, alpha and beta diversity were similar in the two groups at 2

months. Therefore, the further divergence in biodiversity observed at 6 months comparing

AD and WT animals correlates with disease progression, although whether causative or conse-

quence requires further analysis. Overall, data support the paradigm of a microbiota reshaping

in AD mice, upon AD onset. Indeed, synaptic transmission and long-term potentiation (LTP)

are already impaired in 3xTgAD mice at 6 months, while intracellular Aβ accumulation is

detected in brain regions as early as 3–4 months.

In parallel, studying the microbiota-associated metabolome increases our knowledge of the

complex and mutual crosstalk between the intestinal flora and host. Indeed, the activity of gut

microbiota components is fundamental for the digestion of food, production of critical essen-

tial elements such as some amino acids but also, importantly, producing compounds able to

contribute to the control of gut epithelia growth, cell differentiation/proliferation, tissue per-

meability, inhibition of gut inflammation through direct/indirect (by means of immune cells)

activity [29]. Although the precise molecular events and mechanisms at the base of these pleth-

ora of gut microbiota activities are still elusive and under deep investigation, the role of few

molecules such as short-chain fatty acids (SCFA), long-chain fatty acids (LCFA) and amino

acids is emerging [30]. Therefore, the characterization and evaluation of the activity of these

molecules on host tissues is very important. Particularly, SCFA have been observed to exert a

positive impact on gut inflammation, through their ability in modulating the Treg component

of the immune system [31]. In line with this, gut proinflammatory diseases are frequently par-

alleled by a progressive decrease in gut SCFA abundance [32]. Although a higher level of few

SCFA in AD mice at six months, such as acetic and butanoic acid, are apparently discording

with the latter concept and with our speculations reported above, it is important to note the

drastic longitudinal decrease of both acetic and propanoic acid in AD mice, while no major

differences were observed in the WT group within 6 months.

Our analysis also evidenced a significantly decreased concentration of an amino acid group

in samples from AD mice at 6 months compared to WT matched controls, some of which

have been reported to be potentially linked to gut inflammation, such as phenylalanine, isoleu-

cine and valine [33]. Although the meaning in these changes is still not completely clear, it

might be linked to an altered gut-brain axis circuit.

Finally, an integrated analysis combining both metagenomic (16S) and metabolomic data

was recently introduced (metabologenomics), with the aim of correlating the modulation of

some metabolites to a corresponding modulated component of the intestinal ecosystem [13].

Studying AD from a metabologenomics perspective can provide new insights into AD patho-

genesis and may lead to the discovery of dietary probiotics and metabolite supplements that

could delay AD progression. Our results not only identified perturbations of the gut micro-

biome in preclinical stages of the disease, which suggested the potential role of microbiota in

modulating the pathogenesis of AD, but it also allowed the discovery of new relationships

between bacteria and metabolites. Importantly, the integration of these data revealed the

potential involvement of phloretic and 3-3-hydroxyphenylpropanoic acids, also called desami-

notyrosine (DAT) and dihydro-3-coumaric acid, which are well-known metabolites produced

by microbiota enteric bacteria [34], and that were down-regulated at 6 months. High gut levels

of DAT have been already associated to immune-regulatory functions [35], while Wang and

colleagues demonstrated that 3-3-hydroxyphenylpropanoic acid might interfere with the

assembly of β-amyloid (Aβ) peptides into neurotoxic Aβ aggregates and could play key roles in

AD pathogenesis [36].
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Conclusions

In conclusion, our observations suggest that the intestinal microbiota could influence the

onset and/or progression of Alzheimer’s Disease neurodegeneration.

In addition, although the most relevant differences in the metabolic profile become evident

at six months of age in 3xTgAD mice, SCFA and biodiversity alterations appeared earlier, sug-

gesting that a perturbation of microbiome can occur before the appearance of the main clinical

signs of the disease.
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S1 Fig. AD progression drives global perturbations of gut microbiota. Differences at the

genus taxonomic rank in mice stool microbiota between T 2 and T 0 time points (A) for AD

samples between T 1 and T 2 time points (B) for AD samples and between WT samples and

AD samples at T 2 time point (C). Plots show beta diversity values in a PCA diagram.
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S2 Fig. Aβ immunoreactivity in 3 xTg AD. Aβ immunoreactivity in 3 xTg AD (left figure)

mice compared to wild type mice (right figure) Low magnification view of prefrontal cortex

(A) hippocampus (B) basolateral amygdala (C) from 8 months old mice following staining

with 6 E 10 specific antibody. Higher magnification views of section (D-E) showing intraneur-

onal Aβ immunoreactivity. Original magnifications 5x (A-C), 20x (D-F). Images were

acquired using a Neurolucida microscope.
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