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Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, 
memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we 
performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e., 2, 6, and 12 months) 
of AD progression. Fecal samples from both 3xTgAD and wild-type mice were collected, DNA extracted, and 
sequenced. Quantitative taxon abundance assessment using MetaPhlAn 4 ensured precise microbial community 
representation. The analysis focused on species-level genome bins (SGBs) including both known and unknown 
SGBs (kSGBs and uSGBs, respectively) and also comprised higher taxonomic categories such as family-level 
genome bins (FGBs), class-level genome bins (CGBs), and order-level genome bins (OGBs). Our bioinformatic results 
pinpointed the presence of extensive gut microbial diversity in AD mice and showed that the largest proportion 
of AD- and aging-associated microbiome changes in 3xTgAD mice concern SGBs that belong to the Bacteroidota 
and Firmicutes phyla, along with a large set of uncharacterized SGBs. Our findings emphasize the need for further 
advanced bioinformatic studies for accurate classification and functional analysis of these elusive microbial species 
in relation to their potential bridging role in the gut-brain axis and AD pathogenesis.
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Background
Alzheimer’s disease (AD) is a prevalent neurodegenera-
tive disorder clinically characterized by the progressive 
degeneration of cognition, memory, and motor abili-
ties [1]. Despite extensive research, its etiology remains 
largely elusive. Classical pathological hallmarks include 
accumulations of the amyloid-β (Aβ) peptide [2] and 
intracellular neurofibrillary tangles composed of hyper-
phosphorylated tau protein [3]. These protein aggrega-
tions are associated with disruptions in autophagic flux 
due to cathepsin B S-nitrosylation and alterations in the 
ubiquitin-proteasome system [4], which may further 
exacerbate cellular dysfunction. Building on these find-
ings, recent studies conducted on AD mouse models 
have shown an upregulation of pro-apoptotic factors, 
leading to increased cell death compared to control mice 
[5]. Concurrently, other research has reported that mito-
chondrial dysfunction, resulting from knockout (KO) of 
CEND1—a gene critical for neurogenesis—contributes 
to cognitive impairments [6]. Furthermore, Caspase-6 
and pathways involving NIrp1 and Caspase-1 have been 
implicated in AD pathogenesis by promoting neuro-
inflammation [7, 8], suggesting a complex interplay of 
molecular alterations that drives AD progression.

More recently, the scope of AD research has expanded 
to include changes in the gut microbiota as potential dis-
ease biomarkers and/or disease modifiers [9]. Humans 
host complex microbial communities, mainly residing in 
the gut, which produce a range of biomolecules crucial 
for systemic functions [10], such as the biosynthesis of 
vitamins, protection from pathogen overgrowth, diges-
tion of dietary components, and immunomodulation [11, 
12]. This is supported by emerging evidence pointing to 
the existence of a microbiota-gut-brain axis [13–16], sug-
gesting a link between changes in the gut microbiome 
and various neurological conditions [17–19]. However, 
despite extensive microbiome profiling studies in AD 
patients [20, 21] and AD mouse models [22–25], no spe-
cific microbial signature has been consistently identified 
for this disease. Nonetheless, some evidence does suggest 
shifts in microbiota composition in individuals with AD 
[26] and AD mouse models [4]. Furthermore, emerging 
research indicates that modulating the gut microbiota 
composition—through germ-free conditions, antibiot-
ics, or significant dietary changes—can influence the pro-
gression of AD pathology [27–30] and cognitive decline 
[31–33] in genetic models of this disease.

Against this backdrop, the primary goal of studies 
investigating the relationship between the microbiota 
and AD is that of ideally formulating hypotheses con-
necting the functions of specific bacterial species to 
human health, to then determine how these functions 
differ between AD patients and healthy individuals [34]. 
A critical requirement for these studies is the availability 

of high-fidelity and high-throughput genomic charac-
terization of microbial biomass in experimentally rel-
evant model systems. However, despite the usefulness 
of transgenic mice in preclinical AD research [35–38], 
no comprehensive survey of the entire gut microbiota in 
AD models using shotgun metagenomics has yet been 
conducted. Indeed, most studies regarding the structural 
characteristics of gut microbiome in AD mouse mod-
els, including our previous 16S genomic analysis of stool 
samples from 3xTgAD mice [39], have relied on the appli-
cation of 16S rRNA gene amplicon sequencing [20, 21, 
23–25, 40]. Despite its widespread use, this method has 
limitations, particularly in its ability to capture the full 
diversity of microbial species present in a sample. Con-
versely, high-resolution shotgun metagenomics—seldom 
applied for AD gut microbiome profiling [26]—allows for 
a more comprehensive genomic analysis. This approach 
is often underutilized mostly due to the lack of complete 
reference genomes that can account for all members of 
the mouse microbiome [41, 42].

To address this gap and gain deeper insights into the 
role of the gut microbiota in AD, here we have performed 
high-resolution and high-throughput genomic profil-
ing of microbial biomass in 3xTgAD mice—an in vivo 
model that recapitulates the progression of AD—com-
pared to age-matched WT littermates, using shotgun 
metagenomics followed by a clade-specific marker-based 
bioinformatic analysis [43, 44]. Our results highlight the 
challenges posed by unknown taxa, revealing significant 
functional diversity within AD-associated microbial 
communities.

