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A B S T R A C T

The aim of this paper is to give a systematic mathematical interpretation of the diffusion
problem on which Graph Neural Networks (GNNs) models are based. The starting point of
our approach is a dissipative functional leading to dynamical equations which allows us to
study the symmetries of the model. We provide a short review of graph theory and its relation
with network 𝜎-models adapted to our analysis. We discuss the conserved charges and provide
a charge-preserving numerical method for solving the dynamical equations. In any dynamical
system and also in GRAph Neural Diffusion (GRAND), knowing the charge values and their
conservation along the evolution flow could provide a way to understand how GNNs and other
networks work with their learning capabilities.

. Introduction

Graph Neural Networks (GNNs) are a very powerful architecture for neural networks and deep learning algorithms. They are
enerally based on multiple-layer structures to encode the information, non-linear activation functions and suitable cost functions
o compare the forwarded input with the expected results of the training data set. This essential structure has been implemented in
ifferent variants with excellent results. Nonetheless, these models have some flaws which fails to exploit the full power of the GNNs
see e.g. [1] for a comprehensive discussion). To overcome some of these problems, a very promising technique which combines ideas
rom graph neural networks and diffusion models has been explored with outstanding performances. This technique is known as
RAND, acronym for GRAph Neural Diffusion [2,3]. The diffusion coefficient is the attention matrix [4], which depends nonlinearly
n the features of the nodes, and the evolution of the system (forwarding) is obtained by numerically solving the diffusion equation.
he above-mentioned layers are substituted by the steps in the numerical approximation and the number of layers is optimized
or maximum efficiency. The implementation of this new technique has been put forward in several papers [1,2,5,6], tackling the
roblem by discretizing the diffusion equation in time and solving it with different numerical methods such as forward and backward
uler methods and Runge–Kutta methods, and optimizing the methods by some ad hoc prescriptions. Some of these methods are
ore efficient than others, and a limited number of applications have been developed for some of them. Nevertheless, the simplicity

f the implementation makes the approach very relevant for the AI community. In this paper, we provide a more systematic approach
oth from theoretical point of view (the construction of a functional implementing the symmetries of the model – in the spirit of [3])
nd from numerical implementation by providing a well-suited technique. Furthermore, this systematic work has been done to reveal
he real knowledge of the network through the conserved charges of the dynamical system.
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In order to improve the efficiency and explainability of the neural networks, we adopt a novel approach based on physical
rinciples by studying the symmetries of the diffusion differential equation and implementing a numerical algorithm to take these
ymmetries into account in the learning process. The knowledge of these symmetries is definitely of great importance as it allows a
eeper understanding of the mechanism underlying the GNNs – which contributes to the explainability of neural networks – and the

discovery that the network has learned some of the constants of motion corresponding to conserved quantities under the symmetry
group.

Given the diffusion equation, there are many symmetries that preserve the form of the equation, and they are widely studied
n the mathematical literature. However, among these symmetries there are also some that are unessential for our purposes. To
ind out the really interesting symmetries (which are respected by the data set), we use the well-known Noether’s theorem. It states
hat for each symmetry of the theory there is a conserved quantity that contains the physical information about the system. The
ost powerful approach to study the symmetries in this way is to formulate the problem using an action functional, to derive the
ard identities and consequently the conserved quantities. In our case, the specific nature of the differential equation, which is a

arabolic differential equation, falls outside the normal techniques of the energy (or action) functional approach (see [7] and the
discussion in [8]). In this case, the differential equation cannot be derived from an energy functional, since the energy itself is not
 conserved quantity being a dispersive process on the graph. A more appropriate technique will be the gradient flow mechanism.
owever, the latter does not lead to a simple treatment of the symmetries. Finally, we adopt a technique proposed in [9,10] where

a new functional is proposed to deal with the gradient flow. The action functional corresponds to a network 𝜎-model (where the
𝜎-model maps are vectors – named feature vectors – from graph vertices to a 𝑑-dimensional vector space) coupled to a parametric
ime-dependent background. For the reader’s convenience we provide a self-contained review of graph theory, its relation with

network 𝜎-models and, in particular, we recall the definition of discrete gradient and the chain rule used in the functional approach
adopted in the paper. The Euler–Lagrangian (EL) equations derived from this functional coincide with the diffusion equation only
in a suitable limit of the background, far from that limit the EL equations are of the second order and they can be easily formulated
in a Hamiltonian framework by introducing the phase space. The advantage of the phase space formulation is simplified expressions
for the conserved charges. In that way, we have a well-suited formulation of the equations with the relevant symmetries manifest,
starting point for the numerical analysis.

Before discussing the numerical approach, we point out that the difference between the present discussion and the case of the
Schrödinger equation is the existence for the latter of a complex structure for the vector space, that allows a simple action functional
formulation and the energy is conserved together with charges correspondent to the symmetries of the model. In our case, we do
not assume any complex structure of the vector space and, for that reason we adopt the formulation of [10].

Once that the equations and the conserved charges have been constructed we should wonder whether the conservation of the
charges are affected by the numerical scheme used to study the evolution of the system. Unfortunately, this is not automatically
implemented by any numerical scheme and therefore we should adopt the most suitable one. It turns out that the conserved charges
discussed in the present work appear to be quadratic polynomials on the phase space and they are preserved by the second order
numerical scheme known as implicit midpoint scheme discussed for example in [11]. That scheme, in contrast to more used schemes
such as forward or backward Euler schemes, preserves all quadratic invariants. Notice that our diffusion equation is non linear,
nonetheless the charge expression is quadratic polynomial. However, the compatibility between the numerical scheme and the
conservation of the charges is possible if the learnable parameters respect those symmetries. Those parameters are learned by the
well-known backpropagation algorithm trimmed on a set of reference data. If the data, and consequently the parameter inherit
those symmetries they arrange themselves to carry this information on the classification of the results, but that it is possible if the
numerical scheme adopted preserves the symmetries.

