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Abstract We present a model where ω1 is inaccessible by reals, Silver measurabil-
ity holds for all sets but Miller and Lebesgue measurability fail for some sets. This
contributes to a line of research started by Shelah in the 1980s and more recently
continued by Schrittesser and Friedman (see [7]), regarding the separation of different
notions of regularity properties of the real line.
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1 Introduction

The Lebesgue measurability and the Baire property are certainly the most common
notions of regularity of the reals. The following results concerning the 2nd level of
the projective hierarchy are nowadays part of the folklore.

Theorem 1 (Solovay [11])

(i) �1
2(Lebesgue) iff ∀x ∈ ωω(random reals over L[x] form a co-null set);

(ii) �1
2(Baire) iff ∀x ∈ ωω(Cohen reals over C(L[x]) form a comeager set).

Theorem 2 (Shelah–Judah [10])

(i) �1
2(Lebesgue) iff ∀x ∈ ωω∃z ∈ 2ω(z random over L[x]);

(ii) �1
2(Baire) iff ∀x ∈ ωω∃z ∈ 2ω(z Cohen over L[x]).
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732 G. Laguzzi

Other important notions of regularity, which have been more recently studied by
Brendle, Löwe and Halbeisen, are Sacks-, Miller-, Silver- and Laver-measurability (we
will denote such forcings with the usual letters S,M,V,L, and they will be recalled
in the next section).

Definition 3 Let P be one among S,M,V,L. A set of reals X is said to be
P-measurable iff

∀T ∈ P∃T ′ ≤ T, T ′ ∈ P([T ′] ⊆ X ∨ [T ′] ∩ X = ∅).

We will often refer to such notions by saying Silver measurable, Miller measurable
and so on.

A very detailed work concerning a general approach to these notions of regularity
may be found in Khomskii [6], chapter 2, and [4]. For these properties, one can prove
characterizations like in Theorems 1 and 2. The following results are due to Brendle,
Löwe and Halbeisen.

Theorem 4 (Brendle–Löwe [2]; Brendle–Löwe-Halbeisen [3])

(i) �1
2(Sacks) iff �1

2(Sacks) iff ∀x ∈ ωω(ωω ∩ L[x] �= ωω);
(ii) �1

2(Miller) iff �1
2(Miller) iff ∀x ∈ ωω(ωω ∩ L[x] is not dominating);

(iii) �1
2(Laver) iff �1

2(Laver) iff ∀x ∈ ωω(ωω ∩ L[x] is bounded);
(iv) �1

2(Silver) implies ∀x ∈ ωω∃z ∈ 2ω(z is splitting over L[x])
�1

2(Silver) implies ∀x ∈ ωω(ωω ∩ L[x] is not dominating).

In this paper we focus on Silver, Miller and Lebesgue measurability. In particular
from (ii) and (iv) it follows�1

2(Silver)⇒ �1
2(Miller). This implication has partially

inspired the result of this paper, which we will present in Sect. 4, where we will
construct a model

N∗ |� all(Silver) ∧ ¬all(Miller) ∧ ¬all(Lebesgue) ∧ ∀x ∈ ωω
(
ω

L[x]
1 < ω1

)
,

showing in particular that the above implication occurring for �1
2 sets does not shift

to the family of all sets of reals. The study of the behaviour of regularity properties
on large families of subsets of reals was initiated by Solovay [11], and then continued
along the years by Shelah [8,9], Friedman and Schrittesser [7]. Another reason which
inspired the work was to find a way to drop Lebesgue measurability by iterating
Shelah’s amalgamation and obtainingω1 inaccessible by reals. Note that, in the Cohen
model (i.e., the extension via addingω1-many Cohen reals), Silver measurability holds
for all projective sets, but it is unclear how the Miller measurability behaves in this
model. Moreover, our purpose was also to have ω1 inaccessible by reals, so Cohen
model was not of interest from this point of view (in particular we wanted full-regularity
on �1

2).
We conclude this introductory section with a schema of the article: in Sect. 2

we review basic concepts and notation that we use throughout the paper; in Sect. 3
we introduce the tools we use later on: Shelah’s amalgamation, unreachability and
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On the separation of regularity properties of the reals 733

amoeba for Silver; then, Sect. 4 is devoted to prove the main result mentioned above.
A last section is finally devoted to some concluding comments and possible further
developments of the investigation.

2 Preliminaries

Our notation is rather standard. A tree T is a subset of 2<ω or ω<ω closed under
initial segments, i.e., for every t ∈ T, t�k ∈ T , for every k < |t |, where |t | represents
the length of t . We denote with Stem(T ) the longest element t ∈ T compatible
with every node of T , and we set k ∈ Succ(t, T ) iff t�k ∈ T . We use the notation
t � t ′ meaning that t is an initial segment of t ′. For every t ∈ T , we say that t is
a splitting node whenever |Succ(t, T )| ≥ 2, and we denote with Split(T ) the set
of all splitting nodes. Moreover, for n ≥ 1, we say t ∈ T is an nth splitting node
iff t ∈ Split(T ) and n is maximal such that there are k0 < · · · < kn−1 = |t |
natural numbers such that t�k j ∈ Split(T ), for every j ≤ n − 1, and we denote with
Splitn(T ) the set consisting of the nth splitting nodes (note that, under this notation,
Stem(T ) is the 1st splitting node, with k0 = |Stem(T )|). Furthermore, for every
t ∈ T , the set {s ∈ T : s is compatible with t} is denoted with Tt . When T is a finite
tree, Term(T ) denotes the set consisting of those t’s having no extension in T , and
ht(T ) := max{n : ∃t ∈ T, |t | = n} represents the height of T . Finally, the body of T
is defined by [T ] := {x : ∀n(x�n ∈ T )} and we say that F ⊆ T is a front iff F is an
antichain and for every x ∈ [T ] there exists t ∈ F such that t � x .

