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Abstract

Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are
also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron
stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used
to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei
impose only weak constraints on the three-body forces. In this work, we present the first direct
measurement of the p–p–p and p–p–Λ systems in terms of three-particle mixed moments carried
out for pp collisions at

√
s = 13 TeV. Three-particle cumulants are extracted from the normalised

mixed moments by applying the Kubo formalism, where the three-particle interaction contribution
to these moments can be isolated after subtracting the known two-body interaction terms. A negative
cumulant is found for the p–p–p system, hinting to the presence of a residual three-body effect while
for p–p–Λ the cumulant is consistent with zero. This measurement demonstrates the accessibility of
three-baryon correlations at the LHC.
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1 Introduction

One of the open challenges of nuclear physics is the understanding of many-particle dynamics. Studies
of the nuclear structure have unambiguously shown that calculations based only on nucleon–nucleon
(N–N) interactions fail to accurately describe many experimental observables, such as nuclear binding
energies along the periodic table of elements [1] and the position of the neutron drip line for neutron-
rich nuclei [2]. A significant improvement in the modelling of nuclear bound objects has been achieved
by including three-body forces in theoretical calculations. These three-body forces are implemented
in chiral effective field theories [3] and in a number of ab initio many-body methods such as no-core
shell model [4], coupled-cluster theory [5, 6], self-consistent Green’s function theory [7], similarity
renormalisation group [8, 9], and quantum Monte Carlo [10]. Studies conducted on intermediate mass
neutron-rich nuclei proved that the sensitivity to the three-body forces increases with the number of
neutrons in the system [5]. Three-body forces within light and medium-mass nuclei, where the nuclear
saturation density corresponds to typical inter-particle distances of 2 fm, contribute about 10−15 % to the
total interaction strength [11, 12]. However, at higher densities and shorter inter-particle distances their
contribution might increase [2], but no data are available in such a regime and the properties of nuclear
matter can be only extrapolated using the available information at saturation densities. The experimental
information on the three-body forces involving Λ hyperons is even more scarce since the data available
for hypernuclei are much less than the data for nuclei. In addition, the N–N–Λ interaction studies in
hypernuclei can probe only large inter-particle distances, since the hypertriton radius is of the order of
5 fm [13] and the average distance between the Λ and the proton-neutron centre of mass is of about 10
fm [12, 14]. The contribution from three-body forces in bound objects such as nuclei and hypernuclei
cannot be separated from the lower-order two-body interactions, hence, the models including both the
two- and many-body components are fitted to available binding energy measurements.

Neutron-rich and dense baryonic matter constitutes an interesting system because of its connections to
the physics of neutron stars (NS) [15]. The structure and composition of the innermost part of NS is not
known. Amongst many possible scenarios, some models support the appearance of various hadronic par-
ticle species with increasing baryon density inside the star [15, 16]. The presence of hadronic degrees of
freedom and their relative abundances are sensitive to the two- and three-body interaction models which
are used to compute the equation of state (EoS) of NS matter. The different hypotheses can be tested by
deriving the masses and radii of NS for a specific EoS and comparing them with the corresponding as-
trophysical observations [16]. The suggestion of strange baryons inside NS is motivated by the fact that
central densities of NS might become sufficiently large (ρ ≈ 3−4ρ0, where ρ0 is the nuclear saturation
density) to provide favourable conditions for the onset of strangeness production processes leading to, in
particular, the formation of hyperons. The appearance of Λ hyperons in NS matter results in a softening
of the EoS which is at variance with astrophysical observations of two solar mass stars [17, 18]. However,
in Ref. [19], it was shown that by adding a strongly repulsive N–N–Λ interaction, tuned to reproduce the
separation energies of Λ hyperons in several hypernuclei, a sufficiently stiff EoS can be obtained and
even the massive NS observables can be reproduced. This indicates that three-body forces may have a
significant contribution in models that describe the structure of NS. Hence, a direct measurement of the
three-body forces involving nucleons and hyperons at small inter-particle distances is required.

The femtoscopy technique can be used as a tool to investigate the strong interaction amongst hadrons
[20–23] produced in particle collisions and recently has been successfully employed to analyse experi-
mental data [24]. In small colliding systems such as pp and p–Pb collisions at the LHC, the hadrons are
emitted at relative distances of the order of 1 fm, comparable with the range of the strong interaction.
The produced hadrons may undergo final state interactions (FSIs) and the resulting correlation in the
momentum space can be studied to test the underlying dynamics using correlation functions [22, 23].
Recently, the method has been applied to study FSIs of hadrons produced in pp and p–Pb collisions. The
large data samples allowed for the precise measurement of correlation functions for multiple hadronic
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pairs (p–p [25], p–K+ and p–K− [26], p–Λ [25], p–Σ0 [27], Λ–Λ [28], p–Ξ− [29], p–Ω− [30], p–φ [31]
and baryon–antibaryon [32]). By using these results, several models for the two-body strong interaction
could be validated (for a complete review see Ref. [33]).

The femtoscopy technique was also employed in the analysis of three- and four-pion correlations mea-
sured in pp, p–Pb, Pb–Pb collision systems by ALICE [34, 35] to probe coherent hadron production.
The Kubo’s cumulant expansion method [36] was used to isolate the genuine three-particle correlation
from the two-body contributions where the latter were evaluated by combining two particles from the
same event and a third particle taken from another event. Alternatively, the recently developed projector
method [37], where either the theoretical or the measured two-body correlation functions are used to
obtain the lower-order contributions, can be employed. This method allows a significant reduction of the
statistical uncertainties.

In this article, the first femtoscopic study of three-baryon correlations is performed for the p–p–p and
p–p–Λ systems measured in high-multiplicity (HM) pp collisions at

√
s= 13 TeV. The Kubo’s formalism

and the projector method are employed to isolate the genuine three-body correlation and the choice of
the reaction system aims to study the interaction at small distances. The article is organised as follows:
in Section 2.1 the data analysis procedure is presented starting from the event selection; in Section 2.2
the definition of the two-particle correlation function is extended to the three-particle case in terms of
normalised mixed moments; in Section 2.3 the femtoscopic three-particle cumulant is defined; the lower-
order two-particle correlation contributions in the measured mixed moments are evaluated in Section 2.4
and the decomposition of the cumulant to account for misidentifications and particle feed-down are
presented in Section 2.5; the final results are discussed in Section 3 and the conclusions are given in
Section 4.

