
Mini-Abstract 

Trauma/hemorrhagic shock are associated with multiple organ dysfunction 

syndrome (MODS). Resolvin D1 (RvD1) is reduced in patients with 

trauma/MODS and administration of synthetic RvD1 reduces the organ 

injury/dysfunction in rats. These RvD1 beneficial effects are due to reduction of 

NF-κB activation, formation of proinflammatory cytokines and neutrophil 

infiltration into organs. 
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Structured Abstract 

Objectives: To evaluate the potential changes in the plasma levels of resolvin D1 

(RvD1) in patients with trauma and hemorrhage. Having found that trauma results 

in a profound reduction in plasma RvD1 in patients, we have then investigated 

the effects of RvD1 on the organ injury and dysfunction associated with 

hemorrhagic shock (HS) in the rat. 

Summary Background Data: HS is a common cause of death in trauma due to 

excessive systemic inflammation and multiple organ failure. RvD1 is a member 

of the resolvin family of pro-resolution mediators.   

Methods:  Blood samples were drawn from critically injured patients (n=27, 

ACITII-prospective observational cohort study) within two hours of injury for 

targeted liquid chromatography tandem mass spectrometry. HS rats (removal of 

blood to reduce arterial pressure to 30±2 mmHg, 90 minutes, followed by 

resuscitation) were treated with RvD1 (0.3 or 1 µg/kg i.v.) or vehicle (n=7). 

Parameters of organ injury and dysfunction were determined.  

Results: Plasma levels of RvD1 (mg/dl) were reduced in patients with trauma+HS 

(0.17±0.08) when compared to healthy volunteers (0.76±0.25) and trauma 

patients (0.62±0.20). In rats with HS, RvD1 attenuated the kidney dysfunction, 

liver injury, and tissue ischemia. RvD1 also reduced activation of the NF-κB 

pathway and reduced the expression of pro-inflammatory proteins such as iNOS, 

TNF-α, IL-1β and IL-6.  

Conclusions: Plasma RvD1 is reduced in patients with trauma-HS. In rats with 

HS, administration of synthetic RvD1 on resuscitation attenuated the multiple 
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organ failure associated with HS by a mechanism that involves inhibition of the 

activation of NF-κB.  
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Mini-Abstract 

Trauma/hemorrhagic shock are associated with multiple organ dysfunction syndrome 

(MODS). Resolvin D1 (RvD1) is reduced in patients with trauma/MODS and 

administration of synthetic RvD1 reduces the organ injury/dysfunction in rats. These 

RvD1 beneficial effects are due to reduction of NF-κB activation, formation of 

proinflammatory cytokines and neutrophil infiltration into organs. 
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Structured Abstract 

Objectives: To evaluate the potential changes in the plasma levels of resolvin D1 

(RvD1) in patients with trauma and hemorrhage. Having found that trauma results in a 

profound reduction in plasma RvD1 in patients, we have then investigated the effects 

of RvD1 on the organ injury and dysfunction associated with hemorrhagic shock (HS) 

in the rat. 

Summary Background Data: HS is a common cause of death in trauma due to 

excessive systemic inflammation and multiple organ failure. RvD1 is a member of the 

resolvin family of pro-resolution mediators.   

Methods:  Blood samples were drawn from critically injured patients (n=27, ACITII-

prospective observational cohort study) within two hours of injury for targeted liquid 

chromatography tandem mass spectrometry. HS rats (removal of blood to reduce 

arterial pressure to 30±2 mmHg, 90 minutes, followed by resuscitation) were treated 

with RvD1 (0.3 or 1 µg/kg i.v.) or vehicle (n=7). Parameters of organ injury and 

dysfunction were determined.  

Results: Plasma levels of RvD1 (mg/dl) were reduced in patients with trauma+HS 

(0.17±0.08) when compared to healthy volunteers (0.76±0.25) and trauma patients 

(0.62±0.20). In rats with HS, RvD1 attenuated the kidney dysfunction, liver injury, and 

tissue ischemia. RvD1 also reduced activation of the NF-κB pathway and reduced the 

expression of pro-inflammatory proteins such as iNOS, TNF-α, IL-1β and IL-6.  