In this paper we deal with Sacks (or perfect) trees, i.e., trees such that each node can
be extended to a splitting node. In particular, we focus the attention on some particular
types of perfect trees:

• T ⊆ 2<ω is a Silver tree (or uniform tree) iff T is perfect and for every s, t ∈ T ,
such that |s| = |t |, one has s�0 ∈ T ⇔ t�0 ∈ T and s�1 ∈ T ⇔ t�1 ∈ T .

• T ⊆ ω<ω is a Miller tree (or superperfect tree) iff T is perfect and for every
t ∈ Split(T ), one has |Succ(t, T )| = ω.

Clearly, Silver (Miller) forcing is the poset consisting of Silver (Miller) trees ordered
by inclusion. We denote these forcings by V and M, respectively. Furthermore, if G
is the V-generic filter over the ground model N, we call the generic branch zG =⋃{Stem(T ) : T ∈ G} a Silver real (and analogously for Miller). Other notions of
forcing relevant to the topic of separating regularities, which can similarly be presented
in terms of their associated trees include: Sacks, Laver (mentioned in the introduction),
Mathias, Heckler, eventually different and Matet, but we will not deal with them in
this paper. Other posets which we will use throughout the paper will be the Cohen
forcing C, consisting of finite sequences of 0s and 1s, ordered by extension, and the
random forcing B, consisting of perfect trees T such that for every t ∈ T, μ([Tt ]) > 0,
ordered by inclusion.

For the purpose of this paper we can use the following result as a definition of
P-measurability for a topologically reasonable pointclass �, i.e., a family of sets
closed under continuous preimages and intersections with closed sets.
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734 G. Laguzzi

Lemma 5 (Brendle–Löwe [2, lemma 2.1]) Let P ∈ {V,M} and let � be a topologi-
cally reasonable family of sets of reals. Then�(P) ≡“every set in� is P-measurable”
iff

∀X ∈ �, ∃T ∈ P([T ] ⊆ X ∨ [T ] ∩ X = ∅).

Note that the family of projective sets, the family of �1
n-, �1

n-, �1
n-sets are topo-

logically reasonable. Finally, also the family of all sets of reals, which we denote by
all, is trivially topologically reasonable.

We now prove a simple result, which gives us a direct implication between Baire
property and Silver measurability.

Fact 6 Any comeager set contains the body of a Silver tree.

Proof Let Y ⊇ ⋂
n∈ω Dn , where all Dn’s are open dense. We use the following

notation: for every s, t ∈ 2<ω, put

t ⊕ s := {t ′ ∈ 2<ω : ∀n < |t |(t ′(n) = t (n)) ∧ ∀n ≥ |t |(t ′(n) = s(n))}.

Consider the following recursive construction:

• let t∅ ∈ 2<ω such that [t∅] ⊆ D0;
• Assume for every r ∈ 2n we have already defined tr such that [tr ] ⊆ Dn . Let

{t j : j < 2n+1} be an enumeration of {tr �i : r ∈ 2n, i = 0, 1}. Then consider the
following construction along j < 2n+1:

for j = 0, pick s0 � t0 such that [s0] ⊆ Dn+1;
for j + 1, pick s j+1 � t j+1 ⊕ s j such that [s j+1] ⊆ Dn+1.

Then, for every r ∈ 2n and i = 0, 1, put tr� i = t j ⊕ s2n+1−1, where t j = tr �i .

Finally, put R := {tr : r ∈ 2<ω, tr as defined in the construction} and T := {t ∈
2<ω : ∃t ′ ∈ R∃k ≤ |t ′|(t ′�k = t)} (i.e., T is the downward closure of R). It is clear
that T is a Silver tree such that for every z ∈ [T ], z ∈⋂

n∈ω Dn . ��
Corollary 7 If� is a topologically reasonable family, then�(Baire)⇒ �(Silver).

Proof Pick a set X ∈ � having the Baire property. Then, if X is not meager, there
exists s ∈ 2ω such that X is comeager in [s]. Hence, by Fact 6, one can find T ∈ V,
with Stem(T ) = s, such that [T ] ⊆ X . In case X is meager, one can analogously
find a Silver tree contained in the complement of X . By Lemma 5, that is sufficient to
obtain �(Silver). ��

3 Shelah’s amalgamation and unreachability

In the construction of the model about Lebesgue measurability and Baire property (see
[11]), Solovay used a key property of the Lévy-collapsing algebra, which we recall in
the following definition.

Definition 8 A complete Boolean algebra B has the Solovay property if and only if
for any formula � with parameters in the ground model N and for any B-name for a
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On the separation of regularity properties of the reals 735

real ẋ , one has ‖�(ẋ)‖B ∈ Bẋ , where Bẋ is the complete Boolean algebra generated
by ẋ , i.e., Bẋ is generated by {‖s � ẋ‖B : s ∈ 2<ω}.

The meaning of the definition is that, to evaluate�(ẋ) in NB, it suffices to know its
value in a certain partial extension obtained from a subalgebra of B, namely Bẋ . It is
not hard to show that a particular family of complete Boolean algebras, satisfying the
Solovay property, is the class of strongly homogeneous algebras, which we now define.

Definition 9 A complete Boolean algebra B is strongly homogeneous if and only if
for every pair of σ -generated complete subalgebras B1,B2 � B, every isomorphism
φ∗ : B1 → B2 can be extended to an automorphism φ : B → B.

Lemma 9.8.3 in Bartoszyński and Judah [1] shows that

if B is strongly homogeneous, then B satisfies the Solovay property. (1)

Note that the Lévy-collapsing algebra is strongly homogeneous. In [8], Shelah intro-
duced amalgamation, a general method to build Boolean algebras satisfying a property
related to strong homogeneity, and in effect providing us with a tool to prove variations
of Solovay’s result.