2 Analysis

2.1 Event selection and particle identification

The data sample of pp collisions at a centre of mass energy
√

s = 13 TeV was recorded with the ALICE
detector [38, 39] during the LHC Run 2 (2015–2018). The sample has been collected employing a
HM trigger. The trigger is based on the measured amplitude in the V0 detector system, consisting of
two arrays of plastic scintillators located at forward (2.8 < η < 5.1) and backward (−3.7 < η < −1.7)
pseudorapidities [40]. The selected HM events correspond to the highest 0.17% multiplicity interval with
respect to all inelastic collisions with at least one measured charged particle within |η |< 1 (INEL> 0).
This condition results in an average of 30 charged particles in the range |η |< 0.5 [30]. Charged-particle
tracking in the midrapidity region is conducted with the Inner Tracking System (ITS) [38] and the Time
Projection Chamber (TPC) [41]. These detectors are immersed in a homogeneous 0.5 T magnetic field
parallel to the beam direction. The ITS consists of six cylindrical layers of high position-resolution
silicon detectors placed radially between 3.9 and 43 cm around the beam vacuum tube. The TPC consists
of a 5 m long, cylindrical gaseous detector with full azimuthal coverage in the pseudorapidity range
|η |< 0.9.

Particle identification (PID) is conducted via the measurement of the specific ionisation energy loss
(dE/dx) in the TPC gas with up to 159 reconstructed space points along the particle trajectory. For
high momentum particles, the TPC measurement is combined with information provided by the Time-
Of-Flight (TOF) [42] detector system, which is located at a radial distance of 3.7 m from the nominal
interaction point and consists of Multigap Resistive Plate Chambers covering the full azimuthal angle in
|η |< 0.9.

The primary vertex (PV) of the event is reconstructed with the combined track information of the ITS and
the TPC, and independently with track segments in the two innermost layers of the ITS. The reconstructed
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PV of the event is required to have a maximal displacement with respect to the nominal interaction point
of 10 cm along the beam axis, in order to ensure a uniform acceptance. Pile-up events with multiple
primary vertices are removed following the procedure described in Refs. [25, 29, 43]. This rejects the
events with pile-up of collisions occurring in the same or nearby bunch crossings. However, additional
clean-up has to be applied on the track selection level to reject particles produced in pile-up collisions in
the long TPC readout time.

A total of 1.0×109 HM events are used for the analysis after event selection. In order to build the three-
particle mixed normalised moments of p–p–p and p–p–Λ systems, particle and antiparticle distributions
are combined. In the following, p–p–p refers to p–p–p⊕ p –p –p and p–p–Λ refers to p–p–Λ⊕ p –p –Λ.
The proton and Λ candidates as well as their antiparticles need to be selected. As the particle and an-
tiparticle selections are identical, only the particles are explicitly discussed below. Both particle species
are reconstructed using the procedure described in Ref. [43], while the related systematic uncertainties
are evaluated by varying the kinematic and topological selection criteria used in the reconstruction. In
the following text, the systematic variations are enclosed in parentheses.

The primary protons are selected in the momentum interval 0.5 (0.4, 0.6)< pT < 4.05 GeV/c and |η |<
0.8 (0.77, 0.85). To improve the quality of the tracks a minimum of 80 (70, 90) out of the 159 possible
spatial points inside the TPC are required. The PID selections are applied by comparing the measured
dE/dx and time-of-flight with the expected values for a proton candidate. The agreement is expressed in
multiples (nPID

σ ) of the detector resolution σ . For protons with pT < 0.75 GeV/c the nPID
σ is evaluated only

based on the specific energy loss in the TPC, while for pT ≥ 0.75 GeV/c a combined TPC and TOF PID
selection is applied

(
nPID

σ =
√

n2
σ ,TPC +n2

σ ,TOF

)
. The nPID

σ of the accepted proton candidates is required
to be lower than 3 (2.5, 3.5). To reject particles that are non-primary or come from pile-up collisions,
the distance of closest approach (DCA) to the PV of the tracks is required to be less than 0.1 cm in
the transverse plane and less than 0.2 cm along the beam axis. The purity of candidates is estimated
using Monte Carlo (MC) simulations by comparing the momentum distribution of reconstructed tracks
identified as protons with that of true protons produced by the generator. The contributions of secondary
protons stemming from weak decays of strange baryons and from interactions in the detector material
are extracted using MC template fits to the measured distributions of the DCA to the PV [25]. The purity
of the identified protons is 98.3% and 86.6% of them are primaries.

The Λ candidates are reconstructed via the weak decay Λ→ pπ− (the Λ→ pπ+ in case of Λ recon-
struction). The secondary daughter tracks are selected with similar criteria as for the primary protons
regarding |η | and the number of hits in the TPC. However, a less strict PID requirement of nPID