Methods
Mouse model
Fecal samples were collected from homozygous 3xTgAD 
mice (n = 6, for each timepoint) carrying all three 
mutant alleles [B6;129-Psen1tm1MpmTg (APPSwe, 
tauP301L)1Lfa/Mmjax1] and wild-type (WT) mice 
(n = 6, for each timepoint) (B6129SF2/J), which served as 
controls.

Sample Collection, Library Preparation and Shotgun 
sequencing
Fecal pellets were collected from each mouse at two 
months (T1 = 2 mos), six months (T2 = 6 mos) and twelve 
months (T3 = 12 mos). Samples were placed on dry ice 
until sampling was completed and subsequently stored at 
− 80 °C until further processing.

The stool samples were then thawed at room tempera-
ture, and microbial DNA was isolated using the QIAmp® 
PowerFecal® Pro DNA isolation kit (Qiagen NV, Hilden, 
Germany), according to the manufacturer’s instructions. 
The yield and quality of bacterial DNA were determined 
on a NanoDrop™ 2000 spectrophotometer (Thermo 
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Fisher Scientifics Inc., Waltham, MA, USA). The quantity 
was assessed using an InvitrogenTM Qubit™ 1X dsDNA 
HS Assay Kit (Invitrogen Co., Thermo Fisher Scientific 
Inc.) on a Qubit 4 fluorometer (Invitrogen Co.).

Whole genome shotgun libraries were built using the 
DNA Library Prep kit (Illumina Inc., San Diego, CA, 
USA), as per the provider’s instructions. Briefly, the 
extracted DNA (250 ng) was fragmented using Bead-
Linked Transposomes (BLTs) and amplified through lim-
ited-cycle PCR with Nextera DNA Combinatorial Dual 
(CD) Indexes for multiplexing. After amplification, the 
libraries were cleaned, quantified fluorometrically, and 
analyzed for quality on a 4200 TapeStation system via a 
High Sensitivity D5000 ScreenTape assay (both from Agi-
lent, Santa Clara, CA, USA). Each library was normalized 
to an equimolar concentration before pooling, and the 
resulting mixture was sequentially diluted and denatured 
along with phase correction (PhiX Control v3, Illumina).

Shotgun metagenomics data were generated 
from the collected fecal samples at the Facility of 
Genomics&Transcriptomics at the Research Center 
on Autoimmune and Allergic Diseases (UPO-CAAD) 
in Novara, Italy. Sequencing was carried out on an Illu-
mina NextSeq® 550 platform using a NextSeq® High Out-
put v2.5 Reagent Kit (Illumina) for a 2 × 150 paired-end 
sequencing.

Sequence Quality Control
Quality control (QC) reports for the shotgun dataset 
were generated using the MultiQC software [45] ver-
sion 1.14. The high quality of the sequencing reads and 
absence of adapter sequences confirmed that no further 
quality processing was necessary.

Host DNA removal and taxonomic profiling
The mouse (host) DNA reads in the dataset were 
removed using Bowtie 2 with default parameters [46] 
by mapping paired-end reads against the Mus musculus 
reference genome (GRCm38/mm10) and discarding the 
aligned reads. Furthermore, reads with a nucleotide per-
centage > 80% of nucleotides as “G” or “N” were filtered 
out along with their paired ends. The non-host reads that 
failed to map to the host reference genome were retained 
for downstream processing.

For taxonomic profiling of microbiome samples, 
MetaPhlAn 4 (version 4.1.0) [43] was employed on non-
host reads using the database version mpa_vJun23_
CHOCOPhlAnSGB_202307 to analyze every taxon up to 
the species level. MetaPhlAn 4 uses an integrated data-
base of microbial genomes and metagenome-assembled 
genomes (MAGs), which allows the algorithm to derive 
a set of species-level genome bins (SGBs), enabling accu-
rate detection and quantification of microbial species in 
metagenomic data [47]. An SGB is defined by clustering 

the microbial species spanning at most 5% genetic diver-
sity [47]. A taxonomic label is assigned to each SGB based 
on the presence of characterized genomes from isolate 
sequencing. Thus, SGBs obtained from MetaPhlAn 4 are 
divided into known SGBs (kSGBs) and unknown SGBs 
(uSGBs). kSGBs receive a taxonomic label based on the 
species of the reference genomes within the bin, whereas 
uSGBs, lacking reference genomes, are assigned up to the 
closest related phylum, with genus-level and family-level 
annotations provided when possible.

Data normalization and statistical analysis
Differential abundance of taxa across AD time points 
and between AD and WT samples was determined from 
the raw read counts associated with each taxon as deter-
mined by the MetaPhlAn 4 algorithm. Initially, only taxa 
with a prevalence ≥ 10% were retained for subsequent 
analysis. Taxa were normalized using “geoMeans” from 
the DESeq2 normalization method [48]. The DESeq2 
algorithm was then used to assess differential taxa using 
test="Wald” and fitType="parametric” options, with 
|log2FC| > 1 and Benjamini–Hochberg FDR-adjusted 
p-value < 0.05 as statistical thresholds.

For alpha diversity analysis, the Vegan R package 2.6-4 
[49] was used to calculate both Simpson’s and Shannon’s 
indexes for taxa with a prevalence of ≥ 10%. Moreover, 
the Total Scum Scaling (TSS) normalization method 
was performed using the “decostand” function, scaling 
the data by a factor of 1e7. The Shannon’s and Simpson’s 
indexes were calculated using the “diversity” function in 
the Vegan package. The Wilcoxon Rank-Sum test was 
used to identify statistically significant differences (wil-
cox.test, p-value < 0.05).

