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Abstract: Clinical knowledge about SARS-CoV-2 infection mechanisms and COVID-19 pathophys-
iology have enormously increased during the pandemic. Nevertheless, because of the great het-
erogeneity of disease manifestations, a precise patient stratification at admission is still difficult,
thus rendering a rational allocation of limited medical resources as well as a tailored therapeutic
approach challenging. To date, many hematologic biomarkers have been validated to support the
early triage of SARS-CoV-2-positive patients and to monitor their disease progression. Among
them, some indices have proven to be not only predictive parameters, but also direct or indirect
pharmacological targets, thus allowing for a more tailored approach to single-patient symptoms,
especially in those with severe progressive disease. While many blood test-derived parameters
quickly entered routine clinical practice, other circulating biomarkers have been proposed by several
researchers who have investigated their reliability in specific patient cohorts. Despite their usefulness
in specific contexts as well as their potential interest as therapeutic targets, such experimental markers
have not been implemented in routine clinical practice, mainly due to their higher costs and low
availability in general hospital settings. This narrative review will present an overview of the most
commonly adopted biomarkers in clinical practice and of the most promising ones emerging from
specific population studies. Considering that each of the validated markers reflects a specific aspect
of COVID-19 evolution, embedding new highly informative markers into routine clinical testing
could help not only in early patient stratification, but also in guiding a timely and tailored method of
therapeutic intervention.

Keywords: COVID-19; biomarkers; red cell distribution width (RDW); D-dimer; ferritin; neutrophil-
to-lymphocyte ratio (NLR); C-reactive protein (CRP); interleukin 6 (IL6); IFN-inducible protein 10
(IP10); growth arrest-specific gene 6 (Gas6); SARS-CoV-2 viremia; osteopontin (OPN); calcitonin
gene-related peptide (CGRP)

1. Background

In December 2019, Chinese researchers first described a cluster of pneumonia cases of
unknown origin that rapidly became a global health threat. Since the first clinical reports
of a new form of interstitial pneumonia, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has been rapidly identified as the etiological agent responsible for the result-
ing new coronavirus disease (COVID-19). From a biological point of view, SARS-CoV-2 is a
positive-sense, single-stranded RNA virus belonging to the beta coronavirus genus, which
shows a very high genetic similarity to other pandemic coronaviruses, namely, SARS-CoV-1
and MERS-CoV (Middle East respiratory syndrome coronavirus), responsible for the SARS
and MERS outbreaks in 2002 and 2012, respectively [1–3]. The viral genome encodes for
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4 structural proteins responsible for virus infectivity and replication, and 16 non-structural
proteins accounting for virus-specific functions. Among the 4 structural proteins, a pivotal
role is played by the spike (S) protein, which is involved in the binding to the host cell
receptors (i.e., angiotensin converting enzyme 2, ACE2) and coreceptors (i.e., heparan
sulphate proteoglycans). Furthermore, it is worth noticing that mutations associated with
the spike protein are of great interest, as they are able to influence viral transmission and
vaccine efficacy [4–6].

The main route of infection is represented by respiratory droplets, and SARS-CoV-2
shows a high tropism to the airway epithelium based on ACE2 expression, thus accounting
for the widely observed respiratory manifestations of the disease. Moreover, ACE2 expres-
sion is not limited to the respiratory system: this host receptor has also been identified
in different human tissues, such as the gut, kidneys, heart, blood vessels, and nervous
system, where it is believed to contribute to the known extrapulmonary manifestations of
COVID-19 [1,4,7–9].

To date, it is known that most COVID-19 patients develop a mild or moderate disease,
while others progress to a more severe illness, finally resulting in death [10–13]. Further-
more, it has been observed that the patients developing the most severe and critical form of
the disease usually experience a highly dysregulated inflammatory response, the so-called
cytokine storm, which is recognized as one of the main drivers of the COVID-19-related
acute respiratory distress syndrome (ARDS) and multiorgan failure [14–16].

Since the beginning of the COVID-19 emergency, many studies have identified ad-
vanced age and pre-existing comorbidities as important predictors of mortality in these
patients [12,17–20]. To support the early and correct triage of patients, clinicians soon began
to look for early diagnostic tools able to provide a precise stratification of SARS-CoV-2-
positive patients upon their hospital admission. As patients with different disease severity
levels require different clinical management, reliable stratification biomarkers, defined
as measurable, accurate, and reproducible indicators of a biological process [21], should
ensure a rational allocation of medical resources, such as isolation and home treatment for
asymptomatic and mild patients and hospitalization for moderate-to-severe patients, with
a timely transfer to an intensive care unit (ICU) for the most critical ones. To fulfill this
clinical need, since the beginning of the pandemic, many biomarkers have been proposed
for COVID-19 patients’ stratification. Moreover, due to the hyperinflammatory environ-
ment associated with the most severe disease manifestations, several of these molecules not
only represent markers of ongoing infection, but could also be supportive tools in assisting
pharmacological decisions as well as promising therapeutic targets in severely ill patients.

