
European Actuarial Journal
https://doi.org/10.1007/s13385-024-00401-8

ORIG INAL RESEARCH PAPER

The capital-on-capital cost in solvency II risk margin

Anna Maria Gambaro1

Received: 3 June 2022 / Revised: 22 August 2024 / Accepted: 29 August 2024
© The Author(s) 2024

Abstract
This work contributes to the literature on time consistent valuation of insurance lia-
bilities and to the ongoing discussion on revisions of risk margin (RM) calculation,
by formally defining the concept of capital-on-capital cost. We describe the capital-
on-capital as the amount required to cover unexpected variations in future regulatory
capitals from the current time to liabilities maturity. That is, the capital-on-capital
cost is the RM component dedicated to cover the risk of future RMs and not to
cover variations of the best estimate of liabilities cash-flows. We mathematically
formalize the capital-on-capital cost as the difference between two alternative time
consistent liabilities valuation formula. The first is obtained through backward itera-
tion of the one-period market-consistent valuation operator, by iterating the solvency
capital requirement (SCR) risk measure. We propose a second alternative valuation
formula for liabilities, based on a new time consistent dynamic formulation of the SCR
risk measure, called additive-SCR (ASCR). The ASCR represents the expected total
capital requirement from current time to liabilities maturity. We prove that the second
valuation formula, based on ASCR, is time consistent, unless it is not based on iter-
ation of the one-period SCR risk measure. Finally, we apply the proposed approach
to a portfolio of long term equity linked life-insurance contracts. In particular, we
estimate the capital-on-capital cost by calculating the difference between the two val-
uation formulas. Numerical results show that for liabilities with long maturities the
capital-on-capital cost is a non negligible component of the RM.
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1 Introduction

During the last decade, theEuropeanCommunity, in particular, theEuropean Insurance
and Occupational Pension Authority (EIOPA)1 has introduced new prudential rules
for insurance balance sheet evaluation. Its aim is to establish and maintain compatibil-
ity between accounting and regulatory standards for harmonization of requirements,
transparency and avoidance of arbitrage, both among jurisdictions and across other
financial sectors such as banking. This effort has led to the Solvency II directive and its
technical standards [18]. The Solvency II directive adopts the cost of capital approach
for the market consistent valuation of liabilities, also called technical provisions (TP),
which should be equal to the sum of a Best Estimate (BE) of liabilities and a Risk
Margin (RM), see [23] and [18, TP.1.1]. In recent times, practitioners have engaged in
discussions about potential revisions to the calculation of the Solvency II risk margin.
This issue has been highlighted in reports by the British Treasury Committee [10] and
the Actuarial Association of Europe [1]. In particular, insurance companies have crit-
icized the very high RM value for long-term life insurance portfolios. Life insurance
companies and pension funds hold long-term liabilities on their books (from 30 to
50 years), as individuals begin saving at a relatively young age (between 30 and 50
years) and the average life expectancy at birth in the EU is about 80 years (Eurostat
2022). Roughly 20% of the net present value of the liabilities is attributed to cash-
flows beyond 30 years. According to [1], EIOPA indicates that the total risk margin
for the entire European insurance industry was 210 billion euros in the third quarter
of 2016 of which 150 billions stemmed from life and composite insurance undertak-
ings, representing more than 45% of the overall EU life insurance industry Solvency
Capital Requirement (SCR). As highlighted by AAE [1], the size of the risk margin is
an important issue, but merely because it is in aggregate a large number does not nec-
essarily make it wrong. Rather, a determination on whether the risk margin is set too
high or too low should ideally consider relevant financial and actuarial principles. In
particular, a crucial point is the construction of risk measures and valuation formulas
that combine time and market consistency with reasonable levels of prudence across
different time scales.