For beta diversity analysis, the Vegan package was 
employed in a similar manner to alpha diversity calcula-
tions, excluding the TSS normalization and data scaling 
adjustments. Beta diversity was assessed using the Bray-
Curtis distance calculated by the “vegdist” function with 
method set to “bray”. Differences between groups were 
statically analyzed using the “adonis2” function to per-
form the Adonis test (p-value < 0.05).

Relative abundance values reported in figures were 
determined using the MetaPhlAn 4 algorithm. The anno-
tation of selected marker genes was performed using 
the online version of EggNOG-mapper v2 with default 
parameters [50].

Results
To investigate how the intestinal microbiome is regulated 
during AD development and how it differs between the 
AD and healthy states, we systematically examined age-
related changes detected by shotgun metagenomics in 
the microbiota composition of 3xTgAD mice and their 
age-matched WT littermates at two months (T1 = 2 mos), 
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six months (T2 = 6 mos), and twelve months (T3 = 12 
mos). We compared the microbiota profiles of AD vs. 
WT mice at each time point (AD vs. WT at T1; AD vs. 
WT at T2; AD vs. WT at T3) and investigated the longi-
tudinal changes in the AD samples over time (AD_T1 vs. 
AD_T2; AD_T1 vs. AD_T3; AD_T2 vs. AD_T3). A sche-
matic of the study design is reported in Fig. 1A, while the 
analysis workflow is outlined in Fig. 1B. A list of the total 
number of reads obtained for each sample, along with the 
relative non-host reads, is provided in Table S1.

Profiling of mouse gut microbiome shows the prevailing 
presence of uncharacterized microbial species
MetaPhlAn 4 identified and quantified 385 SGBs, com-
prising 76 kSGBs and 309 uSGBs. We then evaluated 
single SGB prevalence across samples, finding no statis-
tically significant difference in the proportion of kSGBs 
vs. uSGBs with > 50% prevalence. Of note, the proportion 
of uSGBs was significantly higher than that of kSGBs in 
the 50–75% prevalence range (test of equal proportions, 
p-value = 0.003), whereas kSGBs predominated in the 
75–100% prevalence range test of equal proportions, 
p-value = 0.02) (Fig.  2A). Thus, these differential preva-
lence rates underscore the importance of accessing and 
characterizing the unknown fraction of the SGBs in the 
AD gut microbiome.

The mapping challenges of microbial samples in our 
dataset against isolate genomes extended beyond the 
species level. About 70% of the family-level genome bins 
(FGBs)—similar to SGBs but with up to 30% nucleotide 
divergence—remained uncharacterized in more than half 
of the samples. Further analysis of the taxonomic pro-
files at higher ranks revealed that the genome bins yet to 
characterized were more prevalent than the character-
ized ones across the genus, family, order, and class levels 
(Fig. 2B).

Next, we evaluated the average relative abundance 
of each SGB at each observation time point and sub-
sequently ranked them based on their abundance. 
As expected, kSGBs featured higher relative abun-
dances than uSGBs (SGB, Kolmogorov-Smirnov test, 
p-value = 0.0004), with relative abundances calculated 
as the average value for the samples collected at each 
time point (Fig. 2C). This pattern persisted across higher 
taxonomic levels (FGB, Kolmogorov-Smirnov test, 
p-value = 0.0005) (Fig. 2D).

Table S2 provides a comprehensive overview of the 
abundance of each taxon measured by MetaPhlAn 4.

Composition of the gut microbiome in AD vs. WT mice
The dataset of SGBs quantified in the AD or WT micro-
biomes sampled at the set time points consisted of 385 

Fig. 1 Study design and experimental analysis framework. (A) Study design showing the experimental groups and time points for sample collection. WT 
and AD (3xTg) mice were sampled at two months (T1), six months (T2), and twelve months (T3). At each time point, a total of six samples (n = 6) were 
collected for both WT and AD mice. (B) Workflow illustrating the bioinformatics pipeline employed in the analysis
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SGBs classified into 301 genera, 98 families, 78 orders, 75 
classes, and 9 phyla.

At the phylum level, the majority of the microbial 
population in both WT and AD samples, across all 
time points, primarily consisted of Bacteroidota and 
Firmicutes (Fig.  3A). Bacteroidota accounted for an 
average of 51% (50.6 ± 9.75%) and Firmicutes for 44% 
(43.9 ± 8.97%) of the relative abundances for each condi-
tion. Additional contributions were minor, with Actino-
bacteria at 1.2%, Proteobacteria at 1.1%, Tenericutes at 
0.48%, Candidatus Melainabacteria at 0.27%, Candidatus 
Saccharibacteria at 0.16%, and Verrucomicrobia at 0.11%. 
Furthermore, an average of 2.3% of the relative abun-
dances was ascribed to unclassified bacteria. This micro-
bial composition is consistent with the notion that the 
gut microbiota is mainly composed of four main phyla: 
Firmicutes, Bacteroidota, Actinobacteria, and Proteobac-
teria, with Firmicutes and Bacteroidota constituting the 
majority of the gut microbiota [16]. The most prevalent 
bacterial families across all samples were Muribaculaceae 

(38.8%) belonging to the Bacteroidales order, Bacteroidia 
class, and Bacteroidota phylum, Lactobacillaceae (10.6%) 
in the Bacilli class, and Lachnospiraceae (10.0%) in the 
Clostridia class, both belonging to the Bacillota phylum 
(Fig. 3B).

