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“You will not apply my precept,”
he said, shaking his head
“How many times have I said to you that
when you have eliminated the impossible
whatever remains, however improbable,
must be the truth?”

Arthur Conan Doyle

Summary

In this paper, I focus on reasoning about individual cases in medicine. The
relevance of the individual case has always been present both in medical and
clinical research and has acquired further significance in recent times. Here, after
recalling the importance of reasoning about individual cases, I introduce the
distinction between general and singular causation and explain why medical
reasoning needs the latter. I then consider three areas in which this necessity is
most apparent: diagnosis, early phase clinical trials in oncology, and forensic
medicine. I argue that the best approach to this form of causal reasoning is the
counterfactual approach provided by structural equation models. I conclude by
presenting some considerations on the relation between the building of structural
models for singular causation and the contemporary “data deluge.” The aim of
this paper is mainly philosophical: it is an attempt to interpret some actual
medical approaches in a new perspective and at the same time connect some
aspects of contemporary trends of research in medicine and bioinformatics with
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some classical philosophical questions. I do not give practical suggestions, but I
am also persuaded that philosophical work on kinds of reasoning and on singular
causation can be of interest for practicing physicians and experts in other fields.
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Scanning the QR code directs you to the word cloud of the chapter that is made
up of the words we discussed throughout the whole book in relation to the chapter’s
keyword, which is intentionally not included in the word cloud. Find the keyword
and put it in place in the puzzle according to the clues provided in Chap. 32. The
mystery hidden in the puzzle is the quote of Brain, Decision-making, and Mental
Health.

1 Introduction

Medical science differs from most other sciences for the importance assigned to the
individual case. According to Gorovitz and MacIntyre [1], medical science is a
“science of particulars.” In their account, the need for a particularistic approach
derives from the fact that some particular entities, like the higher primates, cannot
be described solely in terms of the relevant physical and chemical mechanisms.
How those mechanisms operate results from the “particular history” of each indi-
vidual and from the circumstances that accompany it. It is the importance of the
particular history of each individual that makes it difficult to draw a line between a
rule and its exceptions; in medicine, it can be said that exceptions are the rule.

The relevant changes in biomedical reasoning and decision-making linked to the
advances in information technology seem to point towards a kind of medical
research and practice even more “individual-centered.” The Precision Medicine
Initiative [2], a research program launched in 2015 by former United States Pres-
ident Barack Obama, is based on the very notion of “tailored health care.”

Until now, most medical treatments have been designed for the “average patient.” As a
result of this “one-size-fits-all” approach, treatments can be very successful for some pa-
tients but not for others. Precision medicine, on the other hand, is an innovative approach
that takes into account individual differences in people’s genes, environments, and
lifestyles.

The general aim of precision medicine, also known as personalized medicine, is
that of finding prevention and treatment strategies respectful of–or even based on–
individual traits [3]. In describing the program, Collins and Varmus [4] remark that
these ideas are not new, but their clarification and the very possibility of realization
is due to:

the recent development of large-scale biologic database (such as the human genome se-
quence), powerful methods for characterizing patients (such as proteomics, metabolomics,
genomics, diverse cellular assays, and even mobile health technology), and computational
tools for analyzing large sets of data.

This new trend of research and healthcare is, therefore, based on the possibility
of assembling and analyzing huge amounts of data, including behavioral, physio-
logical, and environmental parameters.
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In the precision medicine program, both the representation of individual patients
and their treatment are obtained through large databases, where data can be both
relative to the individuals and very large classes of patients. The epistemological
implications and some of the perils of “the data turn” have been tackled by sci-
entists and philosophers of science. Here I do not intend to elaborate a direct
approach to these kinds of questions but to introduce a way of representing indi-
vidual cases and reasoning about them that is not data-driven, even if it can point to
a principled way of using large databases. The proposed approach concerns a class
of problems that are extremely important for decision-making in medicine: prob-
lems of singular causation.

2 General and Singular Causation

Philosophers distinguish between general (or type) causal statements, as in
“Smoking causes lung cancer,” and singular (or single-case, token, or actual)
causal statements,1 as in “The sore throat of this patient has been provoked by an
infection of the bacterium Streptococcus pyogenes,” or also “If this patient had not
smoked, the probability of her getting lung cancer would have been lower.” The
relation between the two levels of causation is controversial, both from the epis-
temological and the ontological point of view.