This narrative review will present an overview of some of the available biomarkers
for COVID-19, focusing both on those already used in clinical practice and on those that
have been proposed for the stratification of patients in specific cohort studies, but that have
not been yet implemented into the clinical routine. A literature search was conducted by
screening PubMed, Google Scholar, and Scops repositories up to February 2023.

2. Currently Validated Biomarkers in Clinical Practice

Since the beginning of the pandemic, it has been evident that demographical factors
alone, such as age and comorbidities, were not sufficient to drive clinical decisions. Due
to the worldwide shortage of medical resources and to the overwhelming pressure on
national and international health systems, the need for more precise prognostic predictors
has become compelling. The first biomarkers to be introduced into clinical practice for
COVID-19 patient stratification were certain hematological parameters, which are easily
available in every hospital. The first hematological biomarkers (i.e., white blood cells count,
thrombocytopenia, etc.) have been rapidly supported by the validation of some derived
ratios (i.e., neutrophil-to-lymphocyte ratio—NLR, platelet-to-lymphocyte ratio—PLR, etc.),
allowing for a more precise stratification. As the SARS-CoV-2 infection spread around the
world, the scientific knowledge of its pathophysiology grew accordingly, allowing for the
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validation of new biomarkers that quickly entered in the routine blood tests (i.e., interleukin
6—IL6, etc.) [12,17].

The following subsections will introduce the most popular biomarkers in clinical
practice which have been validated for reliable patient stratification according to expected
disease evolution (Figure 1). Some of them, such as C-reactive protein (CRP) and interleukin
6 (IL6), show a direct correlation with the SARS-CoV-2-induced cytokine storm, while the
others (red cell distribution width—RDW, D-dimer, ferritin, and neutrophil-to-lymphocyte
ratio—NLR) are markers of inflammation, showing high sensitivity but low specificity, as
they are known to be elevated in many different pathological conditions.
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2.1. Red Cell Distribution Width (RDW)

RDW is a low-cost standard component of routine complete blood counts which
is automatically generated by many hematological analyzers. It represents the measure
of anisocytosis, which represents the heterogeneity of red blood cell size both between
different cells and within the same cell during its lifespan [22–25].

Due to its easy availability, this simple hematologic indicator has been investigated
as a predictive biomarker in many pathological conditions, such as autoimmune diseases,
gastrointestinal disorders, and cancer [26–32]. Moreover, many existing reports describe RDW
as a consistent predictor of all-cause mortality across different study cohorts [22,23,25,33,34].

For these reasons, it is not surprising that the prognostic ability of RDW has also been
strongly investigated in the context of the COVID-19 pandemic.

Many research groups have highlighted a strong correlation between elevated RDW
and COVID-19 severity, as well as mortality [22–25,35–37]. Furthermore, RDW has been
shown to retain its ability to independently predict a negative outcome even after ad-
justment for the most prevalent confounders, such as age, gender, and other common
laboratory parameters and comorbidities [25,33,35,36]. Interestingly, it has been also ob-
served that this hematological parameter displays a complex relationship with underlying
COVID-19 pathophysiology: the well known disease-associated hypoxemia, inflammation,
and bone marrow overstimulation are all conditions able to induce an increase in RDW, thus
supporting its routine evaluation both at admission and for the duration of hospitalization,
as well as its adoption as a guiding criterion for early patient stratification. This is due
to the fact that those patients with higher RDW at admission or experiencing an RDW
increase during their hospital stay are more likely to experience a negative disease evolution
resulting in advanced respiratory support, and even ICU admission or death [22,23,36,37].

2.2. D-Dimer

D-dimer generally refers to a mixture of peptide fragments with a broad range of
molecular weights, deriving from cross-linked fibrin degradation by plasmin. Its plasma
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half-life is around 8 h, after which it undergoes renal clearance. Due to its proteolytic nature,
in physiological conditions, D-dimer is detectable in healthy individuals only in small
amounts, slightly increasing with age and pregnancy. On the other hand, when coagulation
and fibrinolytic processes are activated following a pathologic insult, its plasma levels in-
crease significantly, accounting for its wide use as an indirect marker of thrombosis [38–41].

For nearly 30 years, this hematologic parameter has been used as a clinical biomarker
for patient stratification in several contexts; in fact, it is considered the gold standard for
venous thromboembolism prediction in low-to-medium-risk patients, and it is used to
guide anticoagulant therapy, to exclude acute aortic dissection, to diagnose and monitor
disseminated intravascular coagulation of different origins, and to predict thrombotic
complications in septic patients and in those with severe infections [39–43]. Nevertheless,
as D-dimer elevation is a common occurrence in different clinical settings, it is noteworthy
that it should be considered as a sensitive thrombotic marker with a low specificity whose
prediction strength increases when it is used in combination with other biomarkers or
diagnostic approaches [41].

As one of the specific features of COVID-19 is represented by the associated vascular
disease and thrombosis [38,44,45], it is not surprising that D-dimer, along with fibrinogen,
has been investigated as a promising biomarker in this context.