Conclusions: Plasma RvD1 is reduced in patients with trauma-HS. In rats with HS, 

administration of synthetic RvD1 on resuscitation attenuated the multiple organ failure 

associated with HS by a mechanism that involves inhibition of the activation of NF-κB.  
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Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; CK, 

creatine kinase; iNOS, inducible nitric oxide synthase; HS, hemorrhagic shock; IL-6, 

interleukin 6; MAP, mean arterial pressure; MODS, multiple organ dysfunction 

syndrome; MPO, myeloperoxidase; NF-κB, nuclear factor kappa B; TNF-α, tumour 

necrosis factor-α. 
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INTRODUCTION 

Despite improvements in trauma care, the morbidity and mortality associated with 

trauma remains very high. Approximately 40% of trauma deaths are due to excessive 

bleeding and occur in the first few hours after injury1,2. Severely injured patients that 

do survive the initial insult often develop persistent organ dysfunction associated with 

poor outcome1,3. Multiple organ dysfunction syndrome (MODS) is considered the 

leading cause of death and of poor-quality life after severe trauma3. The resuscitation 

after severe hemorrhage improves tissue perfusion, but also aggravates injury and 

triggers a systemic inflammatory response, both of which contribute to the 

development of MODS4,5. Although the precise mechanism responsible for MODS 

remains to be elucidated, inflammation plays a key role, and the increased release of 

inflammatory cytokines and nitric oxide (NO) importantly contribute to the 

pathophysiology of HS6,7. We have recently demonstrated that pharmacologic 

interventions which either reduce organ injury or increase the resistance of target 

organs against injury attenuate the MODS associated with HS8–11.  

Resolution of inflammation is a physiological active process, which is highly 

coordinated and regulated by several endogenous mediators of protein and lipid 

nature. As such, specialized pro-resolving mediators (SPMs), including lipoxins, 

protectins, maresins and resolvins, do not completely inhibit the inflammatory 

responses, but reprogram the immune response to accelerate resolution of 

inflammation and repair12–14. SPMs exhibit protective roles in several inflammatory 

conditions, including arthritis15,16, sepsis17,18, burn injury19, uveitis20 and edema21.  

Resolvin D1 (RvD1), a bioactive lipid mediator synthesised from docosahexaenoic 

acid, is member of the resolvin family that mediates resolution of inflammation22,23. 
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RvD1 reduces the inflammation and lung injury caused by lipopolysaccharide24, it 

reduces the inflammation in endometriosis25, and improves survival in experimental 

sepsis26. However, therapeutic approaches that mimic or amplify these endogenous 

efforts to resolve inflammation and to initiate repair have not yet been investigated in 

trauma-hemorrhage. Thus, the aim of the present study is to evaluate the changes in 

the plasma levels of RvD1 in patients with severe trauma. Having found that trauma 

and hemorrhagic shock (HS) leads to a significant fall in the plasma levels of RvD1, 

we have then used a reverse-translational approach aimed at investigating the 

potential beneficial effects of synthetic RvD1 in a rat model of HS and MODS. 

METHODS 

Use of Human Subjects—Ethic Statement 

Healthy Volunteers: Volunteers gave written consent in accordance with a Queen Mary 

Research Ethics Committee (QMREC 2014:61) and the Helsinki declaration. Venous 

peripheral blood was collected at indicated intervals from fasting volunteers (n=8) that 

declared not taking NSAIDS for at least 14 days, caffeine and alcohol for at least 24h 

and fatty fish for 48h.  

Trauma Patients: Patients recruited into the Activation of Coagulation and 

Inflammation and Trauma (ACITII) study, a platform prospective observational study 

at an urban major trauma centre, were eligible for inclusion. The National Health 

Service (NHS) Research Ethics Committee (REC) provided ethical approval for this 

study (REC reference 07/Q0603/29). Informed consent for participation was obtained 

from the patient or their next of kin. All adult patients meeting criteria for trauma team 

activation were screened for inclusion. Exclusion criteria consisted of presentation 
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more than two hours after injury, administration of more than 2000 ml crystalloid prior 

to blood sampling, major burns and known bleeding diathesis or immunocompromise.  

Patient Selection: We selected a subset of critically injured patients from the ACITII 

cohort for inclusion into this study based on their injury profile and clinical course. 

Patients with an injury severity score (ISS) of ≥25 resulting from blunt force trauma 

were included (n=27). We excluded patients with severe traumatic brain injury 

(abbreviated injury score >3) and those who died within 48 hours of admission, to 

eliminate the confounding effects of severe head injury on the immune response and 

to focus on patients at risk of MODS.  