According to generalist theories, single-case causal claims are inferred from
general causal laws or regularities, which can be deterministic or probabilistic.
From a metaphysical point of view, individual cases of causation should be seen as
instances of causal relations holding between types of events. From this perspec-
tive, when we say that a particular episode of the sore throat condition has been
caused by Streptococcus pyogenes (S. pyogenes), this happens because we know
that there is a general law linking S. pyogenes infection and sore throat, and we are
observing a particular exemplification of that general law. General laws and reg-
ularities can be deterministic or probabilistic.

On the other hand, according to singularist theories of causation, knowledge
about the truth of general causal claims is obtained by generalizing from individual
cases of causation. Metaphysical singularist theories of causation see singular
causal relations as primitive and general causal relations as generalizations from the
former. Singular causal relations can hold even if they are not instances of
regularities.

A third philosophical approach to causation [5, p. 6] considers singular causation
and general causation as independent:

The problems of type and token probabilistic causation turn out to be quite distinct. Causal
claims made on one of the two levels of causation turn out to be quite independent of claims

1 Philosophers sometimes distinguish between singular and actual. For our purpose here we may
set aside the distinction.
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made on the other and the two levels of probabilistic causation require quite different kinds
of theories.

Many contemporary theories of singular causation are based on counterfactual
definitions of causation, the most basic of which is the following:

If c and e are actual distinct events, then c causes e if and only if, c had not been, then
e would never have occurred.

Decades of philosophical research on the counterfactual interpretation of cau-
sation have highlighted several problems deriving from this definition and produced
noticeably sophisticated versions of it, but for the moment, we adopt it as a working
definition. Counterfactual definitions, as introduced by Lewis [6], help us to see
causes as “difference-makers,” where the difference made by a cause is “a difference
from what would have happened without it” (see also Menzies and Beebe [7]).

Besides distinguishing between singular and general causation, philosophers
have identified and analyzed different notions of cause. Although these are of
considerable importance in the philosophy of medicine today, I will not discuss
them here in detail–but see [8, 9]. However, it should be recalled that many authors
defend a pluralistic position, recognizing that different theories of causation are
acceptable in different contexts of application.

3 Singular Causation in Medicine: Why Statistical
Probability Might not Be the Right Choice

Much causal research in the field of medicine concerns the discovery of relations of
general causation: they investigate, for instance, the problem of whether the
exposure to a certain substance or chemical could cause a certain condition or
whether a particular substance may contribute to preventing a certain disease. The
inference from causal regularities to singular statements is not direct and not
problem-free. Moreover, the kind of causal queries mentioned above concern the
search for the effects of causes: they have the form “Does hemlock cause death?.”
The forms of causal reasoning we are examining in this section are different
because:

i. they are about causal relations holding between specific events; and
ii. the causal query is about the causes of effects, as in “Was Socrates death caused

by his drinking hemlock?”

Dawid et al. [10] analyze the gap between assessing the effects of causes and
assessing the causes of effects:

While much of science is concerned with the effects of causes (EoC), relying upon evidence
accumulated from randomized controlled experiments and observational studies, the
problem of inferring the causes of effects (CoE) requires its own framing and possibly
different data […] The statistical literature is only of limited help here as well, focusing
largely on the traditional problem of the EoC.
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According to the authors, assessing the CoE is the typical inferential activity of
legal courtrooms. In the following, I show how their considerations also apply to
medical diagnosis, early-phase cancer clinical trials, and causal inference in legal
medicine. Our point is that:

i. in these forms of reasoning, what we are looking for is not the most (statisti-
cally) probable result, but the best hypothesis that explains the situation under
study; and

ii. when the inquiry has a causal character, it involves the notion of singular
causation.

3.1 Diagnosis

Typically, the activity of obtaining a diagnosis is often a multi-step procedure,
which involves a plurality of inferential techniques. Once a diagnosis is obtained,
however, it can be sketchily described as the relation between a set of data relative
to a given patient (such as clinical signs, reported symptoms, and laboratory
findings) and a possible syndrome, disease, or other pathological condition. Many
authors [11–14] agree that this relation between the data relative to a given patient
and the diagnostic response is an explanatory one: typically, diagnoses link the
patient’s data with the abnormal situation that could explain them. Not all diagnoses
are causal explanations–many of them are merely classificatory, and it is contro-
versial whether classifications are explanations–but here, we will focus on those
that have a causal character and on the inferential procedures on which they are
based.