During the early phases of the pandemic, fibrinogen was investigated as a potential
early biomarker able to identify patients at higher risk of developing severe COVID-19. Pre-
vious studies have shown that elevated levels of fibrinogen at admission correlate with dis-
ease severity, but, in consideration of its dynamic variations during disease evolution (i.e.,
elevated during the acute phase response vs. reduced upon disseminated coagulopathy),
and of its low specificity, no consensus on its clinical use has been reached [46,47]. For these
reasons, and considering that D-dimer is the end product of fibrinogen proteolytic degra-
dation, nowadays it is the most widely used biomarker in COVID-19 clinical evaluation.

Autoptic studies on COVID-19 deaths have shown a great prevalence of lung mi-
crovascular thrombosis: in light of the observed disease-induced coagulopathy, many
studies have described elevated D-dimer levels at admission as an independent predictor
of negative disease evolution and in-hospital COVID-19 mortality [38,44,45,48–50]. On the
other hand, recent studies have highlighted that D-dimer levels below the standard or age-
adjusted threshold in SARS-CoV-2 patients referred to the emergency department could be
considered as a predictor of a low risk for pulmonary embolism complications [51,52].

Even if the involvement of D-dimers in COVID-19 pathophysiology is not fully under-
stood, it has been hypothesized that its increase is a direct consequence of microthrombosis
in lung and kidney capillaries, as it should be considered that thromboinflammation is one
of the host defense mechanisms commonly activated in response to viral, bacterial, and
fungal pathogens [38,45,48,49].

Moreover, it should be considered that a high inflammatory milieu is generally as-
sociated with marked alterations in blood coagulation tests: severely ill patients, who
frequently evolve towards a negative outcome, often experience de-regulated inflammatory
responses and hypercytokinemia, thus further supporting the observed rise in D-dimer
levels as COVID-19 severity increases [44,45,50,53,54]. Last but not least, it should also be
considered that fibrin degradation products are able to induce acute pulmonary dysfunction
and display a direct procoagulant effect [38,55].

Considering its wide availability through routine hematologic screening, D-dimer
evaluation at admission and during the hospital stay could represent a useful tool to
monitor disease evolution, allowing for an early identification of patients at greater risk
of developing thromboembolic events and a more accurate scheduling of anticoagulant
prophylaxis, as it has been demonstrated that the timely administration of anticoagulant
drugs in COVID-19 patients with elevated D-dimer levels is directly associated with
improved survival [56–59].
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2.3. Ferritin

Ferritin is a multisubunit protein characterized by a central nanocage structure, al-
lowing for the storage of iron atoms that can be found in cells and tissues, as well as in
serum. Its primary biological function is related to iron storage, but nowadays it is clear
that this protein accounts for many other important functions, such as the regulation of
iron homeostasis (i.e., it releases iron in case of depletion and binds it in case of excess),
protection from invading pathogens (i.e., it reduces iron availability to support bacterial
and viral replication) and oxidative stress damage (i.e., it prevents the noxious effects of
Haber–Weiss and Fenton reactions) [60–65].

Serum ferritin mainly depends on cellular release, and its biological function is essen-
tially related to iron storage, which is why its quantification represents a commonly used
approach to support the diagnostic processes of conditions characterized by iron deficiency
(i.e., iron-deficiency anemia) or overload (i.e., hereditary hemochromatosis, transfusional
iron overload) [60,62,64,65]. Moreover, serum ferritin is recognized as an inflammatory
biomarker, and hyperferritinemia is often used to identify high-risk influenza-A-positive
patients [64]; subjects with autoimmune conditions, such as adult-onset Still’s disease
and systemic lupus erythematosus [60,62,64,65]; and individuals suffering from acute or
chronic inflammation, where the increase in serum ferritin results in the so-called anemia of
inflammation, a defense mechanism by which the body reduces iron availability to support
invading pathogen metabolism [53,60,66].

As the most severe COVID-19 manifestations are frequently associated with a de-
regulated inflammatory response, it is not surprising that many research groups have
investigated the possible use of ferritin as a reliable biomarker to support the identification
of the most high-risk patients.

In the literature, many reports have highlighted a positive relationship between hy-
perferritinemia and COVID-19 mortality [63,66–69]. Furthermore, in SARS-CoV-2 patients,
elevated serum ferritin has been demonstrated to be able to predict not only in-hospital
mortality, but also disease severity and the deterioration of clinical conditions, leading to
ICU admission [53,60–63,66–70].

Despite the clear relationship between hyperferritinemia and COVID-19 disease evo-
lution, the underlying mechanism is still difficult to interpret, with ferritin acting both as
a marker and an actor of the inflammatory process. To date, it has been proposed that a
vicious loop between ferritin and inflammation exists, with pro-inflammatory cytokines
such as IL-6 promoting ferritin release from hepatocytes, Kuppffer cells, and macrophages,
while, on the other hand, ferritin itself promotes the expression of different inflammatory
mediators [66,67,70].