σ < 5(4)
is used. In addition, the daughter tracks are required to have a DCA to the PV of at least 0.05 (0.06) cm
and the DCA between the daughter tracks at the secondary vertex must be smaller than 1.5 (1.2) cm.
The cosine of the pointing angle (CPA) between the vector connecting the PV to the decay vertex and
the 3-momentum of the Λ candidate is required to be larger than 0.99 (0.995). To reject unphysical sec-
ondary vertices, reconstructed with tracks stemming from pile-up of pp collisions occurring in different
bunch crossings, the decay tracks are required to possess a hit in the two innermost or the two outermost
ITS layers or a matched TOF signal [28]. Finally, a selection on the candidate invariant mass (IM) is
applied by requiring it to be in a ±4 MeV/c2 interval around the nominal Λ mass [44]. The primary and
secondary contributions to the yield of Λ are extracted employing a similar method as for protons but
using the CPA as an observable for the template fits. The Λ hyperons produced in primary interactions
contribute to about 58.5% of their total yield. About 19.5% originate from the electromagnetic decays of
Σ0. The number of Σ0 particles is related to their ratio to the Λ hyperons, which is fixed to 1/3 based on
predictions from the isospin symmetry and a measurement of the corresponding production ratios [45].
Further, each of the weak decays of Ξ− and Ξ0 contributes about 11 % to the yield of Λ hyperons. The
purity of Λ and Λ has been extracted by fitting the IM spectra of candidates as a function of the three-
particle kinematic variable Q3 which is defined in Eq. 5. The fits have been performed in the IM range
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of 1090 to 1150 MeV/c2 using a double Gaussian for the Λ signal and a second-order polynomial for the
background. The result has been averaged for Q3 < 1 GeV/c, leading to a combined purity of Λ and Λ of
95.6%.

2.2 Three-particle normalised mixed moments

The observable of interest in femtoscopy is usually the two-particle momentum correlation function [23,
46], which is defined as the probability to simultaneously find two particles with momenta p1 and p2
divided by the product of the corresponding single particle probabilities

C(p1,p2)≡
P(p1,p2)

P(p1)P(p2)
. (1)

These probabilities are related to the inclusive Lorentz-invariant spectra P(p1,p2) ∝ E1E2
d6N

d3p1d3p2
and

P(pi) ∝ Ei
d3Ni
d3pi

. In the absence of a correlation signal, the value of C(p1,p2) is constant and normalised
to unity. A similar logic can be followed to construct the three-particle normalised mixed moments as

C(p1,p2,p3)≡
P(p1,p2,p3)

P(p1)P(p2)P(p3)
. (2)

Following [47, 48], Eq. 1 can also be written as

C(k∗) =
∫

d3r∗S(r∗)|ψ(r∗,k∗)|2, (3)

where S(r∗) is the distribution of the relative distances of particle pairs in the pair rest frame (PRF, de-
noted by the ∗) — the so-called source function. The properties of the source in pp collisions at

√
s =

13 TeV have been evaluated in Ref. [43], including the effects of short-lived resonance decays which
enlarge the effective source size. The wave function of the particle pair relative motion is denoted by
ψ(r∗,k∗) where k∗ = (p∗1−p∗2)/2 is the relative momentum. The wave function encapsulates the details
of the particle interaction and drives the shape of the correlation function. In case of the three-particle
normalised mixed moments, the two-particle source function and the wave function of the particle pair
relative motion must be replaced by a three-particle source function and wave function. In this analy-
sis, the measured three-particle normalised mixed moments distribution is not compared to theoretical
predictions. The goal here is to extract the three-particle femtoscopic cumulants which provide experi-
mental evidence of the existence, or the absence, of genuine three-particle correlations, as explained in
Section 2.3.

The three-particle normalised mixed moment can be written as

C(p1,p2,p3) =C(Q3) = N
Ns(Q3)

Nm(Q3)
, (4)

where Ns(Q3) and Nm(Q3) are the same-event and mixed-event distributions of three particle combina-
tions (triplets) as a function of Q3 and N is the normalisation parameter. The Lorentz-invariant variable
Q3 is defined in [34] as

Q3 =
√
−q2

12−q2
23−q2

31 , (5)

where qi j is the norm of the four-vector [23]

qµ

i j = (pi− p j)
µ −

(pi− p j) ·Pi j

P2
i j

Pµ

i j , Pi j ≡ pi + p j, (6)
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which can be re-written as
qµ

i j =
2 m j

mi +m j
pµ

i −
2 mi

mi +m j
pµ

j . (7)

Here mi and m j are the particle i and j masses, pµ

i and pµ

j are the particle four momenta, while qµ

i j is the

relative four-momentum of the pair i j. In the case of same mass particles, the term (pi−p j)·Pi j

P2
i j

Pµ

i j becomes

0. In the non-relativistic case q2
i j =−4k∗i j

2, where k∗i j is the relative momentum of the i j pair in the PRF.

The mixed-event sample is obtained using event-mixing techniques, in which the particle triplets of
interest are generated by combining single particles stemming from three different events. To maintain
the same acceptance effects as in the same event sample, the mixing procedure is conducted only for
events with similar z position of the primary vertex and multiplicity [25]. Additionally, in order to
correct for possible differences in terms of multiplicity distribution between same and mixed events, the
yield of the latter is re-weighted in each multiplicity interval to have the same statistical weight as the
distribution when particles are from the same event. To account for the two-track merging and splitting
effects due to the finite two-track resolution in the same-event sample, a minimum value of the distance
between two proton tracks (in case of p–Λ pairs, the proton from Λ decay is considered along with the
primary proton) on the azimuthal-polar angles plane ∆η–∆ϕ is applied to both the same- and mixed-
event samples. The default selection is ∆η2 +∆ϕ2 ≥ 0.0172 and a systematic variation of +10 % for
the value of the minimum distance is applied in the analysis. The normalisation parameter N is chosen
such that the mean value of the correlation function equals unity in a Q3 region where the effects of FSIs
are negligible. The interval Q3 ∈ (1.0−1.2) GeV/c is chosen for all triplets.