In the classical account of explanation in terms of Hempel’s ‘covering law
models’ [15], the explanation is viewed as a deductive inference from deterministic
laws and initial conditions to the phenomenon to be explained–called explanan-
dum–or as the inductive inference from statistical laws and initial conditions to a
highly plausible hypothesis. Given that, except for pathognomonic signs and
symptoms, the relation between signs and symptoms and the disease that could
have caused them is probabilistic, we may be tempted to view causal diagnoses as
inferences of the second kind, namely as statistical-inductive explanations. The
example of sore throat can be represented in a standard way as follows:

• Most observed patients with (a certain kind of) sore throat

had been infected by Streptococcus Pyogenes
• The patient x has (a certain kind of) sore throat

–––––––––––––––––––––––––––––––– [makes very likely]
x has been infected by Streptococcus Pyogenes

In this approach, the procedure of formulation of diagnosis could be seen as the
procedure of finding the ‘right’ statistical laws that confer a high inductive
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probability to a certain diagnostical hypothesis. However, to model the diagnosis as
a statistical-inductive explanation is highly problematic. It is not difficult to find
counterexamples that conform to the model but are not genuinely explanatory (and
have a poor diagnostic value). Maung [13, p. 47] analyzes the example of a patient
with right-sided paralysis due to cerebral palsy who subsequently has a left
hemispheric stroke:

In this case, the diagnosis of left hemispheric stroke is explanatorily irrelevant to the
patient’s right-sided paralysis. Nonetheless, according to the covering law account, the
patient’s right-sided paralysis would still be explained by his or her diagnosis of left
hemispheric stroke, along with the statistical generalization that a large proportion of
patients diagnosed with left hemispheric stroke present with right-sided paralysis.

This counterexample is meant to show that the explanations provided by diag-
noses should be, in many cases, explicitly causal explanations: at least in some
cases, causality is necessary for the correctness of the diagnosis.2 But this
requirement is not enough. Given two alternative diagnostic hypotheses, H1 and H2,

that provide a causal explanation of a given set of signs and symptoms, the choice
of the most probable one does not always guarantee that the better choice has been
made: it is always possible that the patient under examination is an instance of the
less probable alternative. The old recommendation to medical students [16]: “When
you hear hoof-beats, think horses, not zebras” loses its utility when the approaching
quadruped is a zebra.

A possible defense of the regularistic approach would consist in the suggestion
that a suitable specification of the patient’s reference class would lead to the “right”
causal law. It might well be that H2 is the less probable hypothesis for the whole
population, but the more probable for the subpopulation of patients relevantly
similar to the one under examination. In this case, adding qualifications such as age,
gender, ethnicity, lifestyle, etc., should bring about, in the end, the right reference
class and the right causal regularity. However, as Maung [13] remarks, this strategy
raises two counter-objections of considerable impact [17, 18]. The first is that a
description so detailed as to identify the right reference class could be impossible
since there could be unknown contingent factors, which we cannot account for due
to our ignorance. The second is that even we were able to provide a fully detailed
description of the relevant traits of the clinical case, it would require placing it in a
reference class so detailed as to make the appeal to general laws inappropriate.

The above considerations support the idea that regularities and laws (deter-
ministic or probabilistic), although important, do not do all the explanatory work in
causal, explanatory diagnosis [11]. At the end of the day, what matters is the true
causal history of the patient’s condition, not the causal explanation to which the
statistical data assigns the greatest probability. Moreover, there are some cases in
which statistical data are scarce, as in rare diseases or non-existent, as in “new”

2 This requirement should protect diagnoses also from other counterexamples raised by spurious
correlation.
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diseases. The problem of the scarcity of data is even more important in the area of
research we are going to consider now.3

3.2 Early Phase Clinical Trials

For more than a decade, philosophers of science have extensively investigated the
epistemological foundations of clinical trials. One of the major issues at stake is
whether the experimental clinical trials are a reliable tool for the ascertainment of
the causal link between the administration of a drug and its intended therapeutic
effects [19]. Another field that revealed itself of significant interest for the philos-
ophy of causality is the study of possible adverse drug reactions [20]. This area of
inquiry is often cited as one of those which will benefit the most from the data
revolution, given that technological devices will allow better monitoring of the
effects of drugs after they have been commercialized and, therefore, a better
knowledge of the adverse effects associated to their use.