In comparing phylum relative abundances across sam-
ples, Verrucomicrobia, which specializes in degrading 
mucin—a glycoprotein found in mucus—was found pre-
dominantly in AD samples (Fig. 3C). This finding aligns 
with recent metagenomic analyses that have increased 
interest in Verrucomicrobia due to its association with 
various eukaryotic hosts [51] and its role in modulating 
immune responses and cell death [52–54].

At the family phylogenetic level, we identified 15 fami-
lies that were preferentially present in AD vs. control 
samples, with a ratio of relative abundances between AD 
samples and all samples > 0.70. For instance, the Thermo-
actinomycetaceae family was almost exclusively present 
in AD samples—ratio of relative abundances between AD 
samples and all samples of 0.95—with both characterized 

Fig. 2 Prevalence of unknown taxa in MetaPhlAn 4 profiling of the mouse gut microbiome. (A) Taxonomically unlabeled species-level genome bins 
(SGBs) are widely distributed though the dataset samples. SGBs are categorized into quartiles according to their prevalence across the samples included 
in the dataset, and the proportions of known and unknown SGBs (kSGBs and uSGBs, respectively) in each quartile are comparatively assessed. kSGBs 
prevail over uSGBs (test of equal proportions, statistical significance set at p-values < 0.05) exclusively in the fourth quartile, which includes SGBs with 
prevalence ranging from 75 to 100% of samples. Conversely, in the third quartile, uSGBs dominate over kSGBs. (B) At taxonomic levels higher than species, 
the fraction of the mouse gut microbiome that remains taxonomically uncharacterized is substantial. The panel depicts the fractions of known and un-
known genome bins detected across the entire dataset for each taxonomic level: species, genus, family, order, and class. (C, D) Taxonomically annotated 
SGBs tend to display higher relative abundance compared to SGBs that currently lack taxonomic annotation. The relative abundance of each genome 
bin is averaged across either AD or WT samples collected at each time point, and these average relative abundances are then converted into ranks for 
each time point, with higher average values corresponding to higher ranks. The heatmaps show the ranks for SGBs (C) and family-level genome bins 
(FGBs, D) at each sampled time point. Color codes shown in legend help distinguish known from unknown genome bins, AD from WT samples, as well 
as sampling time points
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(e.g., Akkermansiaceae, Sutterellaceae, Aerococcaceae, 
Corynebacteriaceae, Prevotellaceae) and uncharacter-
ized (e.g., FGB10213, FGB10667, and FGB9836) families 
showing a tendency to be more abundant in AD vs. WT 
samples (Fig. 3D).

Temporal profiling of microbiome composition in AD mice 
over time
A preliminary analysis of the temporal profiling of micro-
biome compositions in AD mice revealed several spe-
cies with changing abundances over time. Specifically, 
species such as Parvibacter caecicola from the Corio-
bacteriaceae family [55] and Neglectibacter sp. X4 of 
the Oscillospiraceae family, along with several uSGBs, 
showed an increase in relative abundance as the AD mice 
aged (Fig.  4). Conversely, a few species, including two 
uSGBs (i.e., SGB40326 and SGB40991) and Candida-
tus Arthromitus sp. SFB-mouse [56]—known for induc-
ing the postnatal maturation of homeostatic innate and 
adaptive immune responses in the mouse gut—steadily 
decreased during the aging of AD mice.

Notably, species in WT samples did not display con-
sistent patterns of increase or decrease throughout the 
observation periods.

Differential abundance of genome bins between AD and 
control groups are dominated by taxonomically unlabeled 
genome bins
An initial screening to identify differentially abundant 
taxa between AD and control samples, as well as dif-
ferential taxa across AD time points, was conducted by 
calculating alpha diversity statistics using Shannon’s 
and Simpson’s indexes. The results for each sample at 
each taxonomic level are summarized in Table S3. Sub-
sequently, we performed a Wilcoxon Rank-Sum test to 
compare these indexes between sample groups and cal-
culated the Bray-Curtis dissimilarity between groups as 
detailed in the Methods section (Table S4). Despite no 
evidence of distinct global modulation of microbiota per-
turbations between AD and WT samples or throughout 
the AD timeline, we decided to investigate the differential 
abundance of individual taxa across different ranks. Table 
S5 details the log2 fold change (log2FC) of each statisti-
cally significant taxon between AD and control groups.

Fig. 3 Compositional analysis of gut microbiome variations in AD and control samples at the phylum and family levels. (A) Bar plot showing phylum-level 
average relative abundances (in percent values) in AD microbiomes vs. their time-matched control counterparts. The Bacteroidota and Firmicutes phyla 
are predominantly observed across all conditions. On average for each condition, unclassified bacteria account for 2.3% of the relative abundances. (B) Bar 
plot showing family-level average relative abundances in AD microbiomes vs. their time-matched control counterparts. The Muribaculaceae, Lactobacilla-
ceae, and Lachnospiraceae families collectively represent over 60% of the relative abundance in each condition. The color coding in the legend highlights 
the top 13 families ordered by average relative abundance for clarity. (C) Bar plot showing average relative abundances of each detected phylum across 
AD microbiomes and time-matched controls. (D) Average relative abundance of each detected family across AD microbiomes and time-matched con-
trols. FGBs are ordered by relative abundance. Row labels for selected FGBs are shown to help identify the FGBs mentioned in the main text
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Differential abundance analysis of SGBs between AD 
and WT groups at each sampled time point showed sig-
nificant changes in the microbiome, with 98 SGBs show-
ing altered levels: 56 at 2 mos of age, 38 at 6 mos, and 23 
at 12 mos. Noteworthy, 75% of these differentially abun-
dant SGBs were uSGBs, underscoring their significant 
contribution to the microbial gut composition. Particu-
larly, SGB44472, SGB92816, and SGB41414 were con-
sistently found differentially abundant at all time points. 
Intriguingly, a similar trend was observed for a single 
kSGB, Clostridiales bacterium—FC (T1 = 2 mos) = 20.4; 
FC (T2 = 6 mos) = 20.5; FC (T3 = 12 mos) = 30.0—whose 
ability to metabolize key amino acids precursors to neu-
roactive metabolites has been recently reported [57].