Considering that ferritin evaluation is now currently included in routine hematologic
screening in the emergency department and in the ICU, its use could represent an additional
tool for clinicians to stratify SARS-CoV-2-positive patients early, allowing for a more rational
resource allocation.

2.4. Neutrophil-to-Lymphocyte Ratio (NLR)

NLR is a systemic inflammatory-derived marker representing the ratio of absolute
neutrophil count to absolute lymphocyte count. It is known to reflect inflammation pro-
gression, which is characterized by an increase in neutrophil count paralleling a decrease
in lymphocyte count [71–73]. Due to its nature, NLR is a dynamic parameter, possibly
reflecting the balance between innate and adaptive immune response, thus allowing for
the simultaneous evaluation of both inflammation and pathogen-dependent stress [71,74].

As it is a simple and cost-effective marker, it is routinely evaluated in both emergency
settings and medical wards to quickly evaluate the clinical status of the patient, thus
contributing to risk stratification, especially in case of inflammation-driven or infectious
diseases [71,75]. Thanks to its wide availability, NLR is commonly used as a prognostic in-
dicator for many different clinical conditions, such as sepsis, multiorgan failure, pregnancy
complications, cardiovascular, liver, and respiratory diseases, and cancer, where a rise in
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its value is consistent with an increase in severity, leading to a worse prognosis and even
death [72,73,75–77].

Furthermore, it has been observed that NLR in critically ill patients correlates well
with other clinical indices, such as the APACHE (Acute Physiology And Chronic Health
Evaluation) II and SOFA (Sequential Organ Failure Assessment) scores [77]; for this reason,
it is not surprising that NLR has quickly gained attention as a rapid and cost-effective
marker for early patient stratification in the context of the SARS-CoV-2 pandemic.

Several studies have already highlighted that severely ill COVID-19 patients usually
display a sustained increase in NLR at admission as a direct consequence of the hyperin-
flammatory and immunosuppressive state caused by the viral infection [36,71,73,78–80].
Even though there is no consensus about the NLR cut-off to be used in COVID-19 patients’
triage, as its value is known to be influenced by age, ethnicity, and comorbidities [72,74,77],
it is noteworthy that it represents an objective parameter for the purpose of identifying
those patients needing a close clinical monitoring early and for monitoring their clinical
evolution, especially in those situations where the available clinical resources are scarce.

2.5. C-Reactive Protein (CRP)

CRP is a liver-produced pattern recognition protein which plays a key role in immunity,
being synthesized mainly in response to pro-inflammatory stimuli such as interleukin (IL)-1,
IL6, and tumor necrosis factor.

From a physiological point of view, its role is dual, exerting both pro- and anti-
inflammatory actions. In healthy people, CRP circulating levels are nearly undetectable:
in case of inflammation, its levels quickly rise, rapidly peaking within 48 h, and, thus,
rapidly decrease after inflammation resolution. Such dynamic changes in CRP circulating
levels reflect its pathogen-induced liver synthesis, qualifying it as an acute phase reactant
whose primary role relies on early complement system activation. It assures host defense
while limiting the potentially harmful effects due to the massive activation of the late-stage
complement response [20,81–85].

Its dynamicity makes CRP a widely used marker in clinics, where it helps to detect
acute infections as well as to monitor disease evolution, post-surgical progresses, and
treatment responses. Furthermore, there is also evidence that CRP evaluation could be used
to evaluate chronic inflammation in vasculitis and rheumatoid arthritis, and that CRP levels
slightly higher than normal represent a useful marker for cardiovascular diseases-related
inflammation, thus making this protein a very versatile tool in clinical practice, even if
its low specificity does not support conclusive diagnoses in the absence of other clinical
evidence [81–83,85,86].

Thanks to its wide availability in routine blood tests performed both in emergency
and intensive care settings, as well as medical wards, and to its proven usefulness as a
non-specific systemic marker of inflammatory response, CRP has also been investigated in
the context of the SARS-CoV-2 pandemic.

Severe COVID-19 patients usually present with a hyperinflammatory status, and several
studies have proposed CRP as a marker of cytokine storm in these patients [20,87]. Further-
more, as it is an acute phase reactant, it has been observed that in SARS-CoV-2 patients, an
increase in its circulating levels can be detected in the very early phases of the disease [87–90],
even before lung lesions become detectable by computer tomography [20,91,92]. Thus, it
represents a very helpful tool to identify those patients needing immediate attention and
closer clinical monitoring.

Moreover, CRP levels are not only an early stratification marker, but also a valuable
tool to predict disease evolution, as higher CRP levels have been detected in COVID-19
progressive patients when compared to stable ones [20,91].

Finally, it is noteworthy that CRP levels should be carefully monitored during the entire
hospital stay, as it has been observed that its evaluation after 7 days of hospitalization could
represent a reliable marker of the treatment response in moderate and severe COVID-19
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patients [14,93], highlighting a possible lack of corticosteroid response or, eventually, the
development of secondary infections [90,94,95].