However, this is far from obvious for some kinds of clinical trials. An example is
phase 1 clinical trials for testing oncology medication. These trials are usually
performed on relatively small groups of cancer patients whose disease has become
resistant to standard treatment. The trials aim to establish, among other things, the
safety of a new drug. When an adverse event occurs, one of the main problems that
experimenters face consists in ascertaining whether the event has been produced by
the new drug. In phase 1 oncology clinical trials, the detection of the causal history
of a reported adverse reaction is made particularly challenging by the comorbidity
often associated with cancer, the heterogeneity of tumors, and the fact that often
patients take many other drugs. Given the particular setting of early phase trials, it is
unavoidable to make relevant causal judgments when the number of events is
relatively low and when we have no access to control data.

The search for an objective, standardized procedure to evaluate the causal role of
the drug for observed adverse reactions has produced a plurality of methods, none
of which is entirely satisfactory [21]. Aronson and Hauben [22] show that in some
cases, anecdotal evidence can be extremely reliable and defend the legitimacy of
considering single case reports in assessing adverse drug reactions. They note that,
although in general anecdotal reports are not considered good quality evidence, in
some cases they provide definitive evidence of the fact that a certain drug caused an
adverse event. The problem is finding general criteria to evaluate this type of
evidence.

As in the case of diagnosis examined before, the actual causal history of the
adverse reaction seems to be more valuable than the appeal to causal laws or
regularities. Furthermore, it can be said that in this scenario, there are no “causal
regularities” to appeal to because the possible causal nexus between the drug and
the adverse event is the object of inquiry. The point I would like to stress here is
that, although general causal knowledge is very important in this, as in every other

3 I am grateful to Mattia Andreoletti for suggestions and information on this topic.
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scientific context, we should see the problem of causal assessment of adverse drug
reactions in phase 1 oncology clinical trials from a singularist perspective. By this, I
mean to say that, as in the case of clinical diagnosis, in this kind of clinical trial, the
individual traits of the patients are crucial: evidence about putative adverse effects
in just one patient can be extremely relevant, as it could reveal the fact that the drug
is not safe. Given the presence of an adverse event e for a certain patient, what we
want to know is whether taking the drug, alone or in conjunction with other factors,
actually caused e. Our ideal goal is to reconstruct the true “causal history” that
brought about e.

This reconstruction of the causal history of the adverse event can be highly
uncertain, and we may end up with only a probable answer. However, it should be
remarked that in this phase of the trial, our primary (ideal) target is not to determine
the probability that the drug brings about some adverse reaction. Rather, what we
want to discover is instead if there is a deterministic causal history in which the
drug is the ‘culprit.’ And this brings us to the third area: forensic medicine.

3.3 Forensic Medicine

Singular causation is extremely important in forensic medicine, particularly in
determining causes of death and in assessing legal responsibility. The highly
individual character of forensic medicine is also well described by Russo and
Williamson [23, p. 56] with the following considerations on forensic autopsy:

In determining the cause of death, the pathologist is also asked to determine the manner in
which death occurred by identifying the series of events which led to death. Most juris-
dictions include the following ‘manners of death’: homicide, accidental, natural, suicide,
and undetermined. In forensic autopsies, examination may also serve to collect further
evidence relevant to the crime investigated […].

Even where there is no crime involved, legal reasoning shows a high degree of
individualization. In the following real-world example in which the actual cause is
not the most frequent one, Messina [24] reports on the death of a fourteen-year-old
girl during an asthma attack. Here, the most probable cause of death was the asthma
attack itself, even if this event is not frequent in childhood and adolescence.
However, the death appeared somewhat dubious to the coroner, and an autopsy was
required. The autopsy produced a totally different explanation for the death of the
girl: even if the death occurred during an asthma attack, it was, with all probability,
not caused by it. The autopsy showed that the girl had “silent” heart disease. This
fact, and the suddenness of her death, was compatible with the fact that the death
was due to a cardiovascular side effect of inhaling a bronchodilator medicine during
the asthma attack (a rare adverse effect of ß2-agonists).