At higher taxonomic levels, our analysis revealed 33 
differentially abundant FGBs, comprising 20 uFGBs and 
13 kFGBs (Fig. 5A). Furthermore, 26 order-level genome 
bins (OGBs) were identified as differentially abundant, 
with 21 uncharacterized OGBs (uOGBs) and 5 known 
OGBs (kOGBs) (Fig. 5B). Similarly, at the class-level, 21 
out of 25 genome bins were uncharacterized (uCGBs), 
confirming the predominance of uCGBs prevail over 
known CGBs (kCGBs) (Fig. 5C).

At T1, FGBs showing decreased abundance in AD 
vs. WT samples outnumbered those with increased 

abundance, whereas at both T2 and T3 the numbers of 
increased and decreased FGBs were comparable. The 
most pronounced change in abundance were observed at 
T1 and T3. The largest decrease in abundance concerned 
FGB9508 at T1 [FC(T1 = 2 mos) = -30.0] and FGB10287 
at T3 [FC(T3 = 12 mos = -30.0], while the most substantial 
increases were for FGB28682 and FGB73530 at T1, with 
both showing an FC of 30.0. Compared to uFGBs, kFGBs 
showed moderate changes in abundance in either direc-
tion. More precisely, Pumilibacteraceae, Eubacteriaceae, 
and Lactobacillaceae decreased at T1, whereas unclas-
sified Eubacteriales and Sutterellaceae increased at T1 
and T3, respectively. Differentially abundant kFGBs also 
occurred at T2, with increases observed in Atopobiaceae 
[FC(T2 = 6 mos) = 4.97], Erysipelotrichaceae [FC(T2 = 6 
mos) = 4.60], Bacteroidaceae [FC(T2 = 6 mos) = 2.67], and 
Muribaculaceae [FC(T2 = 6 mos) = 1.63] and decreases in 
Pumilibacteraceae [FC(T2 = 6 mos) = -2.23] and Eubac-
teriaceae [FC(T2 = 6 mos) = -1.73]. The FGB10213 was 
uniquely differentially abundant in AD vs. WT samples 
at all time points, with FCs increasing from 3.86 to 5.15.

Differentially abundant OGBs that were taxonomi-
cally labeled included Coriobacteriales, which increased 
at T1 (FC = 2.51) and T2 (FC = 2.38), Lactobacillales, 
which instead decreased at T1 (FC = -2.02). Bacteroidales 

Fig. 4 Temporal profiling of relative abundances reveals consistent trends in AD SGBs. MetaPhlAn 4 profiling unveils consistent temporal trends in a few 
AD microbiome species, which comprises both SGBs and those yet to be classified. Species consistently increasing with AD mouse aging include Parvi-
bacter caecicola and Neglectibacter sp. X4, while Candidatus Arthromitus sp. SFB-mouse and several uSGBs display a decreasing trend over time
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and Burkholderiales both increased at T2 (FC = 1.83, 
FC = 2.64, respectively). Notably, the sole OGB that 
consistently displayed differential abundance in AD 
vs. WT samples at all time points was the unclassified 
OFGB10213, with FCs increasing from 4.07 to 5.41. Simi-
lar to the pattern observed at the family level, the major-
ity of statistically significant changes occurred at T1, with 
the most significant changes—irrespective of direction—
occurring at T1 and T3. Corroborating the significance of 
uOGBs, the most pronounced changes were observed in 
OGBs lacking taxonomic labels. Specifically, the largest 
decrease was seen in OFGB9508 at T1 (FC = -30.0) and 
OFGB10287 at T3 (FC = -29.6), while the most significant 
increases occurred in OFGB28682 and OFGB73530, both 
at T1, each with an FC of 30.

Differential abundance analysis at the class level con-
firmed patterns recorded at lower taxonomic ranks, 
particularly concerning the timing of changes and the 
prevalence of considerable changes in uCGBs vs. kCGBs. 
Differentially abundant kCGBs consisted of Bacilli, which 
decreased at T1 (FC = -2.01). In contrast, Bacteroidia, 
Betaproteobacteria, and Coriobacteria all increased at 
T2, with FCs ranging from 1.26 to 2.62. At the phylum 

level, Bacteroidota increased in AD vs. WT samples at 
T2.