Data collection and Blood Sampling: Blood samples were collected immediately on 

arrival in the emergency department and within two hours of injury. Demographic data, 

admission physiology, mechanism of injury and blood product utilisation were collected 

prospectively on admission to hospital by a trained research fellow. HS was defined as 

a base deficit of >6mmol/L on arterial blood gas analysis at the time of sampling for 

RvD1 measurement, as previously described27,28. All patients were followed up daily 

over the first 28 days unless death or hospital discharge occurred sooner. Scores were 

calculated on each day of critical care unit stay. MODS was defined as a sequential 

organ failure assessment (SOFA) score of ≥5 occurring on two or more consecutive 

days, excluding the first 48h of admission, as previously described29–31. Additional 

outcome variables included ventilator and vasopressor utilisation, critical care and 

hospital length of stay, and 28-day mortality. 

RvD1 measurement using targeted liquid chromatography tandem mass spectrometry 

Peripheral blood from healthy volunteers and patients was drawn into vacutainers 

containing 3.2% sodium citrate (Becton, Dickinson and company, Plymouth, UK) and 
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centrifuged at 1500 x g for 10 minutes at room temperature. The plasma fraction was 

isolated and centrifuged again using the same settings before immediate storage at -

80°C. All samples were extracted using solid-phase extraction columns as in32,33. Prior 

to sample extraction, deuterated labelled RvD2 (500 pg per sample) was added to 

facilitate quantification in 4 volumes of cold methanol. Samples were kept at -20°C for 

a minimum of 45 min to allow protein precipitation. Supernatants were subjected to 

solid phase extraction, methyl formate fraction collected, brought to dryness and 

suspended in phase (methanol/water, 1:1, vol/vol) for injection on a Shimadzu LC-

20AD HPLC and a Shimadzu SIL-20AC autoinjector, paired with a QTrap 6500 plus 

(Sciex). An Agilent Poroshell 120 EC-C18 column (100 mm x 4.6 mm x 2.7 μm) was 

kept at 50°C and mediators eluted using a mobile phase consisting of methanol-water-

acetic acid of 20:80:0.01 (vol/vol/vol) that was ramped to 50:50:0.01 (vol/vol/vol) over 

0.5 min and then to 80:20:0.01 (vol/vol/vol) from 2 min to 11 min, maintained till 14.5 

min and then rapidly ramped to 98:2:0.01 (vol/vol/vol) for the next 0.1 min. This was 

subsequently maintained at 98:2:0.01 (vol/vol/vol) for 5.4 min, and the flow rate was 

maintained at 0.5 ml/min. QTrap-6500+ was operated using a multiple reaction 

monitoring method using ion pairs 375 > 141 and 375 > 215 as in32,33. RvD1 was 

identified using established criteria including matching retention time to synthetic and 

authentic materials and at least 6 diagnostic ions32,33. Calibration curves were obtained 

using synthetic compound mixtures at 0.78, 1.56, 3.12, 6.25, 12.5, 25, 50, 100, and 

200 pg that gave linear calibration curves with an r2 values of 0.98–0.99. 

Use of Experimental Animals—Ethic Statement 

All animal procedures were approved by the Animal Welfare Ethics Review Board 

(AWERB) of Queen Mary University of London (PCF29685) in accordance with Home 

Office guidance on Operation of Animals (Scientific Procedures Act 1986) and Guide 
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for Care and Use of Laboratory Animals of the National Research Council. Male Wistar 

rats (Charles River Ltd, UK) weighing 250 to 280 g receiving a standard diet and water 

ad libitum were used. 

Hemorrhagic Shock and Quantification of Organ Injury and Dysfunction  

HS was performed as previously described8,34. Briefly, rats were anesthetized with 

sodium thiopentone (120 mg/kg i.p. maintained using 10 mg/kg i.v.). Blood was 

withdrawn from the right carotid artery and collected with 2 IU/ml of heparin until the 

mean arterial pressure (MAP) reach 30±2 mmHg, which was maintained for 1.5 h. The 

shed blood was kept between 6-10oC. After 1.5h of initiation of hemorrhage, 

resuscitation was performed with the shed blood over a period of 5 min. An infusion of 

Ringer Lactate (1.5 mL/kg/hour; i.v.) was maintained throughout the experiment for a 

total of 4h. The last 3h urine was obtained for the estimation of creatinine clearance. 

Four hours after resuscitation, blood was collected from carotid artery for measurement 

of lactate (Accutrend Plus Meter, Roche Diagnostics, UK) and organ injury parameters 

(IDEXX Ltd, UK), and tissue samples were taken, placed on liquid nitrogen and stored 

at -80oC. Sham-rats were used as control and underwent identical surgical procedures, 

but without hemorrhage. 