We would like to mention some related works on the subject. Recently, appear several physical inspired neural network
odels [12–14] based on Lagrangian and Hamiltonian dynamics. The evolution equation of the system are those obtained by the
amilton–Jacobi equations or from Euler–Lagrangian equations. Nonetheless, none of those works tackle the problem of diffusivity

in their scheme and how the conserved quantities are obtained in that case. On the other side, interesting work appeared in [15–18],
where the symmetries are learned from the data on the form of trajectories of a given dynamical system. The approach is different
rom ours, but it would be very interesting to see if given the trajectories derived from a dissipative equations one can learn all

possible symmetries preserved by the system. That will matter of future investigations. Finally, the present work is a companion of a
ore applicative work in collaboration with computer science colleagues and the main goal would be to see whether the symmetries
ould be enough to reproduce the classification algorithm achieved in similar works. The network learns the most natural quantities,

hose which persist in the evolution of the system, like humans [19–21].
The paper is organized as follows. In Section 2 we establish some notations and recall preliminary notions of graph theory useful

in the following. In Section 3 we introduce a functional which allow us to write the dynamical system depending on a parameter
which, as 𝜖 → 0, reduces to the diffusion equation already used in GRAND. In Section 4 we discuss conserved quantities of the

continuous dynamical system. Then, Section 5 is devoted to the discretization of the continuous problem using classical numerical
ethods, including the implicit midpoint scheme, in the light of preserving the charges along the solution with the numerical
ethods. Numerical experiments in support of the present analysis are reported in Section 6. Finally, we give some concluding

emarks in Section 7. In Appendix, we discuss the model in the continuum. We compare the graph model studied here with the
conventional 𝜎-model used in theoretical physics pointing out the non-local and non-linear structures.
2 
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2. Background

We briefly review some basic notions of graph theory and collect some notations that will be used in the following discussions.
An undirected (self-avoiding) graph is a pair  = ( , ) where  = {1, 2,… , 𝑛} is a set of nodes (or vertices) and  ⊆  ×  is a

set of edges such that if (𝑖, 𝑗) ∈  , then (𝑗 , 𝑖) ∈  , for all 𝑖 ≠ 𝑗. The topology of the graph is encoded into the incidence matrix

𝑤𝑖𝑗 =
{

1 if (𝑖, 𝑗) ∈ 
0 ot her wise .

Let 𝐱 ∶  × [𝑡0, 𝑇 ] ⟶ R𝑑 denote a function defined on nodes and a positive time interval such that the feature vector is given by

𝐱𝑖(𝑡) = (𝑥1𝑖 (𝑡), 𝑥2𝑖 (𝑡), … , 𝑥𝑑𝑖 (𝑡))
𝑇 .

We can define differential operators acting on such function. The graph gradient is the operator ∇ mapping functions defined on
ertices to functions defined on edges:

(∇𝐱)𝑗 𝑖 = 𝐱𝑗 (𝑡) − 𝐱𝑖(𝑡). (1)

It is immediate to check that (∇𝐱)𝑖𝑗 = −(∇𝐱)𝑗 𝑖.
For two column vectors 𝐮, 𝐯 ∈ R𝑑 , such that 𝐮 = (𝑢1, 𝑢2,… , 𝑢𝑑 )𝑇 , we adopt the notation

𝐮𝑇 𝐯 =
𝑑
∑

𝐼=1
𝑢𝐼𝑣𝐼

for the Euclidean scalar product; hence, the Euclidean norm can be written in a coordinate-free way as

‖𝐮‖ =
√

𝐮𝑇 𝐮. (2)

We represent rotations with orthogonal matrices 𝛬 ∈ 𝑆 𝑂(𝑑) or, equivalently, 𝛬 = 𝑒 where  =
∑𝑑(𝑑−1)∕2

𝑎=1 𝑐𝑎𝑎 is a linear
ombination of Lie-algebra-so(𝑑) skew-symmetric matrices 𝑎 [22]. Obviously, the Euclidean scalar product is invariant under any
otation.

In addition, we need the definition of partial derivatives with respect to a vector 𝐮 which is given by

𝜕𝐮
𝜕𝐯

=

⎛

⎜

⎜

⎜

⎝

𝜕 𝑢1
𝜕 𝑣1 … 𝜕 𝑢𝑑

𝜕 𝑣1
⋮ ⋱ ⋮
𝜕 𝑢1
𝜕 𝑣𝑑 … 𝜕 𝑢𝑑

𝜕 𝑣𝑑

⎞

⎟

⎟

⎟

⎠

. (3)

Then, for a given scalar 𝑐 the chain rule can be specified as follows:
𝜕 𝑐(𝐮)
𝜕𝐯

= 𝜕𝐮
𝜕𝐯

𝜕 𝑐(𝐮)
𝜕𝐮

. (4)

Finally, given a generic functional in the form

𝐹 [𝑞] = ∫

𝑡f

𝑡i
 (𝑡, 𝑞(𝑡), 𝑞′(𝑡), 𝑞′′(𝑡),… , 𝑞(𝑚)(𝑡),… ) 𝑑 𝑡,

with 𝑞(𝑚)(𝑡) the 𝑚th derivative of 𝑞(𝑡), the functional derivative of 𝐹 [𝑞] is defined as
𝛿 𝐹
𝛿 𝑞 =

∑

𝑚≥0

𝑑𝑚

𝑑 𝑡𝑚
𝜕 𝐹
𝜕 𝑞(𝑚) . (5)

Suitable boundary conditions on 𝑡i and 𝑡f should be assigned.

3. Variational principle

In order to describe the symmetries, the conservation of charges and the energy of the system, it is useful to introduce the
following functional

𝐿𝜖[𝐱, 𝑉 ] = ∫

𝑇

𝑡0
𝑒−

𝑡
𝜖

(

1
2
∑

𝑖∈

‖

‖

‖

𝜕𝐱𝑖
𝜕 𝑡

‖

‖

‖

2
+ 1

2𝜖
∑

𝑖,𝑗∈
𝐺𝑖𝑗

‖

‖

‖

(

∇𝐱
)

𝑖𝑗
‖

‖

‖

2
+ 𝑉 [𝐱]

)

𝑑 𝑡, (6)

letting 𝜖 be a small enough positive number. Here 𝐺𝑖𝑗 is the (𝑖, 𝑗)th entry of the symmetric matrix 𝐺 of order 𝑛 with respect to
he edge (𝑖, 𝑗) and 𝑉 denotes the potential that depends on 𝐱 in a nonlinear way and does not depend on time and discrete-space
erivatives. Also 𝐺𝑖𝑗 depends on 𝐱 in a nonlinear way (see [4] and reference therein). Before continuing, we clarify this fact by

considering the form of this matrix in more detail.
In (6) 𝐺𝑖𝑗 enters in the action multiplied by ‖

‖

‖

(

∇𝐱
)

𝑖𝑗
‖

‖

‖

2
which is symmetric under the exchange of 𝑖, 𝑗 (see (1) and (2)). Therefore,

only the symmetric part of 𝐺𝑖𝑗 enters in the action and the skew-symmetric part drops out. This can be easily implemented by restring
the dependence of 𝐺𝑖𝑗 upon symmetric invariants. Introducing two matrices 𝑊𝐾 , 𝑊𝑄 (𝐾 stands for keys, 𝑄 for queries [2,4,5]) which
are of size 𝑑′ × 𝑑 with 𝑑′ ≫ 𝑑, for all 𝑖, 𝑗 we can construct the following expression