Shelah’s construction We review Shelah’s amalgamation in as much detail as we
need for the present purpose and refer the reader to the splendid exposition in Judah
and Roslanowsky [5] for details.

Definition 10 Let B be a complete Boolean algebra and B0 � B. The projection map
π : B → B0 is defined by π(b) =∏{b ≤ b0 : b0 ∈ B0}.
Definition 11 Let B be a complete Boolean algebra and B1,B2 two isomorphic com-
plete subalgebras of B and φ0 the isomorphism between them. One defines the amal-
gamation of B over φ0, say Am(B, φ0), as follows: first, let

B×φ0 B := {(b′, b′′) ∈ B× B : φ0(π1(b
′)) · π2(b

′′) �= 0},

where π j : B → B j is the projection, for j = 1, 2, and consider on such B ×φ0 B
simply the product order. Then set Am(B, φ0) := B(B ×φ0 B), i.e., the complete
Boolean algebra generated by B×φ0 B.

One can easily see that e j : B → Am(B, φ0) such that

e1(b) = (b, 1) and e2(b) = (1, b)

are both complete embeddings [5, lemma 3.1]. Further, for any b1 ∈ B1, one can show
that

(b1, 1) is equivalent to (1, φ0(b1)). (2)

In fact, assume (a′, a′′) ≤ (b1, 1) and (a′, a′′) incompatible with (1, φ0(b1)) (in
Am(B, φ0)). The former impliesπ1(a′) ≤ b1, while the latter impliesπ2(a′′)·φ0(b1) =
0, and hence one obtains φ0(π1(a′)) · π2(a′′) = 0, which means that the pair (a′, a′′)
does not belong to the amalgamation.
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736 G. Laguzzi

Moreover, if one considers f1 : e2[B] → e1[B] such that, for every b ∈
B, f1(1, b) = (b, 1), one obtains an isomorphism between two copies of B into
Am(B, φ0), such that f1 is an extension of φ0 (since for every b1 ∈ B1, by (2) above,
e1(b1) = (b1, 1) = (1, φ0(b1)) = e2(φ0(b1)), which means e1�B1 = e2 ◦ φ0).

Hence, if one considers e1[B], e2[B] as two isomorphic complete subalgebras of
Am(B, φ0), one can repeat the same procedure to construct

2-Am(B, φ0) := Am(Am(B, φ0), f1)

and f2 the isomorphism between two copies of Am(B, φ0) extending f1. It is clear
that one can continue such a construction, in order to define, for every n ∈ ω,

n + 1-Am(B, φ0) := Am(n-Am(B, φ0), fn)

and fn+1 the isomorphism between two copies of n-Am(B, φ0) extending fn .
Finally, putting

(i) ω-Am(B, φ0) = Boolean completion of direct limit of n-Am(B, φ0)’s, and
(ii) φ = limn∈ω fn (in the obvious sense),

one obtains B1,B2 � ω-Am(B, φ) and φ automorphism of ω-Am(B, φ0) extending
φ0.

We shall abuse terminology by referring to the Boolean completion of the direct
limit of a sequence of Boolean algebras simply as their direct limit (since only com-
plete Boolean algebras are of interest to us). We write limα<λ Bα for the direct limit
understood in this way.

We will iterate this construction (each time with a new pair of isomorphic sub-
algebras) as a method to obtain a Boolean algebra which satisfies a particular variant
of strong homogeneity.

Unreachability A crucial ingredient to the present result is unreachability, a property
of reals which in a sense is preserved both by Silver forcing and by amalgamation. A
real is unreachable if it avoids every slalom of the ground model.

• �k = {σ ∈ HFω : ∀n ∈ (|σ(n)| ≤ 2kn)}} and � = ⋃
k∈ω �k , where HF denotes

the hereditary finite sets;
• let g(n) = 2n and {In : n ∈ ω} be the partition of ω such that I0 = {0} and

In+1 =
[ ∑

j≤n g( j),
∑

j≤n+1 g( j)
)

, for every n ∈ ω;

• given x ∈ 2ω, define hx (n) = x�In .

Definition 12 One says that z ∈ 2ω is unreachable over N iff

∀σ ∈ � ∩ N∃n ∈ ω(hz(n) /∈ σ(n)).

Remark 13 If z is random over N, then z is unreachable over N. To prove that, assume
towards a contradiction that there is σ ∈ �k ∩ N such that for every n ∈ ω, hz(n) ∈
σ(n). Consider the set B := {x ∈ 2ω : ∀n ∈ ω(hx (n) ∈ σ(n))}, which is in N by
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On the separation of regularity properties of the reals 737

construction. Since limn∈ω 2kn

2g(n) = 0, we get that B has measure zero. Hence z /∈ B,
which is a contradiction.

Remark 14 If x is Cohen over N then x is unreachable over N. The proof is similar to
the above one, by noting that the set B is closed nowhere dense too, simply because
for every n ∈ ω, |σ(n)| < 2g(n) and so, given a sequence s ∈ 2<ω, one can find an
extension s′ such that [s′] ∩ B = ∅.

Lemma 15 Let B,B1,B2, φ0, e1, e2 as above and ẋ a B-name for an element of 2ω.
If �B “ẋ is unreachable over NB1 and NB2”, then

�Am(B,φ0)“e1(ẋ) is unreachable over Ne2[B]”,

and analogously �Am(B,φ0)“e2(ẋ) is unreachable over Ne1[B]”.

Proof It is proven in Judah and Roslanowsky [5] that

Am(B, φ0)/B1 densely embeds into e1[B/B1] × e2[B/B2].

That roughly means that, in NB1 , the amalgamation (quotiented by B1) can be seen as
a product of the two copies of B. Hence, for our proof it suffices to show that, if A0
and A1 are two complete Boolean algebras and ẋ is an A0-name for an element in 2ω

such that �A0 “ẋ is unreachable over N”, then

�A0×A1 “ẋ is unreachable over N[G]”,

where G is A1-generic over N. In fact by considering A0 and A1 to be e1[B/B1] and
e2[B/B2], respectively (and NB1 as ground model), we obtain exactly the conclusion
of the lemma.