To select this explanation, the coroner had to exclude many alternative possi-
bilities: his final verdict was obtained through an inference to the best explanation,
given the individual characteristics of the patient, the modality of death, and the
exclusion of many other possible causal chains.
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4 Bottom-Up Reasoning

Our remarks are in no way intended to deny the importance of causal regularities in
diagnostic causal explanations; rather, the problem is how to use them when such
explanations are not statistical (and are not based on a progressive restriction of the
reference classes). One possible solution to this problem is in terms of mechanistic
explanation [13, 23].4 Here we follow an alternative–but not incompatible–ap-
proach based on causal models. Our choice is based on some common character-
istics of the kind or reasoning under discussion.

4.1 Individual Causal Explanations as “Stories”

A common feature of the kinds of reasoning we have presented is that explanation
requires the reconstruction of the causal chain leading to the event under causal
inquiry. This feature of explanation of individual cases has been stressed both by
authors working in medicine and philosophy of science. In the introduction, we
mentioned the central place assigned by Gorovitz and MacIntyre [1] to “particular
histories” in medical science. Rizzi and Pedersen [25] see a causal medical ex-
planation as to the identification of the “train of events” involving the singular case,
while Thagard [26, p. 74] describes medical explanation as “a kind of narrative
explanation of why a person gets sick.” Ankeny [27, p. 1006] gives a detailed
account of how cases provide evidence of causal relations in clinical medicine and
focuses on case reports, which typically have a highly narrative structure. The
causal explanation of the conditions of a certain patient is seen as the “development
of a detailed narrative that outlines various putative causes and systematically
excludes certain ones as irrelevant based on additional information.” However, the
analogy between stories and individual explanations is not only due to their nar-
rative structure but also to the kind of reasoning involved. A short reminder on this
point will help present a traditional connection between causal explanation and
abduction.

4.2 Detective Stories and (Holmesian) Abduction

Parallel to the idea that causal reasoning about single cases makes substantial use of
stories is the view that these stories are of a well-defined type: detective stories.
Often, to explain the actual condition of a particular “case,” we need to ascertain the
true chain of events that has determined it. This can be obtained by formulating a
set of alternative hypothetical “stories,” rejecting them as new data, and refuting
them until only one is selected. The reference to detective stories is explicit in

4 “The mechanistic malfunction conception involves lying out the details of a normal physiological
mechanism and depicting the pathology as an impairment of this normal mechanism” [13, p. 55].
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Ankeny [27]. More generally, Thagard [26, pp. 71–72] points out the analogy
between medical reasoning about cases and legal reasoning:

Inference to medical causes is similar to legal inference concerning responsibility for
crimes. In a murder case, for example, the acceptability of the hypothesis that someone is
the murderer depends on how well that hypothesis explains the evidence, and on the
presence of a motive that would provide a higher explanation of why the accused com-
mitted the murder.

Aronson and Hauben [22], in their defense of the importance of the single case
reports as evidence in early phase clinical trials, elaborate on what they call “the
crime scene metaphor.” The parallel between the search for the murderer and the
search for the cause of an adverse reaction is developed by means of a list of topoi
from detective fiction. They see an analogy with the culprit caught at the scene of
the crime when:

objective physiochemical testing shows that a pathological lesion is composed of the drug
or metabolite […] and the event must not have been possible in the absence of the drug [22,
p. 1267].

In such cases, where there are no possible confounders, we can immediately
identify the drug as the cause, or at least as one of the main contributing causes of
the lesion. The crime scene analogy is the culprit seen committing the crime when
we can specify the pattern of a lesion or its location in a sufficiently precise way to
decide, without further analysis, that the drug has been the cause. We can see an
analogy with the culprit incriminated by recreating the scene of the crime when
confirmatory tests are “ethically and scientifically feasible” [22, p. 1268]. Finally,
the authors cite the “adverse drug reactions related to infections” as a case of
“Culprit DNA found at the scene of crime” [ibid.].

The kind of reasoning examined in the above cases is often characterized as
abductive reasoning: based on the available evidence, a hypothesis is inferred that,
if true, would explain the evidence [28, 29]. The more appropriate characterization
is that of Holmesian inference [30], where, in the ideal case, we consider a plurality
of hypotheses, and all the alternative hypotheses are discarded but the true one. The
application of ‘legal’ reasoning should be apparent in the field of forensic medicine.