𝑇
𝑖𝑗 = (𝑊𝐾𝐱𝑖) (𝑊𝑄𝐱𝑗 ) . (7)

3 
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Thus, setting

𝐶𝑖𝑗 = 𝑖𝑗 +𝑗 𝑖 , (8)

the entries of the matrix 𝐺 can be given as

𝐺𝑖𝑗 = 𝑤𝑖𝑗 𝑔
(

𝐶𝑖𝑗
)

; (9)

here the factor 𝑤𝑖𝑗 is the incidence matrix of the graph that selects which node is linked to another and the activation function 𝑔
ould be the sof t max function defined by

sof t max
(

𝐶𝑖𝑗
)

= 𝑒𝐶𝑖𝑗
∑

𝑖,𝑗∈
𝑒𝐶𝑖𝑗

,

see [23] for further details. When 𝐶𝑖𝑗 is given as in (8) the entries of the matrix 𝐺 are given in terms of ‘‘scaled dot’’. Other
ossibilities are obtained by introducing the new expressions

𝑖 = ‖𝑊𝐾𝐱𝑖‖, 𝑗 = ‖𝑊𝑄𝐱𝑗‖

and by constructing 𝐶𝑖𝑗 in terms of these building blocks

• 𝑖𝑗
𝑖𝑗

,

• exp
(

−(2
𝑖 +2

𝑗 −𝑖𝑗 −𝑗 𝑖)∕𝜍2
)

, with 𝜍 a suitable scaling.

The sof t max function evaluated on these two matrices is indicated in the literature as ‘‘cosine-similarity’’ and ‘‘exponential kernel’’,
respectively [6]. Actually, the softmax function can be substituted with any activation function such as ReLU, sigmoids or another
useful distribution.

The next step is to derive the equations of motion from the functional (6). It is worth observing that for a single graph point
he second term vanishes and only the potential plays an effective role. However, although the latter is also necessary for several
pplications (see, for example, [8]), to simplify the analysis and without losing generality, we will omit this term from now on and

then, we use

𝐿𝜖[𝐱] ∶= 𝐿𝜖[𝐱, 0] = ∫

𝑇

𝑡0
𝑒−

𝑡
𝜖

(

1
2
∑

𝑖∈

‖

‖

‖

𝜕𝐱𝑖
𝜕 𝑡

‖

‖

‖

2
+ 1

2𝜖
∑

𝑖,𝑗∈
𝐺𝑖𝑗

‖

‖

‖

(

∇𝐱
)

𝑖𝑗
‖

‖

‖

2
)

𝑑 𝑡. (10)

Denoting by

𝜖

(

𝑡, 𝐱𝑖,
𝜕𝐱𝑖
𝜕 𝑡

)

= 𝑒−
𝑡
𝜖

(

1
2
∑

𝑖∈

( 𝜕𝐱𝑖
𝜕 𝑡

)𝑇 𝜕𝐱𝑖
𝜕 𝑡 + 1

2𝜖
∑

𝑖,𝑗∈
𝐺𝑖𝑗

((

∇𝐱
)

𝑖𝑗
)𝑇 (∇𝐱

)

𝑖𝑗

)

(11)

the Lagrangian, a local functional which can be viewed as 𝑡-dependent-background field theory 𝜎-model, we can rewrite (10) as
follows

𝐿𝜖[𝐱] = ∫

𝑇

𝑡0
𝜖

(

𝑡, 𝐱𝑖,
𝜕𝐱𝑖
𝜕 𝑡

)

𝑑 𝑡.

Consequently, taking the functional derivatives of 𝐿𝜖[𝐱] with respect to 𝐱𝑖 we obtain (see (5))1

𝛿 𝐿𝜖
𝛿𝐱𝑖

=
𝜕𝜖
𝜕𝐱𝑖

− 𝑑
𝑑 𝑡

𝜕𝜖
𝜕(𝜕𝐱𝑖∕𝜕 𝑡)

= 𝑒−
𝑡
𝜖

2𝜖
𝜕
𝜕𝐱𝑖

(

∑

𝑖,𝑗∈
𝐺𝑖𝑗

((

∇𝐱
)

𝑖𝑗
)𝑇 (∇𝐱

)

𝑖𝑗

)

− 𝑑
𝑑 𝑡

(

𝑒−
𝑡
𝜖
𝜕𝐱𝑖
𝜕 𝑡

)

= 𝑒−
𝑡
𝜖

[

1
2𝜖

𝜕
𝜕𝐱𝑖

(

∑

𝑖,𝑗∈
𝐺𝑖𝑗

((

∇𝐱
)

𝑖𝑗
)𝑇 (∇𝐱

)

𝑖𝑗

)

+ 1
𝜖
𝜕𝐱𝑖
𝜕 𝑡 −

𝜕2𝐱𝑖
𝜕 𝑡2

]

. (12)

Using (3) and (4) and the symmetry of the matrix 𝐺, by direct calculation we can write

𝜕
𝜕𝐱𝑖

(

∑

𝓁,𝑘∈
𝐺𝓁𝑘

((

∇𝐱
)

𝓁𝑘
)𝑇 (∇𝐱

)

𝓁𝑘

)

=
∑

𝓁,𝑘∈

[

𝜕 𝐺𝓁𝑘
𝜕𝐱𝑖

((

∇𝐱
)

𝓁𝑘
)𝑇 (∇𝐱

)

𝓁𝑘 + 𝐺𝓁𝑘
𝜕
𝜕𝐱𝑖

(

((

∇𝐱
)

𝓁𝑘
)𝑇 (∇𝐱

)

𝓁𝑘

)

]

= 2
∑

𝑘∈

{[

𝜕 𝐺𝑘
𝜕𝐱𝑖

𝐱𝑇𝑘 −
∑

𝓁∈

𝜕 𝐺𝓁𝑘
𝜕𝐱𝑖

𝐱𝑇𝓁

]

+ 2 (𝐺𝑖 𝛿𝑖𝑘 − 𝐺𝑖𝑘
)

𝐼𝑑

}

𝐱𝑘,

where we have introduced the weight of the node 𝑘 summing the columns of 𝐺𝑘𝓁

𝐺𝑘 =
∑

𝓁∈
𝐺𝑘𝓁 ,
1 In deriving the differential equations we have imposed the boundary conditions 𝜕𝐱𝑖
𝜕 𝑡 ||
|𝑡=𝑡0

= 0 while at 𝑡 = 𝑇 we took in account the limit for 𝜖 → 0.