As reported in [18, TP.5.3], the RM should be calculated by determining the cost
of providing an amount of eligible own funds equal to the SCR necessary to support
the insurance and reinsurance obligations over the lifetime thereof. Then, the RM
calculation implicitly requires a dynamic definition of the SCR. In particular, [18,
TP.5.8] reports the following formula for calculating the overall RM

RM = δ
∑

t≥0

SCRRU (t)

(1 + rt+1)t+1 , (1.1)

where δ is the Cost-of-Capital rate and it is fixed to 6% [18, TP.5.21], rt is the basic
risk free rate at time t and SCRRU (t) is the SCR for year t as calculated for the
reference undertaking. The SCR for the reference undertaking is better specified in
[18, TP.5.4] as the assets should be considered to be selected in such a way that

1 All acronyms are reported in Table 1.
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Table 1 Acronyms

AAE Actuarial association of Europe

ASCR Additive solvency capital requirement

BE Best estimate

EIOPA European insurance and occupational pension authority

ESCR Expected solvency capital requirement

LSMC Least square Monte Carlo

MCV Market consistent valuation

RM Risk margin

SCR Solvency capital requirement

SEC Separable expected conditional

TMCV Time and market consistent valuation

TP Technical provisions

VaR Value at risk

they minimise the SCR for market risk that the reference undertaking is exposed
to. This means that the SCRRU is the result of a (possible) perfect hedging of the
market risk component of liabilities. As highlighted also in [13], formula 1.1 has the
following three deficiencies, which cannot be clarified from the official documents,
since a mathematically rigorous definition is missing. Firstly, a precise mathematical
definition of the SCR of a reference undertaking is missing. Second, the RM definition
requires the calculation of the SCR at future points in time, but a dynamic definition
of the SCR is also missing in the document. Third, formula 1.1 defines the RM only
at time t = 0.

1.1 Literature discussion

From a mathematical point of view, the Solvency II directive and EIOPA technical
documents open a lot of questions that have been addressed in literature in the last
years. [13] analyse the SCRdefinition in the Solvency II directive and they propose and
compare different mathematical interpretations of the regulators directive. Similarly,
[21] discuss the adequacy with respect to the regulatory requirements of two different
mathematical formulation for the SCR in a one period setting. In particular, we adopt
the so-called mean value at risk formulas of the SCR. This definition is linked to the
concept expressed in the directive that SCR shall cover only unexpected losses and
it is widely used in practice. Additionally, [13] define the dynamic SCR using the
conditional Value at Risk (VaR). Additionally, they obtain the SCR of the reference
undertaking SCRRU minimizing the conditional VaR with respect to the asset alloca-
tion (a sort of hedging strategy). The authors do not discuss the time consistency of
their proposed approach, and it is well-established in the literature, that conditional
risk measures (and then their optimal minimization policy) may not be consistent over
time, see for instance, [2, 12].
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1.1.1 Time consistency

In financial and insurance literature, an increasing attention is given to the time con-
sistency property of dynamic risk measures and valuation operators, see for instance
[2, 6, 9, 14, 15, 22, 25, 29, 33].

The concept of time consistency has to do with the consistency over time of the
risk evaluation. This concept was firstly introduced by [36]. The main idea can be
described as follows: if we know (almost) surely that an investment X is less risky
than an investment Y in a future date, then the same order should apply today. Building
upon this concept, subsequent works by [6, 32] focus on multi-period coherent risk
measures and [32] develop different weaker notions of time consistency. In these time
consistency definitions, the aim is to ensure that the ordering of risks remains consistent
as we move across different time periods, in alignment with Wang’s original concept.

In the above mentioned papers, the primary focus is on terminal wealth. How-
ever, in the context of multi-period investment problems, investors are interested in
understanding their positions at various intermediate time points along the investment
horizon. Recognizing this, [30] introduces the concept of dynamic time consistency,
which can be defined as follows: for any two cash-flows processes X and Y , if they
have the same value with respect to a given risk measure at future time T and X is
the same as Y (almost surely) at all the stages between t and T , then X and Y have
the same value with respect to the measure at present time t , see also Appendix A
Definition A.3. Similar notions are also presented in [12, 33]. This second formula-
tion, as introduced by Riedel [30], doesn’t involve the property of monotonicity and,
therefore, can be used to define time-consistent dynamic risk mappings,2 as further
elaborated by Chen et al. [11].