To reach a contradiction, assume there isσ ∈ �k∩N[G] and (a0, a1) ∈ A0×A1 such
that (a0, a1) � ∀n ∈ ω(hx (n) ∈ σ(n)). For each n ∈ ω one can pick bn ∈ A1, bn ≤ a1
and Wn ⊂ ω, with |Wn| ≤ 2kn , such that bn � σ(n) = Wn . Furthermore, since the
sequence 〈Wn : n ∈ ω〉 is in N, one can find a ∈ A0, a ≤ a0 and j ∈ ω such that
a � hx ( j) /∈ W j . Hence, we would get, on the one hand (a, b j ) ≤ (a0, a1) and so
(a, b j ) � ∀n ∈ ω(hx (n) ∈ σ(n)), but on the other hand (a, b j ) � hx ( j) /∈ W j =
σ( j). ��
Lemma 16 Assume x ∈ 2ω be unreachable over N. Then x remains unreachable over
N[z], where z is a Silver real. In other words, the property of being unreachable is
preserved by Silver extensions.

Proof It is a standard fusion argument. Given σ ∈ �k ∩N[z] and a condition T ∈ V,
the idea is to construct a fusion sequence 〈Tn : n ∈ ω〉 and τ ∈ �k+1 ∩ N such that
the limit of the fusion T ′ � ∀n ∈ ω(σ(n) ⊆ τ(n)). The key-point of the proof is
that for every n ∈ ω, one only has 2n-many n + 1st splitting nodes, and therefore
2n-many possible decisions for σ(n). In this way, one can define τ(n) to be the union
of all these possibilities, in order to have |τ(n)| ≤ 2kn · 2n = 2(k+1)n , which gives us
τ ∈ �k+1 ∩ N.
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738 G. Laguzzi

More formally: Step 0: Let T 0 ≤ T such that T 0 � σ(0) = τ(0), for some
singleton τ(0) ⊂ ω. Step n + 1: Let {t j : j < 2n+1} be an enumeration of the set
{tm�i : tm ∈ Splitn+1(T n) ∧ i = 0, 1}. For any j < 2n+1, one can find T n+1

j ≤ T n
t j

and En+1
j of size ≤ 2k(n+1) such that T n+1

j � σ(n + 1) = En+1
j . Note also that

by using an argument as in the proof of Lemma 18 one can uniformly pick those
T n+1

j ’s, in order to obtain a Silver tree T n+1 := ⋃{T n+1
j : j < 2n+1}. If we now

put τ(n + 1) = ⋃{En+1
j : j < 2n+1} we then get T n+1 ≤n T n, |τ(n + 1)| ≤

2n+1 ·2k(n+1) = 2(k+1)(n+1) and T n+1 � σ(n+1) ⊆ τ(n+1) (where S ≤n T means
S ≤ T and Splitn+1(S) = Splitn+1(T ).)

Finally put T ′ = ⋂
n∈ω Tn , for every n ∈ ω. Hence τ ∈ �k+1 ∩ N, T ′ ≤ T and

T ′ � ∀n ∈ ω(σ(n) ⊆ τ(n)). ��

Amoeba for Silver Proofs involving regularity properties need the right notion of
amoeba, i.e., a particular forcing notion to add a large set of generic reals, where the
precise meaning of the two italic-style words depend on the notion of regularity we
are dealing with.

Definition 17

VT = {(p, T ) : T ∈ V and p = T �n, for some n ∈ ω},

ordered by

(p′, T ′) ≤ (p, T )⇔ T ′ ⊆ T ∧ T ′�ht(p) = T �ht(p).

We aim at showing that this forcing adds many Silver reals, more precisely,

�VT ∀T ∈ V ∩ N∃T ′ ⊆ T (T ′ ∈ V ∧ [T ′] ⊆ V(N)), (3)

where we remind that V(N) denotes the set of Silver reals over the ground model N.
First of all, we prove the following preliminary fact.

Lemma 18 Let TG = ⋃{p : ∃T ((p, T ) ∈ G)}, where G is VT-generic over the
ground model. Then N[G] |� [TG] ⊆ V(N).

Proof Fix an open dense D ⊆ V and (p, T ) ∈ VT. First of all, let t0, t1, . . . , tk be an
enumeration of all terminal nodes in p. We use the following notation: for any tree T
and t ∈ 2<ω such that |t | ≤ |Stem(T )|,

t ⊕ T := {t ⊕ t ′ : t ′ ∈ T },

i.e., the tree obtained from T by chancing all nodes to begin as t . We aim at uniformly
shrinking T to some T ′ ∈ V so that (p, T ′) � ∀z ∈ [TG](Hz ∩ D �= ∅), where Hz is
defined by Hz = {S ∈ V ∩ N : z ∈ [S]}. Consider the following construction:

• firstly, pick T 0
t0 ⊆ Tt0 in D and let T 0

t1 = t1 ⊕ T 0
t0 ;

• then, pick T 1
t1 ⊆ T 0

t1 in D and let T 1
t2 = t2 ⊕ T 1

t1 ; note that t0 ⊕ T 1
t1 ⊆ T 0

t0 and so
t0 ⊕ T 1

t1 ∈ D as well;
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On the separation of regularity properties of the reals 739

• continue this construction for every j ≤ k and finally let T ′t j
= t j ⊕ T k

tk , for every
j ≤ k.