2.3 Three-particle femtoscopic cumulants

The measurable three-particle normalised mixed moments C(p1,p2,p3) include all interactions at work
in the three-particle system: the two-body interactions among all pairs within the selected triplet and
the genuine three-body interaction. To access only the genuine three-body interaction, one can use
cumulants. Given random variables Xi, the cumulant for a triplet is defined by Kubo [36] as

〈X1X2X3〉c = 〈X1X2X3〉
−{〈X1X2〉〈X3〉+ 〈X2X3〉〈X1〉+ 〈X3X1〉〈X2〉}
+2〈X1〉〈X2〉〈X3〉 ,

(8)

where 〈Xi〉 is the expectation value of the variable Xi and
〈
XiX j

〉
,
〈
XiX jXk

〉
are the two- and three-

variable mixed moments. The three-particle normalised mixed moment, defined in Eq. 4, is the three-
particle momentum distribution normalised to the mixed-event distribution. The cumulants method can
be applied to the numerator which contains the correlated particles, and then the expression is normalised
to the mixed-event distribution. The three-particle femtoscopic cumulant c3 thus can be defined as

c3 (p1,p2,p3) = [N3 (p1,p2,p3)

−N2 (p1,p2)N1 (p3)−N2 (p2,p3)N1 (p1)−N2 (p3,p1)N1 (p2)

+2N1 (p1)N1 (p2)N1 (p3) ]/N1 (p1)N1 (p2)N1 (p3) ,

(9)

where N3 (p1,p2,p3) and N2
(
pi,p j

)
are the same-event three- and two-particle momentum distribu-

tions; N1 (pi) is the single-particle momentum distribution; the product terms N2
(
pi,p j

)
N1 (pk) and

N1 (pi)N1
(
p j
)

N1 (pk) indicate the mixed event distributions. Thus one can further rewrite the femto-
scopic cumulant as

c3 (p1,p2,p3) =C(p1,p2,p3)−C([p1,p2],p3)−C([p2,p3],p1)−C([p3,p1],p2)+2. (10)
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This method has been already successfully applied within the ALICE Collaboration to study the pos-
sibility of coherent pion production by measuring three-pion femtoscopic cumulants in Ref. [34, 35].
Theorem I from Ref. [36] enunciates that the three-particle cumulant is zero if the variables Xi,X j, ... can
be divided into two or more groups that are statistically independent. In case of femtoscopic cumulants,
this translates into c3 (p1,p2,p3) = 0 in the absence of genuine three-body correlations. Therefore, the
measurements of non-vanishing values of c3 can be used as an experimental confirmation of the existence
of genuine three-body effects.
If genuine three-body correlations are not present in the particle triplet, the three-particle mixed moments
can be expressed using only lower order contributions as follows

Ctwo-body(p1,p2,p3) =C([p1,p2],p3)+C([p2,p3],p1)+C([p3,p1],p2)−2. (11)

In Eq. 11, C([pi,p j],pk) is built by combining particles i and j from the same event with particle k
from another event to obtain the numerator

(
N2
(
pi,p j

)
N1 (pk)

)
of the correlation function while the

denominator (N1 (p1)N1 (p2)N1 (p3)) is estimated using three particles from three different events as
described in Section 2.2.

2.4 Projector method

An alternative method to isolate the genuine three-body contribution to the measured three-particle nor-
malised mixed moments is the projector method [37]. This method makes use of the subtraction rule
provided by the Kubo’s cumulant decomposition (Eq. 10) but, instead of evaluating them with the data-
driven approach based on event mixing described above, it calculates C([pi,p j],pk) using the measured
or the calculated two-particle correlation function and the projection of the third non-interacting (specta-
tor) particle. The method is described in Ref. [37]. Given the three-particle normalised mixed moments,
C(Q3), and the two-body correlation functions, C(k∗i j), the projector method provides a kinematic trans-
formation from the relative momentum k∗i j of the interacting pairs i j to the Q3 of the three-body system
(i− j)− k under study. The transformation is given by the following integral in the momentum space

Ci j(Q3) =
∫

C(k∗i j) Wi j(k∗i j,Q3) dk∗i j, (12)

where the indices i j denote the interacting pair and the projector function Wi j is equal to [37]

Wi j(k∗i j,Q3) =
16(αγ−β 2)3/2k∗i j

2

πQ4
3γ2

√
γQ2

3− (αγ−β 2)k∗i j
2. (13)

The constants α , β and γ depend on the particle masses1. The integral in Eq. 12 can be evaluated using
the measured p–p and p–Λ correlation functions from Refs. [27, 43, 49]. The resulting normalised mixed
moments are compared to the ones obtained by employing the data-driven method (Eq. 11) and shown
in Fig. 1. Panel a) shows the normalised mixed moment (p–p)–p, the green points are obtained using the
data-driven approach and the grey band is obtained with the projector method. The statistical and sys-
tematic uncertainties are shown separately for the data driven method, while the width of the grey band
represents the sum in quadrature of the statistical and systematic uncertainties for the projector method.
The statistical uncertainties of all the measured normalised mixed moments have been estimated using a
bootstrap [49] method by sampling same- and mixed-event counts from Poisson distributions. The sta-
tistical uncertainties shown correspond to the central 68% confidence interval and are consistent with the
uncertainties obtained employing the standard error propagation method. The systematic uncertainties
are estimated by varying the selection criteria of the particle candidates as described in Section 2.1. Pan-
els b) and c) show the same comparison for the (p–p)–Λ and the p–(p–Λ) normalised mixed moments.

1α =
4 m2

k
(mi+mk)2 +

4 m2
k

(m j+mk)2 +4 ; β =
4 mk(mi+m j+mk)

mi+m j

[
m j

(m j+mk)2 − mi
(mi+mk)2

]
; γ =

4 (mi+m j+mk)
2

(mi+m j)2

[
m2

i
(mi+mk)2 +

m2
j

(m j+mk)2

]
.
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Figure 1: The upper panels show the comparison of the two-particle correlations projected on three-particle phase
space obtained using the data-driven approach based on event mixing (green points) and the projector method (grey
band). The resulting normalised mixed moments are shown for (p–p)–p (panel a), (p–p)–Λ (panel b) and p–(p–Λ)
(panel c) cases. The error bars and the boxes represent the statistical and systematic uncertainties, respectively.
The grey band includes systematic and statistical uncertainties summed in quadrature. The lower panels show the
deviations between the data-driven approach and the projector method, expressed in terms of nσ .

The number of events used for mixing (mixing depth) for (p–p)–p and (p–p)–Λ correlation function
measurements is 30, while p–(p–Λ) correlations require larger mixing depth to increase the statistical
precision and thus is set to 100.