4 
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𝛿𝑖𝑘 is the Kronecker delta and 𝐼𝑑 is the identity matrix of order 𝑑. Therefore, setting

𝐴𝑖𝑗 =
∑

𝓁∈

𝜕 𝐺𝓁𝑗

𝜕𝐱𝑖
𝐱𝑇𝓁 −

𝜕 𝐺𝑗

𝜕𝐱𝑖
𝐱𝑇𝑗 + 2 (𝐺𝑖𝑗 − 𝐺𝑖 𝛿𝑖𝑗

)

𝐼𝑑 , (13)

relation (12) becomes
𝛿 𝐿𝜖
𝛿𝐱𝑖

= 𝑒−
𝑡
𝜖

[

−1
𝜖
∑

𝑗∈
𝐴𝑖𝑗𝐱𝑗 +

1
𝜖
𝜕𝐱𝑖
𝜕 𝑡 −

𝜕2𝐱𝑖
𝜕 𝑡2

]

.

Notice that for fixed 𝑖, 𝑗, 𝐴𝑖𝑗 is a square matrix of order 𝑑. Imposing
𝛿 𝐿𝜖
𝛿𝐱𝑖

= 0

leads to

−
𝜕2𝐱𝑖
𝜕 𝑡2 + 1

𝜖

(

𝜕𝐱𝑖
𝜕 𝑡 −

∑

𝑗∈
𝐴𝑖𝑗𝐱𝑗

)

= 0. (14)

As 𝜖 → 0, we recover the diffusion equation given in [2] on which GRAND is based, namely
𝜕𝐱𝑖
𝜕 𝑡 −

∑

𝑗∈
𝐴𝑖𝑗𝐱𝑗 = 0. (15)

We emphasize that the main difference between (14) and (15) is the second derivative term reminiscent of dumped harmonic
scillators. This additional term allows us to define the conserved charges as we are going to discuss.

To convert Eq. (14) into a first-order system we use the rescaled momenta 𝐏𝑖 defined as follows

𝐩𝑖(𝑡) =
𝜕𝜖

𝜕(𝜕𝐱𝑖∕𝜕 𝑡)
= 𝑒−

𝑡
𝜖
𝜕𝐱𝑖
𝜕 𝑡 ≡ 𝑒−

𝑡
𝜖 𝐏𝑖(𝑡) . (16)

Thus, Eq. (14) becomes the system
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝐱𝑖
𝜕 𝑡 = 𝐏𝑖

𝜕𝐏𝑖
𝜕 𝑡 = 1

𝜖

(

𝐏𝑖 −
∑

𝑗∈
𝐴𝑖𝑗𝐱𝑗

)

. (17)

So far we have only focused on the dynamic of a particular node. Now we consider the equations that take into account all the
nodes of the graph. At this aim we introduce the vector 𝐘(𝑡) = (𝐱𝑇1 (𝑡),… , 𝐱𝑇𝑛 (𝑡),𝐏

𝑇
1 (𝑡),… ,𝐏𝑇

𝑛 (𝑡))
𝑇 ∈ R2𝑛̂, where 𝑛̂ = 𝑛𝑑. Under the

hypothesis that 𝐺𝑖𝑗 depends upon the scalar products (see (7) and (8))

𝐶𝑖𝑗 = 𝐱𝑇𝑖
(

𝑊 𝑇
𝐾 𝑊𝑄 +𝑊 𝑇

𝑄 𝑊𝐾

)

𝐱𝑗 ≡ 𝐱𝑇𝑖 W𝐱𝑗 (18)

we can reorganize the term (−
∑

𝑗∈ 𝐴𝑖𝑗𝐱𝑗 ) given in (17) and define the matrix (𝐘(𝑡)) having the following block-entries

(

(𝐘(𝑡))
)

𝑟𝑠
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2𝐼𝑑
∑

𝑖∈
𝑖≠𝑟

𝑤𝑟𝑖𝑔
(

𝐱𝑇𝑟 W𝐱𝑖
)

, if 𝑟 = 𝑠

𝑤𝑟𝑠

(

2𝐼𝑑𝑔
(

𝐱𝑇𝑟 W𝐱𝑠
)

−W𝑔′
(

𝐱𝑇𝑟 W𝐱𝑠
)

‖𝐱𝑟 − 𝐱𝑠‖2
)

, if 𝑟 ≠ 𝑠

, (19)

for 𝑟, 𝑠 = 1, 2,… , 𝑛; here 𝑔′(𝑧) = 𝑑 𝑔
𝑑 𝑧 . Then, the system can be expressed in matrix form as

𝜕𝐘(𝑡)
𝜕 𝑡 = (𝐘(𝑡))𝐘(𝑡), (𝐘(𝑡)) = 1

𝜖

(

𝑂 𝜖 𝐼𝑛̂
(𝐘(𝑡)) 𝐼𝑛̂

)

, 𝑡 ∈ (𝑡0, 𝑇 ], (20)

where 𝐼𝑛̂ is the identity matrix of order 𝑛̂. Notice that (𝐘(𝑡)) is a symmetric matrix since its entries are function of W which is itself
a symmetric matrix (see (18)). In the subsequent analysis this property will be crucial.

4. Conserved quantities

For any dynamical system, it is useful to study possible constants of motion, associated to conserved quantities, which may
haracterize the evolution in a simpler way. The most natural example is the energy of the system which is the conserved quantity

associated to the Hamiltonian. Furthermore, there might be other conserved quantities associate to the symmetries of the model,
such as rotational symmetry, scale symmetry or translation symmetry. If the Hamiltonian exhibits one of those symmetries, there
are such conserved quantities.

In this case the Hamiltonian is (see (11) and (16))

𝐻
(

𝐱𝑖,𝐏𝑖
)

=
∑

𝑒−
𝑡
𝜖 𝐏𝑇

𝑖
𝜕𝐱𝑖 − 𝜖
𝑖∈ 𝜕 𝑡

5 
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= 𝑒−
𝑡
𝜖

2
∑

𝑖∈

( 𝜕𝐱𝑖
𝜕 𝑡

)𝑇 𝜕𝐱𝑖
𝜕 𝑡 − 𝑒−

𝑡
𝜖

2𝜖
∑

𝑖,𝑗∈
𝐺𝑖𝑗

(

∇𝐱
)𝑇
𝑖𝑗
(

∇𝐱
)

𝑖𝑗

= 𝑒−
𝑡
𝜖

(

1
2
∑

𝑖∈
𝐏𝑇
𝑖 𝐏𝑖 −

1
2𝜖

∑

𝑖,𝑗∈
𝐺𝑖𝑗

(

∇𝐱
)𝑇
𝑖𝑗
(

∇𝐱
)

𝑖𝑗

)

(21)

and, as a consequence of the explicit dependence upon 𝑡 in (21), we have

𝑑 𝐻
𝑑 𝑡 = 𝑒−

𝑡
𝜖

𝜖
∑

𝑖∈
𝐏𝑇
𝑖 𝐏𝑖 −

1
𝜖
𝐻

= 𝑒−
𝑡
𝜖

2𝜖

(

∑

𝑖∈
𝐏𝑇
𝑖 𝐏𝑖 +

1
𝜖

∑

𝑖,𝑗∈
𝐺𝑖𝑗

(

∇𝐱
)𝑇
𝑖𝑗
(

∇𝐱
)

𝑖𝑗

)

, (22)

where in the first equality we used (17). The Hamiltonian is conserved in the limit 𝜖 → 0 (which corresponds also to 𝑇 → ∞)
namely when the dispersive functional 𝐿𝜖[𝐱] is independent of 𝑡 and the energy is a well-defined concept. Therefore, the energy is
not a valuable quantity in the present case.