Experimental Design  

Forty-two rats were randomly divided into the following groups (n=7 per group): 

sham+vehicle; sham+RvD1 (0.3 µg/kg); sham+RvD1 (1 µg/kg); HS+vehicle; HS+RvD1 

(0.3 µg/kg) and HS+RvD1 (1 µg/kg). RvD1 was diluted in saline (vehicle) and rats were 

treated (i.v.) upon resuscitation.  

Immunohistochemistry  
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Myeloperoxidase positive cells and ICAM-1 were detected through 

immunohistochemistry. Briefly, kidney and liver samples were obtained, fixed and 

processed to obtain 4µm sections. Sections were incubated with 0.03% H2O2 for 

inactivation of endogenous peroxidase (Dako EnVision+ System-HRP-DAB, K4010) 

and were blocked with 10% goat serum (15 min). The slides were then incubated with 

rabbit anti-ICAM-1 antibody (1:100; Cat# ab124760, Abcam, Cambridge, UK, 1 h, room 

temperature) or with rabbit anti-myeloperoxidase antibody (1:25; Cat# ab9535, Abcam, 

Cambridge, UK) for 1 h at 37°C. After washing with PBS, slides were incubated with 

labelled polymer-HRP antibody (Dako EnVision+ System-HRP-DAB, K4010), washed 

and incubated with DAB chromogen solution until a brown precipitate could be 

observed. A negative control was performed through the omission of primary antibody 

(data not shown). Reaction was stopped by immersing slides in water. Counter-

staining was performed with Harris haematoxylin. Images were acquired using 

NanoZoomer Digital Pathology Scanner (Hamamatsu Photonics K.K., Japan) and 

analysed using the NDP Viewer software. The relative quantification of ICAM-1 

immunostaining was achieved through densitometry analysis in 5 randomly selected 

fields (x400) per animal (5 per group) using NIH ImageJ 1.36 imaging software (NIH, 

Bethesda, MD, USA) and it is expressed as arbitrary units. The number of MPO 

positive cells was counted in 10 randomly selected fields (x400) in a double-blinded 

manner. 

Determinations of Cytokines 

Serum and tissue cytokines TNF-α, IL-1β, IL-6 and IL-10 were determined using 

commercial immunoassay kits (R&D Systems, Minneapolis, MN). 

Western Blot Analysis 
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Briefly, kidney and liver samples were homogenized in buffer and centrifuged (4000 

rpm, 5 min, 4oC). To obtain the cytosolic fraction, supernatants were centrifuged 

(14000 rpm, 4oC, 40 min). The pelleted nuclei were re-suspended in extraction buffer 

and centrifuged (14000 rpm, 20 min, 4oC). Protein content was determined on both 

nuclear and cytosolic extracts using bicinchoninic acid (BCA) protein assay (Thermo 

Fisher Scientific Inc, Rockford, IL). Semi-quantitative immunoblot analyses of the 

phosphorylation of IKK𝛼/𝛽, I𝜅B𝛼, nuclear translocation of p65 and expression of iNOS 

were carried out. Equal amounts of proteins were separated by SDS-PAGE and 

electrotransferred to PVDF membrane. After blocking (1h in 5% dry milk solution), 

membranes were incubated with primary antibodies (rabbit anti-NF-kB [1: 1000], rabbit 

anti-IKK𝛼/𝛽 [1:1000], rabbit anti-Ser176/180 IKK𝛼/𝛽 [1:5000], mouse anti-I𝜅B𝛼 [1:1000], 

mouse anti-Ser32/36 I𝜅B𝛼 [1:1000], rabbit anti-iNOS [1:1000]) followed by incubation 

with appropriated HRP-conjugated secondary antibodies. Proteins were detected with 

ECL detection system and quantified by densitometry using analytic software 

(Quantity-One, Bio-Rad, Hercules, CA, USA). Results were normalized with respect to 

densitometric value of tubulin for cytosolic proteins or histone H3 for nuclear proteins. 

Materials 

Unless otherwise stated, all compounds were from Sigma-Aldrich Company Ltd 

(Poole, Dorset, U.K.). Ringer’s Lactate was from Baxter Healthcare Ltd.; sodium 

thiopentone (Thiovet©) from Link Pharmaceuticals (Horsham, UK). The BCA protein 

assay kit and SuperBlock blocking buffer were from ThermoFisher Scientific Inc. 