The results from the data-driven and the projector method are in good agreement between each other. The
number of deviations nσ in each bin are shown in the bottom panels of Fig. 1, where σ is the combined
statistical and systematic uncertainty for both the experimental data and the projector. The agreement in
the region Q3 < 0.8 GeV/c has been evaluated by performing a χ2 test. The χ2 is calculated combining
the nσ values of each bin. Finally, the p-value from the χ2-distribution is computed and the global nσ

values are extracted. The latter amount to 0.167, 0.0006 and 2.75 for (p–p)–p, (p–p)–Λ and p–(p–Λ),
respectively. The data-driven method requires the usage of the third particle in the triplet from the mixed-
event data sample and consequently the statistical uncertainty depends on the mixing depth, while the
projector method does not have this limitation. Thus, the latter significantly reduces the total uncertainty
in the evaluation of the two-particle correlation effect on the three-particle normalised mixed moments.
For this reason, the projector method is used to calculate the three-particle cumulants for the p–p–p and
p–p–Λ triplets.

The total two-particle contribution to the three-particle normalised mixed moments is obtained by sub-
stituting all terms on the right-hand side of Eq. 11 with the corresponding kinematic transformation,
i.e.

Ctwo-body(Q3) =C12(Q3)+C23(Q3)+C31(Q3)−2 , (14)

where the indices refer to the label of the correlated pairs. In the case of p–p–p we have

Ctwo-body
p−p−p (Q3) = 3 C(p−p)−p(Q3)−2 , (15)

and in the case of p–p–Λ we have

Ctwo-body
p−p−Λ

(Q3) =C(p−p)−Λ(Q3)+2 Cp−(p−Λ)(Q3)−2 . (16)

The resulting total lower-order contributions to the three-particle normalised mixed moments (Eqs. 15
and 16) are shown in Fig. 2. The agreement between the data-driven approach and the projector method
predictions translate into nσ = 0.167 and nσ = 0.0014 for the p–p–p and p–p–Λ lower-order contributions,
respectively.
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Figure 2: Comparison of the total two-particle contribution to the three-particle normalised mixed moments ob-
tained using the data-driven approach (green points) and the projector method (grey band). The resulting nor-
malised mixed moments are shown for p–p–p (left panel) and p–p–Λ (right panel). The error bars and the boxes
represent the statistical and systematic uncertainties, respectively. The grey band includes systematic and statistical
uncertainties summed in quadrature.

2.5 Decomposition of the three-particle cumulants

The experimental determination of the correlation function is mainly distorted by two distinct impurities
in the candidate sample: misidentified particles and feed-down particles originating from weakly decay-
ing particles. This introduces additional contributions to the correlation function of interest. These con-
tributions are either assumed to be flat or, when the interaction is known, they are explicitly considered
as discussed in Ref. [25]. The contributions to the correlation function stemming from decaying particles
or impurities of the sample are weighted with the so-called λ parameters. By adopting this technique the
residual correlations can be included in the final description of the experimental correlation function of
two particles as

C(k∗) = 1+λ00(C00(k∗)−1)+ ∑
i j 6=00

λi j(Ci j(k∗)−1), (17)

where the i j 6= 00 denote all possible impurity and feed-down contributions and the i j = 00 is the cor-
rectly identified primary particle contribution. These λ parameters are obtained employing single par-
ticle properties such as the purity and feed-down probability. The underlying mathematical formalism
is outlined in Ref. [25]. This mechanism has been extended to the three-particle case and the genuine
three-particle cumulants can be obtained by subtracting the impurity and feed-down contributions from
the measured cumulants. The full mathematical derivation is presented in Appendix C. The final expres-
sion of the genuine three-particle cumulants is

c(X0Y0Z0) =
1

λX0Y0Z0(XY Z)

(
c(XY Z)− ∑

i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)c(XiYjZk)

)
, (18)

where X , Y and Z represent three generic particle species, the index 0 refers to correctly identified
primary particle and the indexes i, j,k refer to secondary particles of a generic particle species. As
shown in Appendix C, the specific weights λ depend on the purity and feed-down fraction of the single
particles and are found to be equal to λX0Y0Z0(ppp) = 0.618 and λX0Y0Z0(ppΛ) = 0.405 for the p–p–p and
p–p–Λ cumulants, respectively. Only 60% (40%) of the p–p–p (p–p–Λ) triplets correspond to correctly
identified primary particles.

In the following, the results for the p–p–p cumulants will be corrected according to the evaluated λ pa-
rameters assuming that all the three-particle contributions stemming from feed-down and impurities are
flat in the momentum space. This assumption is supported by the observation that the measured p–p–Λ
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cumulants are consistent with zero within uncertainties (see Fig. 4 and the discussion in Section 3). The
correction is not applied to the p–p–Λ cumulants because the shape of the feed-down contribution is not
known and also because the statistical uncertainties are too large to provide any sensitivity to the three
particle interaction.

3 Results

The measured normalised three-particle mixed moments for p–p–p and p–p–Λ triplets are shown in
Fig. 3 on the left and right panels, respectively. The mixing depth in both cases is set to 30. The green
symbols represent the data points with their statistical and systematic uncertainties, while the grey bands
correspond to the lower-order two-body interaction contributions obtained using the projector method
already shown in Fig. 2. The non-femtoscopic contributions to the measured normalised mixed moments,
evaluated using Monte Carlo simulations, are found to be negligibly small (see Appendix A for a detailed
discussion).
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Figure 3: Measured p–p–p (left panel) and p–p–Λ (right panel) normalised mixed moments. The green points
show the experimental results, the error bars and the boxes represent the statistical and systematic uncertainties,
respectively. The grey bands represent the expectations for the lower-order two-particle correlations obtained using
the projector method and the band width is obtained including systematic and statistical uncertainties summed in
quadrature.