On the other hand, we study other constants of motion that are conserved along the diffusion process and can be used to analyze
the network final result. For that, we notice that while the expressions 𝐏𝑇

𝑖 𝐏𝑖 and
(

∇𝐱
)𝑇
𝑖𝑗
(

∇𝐱
)

𝑖𝑗 in (21) are invariant under any rotation,
the invariance of 𝐺𝑖𝑗 is restricted by the presence of W. Denoting by

𝛬 = 𝑒 = 𝐼𝑑 + + (2), 𝛬 ∈ 𝑆 𝑂(𝑑),

a generic rotation – where  is a skew-symmetric matrix – those which are preserved commute with W, namely

[W,] = 𝑂 . (23)

In the case where 𝐺𝑖𝑗 depends upon 𝑖𝑗 , 𝑖, and 𝑗 , then the preserved rotations are those which commute with W, 𝑊 𝑇
𝐾 𝑊𝐾 , and

𝑇
𝑄 𝑊𝑄. Obviously, that subgroup is smaller than the one given by (23). The matrices 𝑊𝐾 and 𝑊𝑄 are the learnable parameters of

he theory and are obtained using the backpropagation technique. Therefore, after a few iterations of the machine learning process,
hey stabilized to some specific form and the symmetry should be compatible with those.

Since the Hamiltonian given in (21) is invariant under the following rigid symmetry

𝐱𝑖 ← 𝛬𝐱𝑖 , 𝐏𝑖 ← 𝛬𝐏𝑖, (24)

we can define the corresponding charge as

𝑄𝛬(𝑡) = 𝑒−
𝑡
𝜖
∑

𝑖∈

(

𝐏𝑖(𝑡)
)𝑇 𝐱𝑖(𝑡) . (25)

Using 𝐘(𝑡), we can rewrite this equation as

𝑄𝛬(𝑡) = − 𝑒−
𝑡
𝜖

2
(𝐘(𝑡))𝑇 ( ⊗)𝐘(𝑡) (26)

where  is the skew-symmetric matrix

 =
(

𝑂 𝐼𝑛
−𝐼𝑛 𝑂

)

.

By a direct calculation we have that
𝑑 𝑄𝛬
𝑑 𝑡 = −1

𝜖
𝑄𝛬 − 𝑒−

𝑡
𝜖

2
𝑑
𝑑 𝑡

(

𝐘𝑇 ( ⊗)𝐘
)

= 𝑒−
𝑡
𝜖

2𝜖

(

𝐘𝑇 ( ⊗)𝐘
)

− 𝑒−
𝑡
𝜖

2
𝑑
𝑑 𝑡

(

𝐘𝑇 ( ⊗)𝐘
)

= 𝑒−
𝑡
𝜖

2

(

1
𝜖
𝐘𝑇 ( ⊗)𝐘 − 𝑑

𝑑 𝑡
(

𝐘𝑇 ( ⊗)𝐘
)

)

= 𝑒−
𝑡
𝜖

2

(

1
𝜖
𝐘𝑇 ( ⊗)𝐘 − 𝐘𝑇

(

(𝐘)𝑇 ⊗ +  ⊗ (𝐘)
)

𝐘
)

. (27)

Therefore
𝑑 𝑄𝛬
𝑑 𝑡 = 0 ⟺ 𝐘𝑇

(

1
𝜖
( ⊗) − (𝐘)𝑇 ⊗ +  ⊗(𝐘)

)

𝐘 = 0 . (28)

When [W,] = 𝑂, which expresses the compatibility of the learnable parameters with the simmetries, from a straightforward
computation we can check that

(

(𝐘)𝑇 ⊗ +  ⊗ (𝐘)
)

= 1
𝜖
 ⊗. (29)

and this implies that 𝑄 (𝑡) actually is a constant. We summarize this fact in the following result.
𝛬

6 
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Theorem 1. Let W be the matrix defined in (18) and  any skew-symmetric matrix of order 𝑑. With reference to (20), when

[W,] = 𝑂 ,
the charge 𝑄𝛬 given in (26) is preserved, that is

𝑄𝛬(𝑡) = 𝑄𝛬(𝑡0), ∀ 𝑡 ∈ (𝑡0, 𝑇 ].

Since we need to solve numerically the dynamical system (20), in the next section we are interested in selecting an appropriate
umerical scheme that is able to inherit the conservation of the underlying continuous invariants. In particular, in this analysis we

are interested to select a method that preserves the charge.

5. Computing discrete invariants

Instead of discretizing the dynamical system (20), from a numerical point of view it is more convenient to consider the system
in the canonical coordinates (𝐱𝑖,𝐩𝑖), (see (16) and (17)), which in matrix form can be represented as

𝜕𝐲(𝑡)
𝜕 𝑡 = (𝐲(𝑡)) 𝐲(𝑡), (𝐲(𝑡)) =

⎛

⎜

⎜

⎝

𝑂 𝑒
𝑡
𝜖 𝐼𝑛̂

− 𝑒−
𝑡
𝜖

𝜖 (𝐲(𝑡)) 𝑂

⎞

⎟

⎟

⎠

, 𝑡 ∈ (𝑡0, 𝑇 ], (30)

with 𝐲(𝑡) = (𝐱𝑇1 (𝑡),… , 𝐱𝑇𝑛 (𝑡),𝐩
𝑇
1 (𝑡),… ,𝐩𝑇𝑛 (𝑡))

𝑇 . In this framework the charge is given by (see (25))

𝑄𝛬(𝑡) =
∑

𝑖∈

(

𝐩𝑖(𝑡)
)𝑇 𝐱𝑖(𝑡) = −1

2
(𝐲(𝑡))𝑇 ( ⊗)𝐲(𝑡). (31)

Consequently,
𝑑 𝑄𝛬
𝑑 𝑡 = 0 ⟺ 𝐲𝑇

(

(𝐲)𝑇 ⊗ +  ⊗ (𝐲)
)

𝐲 = 0.