It follows from the construction that T ′ :=⋃{T ′t j
: j ≤ k} is a Silver tree and, for any

z ∈ [TG], one has Hz ∩ D � T ′t j
, for the appropriate j ≤ k such that t j � z. Hence,

we have shown that for every branch z ∈ [TG], Hz ∩ D �= ∅.
It is left to show that the set Hz is a filter. Pick T1, T2 ∈ Hz incompatible (note that

by absoluteness they are incompatible in N as well). Hence, [T1] ∩ [T2] is finite, i.e.,
[T1] ∩ [T2] = {xi : i ≤ n}. Then E := {T ∈ V : ∀i ≤ n(xi /∈ [T ])} is open dense
set in the ground model N, and so, by genericity, there is T ∈ E such that z ∈ [T ],
which contradicts T1, T2 ∈ Hz (and so z ∈ [T1] ∩ [T2]). N.B.: by absoluteness, this
argument works when z belongs not only to N[G], but to any ZFC-model M ⊇ N[G]
(see also Remark 19 coming). ��
Remark 19 The forcing we have just introduced is an amoeba in a strong sense, which
means that the tree added by VT is a Silver tree of Silver reals in any ZFC-model
M ⊇ N[G], where G is VT-generic over the ground model N. The method for proving
that is essentially the same used by Spinas in [12] about an analogous result for an
amoeba of Laver. In fact, if we look at the proof of 18, we actually show that, for every
open dense set D ⊆ V of the ground model there exists a front F ⊆ TG such that
for every t ∈ F, (TG)t ∈ D. Since being a front is a �1

1-property, by absoluteness,
it exists in any ZFC-model M ⊇ N[G]. It therefore follows that our argument works
even if z ∈ [TG] comes from any ZFC-model M ⊇ N[G]. In other words, for any
ZFC-model M ⊇ N[G],M |� [TG] ⊆ V(N).

It is left to show that this forcing actually adds such a generic Silver tree inside
any Silver tree of the ground model. To this aim, fix any S ∈ V ∩N, and consider the
forcing VTS defined as VTS := {(p, T ) ∈ VT : T ⊆ S}, with the analogous order. It
is therefore clear that we can similarly show that any branch through the generic TG

added by VTS is Silver generic, and obviously TG ⊆ S. Furthermore, by using the
standard �-preserving bijection between S and 2ω, one can easily note that VTS is
forcing equivalent to VT, actually really isomorphic, and therefore we obtain (3).

Finally Remark 19 gives also the following corollary.

Corollary 20 For every ZFC-model M ⊇ N[G]

M |� ∀T ∈ V ∩ N∃T ′ ⊆ T (T ′ ∈ V ∧ [T ′] ⊆ V(N)).

4 Silver without Miller and Lebesgue

We now have all needed tools to show the main results of the paper, that is to provide
a model

M |� all(Silver) ∧ ¬all(Miller) ∧ ¬all(Lebesgue) ∧ ∀x ∈ ωω(ωL[x]
1 < ω1),

We remark that in our proof the use of unreachability together with the amoeba of Silver
shows a new method for separating regularity properties using Shelah’s amalgamation.
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We start with an inaccessible κ and force to add a non-Miller measurable set Y and
a non-Lebesgue measurable set Z , and we simultaneously amalgamate over Silver
forcing V, with respect to such Y and Z . The construction will give us a complete
Boolean algebra Bκ forcing1

“every set of reals in L(ωω,Y, Z) is Silver measurable,

Y is not Miller measurable, Z is not Lebesgue measurable, and

ω1 is inaccessible by reals”.

Observe that we must show not only all sets in L(ωω) are regular, but all sets
in L(ωω,Y, Z). Furthermore, intuitively, since we want Silver measurability but not
Lebesgue and Miller measurability, one should ask a type of homogeneity involving
Silver subalgebras of Bκ w.r.t. Ẏ and Ż , but not all σ -generated subalgebras (since,
e.g., fixing Ẏ by Cohen homogeneity would affect the unreachability). More precisely,
we want our amalgamation to catch all subalgebras generated by A∪b, where A�Bκ
is isomorphic to the Silver algebra and b ∈ Bκ . In this spirit, one introduces the
following notion.

Definition 21 Let B be a complete Boolean algebra, Ẏ and Ż be B-names. Let B+(V)
denote a complete Boolean subalgebra generated by B(V)∪{b}, for some b ∈ B. One
says that B is (V, Ẏ , Ż)-homogeneous if and only if for any isomorphism φ0 between
two complete subalgebras B′,B′′ of B, such that B′ ≈ B′′ ≈ B+(V), there exists
φ : B → B automorphism extending φ0 such that �B “φ(Ẏ ) = Ẏ and φ(Ż) = Ż”.

Remark 22 Note that for every b ∈ B, one can easily construct a dense embedding
between B(V) and B+(V), and so they give rise to the same extension.

So one starts from a ground model N containing an inaccessible cardinal κ . Define
a complete Boolean algebra Bκ as a direct limit of κ-many complete Boolean algebras
Bα’s of size < κ , such that for every α < γ < κ,Bα � Bγ , and one simultaneously
constructs two sets Ẏ and Ż of Bκ -names of reals. We now see in detail such a
construction.

• Firstly, to obtain the (V, Ẏ , Ż)-homogeneity, we use a standard book-keeping
argument as follows: whenever Bα � B′� Bκ and Bα � B′′� Bκ are such that Bα
forces (B′ : Bα) ≈ (B′′ : Bα) ≈ B+(V) and φ0 : B′ → B′′ an isomorphism s.t.
φ0 � Bα = IdBα , then there exists a sequence of functions in order to extend the
isomorphism φ0 to an automorphism φ : Bκ → Bκ , i.e., ∃〈αη : η < κ〉 increasing,
cofinal in κ , with α0 = α, and ∃〈φη : η < κ〉 such that
– for η > 0 successor ordinal, Bαη+1 = ω-Am(Bαη , φη−1), and φη is the

automorphism on Bαη+1 generated by the amalgamation;
– for η limit ordinal, let Bαη = limξ<η Bαξ and φη = limξ<η φξ , in the obvious

sense;
– for every η < κ , we have Bαη+1 � Bαη+1 , i.e., αη + 1 < αη+1.