In the low Q3 region, the measured moments deviate from the hypothesis of two-particle correlations
only. The genuine three-body effects are then isolated by evaluating the cumulants

c3(Q3) =C(Q3)−Ctwo-body(Q3) . (19)

The lower-order contribution Ctwo-body(Q3) obtained with the projector method is used. The results for
p–p–p and p–p–Λ triplets are shown in Fig. 4 on the left and right panels, respectively. The p–p–p
cumulant, already corrected for the feed-down contributions, is negative for 0.16 < Q3 < 0.22 GeV/c,
while the large statistical uncertainty in the lowest Q3 interval prevents a conclusion on the sign for Q3 <
0.16 GeV/c. The statistical significance of the measured deviation from the null-hypothesis c3(Q3) = 0
is evaluated using the χ2 test in the region Q3 < 0.4 GeV/c. The obtained p-value corresponds to 6.7
standard deviations. This result hints to the presence of an effect beyond the two-body interactions
in the p–p–p system that could be either due to Pauli blocking (Fermi-Dirac quantum statistics) at the
three particle level [50] or to the contribution of a three-body nuclear repulsive interactions. Long-range
Coulomb interactions may also lead to significant contributions [51]. More quantitative conclusions on
the interpretation of the non-zero cumulant require more sophisticated calculations for the three-body
system. The present analysis demonstrates the experimental accessibility of the three-baryon cumulant
in the data sample of pp collisions at

√
s = 13 TeV recorded by ALICE. In addition to the p–p–p system,
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Figure 4: Three-particle cumulants for p–p–p (left panel, blue square symbols) and p–p–Λ (right panel) triplets
obtained by subtracting the lower-order contributions from the measured three-particle normalised mixed moments
shown in Fig. 3. The p–p–p cumulant in the left panel is further corrected for the feed-down contributions from
decaying particles and represents thus, the cumulant for the correctly identified primary protons (see Section 2.5
for details). The dashed lines correspond to the null-hypotheses c3(Q3) = 0. The red open circles in left panel
represent the cumulant for p–p–p triplets (for more details see the main text).

the mixed-charge p–p–p case has also been studied (see Appendix B for details). In the case of p–p–p ,
the two-body p–p interaction contains both elastic and inelastic components, previously measured in an
independent analysis [32]; the p–p interaction is well known from scattering data [52, 53] and verified
by correlation measurements [25, 43, 54]; and the genuine three-body strong interaction for the p–p–p
triplet should be negligible. The extracted cumulant for p–p–p is shown in the left panel of Fig. 4 by
the red open circles. Since the number of the mixed-charge triplets is a factor four higher than the one
of the same-charge triplets, it is possible to extend the measurement of the three-particle correlation to
lower Q3 values. The correction for the feed-down contributions has been applied and the statistical
and systematic uncertainties are shown. The p–p–p cumulant agrees with the null-hypothesis within
2.2 standard deviations in the region Q3 < 0.4 GeV/c and within 0.9 standard deviations in the region
Q3 < 0.2 GeV/c, suggesting that genuine three-body effects are not statistically significant. This result as
well demonstrates that the measured p–p–p cumulant deviation from zero is not due to detector effects.

In the case of p–p–Λ, a positive cumulant is measured at Q3 < 0.16 GeV/c. The p-value obtained from
the χ2 test in the region Q3 < 0.4 GeV/c corresponds to a deviation of 0.8 σ from the null-hypothesis. A
similar value is found by repeating the significance test with the Fisher method, meaning that the mea-
sured cumulant is compatible with the null-hypothesis within the uncertainties. The current measurement
does not allow to draw any firm conclusion yet on the three-body interaction in the p–p–Λ system, but
since in this case only two of the particles are identical and charged, a non zero cumulant can be directly
linked to the presence of a strong three-body interaction. It is estimated that employing a three-baryon
event filtering during the upcoming Run 3 data taking should increase the number of triplets by a factor
up to 500 for the target integrated luminosity of 200 nb−1 at

√
s = 13.6 TeV [55]. This opens up the

possibility of measuring precisely the three-body correlations for both the p–p–p and p–p–Λ systems.

4 Conclusions

In this article, the first femtoscopic study of the p–p–p and p–p–Λ systems measured in high-multiplicity
pp collisions at

√
s = 13 TeV with the ALICE detector has been presented. In the chosen colliding

system, hadrons are emitted at average relative distances of about 1 fm providing a unique environment
to test three-body interactions at scales shorter than inter-particle ones in nuclei. The data collected
during the LHC Run 2 enabled the measurement of the p–p–p and p–p–Λ normalised mixed moments in
the low Q3 region down to 0.1 GeV/c, giving access to the region where the effects of the hadronic two-
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and three-body interactions are more pronounced. The genuine three-particle correlations have been
isolated using the Kubo’s cumulant expansion method. The lower-order two-body contributions have
been estimated employing both a data-driven event mixing technique and a newly developed projector
method. The two approaches have been compared and found to be in good agreement between each
other, providing the first validation of the projector method using the data. The extracted p–p–p and
p–p–Λ cumulants deviate from zero in the low Q3 region. In the case of p–p–p, a negative three-particle
cumulant is measured. The p-value extracted from the χ2 test corresponds to a deviation of 6.7σ from the
null-hypothesis for Q3 < 0.4 GeV/c. The obtained result provides an experimental hint to the presence
of an effect beyond the two-body interaction in the p–p–p system. The observed deviation could be due
to genuine three-body effects arising from: Pauli blocking, short-range strong interactions, or long-range
Coulomb interactions. Refined three-body system calculations are required to give a solid interpretation
of the measurement. The mixed-charge p–p–p cumulant has also been measured as a benchmark and
the result is consistent with the null-hypothesis showing that the effect observed for the p–p–p system
is a genuine one. In the case of p–p–Λ, a positive cumulant is observed at low Q3. The deviation from
zero at Q3 < 0.4 GeV/c is 0.8 σ , which suggests no significant deviation from the null-hypothesis within
the current uncertainties. For this system, where one particle is uncharged and only two particles are
identical, genuine three-particle correlations can be directly linked to the three-body strong interaction.
The upcoming LHC Run 3 data taking will provide significantly larger samples of measured triplets,
allowing more quantitative conclusions to be drawn for many-body dynamics.