If the dynamic risk measure (or risk mapping) is dynamic time consistent, then, it
can be equivalently expressed in a recursive form, see [11, 33] and Appendix A The-
orem A.4. In light of this, some authors employ the recursive formulation to define
the time consistency of dynamic risk mappings, see for instance definitions such as
recursiveness or the tower property by [9, 29]. Furthermore, the equivalence between
time consistency and recursive formulation is related to the application of dynamic
programming for risk averse stochastic control problems. In particular, [6] prove the
equivalence between time consistency of coherent risk measures and Bellman’s opti-
mality principle and [11] extend the results to dynamic risk mappings.

1.1.2 The cost of time-consistency

To obtain time consistent dynamic risk measures, the most prevalent method in the
literature exploits the recursive formulation by backward iterating the corresponding
single period conditional risk measure. Hardy and Wirch [22], for instance, propose
the iterated conditional tail expectation to calculate the regulatory capital for an equity-
linked life insurance contract. Likewise, [15] analyse a time consistent formulation of
the SCR using iterated VaR. However, both papers highlight that the use of iterated

2 A risk mapping differs from a risk measure, in that it does not require monotonicity, see Appendix A
Definition A.1.
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risk measures to achieve time consistency comes at the cost of substantial additional
capital required throughout the duration of the contract. The construction of dynamic
risk measures and valuation operators that combine time consistency with reasonable
levels of prudence across different time scales remains a challenging task. This prob-
lem is also highlighted in [31], the authors argue that strong time consistency inhibits
the construction of families of risk measures that maintain comparable standards of
prudence on different time scales; for instance iterated VaR is likely to be very con-
servative. Then, [31, 35] use a weaker notion of time consistency called sequential
consistency, based on the properties of weak acceptance and rejection, firstly pro-
posed by [37]. In particular, [31] use the sequential consistency to construct consistent
families of operators, which allow flexibility in the specification of prudence over
time.

Another viable alternative to achieve strong time consistency3 without using the
backward iteration of the corresponding one-period operator is through the applica-
tion of Separable Expected Conditional (SEC) risk mappings defined in [11, 14, 25].
SEC risk mappings have been recently introduced in the literature and have rarely
been applied in the financial and insurance literature, see for instance [11] for a time
consistent formulation of a dynamic mean–variance optimization problem. Time con-
sistency and recursive formulation of SEC risk mappings are proved in literature, see
[11, 14, 25]. We remark that dynamic SEC risk mappings are recursive, but are not
self-recursive. This means that SEC are not iterated risk measures, more details are
given in Appendix B. In particular, we apply SEC risk mappings to build our RM
proposal.

1.1.3 Market consistent valuation

In recent years, a growing body of literature is aimed at extending, in a time consistent
way theMarket Consistent Valuation (MCV) of liabilities, obtained through the cost of
capital approach. In this way, the calculation of TP, RM and SCR is tackled in a unitary
and organic way. As remarked in the EIOPA technical documentation: the primary
objective for valuation as set out in Article 75 of Directive 2009/138/EC requires an
economic, market-consistent approach to the valuation of assets and liabilities, [18,
V.1]. The concept of MCV of liabilities has been widely discussed in literature over
the past few years. Gambaro et al. [20] examine the industry’s standard approach
to evaluating options embedded in life insurance contracts and propose a viable and
reasonable proxywithin the context ofmarket consistent evaluations.Dhaene et al. [16]
introduce a hedge-based valuationmethod for insurance liabilities, which involves two
steps. In thefirst step, a portfolio of the best hedging assets is established for the liability
based on the assets traded in the market. In the second step, the remaining part of the
claim is evaluated through an actuarial valuation, such as the cost of capital approach
proposed by [23]. Another approach is proposed in [16, 29], a two-steps valuation
method, conditional on the perfect hedging of the market risk component of liabilities.
Firstly, the liability claim is evaluated using an actuarial technique, conditionally to
the knowledge of market risk factors evolution. In the second step, the expected value

3 We refer the reader to Appendix A for details on the adopted concept of time consistency.
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of the actuarial valuation is taken under a risk-neutral measure. In [24], the authors
demonstrate the existence of a unique economic evaluation measure, such that the
expectation with respect to this measure coincides with a two-steps valuation formula
in the Black and Scholes framework. Additionally, [7] discuss the concept of market
consistency in case of incomplete financial markets.