1 Note that, following Solovay’s approach, we could equivalently pick HOD(Onω, Y, Z) as inner model,
i.e., the class of all sets that are hereditarily ordinal definable over Onω ∪ {Y } ∪ {Z}.
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Moreover, since one needs to fix the set of names by each automorphism φη, one
puts
– successor case η > 0:

Ẏαη+1 := Ẏαη ∪ {φ j
η(ẏ), φ

− j
η (ẏ) : ẏ ∈ Ẏαη , j ∈ ω},

Żαη+1 := Żαη ∪ {φ j
η(ż), φ

− j
η (ż) : ż ∈ Żαη , j ∈ ω};

– limit case: Ẏαη :=
⋃
ξ<η Ẏαη , and Żαη :=

⋃
ξ<η Żαη .

• Secondly, to obtain the Silver measurability of all sets in L(ωω,Y, Z) together
with Y non-Miller measurable and Z non-Lebesgue measurable, one has to add
the following operations into the construction of Bκ :
1. for cofinally many α’s,

Bα+1 = Bα ∗ V̇T.

In this case, put Ẏα+1 = Ẏα and Żα+1 = Żα .
2. for cofinally many α’s, Bα+1 = Bα ∗ Ṁ and

Ẏα+1 = Ẏα ∪ {ẏT : T ∈ M},

where ẏT is a name for a Miller real over NBα through T ∈ NBα ,
3. for cofinally many α’s, Bα+1 = Bα ∗ Ḃ and

Żα+1 = Żα ∪ {żT : T ∈ B},

and zT is a name for a random real through the positive measure tree T ∈ NBα .
4. for cofinally many α’s we collapse α to ω, i.e., Bα+1 = Bα ∗Coll(ω, α), and

we let Ẏα+1 = Ẏα and Żα+1 = Żα;
• Finally, for any limit ordinal λ, Ẏλ = ⋃

α<λ Ẏα, Żλ = ⋃
α<λ Żα and Bλ =

limα<λ Bα .

Remark 23 Note that Bκ is a direct limit of complete Boolean algebras of size < κ

collapsing κ toω1 and it is therefore trivially κ-cc. At this point the reader could object
that this algebra is nothing more than the Levy collapse, and hence the extension we
get is the same as Solovay’s. How can we then separate regularity properties? The
point is that, even if we get the same forcing-extension obtained by Solovay, what we
do is to look at a different inner model; after collapsing the inaccessible to ω1, we
pick the inner model L(ωω, Z ,Y ). So this method should be viewed as a technique
for choosing the “suitable” inner model of Solovay’s extension to obtain the required
separation of regularity properties. For further observations about that, we refer the
reader to the last section, questions 1, 3 and 6.

The proof of the main theorem splits into the following lemmata.

Lemma 24 Let G be Bκ -generic over N. Then

N[G] |� “every set of reals in L(ωω,Y, Z) is Silver measurable”.
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742 G. Laguzzi

Proof Fix arbitrarily X ⊆ 2ω,� and r ∈ ωω such that X = {x ∈ 2ω : �(x, r,Y, Z)}.2
Let α < κ be such that r ∈ V[G�α + 1] and Bα+1 = Bα ∗ V̇T. Note that, because of
the first point of the construction above,

N[G�α + 1] |� “Bκ/G�α + 1 is (V, Ẏ , Ż)-homogeneous”.

Let N∗ = N[G�α + 1],B∗ = Bκ/G�α + 1 and H be the tail of the generic filter G,
i.e., H is B∗-generic over N∗ and N∗[H ] = N[G]. Since the parameter r has been
“absorbed” in the ground model, for notational simplicity, from now on we will hide
it, without indicating it explicitly within the formula. The next step will be to prove the
Solovay property for� over Silver reals, which is the content of the next observation.

Fact 25 Let B∗ be (V, Ẏ , Ż)-homogeneous Boolean algebra,�(x, y, z) be a formula
with only parameters in the ground model and Y, Z as parameters, and ẋ be a name
for a Silver real. Then ‖�(ẋ, Ẏ , Ż)‖B∗ ∈ B∗̇x .

Sketch of the proof The proof is pretty standard and we give a sketch of it for complete-
ness. To reach a contradiction, assume ‖�(ẋ, Ẏ , Ż)‖B∗ /∈ B∗̇x . Let A be the complete
Boolean algebra generated by B∗̇x ∪‖�(ẋ, Ẏ , Ż)‖B∗ . It is well-known that there exists
ρ : A → A automorphism such that ρ(‖�(ẋ, Ẏ , Ż)‖B∗) �= ‖�(ẋ, Ẏ , Ż)‖B∗ and ρ is
the identity over B∗̇x . By (V, Ẏ , Ż)-homogeneity, there exists φ : B∗ → B∗ automor-
phism extending ρ such that �B∗ “φ(Ẏ ) = Ẏ and φ(Ż) = Ż”. Hence, the following
equalities yield a contradiction:

ρ(‖�(ẋ, Ẏ , Ż)‖B∗) = φ(‖�(ẋ, Ẏ , Ż)‖B∗)

= ‖�(φ(ẋ), φ(Ẏ ), φ(Ż))‖B∗

= ‖�(ẋ, Ẏ , Ż)‖B∗ .

��
Fact 26 Let ẋ be a B∗-name such that �B∗ “ẋ is a Silver real over N∗”, and assume
for every b ∈ B(V), ‖ẋ ∈ b‖B∗ �= 0. Then there exists an isomorphism

f : B(V)→ B∗̇x , such that �B∗ f (v̇) = ẋ,

where v̇ is the canonical name for the Silver real.
(Hint: choose f (b) = ‖ẋ ∈ b‖B∗ , for every b ∈ B(V)).