Differentially abundant genome bins across consecutive 
time points
We next sought to determine how the microbial compo-
sition varied over time by computing differentially abun-
dant taxa across each pairwise comparison among the 
three designated time points: T1 vs. T2, T2 vs. T3, and 
T1 vs. T3. Among these, a total of 29 SGBs were iden-
tified as differentially abundant, which is approximately 
30% of the number observed when comparing AD to 
WT samples (Fig. 6). The vast majority (86.2%) of differ-
entially abundant SGBs were not taxonomically labeled. 
The characterized SGBs comprised Jeotgalicoccus halo-
tolerans belonging to the Staphylococcaceae family, 
Bacillales order, and Bacilli class, which increased from 
T2 to T3 (FC = -28.7), Bacteroides acidifaciens (family: 
Bacteroidaceae; order: Bacteroidales; class: Bacteroidia), 
which increased at T3 relative to T1 (FC = -3.48), Pre-
votella sp MGM1 (family: Prevotellaceae; order: Bacte-
roidales; class: Bacteroidia), which increased from T1 to 
T2 (FC = -1.88), and Staphylococcus nepalensis (family: 

Fig. 5 AD-associated differentially abundant genome bins at family, order, and class taxonomic ranks. The figure depicts the differentially abundant 
genome bins identified from two assessments: differential abundance in AD relative to control samples at each sampled time point, and differential 
abundance between pairs of time points (2, 6, and 12 mos) in AD samples. The heatmaps arranged from left to right display the outcomes of these dif-
ferential abundance tests at the family, order, and class level, respectively. In each heatmap, column labels outline the conditions compared. The tests for 
differential abundance in AD samples between pairs of time points are labeled as AD.2M.vs.12M, AD.2M.vs.6M, and AD.6M.vs.12M. Time-wise differential 
abundance tests are labeled as 2M.AD.vs.WT, 6M.AD.vs.WT, and 12M.AD.vs.WT. Row labels indicate the taxa that were found to be differentially abundant 
in at least one test. Changes in relative abundance are expressed as log2FC. Color coding represents the intensity in fold change, with grey indicating 
genome bins that did not show statistically significant variations in relative abundance under the compared conditions. A genome bin is deemed dif-
ferentially abundant between two conditions if it features |log2FC| > 1 and a Benjamini-Hochberg’s adjusted p-value < 0.05
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Fig. 6 Time-associated differentially abundant SGBs. The figure shows the species genome bins that were identified as differentially abundant when 
comparing microbiome profiles between pairs of sampled time points (2, 6, and 12 mos) in AD samples. Differential abundance tests carried out in AD 
samples at T1 = 2M relative to T2 = 6M, at T1 = 2M relative to T3 = 12M, and at T2 = 6M relative to T3 = 12M are referred to as AD.2M.vs.12M, AD.2M.vs.6M, 
and AD.6M.vs.12M in the heatmap column labels. Row labels report the SGBs deemed differentially abundant over time. The vast majority of these SGBs 
do not align with any reference genome. The annotations on the left side of the heatmap categorize the differentially abundant SGBs by phylum, class, 
order, and family. Changes in relative abundance are reported as log2FC. Color coding indicates the intensity in fold change. Cells colored grey in the 
heatmap represent genome bins that did not show statistically significant changes in relative abundance between the tested temporal points. SGBs are 
deemed differentially abundant between two conditions if they feature a |log2FC| > 1 and a Benjamini-Hochberg’s adjusted p-value < 0.05
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Staphylococcaceae; order: Bacillales; class: Bacilli), which 
decreased from T2 to T3 (FC = 28.0).

At taxonomic levels higher than species, the differen-
tially abundant OGBs, CGBs, and FGBs were 6, 6, and 
10, respectively. Out of the differentially abundant FGBs 
in at least a pairwise temporal comparison, kFGBs and 
uFGBs each accounted for 50% of the differentials. As 
expected, the time points showing the highest diver-
gence in microbial composition were T1 and T3, between 
which the majority of statistically significant changes 
occurred. It should be noted that only the uFGB referred 
to as FGB9508 was consistently more abundant at both 
T2 and T3 compared to T1 (FC = -27.6 and FC = -28.0, 
respectively), whereas the opposite trend was observed 
for FGB43028 (FC = 12.1 and FC = 30.0, respectively). All 
kFGBs identified as differentially abundant increased 
either from T1 to T2, as seen in Rikenellaceae (FC = 
-1.18) and Prevotellaceae (FC = -1.87), or from T1 to T3, 
as in the case of Bacteroidaceae, Clostridiaceae, and Ery-
sipelotrichaceae, with FCs ranging from − 1.93 to -3.44.

We next asked which SGBs were differentially abun-
dant both in comparisons between AD and WT samples 

and across the three time points in the temporal analy-
sis of microbial composition (Fig. 7). A total of 20 SGBs 
appeared in both sets of analyses, with just two SGBs cor-
responding to taxonomically well-defined species. Spe-
cifically, Prevotella sp. MGM1 increased its abundance in 
AD vs. WT samples at T2 (FC = 3.53), following an uptick 
from T1 to T2 in AD samples (FC = -1.88). Similarly, Bac-
teroides acidifaciens showed increased abundance in AD 
relative to WT samples at both T2 and T3 (FC = 3.00, FC 
= 5.68, respectively).