(Rockford, USA).  

Statistics  
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All figures are expressed as box-and-whisker format showing medians, inter-quartile 

range and full range. The distribution of the data was verified by Shapiro-Wilk normality 

test, and the homogeneity of variances by Bartlett test. When necessary, values were 

transformed into logarithmic values to achieve normality and homogeneity of 

variances. Data were assessed by one-way ANOVA followed by Newman-Keuls post-

hoc test. Data that were not normally distributed were analysed with Kruskal-Wallis 

followed by Dunn’s test. Clinical samples were analysed by Mann Whitney test. A p-

value of less than 0.05 was considered significant. Statistical analysis was carried out 

using GraphPad Prism 5.03 (GraphPad Software, USA). 

RESULTS 

Resolvin D1 is significantly Reduced in Plasma from Trauma Patients who Develop 

Organ Dysfunction.  

Plasma was collected from healthy volunteers (n=8), severely injured trauma patients 

(n=12) and trauma + HS patients (n=15) and the concentrations of RvD1 were 

determined using LC-MS/MS. The median age and sex distribution of the three groups 

was similar. Trauma patients were critically injured [median ISS 38 (IQR 33-44)] but 

received minimal volumes of crystalloid [median 0mL (IQR 0-300)] prior to blood 

sampling. Detailed patient demographics and injury characteristics are reported in 

supplemental table 1 (see Table, Supplemental Digital Content 1). When compared to 

healthy volunteers (HV) and trauma patients (T), patients with concomitant trauma and 

HS (T+HS) had significantly lower plasma levels of RvD1 (HV: 0.76±0.25; T: 0.62±0.20 

and T+HS 0.17±0.08, p=0.02; Fig. 1). 

Resolvin D1 Reduces Multiple Organ Failure Induced by HS in Rats 
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Having demonstrated that patients with T+HS bear marked reduction in RvD1 plasma 

levels, we next explored whether pharmacological intervention with synthetic RvD1 

attenuates the MODS associated with HS in rats. 

Rats subjected to HS developed renal dysfunction as observed by an increase in 

serum creatinine (Fig. 2A) and a decrease in creatinine clearance (Fig. 2B). HS-rats 

also developed significant increases in serum AST (Fig. 2C) and ALT (Fig. 2D), 

indicating the development of liver injury; increases of creatine kinase (CK; Fig. 2E) 

and lactate (Fig. 2F) indicating the development of muscular injury and tissue/organ 

ischemia, respectively. Administration of RvD1 upon resuscitation (after a period of 

prolonged hemorrhage) resulted in a dose-dependent reduction in the organ 

injury/dysfunction. No differences in heart rate and urine output were observed among 

any of the groups studied (see Supplemental Table 2, Supplemental Digital Content 

2). As the higher dose of 1 µg/kg of RvD1 showed the largest beneficial effect, we used 

kidney and liver biopsies of HS-animals treated with either vehicle or 1µg/kg of RvD1 

to investigate the mechanism(s) of the observed beneficial effects of RvD1 in 

experimental HS. Administration of RvD1 to sham-animals had no significant effect on 

any of the parameters evaluated (data not shown). 

Resolvin D1 Reduces MPO Positive Cells and ICAM-1 Expression in Liver and Kidney 

When compared to sections of both kidneys and livers of sham rats, those of HS-rats 

treated with vehicle showed a significant increase in cells expressing MPO (a specific 

marker of local neutrophil accumulation) and a significant upregulation of the adhesion 

molecule ICAM-1, which is the endothelial ligand for the neutrophil receptor 

CD11b/CD18, in both kidney (Figs. 3A, B, E and Figs. 4A, B, E) and liver (Figs. 3F, G, 
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J and Figs. 4F, G, J). The treatment of HS-rats with RvD1 significantly reduced the 

markers of neutrophil infiltration (Figs. 3D, E, I, J and Figs. 4D, E, I, J). 

Resolvin D1 Attenuates the Activation of the NF-B Pathway 

When compared to sham animals, rats subjected to HS developed a significant 

increase in the phosphorylation of IKKαβ (Figs. 5A and D), IκBα (Figs. 5B and E) 

resulting in a nuclear translocation of the p65 NF-κB subunit (Figs. 5C, F) in the kidney 

(Figs. 5A-C) and liver (Figs. 5D-F) suggesting significant activation of the NF-κB 

pathway in both organs. Treatment of the HS-rats with RvD1 on resuscitation 

significantly attenuated the phosphorylation of IKKαβ, IκBα and the translocation of the 

p65 NF-κB subunit to the nucleus in both organs (Fig. 5). 