Now let ẋ0 be a name for a Silver real and assume A = ‖�(ẋ0, Ẏ , Ż)‖B∗ �= 0.
Hence, because of 26, together with (V, Ẏ , Ż)-homogeneity, one can consider b =
f −1[A], with b ∈ B(V). The next observation is simply a version of Solovay’s lemma,
stated for Silver reals in place of Cohen reals (for a proof, see [1, lemma 9.8.5]).

2 Note that the argument works even if we start with r ∈ Onω . Hence, a similar proof actually holds for
X ∈ HOD(Onω, {Y }, {Z}), as mentioned before. Furthermore, we remark that � will have (suppressed)
ordinal parameters.
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Fact 27 Suppose N∗[H ] |� “x is a Silver real over N∗”. Then

N∗[H ] |� “x ∈ b ⇔ �(x,Y, Z)”.

By Remark 19 and Corollary 20, one can pick a Silver tree T ∈ N∗[H ] such that
[T ] ⊆ b and every x ∈ [T ] is Silver over N∗. Hence, one obtains

N∗[H ] |� ∀x ∈ [T ](�(x,Y, Z)),

which precisely means N[G] |� [T ] ⊆ X .
It is left to show the case ‖�(ẋ, Ẏ , Ż)‖B∗ = 0. In this case, ‖¬�(ẋ, Ẏ , Ż)‖B∗ �= 0

and then, arguing in the same way, one gets a Silver tree T ∈ N∗[H ] such that
N∗[H ] |� ∀x ∈ [T ](¬�(x,Y, Z)), and therefore

N[G] |� [T ] ∩ X = ∅.

��
Lemma 28 Let G be a Bκ -generic filter over N. Then

N[G] |� “Z is not Lebesgue measurable”.

Proof In N[G], we aim at showing that for every tree S with positive measure, both

Z ∩ [S] �= ∅ and [S] � Z .

Let Ṡ be a Bκ -name. There is α < κ such that Ṡ is a Bα-name, Bα+1 = Bα ∗ Ḃ and
Żα+1 = Żα ∪ {żT : T ∈ B}. Consider żS name for a random real over N[G�α + 1]
such that N[G] |� żG

S ∈ [S]. Thus,

N[G] |� żG
S ∈ Z ∩ [S].

On the other hand, there is also γ < κ , such that Ṡ is a Bγ -name, Bγ+1 = Bγ ∗
Coll(ω, α) and Żγ+1 = Żγ . Let ġ be a name for a random real over N[G�γ+1] (added
by the Levy collapse) such that N[G] |� ġG ∈ [S]. Obviously, N[G] |� ġG /∈ Zγ ,
since it is added at stage γ + 1, and thus,

N[G] |� ġG ∈ [S]\Ż G
γ+1,

since Żγ+1 = Żγ . It is left to show that N[G] |� ġG /∈ Z\Ż G
γ+1. This follows from

the following result.

Lemma 29 For every γ, β < κ, γ < β, and ẋ ∈ Żβ\Żγ , one has

N[G] |� “ẋG is unreachable over N[G�γ + 1]”.

Proof of lemma 29 The proof is by induction on β < κ .
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Limit Case: if β is limit, then the result is completely trivial, since, given
ẋ ∈ Żβ\Żγ , it follows that there exists β ′ < β such that ẋ ∈ Żβ ′ \Żγ , and
so one can simply apply the inductive hypothesis for β ′ in order to get N[G] |�
“ẋG is unreachable over N[G�γ + 1]”.

Successor Case: β = γ + 1, i.e., ẋ ∈ Żγ+1\Żγ . Two cases are possible:
Subcase 1: Żγ+1 = Żγ ∪ {żS : S ∈ B}. In this case ẋ has to be a random real

over N[G�γ + 1] and therefore unreachable over it, because of Remark 13.
Subcase 2: Żγ+1 = Żγ ∪ {φ j (ż), φ− j (ż) : ż ∈ Żγ , j ∈ ω}, where γ = αη and

φ = φη, for η > 0. First note that we have the following result, which is analog to
lemma 3.4 in Judah and Roslanowsky [5].

Fact 30 Let η > 0 be a successor ordinal. Let B′,B′′ � Bαη and ẋ ∈ NBαη ∩ 2ω such
that

�Bαη “ẋ is unreachable over both NB′ and NB′′”,

and ψ : B′ → B′′ isomorphism.
Then, for every j ∈ ω,

�Bαη+1 “φ j
η (ẋ) and φ− j

η (ẋ) are unreachable over NBαη”.

where Bαη+1 = ω-Am(Bαη , ψ), and φη is the automorphism extending ψ , generated
by the amalgamation.

Proof The proof simply consists of a recursive application of Lemma 15. For an
analogous case, one can see the proof of lemma 3.4 in Judah and Roslanowsky [5]. ��
Corollary 31 Let Bα0 � B′,B′′ � Bα1 such that

�Bα0
“(B′ : Bα0) ≈ (B′′ : Bα0) ≈ B+(V)”

and φ0 : B′ → B′′ isomorphism such that φ0�Bα0 = IdBα0
. Then for every ẋ ∈

NBα1 ∩ 2ω such that �Bα1
“ẋ is unreachable over NBα0”, one has, for every j ∈ ω,

�Bα1+1 “φ j
1 (ẋ) and φ− j

1 (ẋ) are unreachable over NBα1”.

(As usual, Bα1+1 is the ω-Am(Bα1 , φ0), and φ1 ⊇ φ0 the automorphism of Bα1+1
generated by the amalgamation).

Proof First, note that Bα0 forces both (B′ : Bα0) ≈ (B′′ : Bα0) ≈ B+(V), and then,
by Lemma 16 and Remark 22, we obtain

�Bα1
“ẋ is unreachable over both NBα0∗(B′:Bα0 ) and NBα0∗(B′′:Bα0 )”.