Considering the proven usefulness of this non-specific inflammation marker in sup-
porting the early triage of SARS-CoV-2-infected patients, it is worth consideration that
its predictive power toward negative COVID-19 evolution is increased when it is com-
bined with other inflammatory markers, such as D-dimer [96], thus supporting its use and
implementation in both emergency and general hospital settings.

2.6. Interleukin 6 (IL6)

IL6 is a proinflammatory cytokine involved in both innate and immune responses
to infection and tissue injuries. Although its main biological function is defensive, an
excessive production of such a cytokine leads to the development of different chronic
inflammatory diseases, such as rheumatoid arthritis and Castleman’s disease, as well as to
the onset of acute hyperinflammation conditions [97–100].

In physiological conditions, circulating IL6 levels are very low, but they undergo a
sustained increase in acute conditions, when the cytokine is released by different immune
cells and become a classical hallmark of a cytokine storm. Such a rapid increase in IL6
circulating levels has been shown to stimulate the liver to produce and release acute phase
proteins, and especially CRP [97,98,100]. The role of IL6 in host defense from pathogen
invasion is not limited to the stimulation of acute phase reactant release, but also relies on
its ability to activate the coagulation cascade and to orchestrate immune responses.

When acting as immune regulator, IL6 is able to work on both the innate and acquired
arms of the system: on one side, it can de-regulate natural killer and CD8+ T cell responses,
thus reducing antiviral defenses; on the other side, it can interfere with acquired immune
responses by promoting B cell differentiation toward antibody-producing plasma cells and
by regulating CD4 T cell differentiation toward Th2 and Th17 lymphocytes [98,100–103].

Considering the complex role of IL6 in immune defenses, and its critical role in
hyperinflammation, it is not surprising that this cytokine is also an interesting biomarker
and therapeutic target in SARS-CoV-2 infection, a clinical condition that, in its severe form,
is generally characterized by a high viral load, hyperinflammation, and poor prognosis.

Several studies have already highlighted the direct correlation between IL6 levels
and COVID-19 severity [14,97,104–106]. As IL6 is one of the key regulators of acute phase
reactant production, its clinical evaluation has been proven to be useful not only at admis-
sion as a predictor of negative outcomes, but also during the entirety of hospitalization,
to guide therapeutic interventions. In a recent study, Salton and coworkers demonstrated
that IL6 evaluation after 7 days of hospitalization is an independent index of therapeutic
response in severely ill patients, as, at that time, it reflects the success of glucocorticoid
treatment [14].

According to the role of IL6 in the complex COVID-19 pathogenesis, involving not
only a deregulated inflammatory and immune response, but also a prothrombotic milieu,
this cytokine has also been investigated as a promising therapeutic target.

Since the beginning of the pandemic, different observational studies and clinical
trials have investigated the effectiveness of IL6 signaling inhibitors in preventing ARDS
and mortality in SARS-CoV-2-positive patients. In this context, the most studied drug
is tocilizumab, a recombinant humanized monoclonal antibody directed to IL6 receptor
alpha [101,107,108]. Recent meta-analyses, including the most recently published results of
randomized clinical trials performed using a random-effects model to pool the results of the
clinically heterogeneous trials, found that tocilizumab administered along with the standard
of care therapy was able to reduce both 28-day mortality index and the need of mechanical
ventilation and ICU admission, as well as to shorten the time to discharge [97,102,109,110].

3. Proposed Biomarkers Not Yet Implemented in Clinical Practice

In addition to the “classical” biomarkers described in the previous section, which are
widely used in clinical practice due to their high availability in the context of routine sero-
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logical examinations, both in emergency departments and medical wards, there are several
other biomarkers that have shown good prediction power in specific study populations
(Figure 2).
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Even if such results originate from heterogeneous clinical cohorts, including patients
at different clinical COVID-19 stages and receiving different therapeutic regimens, they are
worthy of further investigation to validate them for clinical practice. Once validated, these
new biomarkers could be combined with those already being used to define a powerful
algorithm that is able to assure the reliable early stratification of SARS-CoV-2-positive
patients according to their expected disease evolution, in order to guide clinical decisions
toward a more “tailored” approach based on the individual patients’ characteristics.

The following subsections will introduce the most promising biomarkers that have
not yet been implemented in clinical practice and which show a good prognostic ability
to stratify patients according to their expected disease evolution. Among them, IFN-
inducible protein 10 (IP10) is the only one directly related to cytokine storm, while the
other protein markers (growth arrest specific protein 6—Gas6, osteopontin—OPN, and
calcitonin gene related peptide—CGRP) are aspecific parameters indicating an underlying
inflammatory condition.

3.1. IFN-Inducible Protein 10 (IP10)

IP10, also known as CXCL10 (C-X-C motif ligand 10), is an interferon (IFN) γ-inducible
chemokine that is secreted by several cellular populations of both immune (i.e., T lym-
phocytes, neutrophils, monocytes) and non-immune (i.e., endothelial cells, fibroblasts,
keratinocytes) origin [111–113]. As it is secreted in response to cytokine stimulation, high
IP10 circulating levels are a well-recognized marker of immune activation, particularly of a
Th1-driven immune response to viruses, bacteria, fungi, and other parasites [111–114].