Barigou et al. [8, 9] extend the hedge-base valuation of [16] to a multi-period
framework in a time consistent manner. Similarly, [34] propose a market and time
consistent formulationof theEIOPARM,extending the one-period two-steps valuation
formula proposed in [29]. All these authors use a backward iteration procedure of the
one-period MCV to achieve the time consistency of the dynamic formulation. [34]
introduce the concept of the capital-on-capital effect resulting from iteration of risk
measures, such as the VaR for the SCR. However, the authors do not provide a precise
definition of the capital-on-capital effect and its cost. Instead, we decompose the RM
into two components: the cost of capital to cover variations in the BE of liabilities and
the cost of capital-on-capital.

The hedge-based valuation of [16] has the advantage of explicitly incorporating
the asset allocation problem in the liability valuation. As any insurance company
holds a real portfolio of assets to cover the liabilities, it is reasonable to consider it in
the valuation. Moreover, using the hedge-based valuation the hypothesis of complete
financial market can be relaxed, in fact, realistic market models are typically incom-
plete. However, different hedging strategies can lead to divergent definitions of the
value of technical provisions. For example, [16] proposes mean–variance and convex
loss strategies, while [8] suggest an hedging procedure based onmean–variance hedge
and quantile regression. To maintain the linearity of the exposition of the capital-on-
capital calculation, we adopt the two-steps approach proposed in [24, 29, 34]. It is
worth noting that the procedures presented in Sects. 3.1 and 3.3 for extending the
single period valuation formula to a multi-period framework apply similarly to both
the two-steps or the hedge-based valuation. Future research could focus on analysing
the effect of hedging strategies on the calculation of the capital-on-capital cost.

1.2 Our contributions

In this work, our contributions to the literature on time andmarket consistent valuation
of insurance liabilities are mainly two. The first contribution is the proposal of a time
consistent approach for the valuation of liabilities, without using backward iteration
of the SCR risk measure. Our valuation approach is based on a new dynamic extension
of the SCR, that we call additive-SCR (ASCR). We prove that the ASCR is a dynamic
SEC risk mapping and then that is time consistent. The ASCR represents the expected
total capital requirement for the period from the current time to the liabilities maturity.
Furthermore, the ASCR can be decomposed into annual expected-SCRs (ESCRs),
which represent the expected regulatory capitals for the next year, not only at the
current time, but also at future payment dates. This allows us to build a term structure
of expected annual SCRs. The ESCR represents the best estimate of the capital needed
for a specific year of the product and is a risk measure particularly intuitive and
economically meaningful. Our proposed formula for liability valuation is based on
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futures ESCRs, then it does not contains iterated risk measures, while maintaining
time consistency.

The second contribution is the formal definition of the cost of capital-on-capital as
the RM component that is dedicated to covering the risk of future RMs, rather than
covering variations in the BE of liabilities cash-flows. This cost can be mathematically
formulated and estimated as the difference between the value ofRMbasedonbackward
iteration and the proposed valuation based on the ESCRs. Defining and estimating the
cost of capital-on-capital brings a new element to the discussion about the possible
revision of the RM calculation. Specifically, it sheds light on the amount of regulatory
capital that is self-generated, growing from year to year and becoming a consistent
source of cost for long-term liabilities.

Finally, we apply the two time consistent valuation formulas to a portfolio of
equity-linked life-insurance contracts and we estimate the capital-on-capital cost by
calculating the difference between the two time consistent valuation. Moreover, we
implement also a non-time consistent valuation formula based on SCR projections,
which is a widespread industry rule-of-thumb for the RM calculation. Then, we show
that the capital-on-capital cost does not necessary coincide with a time consistent risk
premium. In our numerical experiments, we note that the capital-on-capital cost is non
negligible component of the RM value and it reaches the 5% and 12% of the RM value
for a long term liabilities with 30 and 40 years time to maturity.