Resolvin D1 Reduces Pro-inflammatory proteins Induced by HS 

As RvD1 decreased the nuclear translocation of p65 NF-κB, we investigated the effects 

of RvD1 on the expression of NF-κB-dependent pro-inflammatory proteins. Kidney 

biopsies from HS rats exhibited a significant increase in iNOS expression (Fig. 6A) and 

in the concentrations of the pro-inflammatory cytokines TNF-α (Fig. 7E), IL-1β (Fig. 7F) 

and IL-6 (Fig. 7G). In the liver, only iNOS expression (Fig. 6B) and IL-1 β (Fig. 1J) 

levels were significantly higher than in the livers obtained from sham-animals. When 

compared to sham animals, HS also resulted in a significant increase in the pro-

inflammatory cytokines TNF-α (Fig. 7A), IL-1β (Fig. 7B) and IL-6 (Fig. 7C), and in the 

anti-inflammatory cytokine IL-10 (Fig. 7D) in the blood. Treatment of HS-rats with RvD1 

significantly attenuated the observed increases in tissue/blood cytokines and iNOS 

expression caused by HS (Fig. 6 and Fig. 7). It should be noted that treatment of sham-

rats with RvD1 had no significant effect on any of the parameters measured.  
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DISCUSSION 

We report here for the first time that trauma patients who experienced significant 

hemorrhage had a significant reduction in the plasma levels of the pro-resolution 

mediator RvD1. As there is good evidence that RvD1 is a powerful, pro-resolving 

mediator in man12–14,35, we postulated that a reduction in endogenous levels of RvD1 

could contribute to excessive systemic inflammation and organ injury/dysfunction. To 

investigate this hypothesis, we have used a reverse-translational approach (from 

humans to rodents) in which we have investigated the potential beneficial effects of 

synthetic RvD1 in a well-established rat model of HS, previously reported in this 

journal8,11. Most notably, we report here that administration of RvD1 on resuscitation 

(following a 90 min period of severe hemorrhage) attenuated HS-induced systemic 

inflammation and organ injury/dysfunction (renal dysfunction, liver injury, 

skeletomuscular injury and tissue hypoxia).  

What, then, are the mechanisms by which RvD1 reduces both systemic inflammation 

and organ injury/dysfunction in experimental HS? There is now very good evidence 

that RvD1 has potent anti-inflammatory effects: specifically, RvD1 reduces 

polymorphonuclear leukocyte infiltration36, inhibits activation of the NF-κB pathway24,37 

and reduces the formation of pro-inflammatory cytokines38. However, so far, none of 

these beneficial effects of RvD1 have been demonstrated in settings of HS. Here we 

demonstrated, that the MODS-related activation of NF-κB cascade (measured as 

IKKα/β phosphorylation, IκBα phosphorylation and nuclear translocation of p65) in 

kidney and liver, and the following enhanced formation of many NF-κB-dependent 

proteins including TNF-α, IL-1β, IL-6, IL-10 (kidney, liver, serum) and iNOS (in kidney, 

liver), are strongly inhibited by RvD1 administration. Taken together, these findings not 

only further confirm the key role of NF-κB activation in the pathophysiology of the 
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MODS in HS, but, most notably, form the basis for our current working hypothesis that 

the observed reduction in MODS afforded by RvD1 is secondary to inhibition of NF-

κB. We have not investigated the detailed mechanism(s) by which RvD1 inhibits the 

activation of NF-κB, thus we cannot rule out potential indirect effects due to RvD1 

interference with other inflammatory cascades. Nevertheless, the pro-resolving effects 

of RvD1 are known to be secondary to interactions with the receptors ALX/FPR2 and/or 

GPR32, whose activation has been demonstrated to directly downregulate NF-κB p65 

nuclear translocation39–41. Indeed, there is evidence in both human endothelial and 

epithelial cells42,43 which supports the view that activation of either ALX/FPR2 or 

GPR32 by RvD1 results in inhibition of nuclear translocation of p65, whereas the pre-

treatment of these cells with specific ALX/FPR2 antagonists or a GPR32-neutralizing 

Ab abolished the inhibition of NF-κB afforded by RvD1 in these cells in vitro. Thus, we 

speculate that the inhibition of NF-κB afforded in our study by RvD1 administration is 

also secondary to activation of ALX/ FPR2 and/or GPR32. 