From a biological point of view, this chemokine exerts several functions; the most
important ones for immune defense comprise the regulation of leukocyte homing to in-
flamed tissues and the perpetuation of the inflammatory response, finally resulting in
tissue damage and/or cellular apoptosis [111,114]. Interestingly, IP10 has been shown to
play a role in several viral infections, showing a pro- (as for human immunodeficiency
virus—HIV) or anti- (as for SARS-CoV and Epstein–Barr viruses) infective role depending
on the host immune status [111,114]. Furthermore, it has already been investigated in
the context of the previous SARS outbreak, during which it was described as a protective
immune mediator as its production upon IFN-γ triggering was responsible for the early
development of protective T cell responses and virus clearance [111,114,115]. Finally, it is
noteworthy that IP10 is a crucial pro-inflammatory mediator in respiratory syndromes,
where its expression directly correlates with an adverse prognosis. As a matter of fact,
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the sustained increase in IP10 production during severe infections was found to induce
lymphopenia and T cell response impairment, as well as to exacerbate inflammation, finally
resulting in tissue damage and organ dysfunction [111,116,117].

Due to the good predictive performance of IP10 in identifying SARS-CoV-positive
patients who would undergo a worsening of their clinical conditions [111,116,117], it is
not surprising that this chemokine has also been closely investigated in the context of
COVID-19, a disease sharing many important pathophysiological features with SARS.

Today, it is well-recognized that high levels of IP10 during the early phases of
COVID-19 are an independent predictor of an adverse clinical outcome, as highlighted by
several research groups across the world [93,111,118–121].

Baseline IP10 performs excellently in predicting disease evolution in SARS-CoV-2
positive patients, thus fostering its implementation in clinical practice, where it could be
used in combination with more classical biomarkers to improve resource allocation, making
it more rational and cost-effective.

3.2. Growth Arrest-Specific Gene 6 (Gas6)

Gas6 is a vitamin K-dependent glycoprotein known to be involved in many home-
ostatic functions, as well as in regulating inflammatory responses. In physiological con-
ditions, plasma Gas6 levels are usually low, while they increase in the case of inflamma-
tion [122–130].

Gas6 biological activities depend on its binding to one of the three members of a family
of tyrosine kinase receptors, collectively named TAM (for Tyro-3, Axl, MerTK), which in
turn activates different intracellular signaling pathways (i.e., the p38/MAPK, the ERK1/2,
the JAK/STAT, and the PI3K/Akt pathways) [131–138].

Due to its widely recognized role in immunomodulation, the Gas6/TAM axis has
also been investigated in the context of COVID-19, especially considering that one of
the distinctive hallmarks of the severe disease is represented by an hyperinflammatory
response, accountable for both disease severity and long-term sequelae [3,14,131,139–142].

Since the beginning of the pandemic, many research groups have highlighted a direct
correlation between Gas6 plasma levels and COVID-19 severity [143–146]. Notably, it has
been observed that the basal level of Gas6 is that which allows for the best stratification of
patients (i.e., those with high Gas6 at admission were most likely to develop the most severe
disease) [143–146]; this observation thus supports the assumption that Gas6 behaves as an
acute-phase reactant [128,147] involved in the development of the hyperinflammatory and
prothrombotic environment which is usually observed in the most critical patients [148,149].

Such experimental evidence supports the reliability of basal Gas6 levels in the early
stratification of COVID-19 patients according to their expected negative evolution; on the
other hand, studies regarding the predictive ability of the Gas6/TAM axis toward long-
term sequelae are still warranted [131], and could represent an interesting starting point to
implement currently available disease evolution prediction models. Finally, it should be
noted that according to recent in vitro and in vivo evidence highlighting the possible role
of Axl in SARS-CoV-2 infection, different studies are ongoing with the aim to repurpose
Axl inhibitors as potential anti-COVID-19 drugs [131,150,151], thus supporting the interest
in the implementation of Gas6/TAM screening in clinical practice.

3.3. SARS-CoV-2 Viremia

The term viremia is used to describe a viral genome that is directly detected in the
bloodstream, thus being able to access all body tissues. The assessment of blood viral load
has been a useful approach to evaluate the degree of infection, as well as the effectiveness
of antiviral treatment, in several viral infections [152–156].

Considering the fact that, even if COVID-19 is mainly a pulmonary disease, many
extrapulmonary manifestations have been described, both as atypical onset symptoms and
as a result of SARS-CoV-2-dependent tissue damage [157–159], it is not surprising that
viremia detection has also gained interest in this context.
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From a pathophysiological point of view, it could be speculated that the SARS-CoV-2
genomic material that is detected in blood derives from both damage to primary infected
tissues (lung or other extrapulmonary tissues, such as the gastrointestinal tract, kidney,
heart, and vascular district) and subsequent spread of the virus from these highly in-
fected districts to the systemic circulation, or from active viral replication into the vascular
district [160,161].