The work is organized as follows. In Sect. 2, we present the general framework
of assets and liabilities and we describe the one period market consistent valuation
formula of liabilities. In Sect. 3, we propose two alternative approaches for the time
consistent calculus of liabilities. The first, presented in Sect. 3.1, is obtained by a back-
ward iteration of the one-period MCV formula. The second in Sect. 3.3 is based on
the definition of ASCR given in Sect. 3.2. Then, in Sect. 3.4 we define the capital-on-
capital cost as the difference between the valuations obtained with the two alternative
approaches. In Sect. 4, we present an illustrative example. We compare the two val-
uations of liabilities and we estimate the capital on capital cost by calculating the
difference between them. Conclusive remarks are presented in the last section.

2 Amarket consistent valuation of liabilities

In this section, using the cost-of-capital approach, we present a market consistent
valuation formula for the liabilities portfolio of an insurance or reinsurance company.
We assume that the financial market is complete and arbitrage-free, which means
that all claims only depend on financial risks and can be perfectly hedged. Then we
apply the one-period two-steps valuation, using the physical measure and an actuarial
valuation for purely insurance risk and expectation under the risk neutral measure for
market risk, see [16, 24, 29].
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2.1 Assets and liabilities

Weconsider a canonical probability space (�,G, P) and a time horizon T with consec-
utive dates {0, 1, 2, . . . , T }. For each t = 0, 1, . . . , T , the σ -algebra Gt ⊂ G denotes
the set of all events, i.e., subsets of�, corresponding to information available at time t ,
withG0 = {�,∅}. The price processes of the traded assets are described by the (n+1)-
dimensional stochastic process X0,T = {X(t)}t=0,1,...,T . The process of actuarial risk
factors is represented by them-dimensional stochastic processY0,T = {Y (t)}t=0,1,...,T .
At any time t = 0, 1, . . . , T , the vector X(t) = (X0(t), X1(t), . . . , Xn(t)) represents
the market values of the risk free asset X0(t) and of n risky assets (X1(t), . . . , Xn(t)),
while the vector Y (t) = (Y1(t), . . . ,Ym(t)) represents the value of actuarial risk fac-
tors not traded in the market. We assume that the processes X0,T ,Y0,T are adapted to
the filtration G, which means that X(t) and Y (t) are Gt measurable at any time t . Let
Z0,T be the random process of liabilities cash-flows, at any fixed time t , the random
variable Z(t) is a function of the market and actuarial risk factors

Z(t) := ft (X(t),Y (t)). (2.1)

The cash-flow Z(t) represents the sum of all payments that the insurer makes or
receives on the interval (t − 1, t], including any premiums, costs and benefits from
new and old business. Throughout the paper, we assume that the second moments
of all random variables that we consider exist under P. In particular, we assume that
Z(t) ∈ L2(Gt ) is Gt -measurable, where L2(Gt ) := L2(�,Gt , P) denotes the class of
square integrable random functions on�. Then the stochastic process Z0,T belongs to
L2
t,T , where L2

t,T := L2(Gt ) × · · · ×L2(GT ) is the corresponding product space. The
assumption that financial and actuarial claims are square integrable is widespread in
literature, see for instance [9, 24, 34], and it does not restrict the applicability of the
proposed valuation formulas.

2.2 Two-step actuarial valuation

In this section we briefly present the two step actuarial valuation procedure, for further
details we refer the reader to [29, 34]. Given the hybrid nature of insurance cash-flows,
we model the information flow, using two separate filtrations: F X generated by the
process X0,T for the financial information and FY generated by the process Y0,T for
the actuarial information. The information flow of both risk categories is given by
F := F X ∨ FY . We assume that the financial market is arbitrage free and complete,
then any claim depending solely on market assets, H(T ) = fT (X(T )) ∈ L2(F X

T ),
is perfectly replicable. As a numéraire asset, we select the money-market account