Carbohydrate-active enzymes are widespread among 
marker genes of differentially abundant microbial species
Our taxonomic profiling approach relies on SGB-spe-
cific marker genes to identify SGBs in metagenomes by 
mapping a sufficient fraction of these markers and by 
quantifying their relative abundance using within-sam-
ple-normalized average coverage estimates. Since the 
marker genes in the MetaPhLan database were selected 
by virtue of their species-specificity, we decided to 
use these marker gene sets per species to preliminar-
ily detect traits of functional diversity. This analysis was 

Fig. 7 Most of the SGBs varying both between AD and WT and along AD temporal evolution are taxonomically uncharacterized. The heatmap shows the 
log2FC for SGBs that were differentially abundant in comparisons between AD and WT microbiomes at each sampled time point (2M.AD.vs.WT, 6M.AD.
vs.WT, 12M.AD.vs.WT), and in comparisons of AD microbiomes between time points (AD.2M.vs.12M, AD.2M.vs.6M, and AD.6M.vs.12M). The differentially 
abundant SGBs are assigned to specific phylum and class ranks, shown in the left-sided annotation columns along with rank-specific legends. Changes in 
relative abundance are expressed as log2FC. Color coding reflects the intensity in fold change. Grey cells in the heatmap represent genome bins that did 
not show statistically significant changes in relative abundance between the assessed time points. An SGB is considered differentially abundant between 
two conditions if its |log2FC| > 1, and it has a Benjamini-Hochberg’s adjusted p-value < 0.05. The left-most panel shows the average relative abundance 
of the SGBs under each condition
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particularly relevant in light of the high prevalence of 
uSGBs identified in our study. In particular, we focused 
on the SGBs classified as differentially abundant in com-
parisons of microbial composition between AD and WT 
samples and across AD progression stages. For func-
tional annotation, we employed EggNOG-mapper, a tool 
designed for functional annotation based on the Egg-
NOG database, which contains precomputed orthologs 
groups (OGs) covering thousands of bacterial, archaeal, 
and eukaryotic organisms [50]. In this analysis, the Egg-
NOG-mapper facilitated the classification of genes using 
two key resources: the Clusters of Orthologous Genes 
(COGs) [58] and the ENZYME [59] databases. Our find-
ings indicate that the species specificity of the marker 
genes, as established through coding sequence cluster-
ing, did not translate into clear functional distinctions. 
Remarkably, many of the marker genes from the differen-
tially abundant SGBs were not annotated to any enzyme 
commission (EC) class as shown in Fig. 8A. Furthermore, 
a significant proportion of these genes, identified through 

the COG classification, was associated with unknown 
functions, including both kSGBs and uSGBs (Fig. 8B).

Further analysis based on the Carbohydrate-Active 
enZYmes database (CAZy) [60] revealed that carbohy-
drate-active enzymes (CAZymes) were quite prevalent 
among differentially abundant SGBs, accounting for 12 
out of the 19 SGBs analyzed (63.1%), and representing 
approximately 1% of their marker genes (Fig. 8C). More 
precisely, the identified CAZymes mostly belonged to the 
families of glycoside hydrolases (GHs), which hydrolyze 
the glycosidic bond between two or more carbohydrates 
or between a carbohydrate and a non-carbohydrate moi-
ety, and glycosyltransferases (GTs), which catalyze the 
transfer of sugar moieties from activated donor mol-
ecules to specific acceptor molecules, forming glyco-
sidic bonds. The detection of these CAZymes as unique 
marker genes, predominantly among uSGBs, underscores 
the biological validity of identifying these uSGBs, high-
lighting the critical role of carbohydrate degradation and 
uptake in gut microorganisms [61].

Fig. 8 Functional profiling of unique marker genes in differentially abundant SGBs suggests untapped functional diversity in AD microbiome profiling. 
The figure shows the functional characterization of SGBs identified as differentially abundant in comparisons of microbial composition between AD and 
WT samples, as well as across AD progression stages. To this end, the marker genes associated with the selected SGBs were assembled and analyzed using 
various sources of functional annotation. The classification of these differentially abundant SGBs into phylum, class, order, and family ranks is shown in the 
left-sided annotation columns, alongside rank-specific legends. (A) The heatmap categorizes the unique marker genes of these SGBs based on annota-
tions retrieved from the ENZYME database.  ENZYME main classes are reported as column labels. Cells are colored grey if a marker gene lacks annotations 
for a specific class. (B) Marker genes are also categorized according to the Clusters of Orthologous Genes (COG) database. COGs are reported as column 
labels. Cells are colored grey if a marker gene does not have a functional assignment to a specific COG. (C) Categorization of marker genes uniquely char-
acterizing the differentially abundant SGBs according to the CAZy database, which provides biochemical information on carbohydrate-active enzymes 
(CAZymes). CAZyme families are reported as column labels. Cells are colored grey if a marker gene is not assigned to a specific CAZyme family. The heat-
maps report only those EC numbers, COG categories, and CAZyme families predicted to be associated with the marker genes
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Discussion
Despite the recognized role of the gut microbiota in AD 
development and progression [4, 62] and the prevalent 
use of AD mouse models to investigate AD-associated 
gut microbiome alterations [22–25], comprehensive sur-
veys of the gut microbiome using shotgun metagenomics 
across multiple time points, including comparisons with 
WT littermates, have been lacking.

In this study, we implemented shotgun metagenomics 
and developed a bioinformatic pipeline that, by employ-
ing established tools for metagenomic phylogenetic anal-
ysis of whole-metagenome shotgun samples, enabled us 
to conduct a comprehensive metagenomic taxonomic 
profiling of the gut microbiome in AD mouse models.

Our findings underscore the importance of including 
genomes from uncultured microorganisms in the taxo-
nomic profiling process of AD microbiome data. Indeed, 
microbial species that were not identifiable through map-
ping against known isolate genomes constituted the larg-
est proportion of AD- and aging-associated microbiome 
changes in 3xTgAD mice.

Our analysis corroborated the phylum-level composi-
tion portrayed by previous observational studies, which 
showed that the murine gut microbiome is predomi-
nantly composed of Firmicutes and Bacteroidota [40], 
which is reflected in the significant contribution of the 
family Muribaculaceae belonging to the Bacteroidota 
phylum.