There is good evidence that excessive formation of the proinflammatory cytokines 

TNF-α, IL-1β and IL-6 contribute to both development of MODS and mortality in 

HS34,44–46. We report here that administration of RvD1 on resuscitation attenuated the 

HS-induced formation of these proinflammatory cytokines. RvD1 treatment has also 

attenuated the increase of the anti-inflammatory cytokine IL-10 caused by HS in rats, 

and reduction in IL-10 improves outcome in experimental HS9. In patients with trauma-

HS, increases in IL-10 are associated with immunosupression and delayed clinical 

recovery47,48, Thus, the reduction of IL-10 may have contributed to the beneficial 

effects of RvD1 in HS. Our result corroborate previous studies reporting that RvD1 

reduces IL-10 formation in septic shock49. 
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The formation of proinflammatory cytokines including TNF-α and IL-1β drives the 

expression of iNOS in many disease states. There is good evidence that the excessive 

formation of nitric oxide by iNOS contributes to the development of MODS in rodents 

with HS and that inhibition of iNOS activity reduces MODS6–9. We report here that 

RvD1 abolishes the expression of iNOS caused by HS in the kidney and attenuates 

the expression caused by HS in the liver. Thus, we propose that prevention of the 

expression of iNOS importantly contributes to the beneficial effects of RvD1. 

Neutrophils play a key role in the MODS associated with HS. Neutrophils bind to ICAM-

1 expressed on endothelial cells and drives the recruitment of neutrophils into tissues; 

these neutrophils cause direct local cytotoxic cellular effects through the release of 

mediators such as reactive oxygen species, nitric oxide, cytokines and MPO45. We 

report here that the reduction in MODS afforded by RvD1 is associated with a reduced 

recruitment of neutrophils to target organs (kidney and liver) and this was due to 

reduced expression of ICAM-1 in these tissues. These protective actions of RvD1 are 

also in line with findings made during ischemia-reperfusion injury as well as with 

primary human leukocytes where RvD1 was found to regulate neutrophil recruitment 

and protect against neutrophil mediated organ injury40,50. 

Limitations of the study: Although the improvement of organ dysfunction by RvD1 is an 

interesting finding, our main efficacy endpoint (organ dysfunction) was only measured 

at a single time point after a relatively short resuscitation period (4 h after surgery). We 

have also not investigated the effects of RvD1 on other important organs involved in 

the MODS associated with HS including the lungs and the heart or (more importantly) 

on mortality rate. Thus, our preclinical results must be cautiously interpreted and 

carefully extrapolated to the clinical situation. Further preclinical studies evaluating 

survival after prolonged resuscitation periods are warranted. Moreover, clinical studies 
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in larger cohorts of trauma patients are also required to assess the relationships 

between RvD1 and clinical outcomes in humans, including measurement of RvD1 

kinetics over time. 

In summary, this paper shows that the development of MODS in patients with severe 

trauma/HS is associated with low plasma levels of RvD1. This finding formed the basis 

for our hypothesis that a restoration of higher plasma levels of RvD1 may reduce the 

MODS associated with trauma/HS. Indeed, administration of RvD1 on resuscitation 

(after a 90-min period of severe hemorrhage) reduced the organ dysfunction and injury 

as well as the local and systemic inflammation associated with HS. We propose that 

these beneficial effects of RvD1 are secondary to inhibition of the activation of NF-κB 

resulting in reduced formation of pro-inflammatory cytokines, NO from iNOS and 

neutrophil recruitment into target tissues (secondary to expression of ICAM-1). Thus, 

we believe that the reduction of MODS by RvD1 in the rodent model used here may 

be useful in the development of a preclinical dossier with the ultimate aim to evaluate 

RvD1 in patients with trauma-hemorrhage. 
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FIGURE LEGENDS 

Fig. 1: RvD1 is significantly reduced in plasma from trauma / hemorrhagic shock 

patients. Plasma was collected from healthy volunteers (n = 8), trauma patients (n=12) 

and trauma+HS patients (n=15) and the concentrations of RvD1 were determined 

using LC-MS/MS based lipid mediator profiling. (A) Multiple reaction monitoring 

chromatogram (B) MS-MS spectrum used for the identification of RvD1. (C) Plasma 

RvD1 concentrations. Data are presented as box and whiskers, showing medians, 

inter-quartile range and full range. * p<0.05 using Kruskal-Wallis followed by Dunn’s 

test. 
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Fig. 2. RvD1 attenuates the organ injury and dysfunction induced by HS. (A) 

serum creatinine, (B) creatinine clearance, (C) serum aspartate aminotransferase 

(AST), (D) serum alanine aminotransferase (ALT), (E) serum creatine kinase (CK) and 