B(t) = e
∫ t
0 r(u)du , where the risk free interest rate process r0,T can be stochastic

and is adapted to the filtration F X . Hence, there exists a unique martingale mea-
sure Q that is equivalent to P on F X , such that the relative prices of all assets
divided by the money market account B(t) are martingales, that corresponds to the
no-arbitrage risk neutral measure. Then, the market consistent value at time t is given
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by E
Q[e− ∫ T

t r(u)du H(T )|F X
t ]. As stated in [29], setting Q(E) := E

P
[
IE

dQ
dP

]
for any

set E ∈ FT , the measure Q can be extended canonically to the whole filtration F .
In general, themarket given by allF-measurable claims is incomplete. For instance,

we could have an untraded insurance process Y which is correlated with the traded
assets X but not perfectly replicable. Then, following [29], we adopt the following
valuation procedure for financial and actuarial mixed payoffs.

Definition 2.1 A two-step market consistent actuarial valuation At : L2(FT ) →
L2(Ft ) is given by

At [Z(T )] = E
Q[e− ∫ T

t r(u)du �[Z(T )]|Ft ],
where �[Z(T )] is F X

T conditional valuation from L2(FT ) to L2(F X
T ∨ FY

t ).

In literature, theF X
T conditional valuation operator�[Z(T )] is defined using differ-

ent actuarial principles, such as the mean–variance, the standard-deviation or different
risk measures principles. The economic idea behind all these principles is to add a risk
buffer to the best estimate of the claim, to cover the unhedgeable risks. In Sect. 2.3,
we detailed the definition of �[Z(T )], using the cost of capital approach required by
the Solvency II directive.

2.3 One-periodmarket consistent valuation of liabilities

Solvency II directive states that the market consistent value of the liabilities should be
defined using the cost-of-capital approach, see [18, 23]. In this approach, the insurance
company has to hold a capital buffer, called SCR, against the unexpected losses. The
technical provisions of liabilities are obtained adding the cost of capital related to SCR,
called RM, to the expected value, called BE. For a single period from T − 1 to T , the
calculation of SCR and RM are stated in the Solvency II directive and its technical
specifications. The SCR should correspond to the VaR of the basic own fund subject
to a confidence level of 99.5%, see [18, SCR.1.9] and Article 101(3) of the Solvency
II Directive.4 The RM is the SCR multiplied by the cost-of-capital rate δT−1, that is
fixed equal to 6%, see [18, TP.5.21].

Using the notation given in Sects. 2.1 and 2.2 and Definition 2.1, we apply the
two-steps valuation procedure on the final liability cash-flow Z(T ), and we obtain the
following value of technical provisions L(T − 1) at time T − 1,

L(T − 1) := Z(T − 1) + E
Q

[
e− ∫ T

T−1 r(u)du � [Z(T )] |FT−1

]
, (2.2)

� [Z(T )] := E
P

[
Z(T ) | F X

T ∨ FY
T−1

]

+δT−1 VaRP
α

[
Z(T ) − E

P
[
Z(T ) | F X

T ∨ FY
T−1

]
| F X

T ∨ FY
T−1

]
,

4 In this paper, liabilities are modeled as non-negative random variables, and the VaR at the 99.5% confi-
dence level pertains to losses. This corresponds to the SCR and the underlying VaR at the 0.5% confidence
level, which refers to financial positions such as own funds, when liabilities are considered with a negative
sign.
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whereα is the confidence level of theVaRfixed to 99.5%.Firstly, thefinal liability cash-
flow Z(T ) is evaluated using �[Z(T )], that is the actuarial cost of capital approach
under the physical measure P, conditionally to the knowledge of market risk factors
evolution at time T , F X

T . In the second step, the expected value of the conditional
valuation � [Z(T )] is taken under a risk-neutral measure Q.