5 Network Representations

Several authors believe that networks provide the best graphical representation of
the multiplicity of possible causal chains containing the one that explains the event
under inquiry. However, the choice of networks as tools for representing causal
relations is linked to different theoretical views of causality and causal inference.
Rizzi and Pedersen [25, p. 238] argue that the:

search for causal factors in the singular case is performed by using, to a certain extent,
knowledge of the general causation. One applies or compares the body of knowledge of
general causation to the situation where the singular case is assessed.
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The knowledge of general causal relations can be represented by a network
model, showing the multiple causal pathways that could have produced the par-
ticular condition of a given patient. The network model represents, therefore,

(all) possible causal factors which are known or believed to be potentially able to lead to the
effect.

It is also conceived as a useful instrument for reasoning about singular causation:
causal reasoning about a singular case can be performed by comparing pieces of the
historical evidence relative to that case with factors contained in the reference case:

when seeking the actual causes in a singular case, backtracking in these trees eventually
results in the selection of one strand – the train of events regarded as valid causal complexes
for the singular case.

A further network model is presented by Thagard [26, p. 61]. Analogously to
Rizzi and Pedersen, Thagard proposes an account of medical explanation

as a causal network instantiation, where a causal network describes the interactions among
multiple factors, and instantiation consists of the observational or hypothetical assignment
of factors to the patient whose disease is being explained.

The former proposals of network models suggest how to use background
knowledge (such as pathophysiological knowledge, knowledge of general laws and
mechanisms, etc.) to represent a multiplicity of possible causal pathways within
which to trace individual causal paths.

Among the methods using network representation of causal structure for causal
reasoning, the more well-known are causal Bayesian networks [31] and the struc-
tural equation models (SEM) approach [32–35]. As it is well known, the two
approaches are strictly related and often collected under the label of graphical
causal models. Both can be used to represent general or singular causal relations.
First computational approaches using graphical models (DAGs) for medical diag-
nosis were based on Bayesian networks [36, 37]. Today, Bayesian networks are an
important area of machine learning dedicated to the discovery of causal structures
from observational data.

SEM approach offers a powerful framework for solving problems of actual
causation, as it allows modeling counterfactual reasoning, allows a detailed rep-
resentation of very specific contexts of occurrence,5 and facilitates reasoning from
effects to causes.6 These reasons make the SEM approach particularly valuable for
the kind of problems we are treating here [38, 39]. In the next section, we give a
sketchy introduction to the use of formalism applied to the problems of adverse
reactions.

5 “The basic idea is to extend the basic notion of counterfactual dependency to allow ‘contingent
dependency’. In other words, while effects may not always counterfactually depend on their causes
in the actual situation, they do depend on them under certain contingencies” [33, p. 844].
6 “Our notion is more appropriate for a retrospective notion of causality: given all the information
relevant to a given scenario, was X = x the actual cause of Y = y in that scenario?”[33, p. 846].
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6 Structural Equation Models

An SEM is a formal representation of the domain with respect to which we ask
causal queries. The components of an SEM are a set V of variables and a set S of
structural equations [35], specifying the relations of functional dependence among
variables. Variables represent causal relata and can take any value from a specified
range of binary variables that range over the values [0, 1], where the two values
represent, respectively, the occurrence or non-occurrence of events. The set of
equations in SEM represents the causal structure of the model: linking events
represented by variables on the left-hand to their direct causes (called “parents”),
represented on the right side of the equation.

The formalism of structural equations enables reasoning about what would have
happened if the parent of a certain variable had been assigned a different value. For
example, asking whether the administration of a certain new drug to a certain
patient caused the adverse effect E is to ask whether if the drug had not been
administered, E would not have occurred or would have occurred in a completely
different way. We should therefore ask the question “What would have happened if
the situation had been different?” and reason counterfactually.

To assess whether a counterfactual statement is true in a model, we consider a
modified version of the model in which:

i. we ‘cut’ all the links to the variables in the antecedent of the counterfactual; and
ii. we assign the values specified in the antecedent to these variables. The coun-

terfactual is true if and only if the consequent is true in the modified model.