(F) lactate of HS-rats treated with vehicle or RvD1 (0.3 or 1.0 µg/kg) on resuscitation 

are shown. Sham rats were treated with vehicle or RvD1 (0.3 or 1.0 µg/kg). Data are 

presented as box and whiskers, showing medians, inter-quartile range and full range 

(n = 7 animals per group). Statistical analysis was performed using one-way ANOVA 

followed by Newman-Keuls post hoc test. *p < 0.05 versus sham + vehicle and #p < 

0.05 versus HS + vehicle. 

Fig. 3. RvD1 reduces the increased number of MPO positive cells in kidney and 

liver tissue induced by HS. MPO positive cells recruitment in kidney (A-E) and liver 

(F-J) of sham (A, C, F, H) and HS-rats (B, D, G, I) treated with vehicle (A, B, F, G) or 

RvD1 (1.0 µg/kg; C, D, H, I) on resuscitation were determined by 

immunohistochemistry. Data are presented as box and whiskers, showing medians, 

inter-quartile range and full range (n = 5 animals per group; E, J). Statistical analysis 

was performed using one-way ANOVA followed by Newman-Keuls post hoc test. *p < 

0.05 versus sham + vehicle and #p < 0.05 versus HS + vehicle. 

Fig. 4. RvD1 attenuates the expression of ICAM-1 in kidney and liver tissue 

induced by HS. ICAM-1 expression in kidney (A-E) and liver (F-J) of sham (A, C, F, 

H) and HS-rats (B, D, G, I) treated with vehicle (A, B, F, G) or RvD1 (1.0 µg/kg; C, D, 

H, I) on resuscitation are shown. Data are presented as box and whiskers, showing 

medians, inter-quartile range and full range (n = 5 animals per group; E, J). Statistical 

analysis was performed using Kruskal-Wallis test followed by Dunn’s post hoc test. *p 

< 0.05 versus sham + vehicle and #p < 0.05 versus HS + vehicle. 
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Fig. 5. RvD1 attenuates the activation of NF-κB pathway induced by HS. The 

phosphorylation of IKK on Ser176/180 (A and D), IκBα on Ser32/36 (B and E) and the 

nuclear translocation of the p65 NF-κB subunit (C and F) in the kidney (A-C) and liver 

(D-F) of sham and HS rats treated with RvD1 were determined by western blotting. 

Protein expression was measured as relative optical density (O.D.), corrected for the 

corresponding β-actin or Histone contents and normalized using the related sham 

band. Data are presented as box and whiskers, showing medians, inter-quartile range 

and full range (n = 7 animals per group). Statistical analysis was performed using 

Kruskal-Wallis test followed by Dunn’s post hoc test. *p < 0.05 versus sham + vehicle 

and #p < 0.05 versus HS + vehicle. 

Fig. 6. RvD1 attenuates iNOS expression in liver and kidney tissue induced by 

HS. The iNOS expression in the kidney (A) and liver (B) of sham and HS rats treated 

with vehicle or RvD1 (1.0 µg/kg) on resuscitation were determined by western blotting. 

Protein expression was measured as relative optical density (O.D.), corrected for the 

corresponding tubulin content and normalized using the related sham band. Data are 

presented as box and whiskers, showing medians, inter-quartile range and full range 

(n = 7 animals per group). Statistical analysis was performed using Kruskal-Wallis test 

followed by Dunn’s post hoc test. *p < 0.05 versus sham + vehicle and #p < 0.05 versus 

HS + vehicle. 

Fig. 7. RvD1 attenuates cytokines production induced by HS. The serum (A-D), 

kidney (E-H) and liver (I-L) amounts of TNF-α (A, E, I), IL-1β (B, F, J), IL-6 (C, G, K) 

and IL-10 (D, H, L) were determined by ELISA in sham and HS-rats treated with vehicle 

or RvD1 (1.0 µg/kg) on resuscitation. Data are presented as box and whiskers, 

showing medians, inter-quartile range and full range (n = 7 animals per group). 

Statistical analysis was performed using one-way ANOVA followed by Newman-Keuls 
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post hoc test. *p < 0.05 versus sham + vehicle and #p < 0.05 versus HS + vehicle. 
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