The analysis presented in this article represents a first important step towards the direct measurement
of the three-body interaction among baryons, demonstrating that genuine three-particle effects can be
studied using normalised mixed moments as experimental observables.
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A Monte Carlo studies

One of the benchmarks of the presented analysis consists in verifying that the three-particle correlations
obtained from PYTHIA 8 [56] (Monash 2013 Tune) simulations do not show any significant devia-
tion from unity. Indeed, no FSIs – either two- or three-particle – are included in the simulated and
reconstructed Monte Carlo data using the PYTHIA 8 event generator for pp collisions at

√
s = 13 TeV.

Figure A.1 shows the comparison between the measured and simulated distributions as a function of Q3,
where the simulation includes a dedicated high-multiplicity selection to mimic the V0 high-multiplicity
trigger in the real data. The green symbols represent the experimental data while the black symbols refer
to the simulation. The simulated correlations are consistent with unity for the entire Q3 < 0.8 GeV/c
range, showing that there is no sign of mini-jets contribution (see more details in Ref. [32]) and that
the energy and momentum conservation effects are eventually present at larger values of Q3 that are not
relevant for the studies carried out in this work. Also the simulations of the lower-order contributions
display the same behaviour.
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Figure A.1: The comparison between the normalised mixed moments obtained from the measurements (green) and
from the PYTHIA 8 event generator with a dedicated high-multiplicity selection to mimic the V0 high-multiplicity
trigger (black).

B Mixed-charge correlation studies

An additional benchmark for the p–p–p cumulant result and the measured deviation from zero has been
considered by studying the p–p–p triplets. Identical event and track selection criteria and systematic
variations as those employed for the p–p–p analysis have been used. The rejection in the ∆η–∆ϕ plane
(see Section 2.2 for the details) has been applied only for same-charge pairs in the triplet. The obtained
normalised mixed moments for p–p–p , (p–p)–p and (p–p)–p triplets with the corresponding statistical
and systematic uncertainties are shown in panels a), b) and c) of Fig. B.1, respectively. The (p–p)–p
normalised mixed moment (panel b) in Fig. B.1 is in agreement with the (p–p)–p result (panel a) in
Fig. 1. This is consistent with the expectation from Eqs. 12 and 13, since the normalised mixed moments
depend only on the correlation of the two particles in the same event and on the mass of the uncorrelated
particle, which are identical in the (p–p)–p and (p–p)–p systems. The (p–p)–p normalised mixed moment
reflects the interplay of FSIs and non-femtoscopic correlations measured in the study of p–p pairs [32].

The p–p–p cumulant is obtained using the data-driven method and it is shown in Fig. 4 by red circular
symbols. The result is compatible with zero within the statistical and systematic uncertainties, demon-
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strating that strong-interaction as well as Coulomb effects on three-particle level are not statistically
significant in p–p–p .
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Figure B.1: Panel a) shows the normalised mixed moment for p–p–p triplets. Panels b) and c) show the (p–p)–p
and (p–p)–p lower-order contributions to the measured p–p–p normalised mixed moments. The error bars and the
boxes represent the statistical and systematic uncertainties, respectively.

C Feed-down contributions

The measured femtoscopic correlations do not originate only from correctly identified primary particles
but they include as well contributions from misidentified particles and feed-down particles originating
from weakly decaying hadrons. In case of two-body femtoscopy, the decomposition method explained
in Section 2.5 and the Eq. 17 can be used to account for such impurities and feed-down effects.
This method can be extended to the three-particle case. The total data sample X contains the particles
which stem from feed-down XF , misidentified particles XM and the correctly identified primary particles
X0. Both feed-down and misidentified particles can originate from different channels and the contribu-
tions can be expressed as

XF =
NF

∑
i=1

Xi, (C.1)

XM =
NF+NM

∑
i=NF+1

Xi, (C.2)

where NF and NM are the number of feed-down and misidentification contributions. The purity is the
fraction of correctly identified particles to the total number of particles in the data sample and can be
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defined as
P(X) = (X0 +XF)/X . (C.3)

The correctly identified particles can stem from the decays of particles and for this purpose the channel
fraction f (Xi) is defined as

f (Xi) = Xi/(X0 +XF) . (C.4)

The fraction of specific channel in the whole data sample then can be written as

P(Xi) = P(Xi) f (Xi) =
Xi

X
. (C.5)

The correlation function for three particles can be written as

C(XY Z) =
N(XY Z)
M(XY Z)

, (C.6)

where N and M are the yields of XY Z triplet in same and mixed events, respectively. Using the identities
introduced before one can write

N(XY Z) = N

(
∑
i, j,k

XiYjZk

)
= ∑

i, j,k
N (XiYjZk) , (C.7)

M(XY Z) = M

(
∑
i, j,k

XiYjYk

)
= ∑

i, j,k
M (XiYjZk) . (C.8)

The correlation function then can be rewritten as

C(XY Z) =
∑i, j,k N (XiYjZk)

M(XY Z)
= ∑

i, j,k

N (XiYjZk)

M(XY Z)
M (XiYjZk)

M (XiYjZk)
=

= ∑
i, j,k

N (XiYjZk)

M (XiYjZk)︸ ︷︷ ︸
Ci, j,k(XY Z)

M (XiYjZk)

M(XY Z)︸ ︷︷ ︸
λi, j,k(XY Z)

= ∑
i, j,k

λi, j,k(XY Z)Ci, j,k(XY Z),
(C.9)

where Ci, j,k(XY Z) is the correlation function of the i, j,k-th channel of origin of the particles X ,Y,Z
and the λi, j,k(XY Z) is the weight for such correlation. This parameter depends only on the mixed event
sample and can be related to previously introduced single particle quantities, channel fraction and purity,
as follows

λi, j,k(XY Z) =
M (XiYjZk)

M(XY Z)

=
M (Xi)

M(X)

M (Yj)

M(Y )
M (Zk)

M(Z)
= P(Xi)P(Yj)P(Zk)

= P(Xi) f (Xi)P(Yj) f (Yj)P(Zk) f (Zk) .