Under the hypothesis that [W,] = 𝑂, from a direct computation we can check that
(

(𝐲)𝑇 ⊗ +  ⊗ (𝐲)
)

= 𝑂 (32)

and then the charge is trivially preserved.
Denoting by {𝐲(𝑘)}𝑁𝑘=0 the numerical solution provided by the method used to discretize (30), the conservation of charge (31) in

the discrete frame means that at two consecutive grid points the following relation should be examined

(𝐲(𝑘+1))𝑇 ( ⊗)𝐲(𝑘+1) = (𝐲(𝑘))𝑇 ( ⊗)𝐲(𝑘). (33)

We first consider the most commonly used schemes, namely the forward Euler and backward Euler methods. Since both are
nable to preserve the charges – as will be proved below – we introduce another numerical method capable of doing so. Following
airer et al. [11, Sec. IV.2], we consider the simplest case of Gauss collocation methods. In all cases, starting from an initial guess

𝐲(0) = 𝐲(𝑡0), we solve the equation in (30) on the uniform grid {𝑡𝑘 = 𝑡0 + 𝑘ℎ; 𝑘 = 0, 1,… , 𝑁 ; 𝑡𝑁 = 𝑇 }.

5.0.1. The forward Euler method
The numerical solution obtained by applying the forward Euler method can be computed by

𝐲(𝑘+1) = 𝐲(𝑘) + ℎ(𝐲(𝑘))𝐲(𝑘) (34)

where 𝐲(𝑘) ≈ 𝐲(𝑡𝑘). Using this recurrence relation we can prove the following result.

Proposition 1. The forward Euler method does not preserve the charge (31).

Proof. By substituting in (33) the expression of 𝐲(𝑘+1) provided by (34) we can write

(𝐲(𝑘+1))𝑇 ( ⊗)𝐲(𝑘+1) = (𝐲(𝑘))𝑇 ( ⊗)𝐲(𝑘)

+ℎ(𝐲(𝑘))𝑇
[

(

(𝐲(𝑘))
)𝑇 ( ⊗) + ( ⊗)(𝐲(𝑘))

]

𝐲(𝑘)

+ℎ2(𝐲(𝑘))𝑇
(

(𝐲(𝑘))
)𝑇 ( ⊗)(𝐲(𝑘))𝐲(𝑘). (35)

Then, taking into account (32) and observing that
(

(𝐲(𝑘))
)𝑇 ( ⊗)(𝐲(𝑘)) = 1

𝜖

(

𝑂 (𝐲(𝑘))
(𝐲(𝑘)) 𝑂

)

( ⊗) (36)

we have
7 
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(𝐲(𝑘+1))𝑇 ( ⊗)𝐲(𝑘+1) = (𝐲(𝑘))𝑇 ( ⊗)𝐲(𝑘) + 
(

ℎ2

𝜖

)

.

This last relation leads us to the conclusion that the forward Euler method does not preserve the charge (see (33)). □

As just proved, the conservation of the charge is spoiled at order ℎ2. Furthermore, we observe that for 𝜖 → ∞ the charge is
onserved. This is expected since in that limit we recover a simple model which conserve any charge. On the other side, in the limit
𝜖 → 0, that is when the diffusion equation is recovered, the second term could become arbitrarily large. Thus, we have to choose a
different discretization scheme.

5.0.2. The backward Euler method
When we discretize the system (30) by the backward Euler method we get

𝐲(𝑘+1) = 𝐲(𝑘) + ℎ(𝐲(𝑘+1))𝐲(𝑘+1)

and then
(

𝐼2𝑛̂ − ℎ(𝐲(𝑘+1))
)

𝐲(𝑘+1) = 𝐲(𝑘). (37)

Using this recurrence relation we can prove the following result.

Proposition 2. The backward Euler method does not preserve the charge (31).

Proof. By substituting in (33) the expression of 𝐲(𝑘) provided by (37), we can write

(𝐲(𝑘))𝑇 ( ⊗)𝐲(𝑘) = (𝐲(𝑘+1))𝑇 (

𝐼2𝑛̂ − ℎ(𝐲(𝑘+1))
)𝑇 ( ⊗)

(

𝐼2𝑛̂ − ℎ(𝐲(𝑘+1))
)

𝐲(𝑘+1)

= (𝐲(𝑘+1))𝑇 ( ⊗)𝐲(𝑘+1)

− ℎ(𝐲(𝑘+1))𝑇
[

(

(𝐲(𝑘+1))
)𝑇 ( ⊗) + ( ⊗)(𝐲(𝑘+1))

]

𝐲(𝑘+1)

+ ℎ2(𝐲(𝑘+1))𝑇
[

(

(𝐲(𝑘+1))
)𝑇 ( ⊗)(𝐲(𝑘+1))

]

𝐲(𝑘+1).

Using (32) and considering the expression of the matrix in (36) we obtain

(𝐲(𝑘))𝑇 ( ⊗)𝐲(𝑘) = (𝐲(𝑘+1))𝑇 ( ⊗)𝐲(𝑘+1) + 
(

ℎ2

𝜖

)

. (38)

and therefore the charge is not conserved. □

5.0.3. The implicit midpoint method
The scheme we propose to use in this setting works as follows

𝐲(𝑘+1) = 𝐲(𝑘) + ℎ(𝐲(𝜉)) 𝐲
(𝑘+1) + 𝐲(𝑘)

2
, (39)

where 𝐲(𝜉) approximates the continuous solution at a point 𝑡𝜉 ∈ [𝑡𝑛, 𝑡𝑛+1]. Recombining the above expression gives
(

𝐼2𝑛̂ −
ℎ
2
(𝐲(𝜉))

)

𝐲(𝑘+1) =
(

𝐼2𝑛̂ +
ℎ
2
(𝐲(𝜉))

)

𝐲(𝑘).

Since (see (30))

𝐼2𝑛̂ −
ℎ
2
(𝐲(𝜉)) =

⎛

⎜

⎜

⎝

𝐼𝑛̂ − ℎ 𝑒 𝑡
𝜖

2 𝐼𝑛̂
ℎ 𝑒− 𝑡

𝜖

2𝜖 (𝐲(𝜉)) 𝐼𝑛̂

⎞

⎟

⎟

⎠

,

the blocks on the main diagonal are both invertible and then this matrix can be inverted blockwise as follows
(

𝐼2𝑛̂ −
ℎ
2
(𝐲(𝜉))

)−1
=

(

𝐼2 ⊗
[

𝐼𝑛̂ +
ℎ2

4𝜖
(𝐲(𝜉))

]−1
)

(

𝐼2𝑛̂ +
ℎ
2
(𝐲(𝜉))

)

.