We can graphically represent the salient causal relations among variables
employing DAGs, directed acyclic graphs, whose nodes represent variables, and
edges represent direct causal dependencies of each variable from its parents as stated
by the structural equations. In the following example, we present the occurrence of an
adverse event (E) in a certain patient simultaneously taking two drugs B and D, each
of which is individually sufficient to bring about the adverse reaction of that patient.

Variables: E (Patient experiences the adverse event), B (Patient takes the drug
B), D (Patient takes the drug D),

Events:

E = 1 if the patient experiences the adverse event, E = 0 otherwise.

B = 1 if the patient takes the drug B, B = 0 otherwise.

D = 1 if the patient takes the drug D, D = 0 otherwise.

Structural equations:

(1) B.

(2) D.

(3) E = max (B, D).
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The corresponding graph is shown in Fig. 1. If both B and D take the value 1,
we incur in a typical situation of symmetrical overdetermination, which causes
problems for the ‘plain’ counterfactual definition of causation: had drug B not been
taken by the patient, the adverse event would still have occurred due to the
assumption of drug D, and vice versa. Therefore, to assess the causal influence of
each drug on the occurrence of the adverse event, we must evaluate our counter-
factuals in modified models where only one drug is administered. The need to
establish which modifications of the original models are legitimate has enriched the
initial definition of actual causation with a series of the further specification [33, 34,
40], which is not the case to treat here.

In causal reasoning with structural equation models, the reliability of the answers
obtained for our causal queries much depends on how we build the model, and the
construction of a model is highly problematic. However, some general advantages
can be listed:

• the possibility of building a model representing a causal structure and to assess
the plausibility of each component of a series of alternative causal routes would
reduce the extreme subjectivity of judgments that still affects clinical diagnostic
judgment;

• causal models guarantee more specific causal inference, e.g., in clinical trials, the
building of a model tailored to an individual patient would force an explicit
representation of the comorbidity and polypharmacy of that patient; and

• given that in SEMs, all the hypothetical possible causal chains to the effects are
made explicit, the inferential procedure exhibits a remarkable explicative capacity.

Using structural models does not in itself guarantee infallibility. In the SEM
approach, the answer to causal queries depends on what is represented in the model,
and this seems to require a large amount of general knowledge in building the
model and choosing the right variables. In the following section, we offer some
suggestions to alleviate the problem.

7 Normality and Similarity

A further important problem that the theory of structural models must face is the
problem of so-called “structural isomorphism.” The problem arises when two
causal ‘scenarios’ are represented by means of causal models having identical
structures, but the causal responses licensed by the isomorph models are acceptable
with respect to one scenario and counterintuitive with respect to the other. This
suggested that the theory was incomplete and that it should have been enriched with
a distinction between normal or default values and abnormal values of a variable
[32, 41, 42]: causes involve changes or deviations from normality; therefore, a
verdict of causation is legitimate only when variables representing alleged effects
take an abnormal value. Normality should relate to different systems of norms, like

128 M. Benzi



statistical, moral, social norms, and “norms of proper functioning that apply to
artifacts and biological organisms” [43, p. 598].

If we turn to the kinds of problems treated in this paper, we realize that the
definition of normality as ‘proper functioning’ is the most interesting one, provided
that it is not taken too literally. In the first steps of a clinical diagnosis, a ‘normal’
person is a person without the signs and symptoms recognized by his doctor; a
normal oncologic patient in a clinical trial is a person who has cancer and has never
been administered the drug under study; in a forensic context, normality is even
more context-dependent: in some cases, it may consist in the survival of the alleged
victim, in others in his death from natural causes. In general, our intuition is that for
each individual under some form of causal inquiry, the standard of normality should
be given by her ‘normal counterpart.’