To date, many studies have highlighted an inverse correlation between viremia and
humoral immune responses [162,163], as well as a direct association between the presence
of SARS-CoV-2 genetic material in blood and COVID-19 severity, with severely ill patients
showing a detectable blood viral load associated with both inflammatory markers and
clinical indicators of a negative disease trajectory [157,164–167]. Furthermore, it is known
that COVID-19 can manifest with a wide range of symptoms of different severities, so it is
possible for some patients to develop an hyperinflammatory response even in the absence
of a detectable viremia [167].

According to the available literature, it is well accepted that patients experiencing
the most severe disease manifestations, with worse prognoses, longer times to recovery,
and higher risks of death or ICU admission, have detectable blood SARS-CoV-2 viral
loads [157,161,164,168–170]. It is noteworthy that, in severe patients, viremia is generally
associated with a significant rise in other biomarkers with prognostic significance, such as
IL6, CRP, or troponin [54,157,167,169,170], thus supporting the notion that systemic viral
spread is not the only driver of the observed adverse outcomes, especially considering the
different observed time courses in these events [157,167].

In light of the complex nature of COVID-19, viremia evaluation represents a promising
biomarker to be implemented in clinical practice, as its integration with other easily achiev-
able hematologic biomarkers and clinical indicators could offer a more precise overview of
patients’ disease evolution.

3.4. Osteopontin (OPN)

OPN is a small integrin-binding ligand N-link glycoprotein existing both as extracellu-
lar matrix protein and as secreted cytokine. It is known to display multiple biological activi-
ties, being involved in many physiological processes, such as bone remodeling and immune
modulation, as well as pathological conditions, such as cancer, diabetes, nephrolithiasis,
and lung and cardiovascular diseases [171–175].

In physiological conditions, circulating OPN levels are low, while they undergo a
sustained increase during inflammation or cell-mediated immune response activation. In
this context, OPN modulates leukocyte differentiation, migration, and activation, leading to
cytokine production and release [171–173,176–178]. Ongoing bacterial and viral infections
trigger OPN release and the subsequent Th1 responses, finally resulting in a vicious
cycle which perpetuates inflammation. For these reasons, it has already been used as
a non-specific marker to monitor the progression of various diseases and to predict a
negative outcome in specific conditions, such as sepsis and aneurysmal subarachnoid
hemorrhage [171,178–182].

Considering OPN’s implications in both inflammatory and immune-mediated re-
sponses, it is not surprising that this cytokine has been evaluated as predictive biomarker
for COVID-19 severity monitoring.

To date, it is well established that SARS-CoV-2-induced pneumonia depends on the
impairment of monocytes’ metabolism and functions [183,184], and, according to such
evidence, several studies have highlighted a direct relationship between increased OPN lev-
els and the severe clinical evolution of SARS-CoV-2-infected patients [171,174,176,179,185].
Moreover, OPN is also correlated with lung fibrotic evolution [186–188]; Karabulut Uzunçak-
mak and coworkers demonstrated that OPN levels are directly associated not only with
COVID-19 severity, but also with the development of pulmonary fibrosis, a condition usu-
ally observed in the most critical patients [179]. This evidence supports the implementation
of OPN evaluation during triage procedures in SARS-CoV-2-positive patients.
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3.5. Calcitonin Gene-Related Peptide (CGRP)

CGRP is a neuropeptide, existing in two distinct isoforms, whose biological activities
appears to be largely overlapping. It is widely expressed in both central and peripheral
nervous system, as well as in some non-nervous tissues, such as esophageal Langerhans
cells, lymphocytes, and epithelial and endothelial cells [189–192].

From a biological point of view, CGRP is not only a potent vasodilator, but it is also
involved in immune regulation. In particular, its synthesis rapidly increases following
inflammation, when it is produced by sensory nerves and activated immune cells [189,192].

CGRP is known to modulate immune responses by displaying a dual role: on the
one hand, it is involved in sustaining inflammation by augmenting cytokine-induced IL6
production [189,192,193], while on the other hand, it has been described as a negative
regulator of inflammatory processes, acting by promoting the accumulation and arrest of T
cells and antigen-presenting cells, as well as by inhibiting the migration of mature dendritic
cells, through the activation of some key signaling mediators, such as PKA, PLC-β1, and
PKC [190].

Due to its complex role in immune response regulation and its recently highlighted
role in bronchial protection [194,195], this vasoactive neuropeptide has also recently gained
attention for application in COVID-19 patients.

Unfortunately, so far, only a few studies have focused on this topic, with conflicting
results [194,196,197]. While the most recent one [196] reported a direct correlation between
circulating CGRP levels and disease severity, the previous ones [194,197] obtained different
results: in particular, one found low serum CGRP levels in COVID-19 patients along with
a high RAMP1 (receptor activity-modifying protein 1) lung expression [194], while the
other [197] failed to find a direct correlation between this peptide and headache in moderate
COVID-19 patients. The observed heterogeneity of the results of these studies can mainly
be explained by the different compositions of clinical cohorts, as well as by the different
therapeutic regimens adopted.