From the above considerations and by a direct calculation we have

𝐲(𝑘+1) =

(

𝐼2 ⊗
[

𝐼𝑛̂ +
ℎ2

4𝜖
(𝐲(𝜉))

]−1
)

(

𝐼2𝑛̂ +
ℎ
2
(𝐲(𝜉))

)2
𝐲(𝑘)

=
(

𝐼2𝑛̂ +
ℎ
2
(𝐲(𝜉))

)2
(

𝐼2 ⊗
[

𝐼𝑛̂ +
ℎ2

4𝜖
(𝐲(𝜉))

]−1
)

𝐲(𝑘)

≡ (𝐲(𝜉))𝐲(𝑘). (40)

Now, denoting for the reader’s convenience
8 
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(𝐲(𝜉)) ∶=
(

𝐼𝑛̂ +
ℎ2

4𝜖
(𝐲(𝜉))

)2
(

𝐼𝑛 ⊗
)

and recalling that

−(𝐲(𝜉)) (𝐼𝑛 ⊗) + (𝐼𝑛 ⊗)(𝐲(𝜉)) = 𝑂

since (𝐼𝑛 ⊗) is a block diagonal matrix whose entries commute with W, we get
(

𝐼2𝑛̂ +
ℎ
2
(

(𝐲(𝜉))
)𝑇 )2

( ⊗)
(

𝐼2𝑛̂ +
ℎ
2
(𝐲(𝜉))

)2
=

(

𝑂 (𝐲(𝜉))
(

(𝐲(𝜉))
)𝑇 𝑂

)

=

⎛

⎜

⎜

⎜

⎝

𝑂
(

𝐼𝑛̂ +
ℎ2

4𝜖 (𝐲
(𝜉))

)2
(

𝐼𝑛 ⊗
)

−
(

𝐼𝑛̂ +
ℎ2

4𝜖 (𝐲
(𝜉))

)2
(

𝐼𝑛 ⊗
)

𝑂

⎞

⎟

⎟

⎟

⎠

;

then
(

(𝐲(𝜉))
)𝑇 ( ⊗)(𝐲(𝜉)) =  ⊗.

This equality together with (40) allows us to write

(𝐲(𝑘+1))𝑇 ( ⊗)𝐲(𝑘+1) = (𝐲(𝑘))𝑇 ( ⊗)𝐲(𝑘).

Remark 1. It is important to emphasize that any point 𝑡𝜉 is suitable for charge conservation. In particular, setting 𝑡𝜉 = 𝑡𝑘+
ℎ
2 ≡ 𝑡𝑘+ 1

2
,

the method (39) is an 𝐴-stable implicit method of the second order known in the literature as implicit midpoint method (the simple
instance of Gauss collocation methods, with one collocation point per step). Actually this method can be seen as a sequence of
backward Euler and then forward Euler methods. In fact, applying both methods step by step on a mesh with stepsize ℎ∕2 we have

𝐲(𝑘+
1
2 ) = 𝐲(𝑘) + ℎ

2
(𝐲(𝑘+

1
2 ))𝐲(𝑘+

1
2 )

𝐲(𝑘+1) = 𝐲(𝑘+
1
2 ) + ℎ

2
(𝐲(𝑘+

1
2 ))𝐲(𝑘+

1
2 )

from which we deduce that

𝐲(𝑘+
1
2 ) − 𝐲(𝑘) = 𝐲(𝑘+1) − 𝐲(𝑘+

1
2 ),

or, equivalently,

𝐲(𝑘+
1
2 ) =

𝐲(𝑘+1) + 𝐲(𝑘)

2
.

We are now in the position to enunciate the following proposition.

Proposition 3. The implicit midpoint method applied for solving the system (30) reads as

𝐲(𝑘+1) = 𝐲(𝑘) + ℎ
(

𝐲(𝑘+1) + 𝐲(𝑘)

2

)

𝐲(𝑘+1) + 𝐲(𝑘)

2
. (41)

It preserves the charge (31) which is a quadratic integral invariant for the system.

6. Numerical experiments

In this section we report the results of some numerical experiments we have performed to show in a simple case the choices we
have made in this work.

We consider a graph with three nodes (i.e. 𝑛 = 3) with vector features of dimension 𝑑 = 4, whose dynamic is modeled by the
continuous system of the form (30) defined on the interval (0, 1]. The incidence matrix is defined as

𝑤 =
⎛

⎜

⎜

⎝

0 1 1
1 0 1
1 1 0

⎞

⎟

⎟

⎠

so that each node is connected to all others. As the activation function 𝑔, we use the softmax function. Here we focus on two
ests corresponding to two different ways of setting the matrix W. In the first test we set W = 10−3𝐼4, while in the second one we
onsider W = diag(10−3, 10−3, 1, 1). We will later refer to these two matrices as W1 and W2, respectively. To solve the corresponding
wo problems, we use the forward Euler method (FE) (34) and the (modified) implicit midpoint method (IM), that is the method
iven in (39) with the matrix (𝐲(𝜉)) evaluated at 𝑡𝜉 = 𝑡𝑘. Although the latter method converges with order one, the numerical

approximation of the solution to the next grid point can be achieved by solving only a linear system per step rather than a nonlinear
9 
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Table 1
Correspondence rotation-charge.
 2,1 3,1 4,1 3,2 4,2 4,3

𝑄𝛬 𝑄1 𝑄2 𝑄3 𝑄4 𝑄5 𝑄6

Fig. 1. Charge of the system (30) with 𝜖 = 0.1 and W1 from 𝑄1 up to 𝑄6 on the left computed by the forward Euler (FE) method and on the right by the
(modified) implicit midpoint (IM) method.

problem as would occur using the implicit midpoint method. This obviously leads to a significant saving on computational cost since
the numerical solution of a nonlinear problem needs solve at least one linear system. Furthermore, as already highlighted in the
previous section, this modification does not alter the system’s charge conservation.

For the initial value 𝐲(0) ∈ R24 with
𝐱(0)1 = (0, 1, 1, 1)𝑇 ,
𝐱(0)𝑗 = (1, 1, 1, 1)𝑇 , 𝑗 = 2, 3,
𝐩(0)𝓁 = (0, 0, 0, 0)𝑇 , 𝓁 = 1, 2, 3,

we calculate the numerical solution on a uniform grid with step size ℎ = 1∕50. In this case, the charge associated to the rotation 
which commutes with W is 𝑄𝛬 = 0.