How could the normal counterpart of an individual be obtained, or at least be
approximated? The idea of “normal counterpart,” i.e., a counterfactual represen-
tation or a virtual model of the individual case under exam, is not new. On the one
hand, it borrows from the analysis of the use of exemplars and prototypes in
biomedical sciences [44, 45]. On the other hand, it draws inspiration from computer
science, which has developed normative theories of similarity analysis, case-based
reasoning (CBR),7 and, more recently, digital twins.8

Fig. 1 DAG associated to
the example

7 CBR is a methodology of reasoning widely used to solve problems in many medical areas.
Briefly, CBR fulfils two main tasks: (1) the retrieval of cases similar to the one under study, and
(2) the adaptation of former solutions to similar cases [46]. CBR requires the construction of a
database containing cases with which the new cases will be compared. Each new case will
therefore be compared to an index case, which is a case similar to the new one according to
relevant features; the index case has a paradigmatic role [45] and can be seen as a model of the
patient, representing its ‘normal’ counterpart.
8 “Digital Twins stand for a specific engineering paradigm, where individual physical artifacts are
paired with digital models that dynamically reflects the status of those artifacts. When applied to
persons, Digital Twins are an emerging technology that builds on in silico representations of an
individual that dynamically reflect molecular status, physiological status and life-style over time.
We use Digital Twins as the hypothesis that one would be in the possession of very detailed
bio-physical and lifestyle information of a person over time. This perspective redefines the concept
of ‘normality’ or ‘health,’ as a set of patterns that are regular for a particular individual, against the
backdrop of patterns observed in the population” [47].
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The building of a virtual representation of the individual should support singular
causal reasoning by allowing the identification of what counts as a ‘deviation from
the norm’ for a particular individual. The comparison with the virtual counterpart
would perform two functions, the first in providing a ‘customized’ meaning of
normality, and the second in choosing the right variables for the structural model
representing the ‘history’ of the patient. For example, in the case of an early-phase
clinical trial, given that a patient suffered an adverse event e, the structural equation
model should represent all possible causal routes to e in that patient, while the
virtual counterpart of the patient should provide information about what is normal
for her, and what her condition would probably have been if she had not received
the treatment under study.

The robustness of this kind of causal reasoning analysis coincides with the
“degree” or measure of similarity: the more the model is similar, the better the
causal judgment will be. From a philosophical point of view, a well-defined notion
of similarity to a model can provide the groundwork/basis to grasp the concept of
causality as ‘deviation from normality.’

Several measures of similarity have been proposed, giving rise to an entirely new
line of research, which cannot discuss here in-depth. However, it seems appropriate
to quote here Brown [48, pp. 1–2], who calls similaromics “the generation or
identification of patientsPatient similar to an index patient” and remarks:

Although patient similarity is in its early stages, ultimately information about diseases, risk
factors, lifestyle habits, medication use, comorbidities, molecular and histopathological
information, hospitalizations, or death are compared with laboratory investigations, imag-
ing, and other clinical data assessing medical evidence of human behavior […] patient
similarity represents a paradigm shift that introduces disruptive innovation to optimize
personalization of patient care.

8 Conclusion

The emphatic tone of the quotation above should not induce over-optimism.
Inferences based on virtual counterparts, as every inference based on analogies and
similarity, is riddled with difficulties; so is the use of massive databases that should
be employed for the construction of the models. It is highly improbable that the
method I have proposed here will not inherit most of the problems linked to both
analogical reasoning and big data. However, it presents some advantages:

• it points to a link between the most advanced theoretical research on individual
causation in some areas of medical reasoning and current research in the field of
bioinformatics causality;

• it offers a rigorous theoretical ground for causal reasoning, a kind of reasoning
that cannot be eliminated by health sciences;

• it suggests solutions that make use of big data but are not exclusively
data-driven, given the role of structural equation models; and
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• it avoids problems of explainability, given that each step in the construction of a
structural equation model is visible and justifiable.

If I had to hazard a prediction on the state of the research in the next thirty years,
I think that many problems on biases and non-explainability of algorithms will be
partly solved, and this also holds true in the field of causal reasoning. I also foresee
that the research on methods of causal inference, far from disappearing, will reach
high levels of precision and sophistication. Vice versa, I have strong doubts about
the possibility of solving or dissolving in the next thirty years the fundamental
problems of causality. But the task of philosophy is not solving problems but letting
problems emerge.

Core Messages

• Diagnosis, forensic reasoning, and early clinical trials require reasoning on
singular causes.

• Reasoning on singular cases in medicine is analogous to abductive rea-
soning used in detective stories: find the culprit!

• Structural equation models can be one of the best tools for medical rea-
soning on singular causes.

• An alternative and promising way to make causal inferences about singular
cases can be based on digital twins.
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