(C.10)

To study the lower-order contributions in the measured three-particle normalised mixed moment, one
needs to define the decomposition for the measurement of two correlated particles. In such case, the
origin of the third particle in the numerator does not matter as it is uncorrelated. Equation C.9 becomes

C(XY,Z) =
∑i, j N (XiYj,Z)

M(XY,Z)
= ∑

i, j

N (XiYj,Z)
M(XY,Z)

M (XiYj,Z)
M (XiYj,Z)

=

= ∑
i, j

N (XiYj,Z)
M (XiYj,Z)︸ ︷︷ ︸

Ci, j(XY,Z)

M (XiYj,Z)
M(XY,Z)︸ ︷︷ ︸

λi, j(XY,Z)

= ∑
i, j

λi, j(XY,Z)Ci, j(XY,Z).
(C.11)
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Here Ci, j(XY,Z) denotes the correlation function where the two correlated particles X and Y are from
origin i and j respectively and Z is from any origin. Here λi, j(XY,Z) is

λi, j(XY,Z) =
M (XiYj,Z)
M(XY,Z)

=
M (Xi)

M(X)

M (Yj)

M(Y )
M (Z)
M(Z)

= P(Xi)P(Yj) ·1

= P(Xi) f (Xi)P(Yj) f (Yj) .

(C.12)

This notation is valid only if one wants to study the (X −Y )−Z correlation. To obtain the cumulant of
the primary particles which were identified correctly, one has to subtract the lower-order correlations,
such as (X−Y )−Z, from the three-particle correlation. For this purpose, the Eq. C.11 must be rewritten.
As previously explained, in case of (X −Y )−Z correlation, the origin of the third uncorrelated particle
is not important, which means that C(XY,Zl) = C(XY,Zm), where Zl and Zm have different origin. As
previously shown, the fraction of particles Zl in the whole data sample is P(Zl), which can be as well ex-
pressed with the λ parameter of one particle λl(Z). Using the property 1 = ∑k λk(Z) of the λ parameters
in Eq. C.12, one can write

λi, j(XY,Z) = λi, j(XY,Z)∑
k

λk(Z) = ∑
k

λi, j(XY,Z)λk(Z) = ∑
k

λi, j,k(XY Z) , (C.13)

and Eq. C.11 can be rewritten as

C(XY,Z) = ∑
i, j

λi, j(XY,Z)Ci, j(XY,Z)

= ∑
i, j

λi, j(XY,Z)∑
k

λk(Z)Ci, j(XY,Z)

= ∑
i, j

∑
k

λi, j(XY,Z)λk(Z)Ci, j(XY,Z)

= ∑
i, j,k

λi, j,k(XY Z)Ci, j(XY,Z).

(C.14)

In the following, the above formalism is used to obtain the correctly identified primary particle cumulant.
Starting with the cumulant expression

c(XY Z) =C(XY Z)−C(XY,Z)−C(XZ,Y )−C(ZY,X)+2

= ∑
i, j,k

λi, j,k(XY Z)Ci, j,k(XY Z)−∑
i, j,k

λi, j,k(XY Z)Ci, j(XY,Z)

−∑
i, j,k

λi, j,k(XY Z)Ci,k(XZ,Y )−∑
i, j,k

λi, j,k(XY Z)Ck, j(ZY,X)+2,

(C.15)

the correctly identified primary particle correlations can be isolated from the rest as follows
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c(XY Z) =

(
λX0Y0Z0(XY Z)CX0Y0Z0(XY Z)+ ∑

i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ci, j,k(XY Z)

)

−

(
λX0Y0Z0(XY,Z)CX0Y0(XY,Z)+ ∑

i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ci, j(XY,Z)

)

−

(
λX0Y0Z0(XZ,Y )CX0Z0(XZ,Y )+ ∑

i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ci,k(XZ,Y )

)

−

(
λX0Y0Z0(ZY,X)CZ0Y0(ZY,X)+ ∑

i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ck, j(ZY,X)

)
+2 .

(C.16)

Written in such a way, one can already see that the cumulant of the measured correlation function can be
expressed as the sum of the correctly identified primary particle cumulant and the cumulant of the rest of
the contributions as follows

c(XY Z) = λX0Y0Z0(XY Z)CX0Y0Z0(XY Z)−λX0Y0Z0(XY,Z)CX0Y0(XY,Z)

−λX0Y0Z0(XZ,Y )CX0Z0(XZ,Y )−λX0Y0Z0(ZY,X)CZ0Y0(ZY,X)

+ ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ci, j,k(XY Z)− ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ci, j(XY,Z)

− ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ci,k(XZ,Y )− ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)Ck, j(ZY,X)+2

= λX0Y0Z0(XY Z)(CX0Y0Z0(XY Z)−CX0Y0(XY,Z)−CX0Z0(XZ,Y )−CZ0Y0(ZY,X))

+ ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)
(
Ci, j,k(XY Z)−Ci, j(XY,Z)−Ci,k(XZ,Y )−Ck, j(ZY,X)

)
+2 .

(C.17)

The terms inside the brackets are almost a cumulant expression, except the +2 term is missing, but one
can add and subtract 2 to obtain

c(XY Z) = λX0Y0Z0(XY Z)c(X0Y0Z0)+ ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)c(XiYjZk)

−2λX0Y0Z0(XY Z)−2 ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)+2

= λX0Y0Z0(XY Z)c(X0Y0Z0)+ ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)c(XiYjZk)

−2 ∑
i, j,k

λi, j,k(XY Z)+2

= λX0Y0Z0(XY Z)c(X0Y0Z0)+ ∑
i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)c(XiYjZk).

(C.18)

This is the final result - the cumulant calculated using the measured correlation functions consists of the
three correctly identified primary particle cumulant and the cumulant which consist of the rest of possible
contributions. In such case, the correctly identified particle cumulant is

c(X0Y0Z0) =
1

λX0Y0Z0(XY Z)

(
c(XY Z)− ∑

i, j,k 6=(X0Y0Z0)

λi, j,k(XY Z)c(XiYjZk)

)
. (C.19)
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