For the proceeding of the work, it is useful to explicitly rewrite formula 2.2 decom-
posing the technical provision L(T − 1) in the BE and in the SCR, as

L(T − 1) = Z(T − 1) + BET−1[Z(T )] + δT−1SCRT−1[�Z(T )], (2.3)

where for any time 0 ≤ t ≤ T − 1 and any random variable Z ∈ L2(Fs) with
t ≤ s ≤ T , we define the best estimate BEt [Z ] as

BEt [Z ] := E
Q

[
e− ∫ s

t r(u)du
E

P
[
Z | F X

s ∨ FY
t

]
| Ft

]
. (2.4)

Furthermore, for any random variable Z ∈ L2(Fs) with 0 ≤ t ≤ s ≤ T , its variation
�Z ∈ L2(Fs) is defined as

�Z = Z − E
P

[
Z |F X

s ∨ FY
t

]
, (2.5)

and the solvency capital requirement SCRt [�Z ] as

SCRt [�Z ] := E
Q

[
e− ∫ s

t r(u)du V aRP
α [�Z |F X

s ∨ FY
t ]|Ft

]
. (2.6)

Weassume that at timeT the value of technical provisions andbest estimate coincide
with the liability cash-flow at maturity, that is L(T ) = BET [Z(T )] = Z(T ).

Equations 2.4 and 2.6 are crucial for the proceeding of thework, thenwe report some
useful remarks about them. Firstly, we note that the BE operator BEt : L2(Fs) →
L2(Ft ) can be rewritten as an expectation under the economic valuation measure Q̃

defined in [24], that is BEt [Z ] = E
Q̃

[
e− ∫ s

t r(u)du Z |Ft

]
. Secondly, we note that in a

one-period setting, the SCR component of liabilities in 2.3, that is SCRt [�Z ], coin-
cides with the mean value at risk definition discussed in [21]. Moreover, SCRt [�Z ]
can be interpreted as the SCR for the reference undertaking, SCRRU (t), required in
Solvency II directive, see formula 1.1. In fact, SCRt [�Z ] is the result of the perfect
hedging of the financial market risk part of the liability cash-flows. Finally, we remark
that SCRt : L2(Fs) → L2(Ft ) defined in 2.6 for 0 ≤ t ≤ s is a conditional risk
mapping, see Appendix A, Definition A.1. In fact, it satisfies the translation invariant
property and it is normalized. This last remark is fundamental for definition of ASCR
in the Sect. 3.2.
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Finally, assuming that the processes X0,T and Y0,T areMarkovian, the BE and SCR
formulas 2.4 and 2.6 can be rewritten in a simpler way. Given any financial/actuarial
claim, represented by the square integrable function Z = fs(X(s),Y (s)), the BE at
time t for 0 ≤ t ≤ s ≤ T is given by

BEt [Z ] = E
Q

[
e− ∫ s

t r(u)du
E

P [Z | X(s),Y (t)] | X(t),Y (t)
]
,

and the SCR at time t is given by

SCRt [�Z ] = E
Q

[
e−

∫ s
t r(u)du VaRP

α [�Z | X(s), Y (t)] | X(t), Y (t)
]

= E
Q

[
e−

∫ s
t r(u)du

(
VaRP

α [Z | X(s), Y (t)] − E
P [Z | X(s), Y (t)]

)
| X(t), Y (t)

]

We precise that Markovianity is assumed solely to clarify the notation, and that in the
following sections, Propositions 3.2, 3.4 and 3.6 remain valid even if the driving pro-
cesses X0,T and Y0,T are not Markovian. Moreover, in the numerical implementation
in Sect. 4.2, we adopt Markovian processes.

The application of VaR to measure the risk of capital losses is questionable.
Important theoretical works have highlighted some limits of VaR as risk measure.
In particular, [4, 5] postulated a set of properties that a well-behaved risk measure
should satisfy and that are not fulfilled by VaR; in fact VaR for general distributions
doesn’t possess sub-additivity. For this reason, the adoption of risk measures different
fromVaR, such as convex or coherent risk measures, is widespread in the literature for
capital requirements calculation, see [3, 17] and is increasing in insurance industries.
However, the applications of risk measures, different from VaR to SCR calculation
is out of the scope of this work. We note that all the definitions and proposition con-
tained in this work for the MCV, RM and SCR calculations are applicable also to risk
measures different from VaR, such as for instance the average value at risk as required
by the Swiss Solvency Test. In particular, Definitions 3.1, 3.3, 3.5 and Propositions
3.2, 3.4 and 3.6 remain valid even if the SCRt as defined in 2.6 is substituted with a
more general conditional risk mapping as defined in Definition A.1.