To finish the proof, one can then apply Fact 30, for η = 1. ��
Going back to the proof of Subcase 2, we have two cases:
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• η = 1, and so γ = α1: in such a case either ẋ = φ
j
1 (ż) or ẋ = φ

− j
1 (ż),

for some ż ∈ Żα1 and j ∈ ω. Hence, by inductive hypothesis, we have
�Bα1

“ż is unreachable over NBα0 ”, and therefore, by Corollary 31, we obtain

�Bα1+1 “ẋ is unreachable over NBα1 ”;

• η > 1 and so γ = αη: in such a case we do not have to use Corollary 31, but
Fact 30 is sufficient; in fact, in this case, we do not have the “intrusion” of the two
copies of the Silver+ algebra in the amalgamation. More precisely, if ẋ = φ

j
η(ż)

for some ż ∈ Zαη , then one obtains

�Bαη+1 “ẋ is unreachable over NBαη ”,

since by inductive hypothesis �Bαη “ẋ is unreachable over NBαη−1 ”.

��
By our previous comments, this concludes the proof to show Z not being Lebesgue

measurable. ��

Lemma 32 Let G be a Bκ -generic filter over N. Then

N[G] |� “Y is not Miller measurable”.

Proof The proof is analogous to the one just given for showing Z not being Lebesgue
measurable. Here, instead of using random reals, we use Miller reals, and instead of
using the unreachability, we use the unboundedness. In fact an analogous of Fact 30 and
Corollary 31 can be proven if one replaces the word “unreachable” with “unbounded”
(see [5, lemma 3.4 and lemma 6.1]). One can then continue with a similar proof, by
using the fact that Miller reals are unbounded over the ground model and that Silver
forcing is ωω-bounding. ��

Hence, if one considers the inner model L(ωω,Y, Z) of N[G], one obtains

L(ωω,Y, Z)N[G] |� all(Silver) ∧ ¬all(Lebesgue) ∧ ¬all(Miller) ∧
∀x ∈ ωω(ωL[x]

1 < ω1),

Remark 33 Note that any comeager set contains the branches through a Miller tree,
and therefore all(Baire) ⇒ all(Miller), by Lemma 5. Hence, all(Baire) fails in
our model, without displaying a concrete counterexample. On the contrary, note that
our method does not permit to construct a unique set Y which is simultaneously non-
Miller measurable and non-Lebesgue measurable. In fact, on the one hand random
reals are unreachable but not unbounded, whereas on the other hand Miller reals are
unbounded but not unreachable.
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5 Concluding remarks and open questions

We conclude with some questions which we consider noteworthy and for which further
developments are expected.

(Q1) It would be interesting to understand the behaviour of the inaccessible κ if we do
not explicitly collapse it along the construction. In the model presented by Shelah
in [9], if we start from L as ground model and κ being the least inaccessible,
we know that κ collapses to ω1; in fact, ω1 has to be inaccessible by reals,
as the latter is implied by �1

3(Lebesgue). Nevertheless, in our case, we know
that projective Silver measurability has the consistency strength of ZFC, so we
cannot use such an indirect argument. We conjecture that the algebra Bκ will
anyway collapse the inaccessible to ω1, but we currently do not have a precise
proof of that.

(Q2) In his Ph.D. dissertation [7] written under the supervision of Sy Friedman, David
Schrittesser improved the amalgamation-method in order to get a projective ver-
sion of Shelah’s result, where all projective sets are Lebesgue measurable and
there exists a projective set without Baire property. So a natural question is
whether such a method can be useful to obtain the projective version of the sep-
aration between Silver-, Miller- and Lebesgue- measurability that we presented
in this paper, and as usual requiring ω1 to be inaccessible by reals.

(Q3) The same method might be done to separate other two regularity properties: in our
case, we used the fact that a random real is unreachable over the ground model,
and that the unreachability is somehow preserved by amalgamation and Silver
forcing. Obviously, in other cases, the trick will be to find the right property of the
generic real still preserved by the amalgamation and simultaneously “respected”
by the other forcing; for example, if we want to get all(Sacks)∧¬all(Silver)
one should find a particular feature of the Silver real which is preserved by
amalgamation and Sacks forcing in the sense of Fact 30 and Corollary 31.

(Q4) The previous results and observations point out that the nature of the generic
reals, and more generally of the forcing notions, is strictly related to the behav-
iour of the regularity properties associated. Hence, a more general and intriguing
question could be to understand whether some specific relation between two
tree-like forcings P,Q reflects on the relation between all(P- measurability)
and all(Q- measurability), where P-measurability denotes the notion of reg-
ularity associated with P (see [4] and [6, chapter 2]). For example, we know
that C � D (where the latter is the Hechler forcing) and that all(Hechler) ⇒
all(Baire); Can one obtain a more general fact asserting that if P � Q then
all(Q- measurability) implies all(P- measurability)?

(Q5) Since any comeager set contains the branches through a Miller tree, it follows
that all(Baire) ⇒ all(Miller). Then it comes rather natural to ask whether
or not such an implication can be reversed. If we want to apply the method
presented in this paper to give a negative response, we should find a property
which is preserved via Miller extension, and satisfied by Cohen reals. Note that
the unreachability cannot help for that, since Miller reals themselves are not
unreachable.
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(Q6) Starting from L and using Shelah’s machinery to obtain all(Baire) without
inaccessible, we get a model where even�1

2(Lebesgue) fails, since by sweetness
no random reals are added. Furthermore, in such a model we obviously have
ωL

1 = ω1. What about a model for all(Baire) ∧ ¬all(Lebesgue) but in which
ω1 is inaccessible by reals? The answer is far from trivial, since Shelah’s method
seems to have several difficulties in that case; in fact, one should find a property
of the random real which is preserved by Cohen extension (and simultaneously
by the amalgamation), which appears really hard to obtain. So it seems that
a completely different method should be used, probably even another way to
construct homogeneous algebras.
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