One of the rotation matrices that we considered in our tests is the matrix

2,1 =

⎛

⎜

⎜

⎜

⎜

⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

The charge here called 𝑄1 is associated with this matrix. In a similar way we can define the other rotations we used. In Table 1
we name the charge associated with each of these rotations.

Since W1 commutes with all considered rotations, we expect according to the theoretical results of the previous section that the
corresponding charges are preserved by the implicit midpoint method at each grid point; however, we generally do not expect this
in the forward Euler method. This fact is confirmed by the images on the right and left in Fig. 1, where we plot the charges from
𝑄 to 𝑄 against time 𝑡 = 𝑘ℎ, 𝑘 = 0, 1,… , 50 on both sides.
1 6 𝑘

10 
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Fig. 2. Charge of the system (30) with 𝜖 = 0.1 and W2 from 𝑄1 up to 𝑄6 on the left computed by the forward Euler (FE) method and on the right by the
(modified) implicit midpoint (IM) method.

On the other hand, since W2 commutes only with 2,1 and 4,3, we expect the charges 𝑄1 and 𝑄6 to be preserved by the implicit
midpoint method. This result is confirmed by the first and last images on the right-hand side in Fig. 2. As can be seen on the left
ide of the same figure, this does not happen when using the forward Euler method.

In both figures, we have given the results for 𝜖 = 0.1. However, it should be emphasized that similar results can be obtained for
ther values of this parameter.

7. Conclusions

We systematically analyzed the mathematical framework of some GNNs based on differential equations. In particular, we studied
the example of the diffusion equation on a graph. We translated the study of the equation into a functional language that exploits all
the relevant symmetries of the model, and we provided the best-suited numerical scheme for the system of equations. The present
work aimed to provide a unifying framework for GNNs that could have several potential applications. Primarily, this could be
implemented in the context of the graph neural diffusion and any physical system governed by diffusion equations. We expected
that this framework, being qualitatively closer to the continuous model, could lead to a significant improvement of the entire
procedure. Complementary to more efficiency and implementability, we believe that this framework could bring a small step forward
in understanding how GNNs capture the essential features from the data by learning the constants of motions, namely the conserved
uantities of dynamic evolution, as the human brain does. Based on the idea that led us to develop the present approach, we plan

to study numerical methods that preserve the conservation laws of other dynamical systems, such as the Schrödinger equation.
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Appendix. A model on a smooth surface

In this appendix, we provide a continuum version of the model considered in the text. Instead of the graph, we consider a
R𝑛 × [𝑡0, 𝑇 ] worldvolume and the fields 𝜙(𝑥, 𝑡) where 𝑥, 𝑡 are the coordinates (we replaced the nodes 𝑖 ∈  with local coordinates 𝑥).
The features vectors 𝐱𝑖(𝑡) on the nodes are replaced by continuum fields 𝜙(𝑥, 𝑡) which are vectors in the feature space R𝑑 as well.

The action is

𝐼𝜖[𝜙, 𝑉 ] = ∫

𝑇

𝑡0
𝑑 𝑡𝑒− 𝑡

𝜖

(

∫ 𝑑𝑛𝑥1
2
𝜕𝜙𝑇

𝜕 𝑡
𝜕𝜙
𝜕 𝑡 + 1

2𝜖 ∫ 𝑑𝑛𝑥𝑑𝑛𝑦∇𝑥
𝜇𝜙

𝑇𝐾[𝑥, 𝑦]∇𝑦,𝜇𝜙 + 𝑉 [𝜙]

)

where 𝐾[𝑥, 𝑦] is a non-trivial kernel and ∇𝑥
𝜇𝜙,∇

𝑦
𝜇𝜙 are the derivatives with respect to the coordinates 𝑥, 𝑦. The second term is written

in terms of a second integration over 𝑦’s. This is due to the non-linear non-local nature of the model as 𝐺𝑖𝑗 in (10). We added to
the Lagrangian a potential 𝑉 [𝜙] in order to describe further interactions.

Compared with the graph theory, the kernel is
𝐾[𝑥, 𝑦] = 𝐾[𝜙(𝑥, 𝑡), 𝜙(𝑦, 𝑡)]

namely a function of the field 𝜙(𝑥, 𝑡). Introducing the function

𝐶(𝑥, 𝑦) = 𝜙𝑇 (𝑥, 𝑡)W𝜙(𝑦, 𝑡) ,
we can construct the bilocal expression 𝐾[𝜙(𝑥, 𝑡), 𝜙(𝑦, 𝑡)] as a function of 𝐶(𝑥, 𝑦). For example, a possible non-linear non-local
xpression used in GNNs is

𝐾[𝜙(𝑥, 𝑡), 𝜙(𝑦, 𝑡)] = 𝑒𝐶(𝑥,𝑦)

∫ 𝑑𝑛𝑦𝑒𝐶(𝑥,𝑦)
,

with some additional conditions to make the expression well-defined.
Computing the functional derivative with respect to 𝜙(𝑧, 𝑡) we get the equation of motion

−
𝜕2𝜙𝐼 (𝑧, 𝑡)

𝜕 𝑡2 + 1
𝜖

[

𝜕 𝜙𝐼 (𝑧, 𝑡)
𝜕 𝑡 − ∇𝐼

𝜙𝑉 + ∫ 𝑑𝑛𝑦
(

∇𝑥
𝜇𝐾[𝑥, 𝑧]||

|𝑥=𝑦

+ ∇𝑥
𝜇𝐾[𝑧, 𝑥]||

|𝑥=𝑦

)

∇𝑦,𝜇𝜙𝐼 + ∫ 𝑑𝑛𝑥𝑑𝑛𝑦∇𝑥
𝜇𝜙

𝑇 𝜕 𝐾[𝑥, 𝑦]
𝜕 𝜙𝐼 (𝑧, 𝑡)∇

𝑦,𝜇𝜙
]

= 0 . (42)

In the limit 𝜖 → 0, we retrieve the Gradient Flow equation
𝜕 𝜙𝐼

𝜕 𝑡 − ∇𝐼
𝜙𝑉 + ∫ 𝑑𝑛𝑦

(

∇𝑥
𝜇𝐾[𝑥, 𝑧]||

|𝑥=𝑦
+ ∇𝑥

𝜇𝐾[𝑧, 𝑥]||
|𝑥=𝑦

)

∇𝑦,𝜇𝜙𝐼

+ ∫ 𝑑𝑛𝑥𝑑𝑛𝑦∇𝑥
𝜇𝜙

𝑇 𝜕 𝐾[𝑥, 𝑦]
𝜕 𝜙𝐼 (𝑧, 𝑡) ∇

𝑦,𝜇𝜙 = 0. (43)

If 𝐾[𝑥, 𝑦] = 𝛿(𝑥 − 𝑦), (43) reduces to heat equation.
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