The available evidence regarding CGRP’s role as a predictive biomarker for COVID-
19 evolution is still scarce, which at present, prevents us from drawing any conclusion,
but fosters new studies on the topic. As reported by Rizzi and coworkers [196], this
peptide appears to be promising not only for patient stratification at admission, but also for
early detection of those patients who have already experienced and/or are experiencing
pulmonary and vascular events. This study was monocentric and limited only to non-ICU
hospitalized COVID-19 patients with moderate or severe symptoms, thus precluding the
generalizability of the obtained conclusions without dedicated studies. Nevertheless, our
results support the importance of a tailored therapeutic approach based on a single patient’s
specific disease signature retrieved from an analysis of highly informative biomarker panels.

4. Conclusions

At the time of writing, we are entering the third year of the COVID-19 pandemic, and
this disease still represents a world health concern. Even if mass vaccination campaigns
have reduced the mortality rate associated with the SARS-CoV-2 infection, the lack of
resolutive therapeutic options makes the need for reliable biomarkers able to predict
disease evolution undeniable for the optimization of clinical resource allocation.

To date, it is well-accepted that COVID-19 can present in many different ways, with a
subgroup of patients developing only a very mild disease while others develop a critical
illness requiring intensive care and eventually leading to death. In this context, there
is a necessity to identify highly accurate and objective parameters to be used to drive
patient management during the entire disease course, assuring them timely and effective
clinical support.

Furthermore, it should be considered that many of these biomarkers, and especially
those most strictly related to cytokine storm, could also be valuable tools to monitor
therapeutic responses (i.e., CRP and IL6 after 7 days of hospitalization) and promising
direct (i.e., IL6) or indirect (i.e., D-dimer) pharmacological targets in selected patients. Lastly,
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it is noteworthy that the continuous biotechnological progresses in the field of COVID-19
biomarkers discovery have also led to new and promising findings in terms of possible
therapeutic approaches, as demonstrated by the anti-inflammatory and anti-viral activity
of heparin [198–200], by the ability of IL6 and other IL- and cytokine-signaling inhibitors
to improve the disease course [101,102,109,110,201–205] and by the promising antiviral
effects of the already existing Gas6/TAM axis inhibitors [131,150,151]. Moreover, several
studies are currently focused on both drug repurposing and new drug development, thus
representing new potential options to directly or indirectly target several key mediators of
COVID-19 pathogenesis [203,206–208].

Lastly, it should be considered that several recent studies have highlighted that a large
proportion of COVID-19 survivors still experience a variety of clinical sequelae for months
after the resolution of the acute condition, developing a new clinical condition termed “long
COVID” [209,210]. To date, the knowledge about the pathophysiology of long COVID
is limited, and its clinical management suffers from a lack of specific diagnostic markers
and therapeutic targets. Nevertheless, some recently published studies have started to
investigate the potential of different circulating biomarkers in predicting the development
of such long-term sequelae, with the aim to develop new therapeutic interventions which
are able to ameliorate or even solve the most invalidating symptoms [209,211,212]. As long
COVID syndrome is emerging worldwide as an important health concern, the discovery of
reliable biomarkers and therapeutic targets deserves further dedicated investigations.

Due to the complex physiopathology of COVID-19, it is undeniable that a single
biomarker reflecting all the most striking aspects of the disease does not exist.

Considering that blood tests are routinely performed at admission and during the
entire hospital stay, circulating biomarkers represent an ideal solution to assist in pa-
tient triage. As each one of the already validated markers reflects a specific aspect of
COVID-19 evolution, embedding new, highly informative markers into routine clinical
testing could help in early-risk stratification and to promptly initiate the most appropriate
therapeutic intervention.

Furthermore, it should be considered that a correct early stratification of SARS-CoV-
2-positive patients at admission is not only mandatory to assure a rational allocation of
limited medical resources, but is also a crucial step to assure positive results with im-
munotherapeutic treatments. In fact, according to the available literature, immunotherapy
in COVID-19 is beneficial only in selected patients, while being ineffective or even con-
traindicated in others. For this reason, the identification of clear numerical cut-offs for
reliable biomarkers reflecting the complexity and heterogeneity of the disease would be
helpful in recognizing the actual disease stage of progression and in identifying the most
relevant pathogenic actors at that stage, thus guiding clinical decisions in terms of targeted
pharmacological interventions, which need to be administered at the correct time to the
correct patient in order to prevent lethal consequences.

To reach such crucial objectives, it is essential to reduce the economic burden of
newly identified biomarkers, allowing for the development of rapid and high-throughput
tests and, finally, resulting in the generation of an objective and user-friendly decisional
algorithm for the prediction of expected clinical outcomes and therapeutic responses in
hospitalized COVID-19 patients.
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