At the family-level, our compositional analysis revealed 
a preferential presence of Thermoactinomycetaceae, 
Akkermansiaceae, and Sutterellaceae among kFGBs, and 
FGB10213, and FGB10667 among uFGBs, particularly in 
AD vs. WT mice.

AD samples featured a unique microbial composition 
distinct from age-matched WT samples. We observed 
that the entire phylum of Bacteroidota, as well as classes 
(Bacteroidia), orders (Bacteroidales), families (Bacte-
roidaceae, Muribaculaceae), and genera (Muribacu-
lum, Prevotella, Odoribacter, Bacteroides, Duncaniella, 
and Paramuribaculum) within Bacteroidota, were more 
abundant in AD vs. WT samples. Bacteroidota, a diverse 
and abundant group of gram-negative gut bacteria [63, 
64], are known for their ability to degrade complex poly-
mers, thereby facilitating food digestion and nutrient 
acquisition [65]. Intriguingly, the primary component 
of their outer membrane, lipopolysaccharide (LPS), is 
known for its potential to trigger systemic inflammation, 
which may contribute to AD pathogenesis [66, 67]. Thus, 
it is tempting to speculate that the increased presence of 
Bacteroidota in AD samples might be linked to the devel-
opment or progression of AD, underscoring their signifi-
cant role in disease dynamics.

A recent meta-analysis of all genetic risk factors for AD 
has pointed lipid processing as a statistically enriched 

category of genetic risk factors for AD [68]. In particu-
lar, aged mouse microglia were shown to accumulate 
lipid droplets and to feature a dysfunctional state termed 
LD-accumulating microglia (LDAM) [69], which was also 
observed in a chimeric AD model [70]. Furthermore, sev-
eral studies have identified certain Bacteroidetes species 
as major producers of short-chain fatty acids (SCFAs), 
which can act on brain functions via multiple mecha-
nisms and are involved in various brain disorders, includ-
ing mood disorders or autism spectrum disease [71–76]. 
Of note, evidence suggests that SCFAs are closely linked 
to AD onset and progression [77]. While these studies 
are mainly correlative and do not establish a clear cause-
effect relationship [78, 79], SCFAs have been shown to 
induce biochemical changes that promote the deposi-
tion of Abeta plaques, a hallmark of AD pathogenesis 
[80]. It is also noteworthy that the classes of Bacilli and 
Coriobacteria, which respectively show decreased and 
increased abundance in AD vs. WT samples, are modu-
lated by exogenous SCFAs in APP/PS1 mice [81].

As expected, the number of SGBs showing significant 
abundance changes between AD and healthy states was 
greater than that observed with aging in AD mice (98 
SGBs and 29 SGBs, respectively). Notably, none of the 
SGB was found to be statistically significantly increased 
or decreased in its abundance between the early (T1) 
and middle (T2) AD stages, or between the middle (T2) 
and late (T3) AD stages. Each time point showed distinct 
changes in microbiome composition, predominantly 
involving uncharacterized SGBs and, to a lesser extent, 
kSGBs such as Jeotgalicoccus halotolerans, Staphylococ-
cus nepalensis, Bacteroides acidifaciens, and Prevotella 
sp MGM1. Intriguingly, the latter two were found dif-
ferentially abundant both in comparisons between AD 
and WT groups and across different time points. In par-
ticular, the Prevotella and Bacteroides genera have been 
identified as dominant in distinct community types in a 
compositional analysis of the human gut microbiome 
across the AD continuum [82].

The functional analysis of marker genes from uSGBs 
indicated that their unique gene repertoires have yet to 
be fully functionally categorized. Nonetheless, the detec-
tion of carbohydrate-active enzymes among these marker 
genes corroborates the biological relevance of these 
SGBs. While taxonomically labeled SGBs remain a focus 
of research, our findings highlight that uSGBs also war-
rant further investigation. Future studies investigating the 
links between gut microbiome and AD should include 
these uncharacterized microbial entities to improve our 
understanding of their potential roles in AD pathology. 
While our marker-based metagenomic analysis substan-
tially advances our grasp of AD development and pro-
gression, a critical question remains: does the variability 
observed in the gut microbiome—whether comparing 
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AD to control samples or across different AD stages—
hold biological significance? To address this question, 
it is necessary to link specific microbiome functions to 
the corresponding microbial entities. Our comprehen-
sive taxonomic profiling provides a valuable resource to 
further investigate the structure of the gut microbiome 
and its potential contributions to AD pathology and 
progression.

Conclusions
In this study, we investigated the gut microbiota compo-
sition in a murine model of AD using shotgun metage-
nomics followed by a dedicated bioinformatic analysis 
grounded on a clade-specific approach, providing fresh 
and detailed insights into how variations in the gut 
microbiome composition correlate with AD develop-
ment. Our research expands taxonomic characteriza-
tion of the gut microbiome, revealing that a substantial 
part of its genomic diversity cannot be linked to known 
reference genomes. Our findings indicate that species 
lacking cultured counterparts predominantly drive the 
changes observed in the gut microbiome associated 
with AD onset and progression. Therefore, the extensive 
dataset generated offers a valuable resource for advanc-
ing our understanding of the complex microbial func-
tional diversity linked to AD. This in-depth analysis not 
only deepens our comprehension of the microbial factors 
influencing AD but also sets the stage for future research 
aimed at uncovering potential therapeutic targets within 
the microbiome for treating this neurodegenerative 
condition.
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