3 Multi-period time andmarket consistent valuation (TMCV) of
liabilities

In this section, we show two different procedures to achieve a time consistent calculus
of the RM and then of the MCV of liabilities. The first consists in the backward
iteration of the one-period valuation formula presented in Sect. 2.3. Then, we propose
an alternative time consistent calculation of theRMandMCVof liabilities, through the
definition of the additive-SCR: a dynamic extension of the one period SCR in formula
2.6. Then, we compare pros and cons of the two approaches. For instance [15] criticize
the approach of iterated risk measures to capital requirements calculation, showing
that it becomes quite expensive for long term liabilities. This is a consequence of the
capital-on-capital effect produced by the backward induction, as suggested in [34].
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The capital-on-capital cost is then estimated as the difference between the time and
market consistent valuations obtained with the two methods.

3.1 Time consistent valuation of liabilities by backward induction

To extend the valuation formula 2.2 to a multi-period setting, a fundamental aspect to
consider is time consistency. The time consistency can be achieved using backward
induction, see for instance [2, 12, 29, 33] and references therein.

Definition 3.1 (Time and market consistent valuation of liabilities (TMCV-1)) We
define the one period operator Vt for 0 ≤ t ≤ T − 1 as

Vt [L(t + 1)] = E
Q

[
e− ∫ t+1

t r(u)du
E

P
[
L(t + 1) | F X

t+1 ∨ FY
t

]
|Ft

]

+δt E
Q

[
e− ∫ t+1

t r(u)du
(
VaRP

α

[
L(t + 1)|F X

t+1 ∨ FY
t

]

−E
P

[
L(t + 1)|F X

t+1 ∨ FY
t

])
|Ft

]

= BEt [L(t + 1)] + δt SCRt [�L(t + 1)], (3.1)

where BEt [·], SCRt [·] and the variation �L(t + 1) are defined in formulas 2.4, 2.6
and 2.5, respectively.

Then, by backward induction we obtain that the market and time consistent value
of liabilities at any time t with 0 ≤ t ≤ T − 1 is equal to

L(t) = Z(t) + Vt [L(t + 1)] (3.2)

= Z(t) + Vt [Z(t + 1) + Vt+1[Z(t + 2) + · · · + VT−2[Z(T − 1)

+VT−1[Z(T )]] · · · ]],

where Z(s) for s = t, t + 1, . . . , T is defined in equation 2.1.

We remark that Vt is a t-valuation as defined in [9] since it is normalized and trans-
lation invariant, or equivalently a conditional risk mapping as defined in Appendix
A. Moreover, we note that the proposed backward iteration formulas for liabilities
valuation is slightly different from the one proposed in [34]. In fact, we assume that
VaR is conditioned on the evolution of the actuarial risk factor until time t , that is,FY

t .
Instead, [34] assume that the VaR is conditioned on the best estimate path of actuarial
risk factor, that is, Ȳt = BEt [Y (t + 1)]. Our assumption is adopted also in [9] or [8].

The following proposition clarifies the structure of the technical provision L(t) at
time t .

Proposition 3.2 The backward induction defined by Eqs. 3.1 and 3.2 can be equiva-
lently rewritten in the following form
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L(t) =
T∑

k=t

BEt [Z(k)] +
T−1∑

k=t

δk BEt [SCRk[�L(k + 1)]] , (3.3)

where BEt [·], SCRk[·] and �L(k + 1) are defined in 2.4, 2.6 and 2.5, respectively.
The proposition can be easily proved by induction.

From Proposition 3.2, we can define the value of the liabilities L(t) as the sum of
two parts: the Best Estimate (BE) and Risk Margin (RM),

L(t) = LBE (t) + RM(t), (3.4)

where we define the BE of liabilities at time t as the sum of the best estimate of future
cash-flows

LBE (t) :=
T∑

k=t

BEt [Z(k)], (3.5)

and the RM at time t as the sum of expected future SCRs times the cost of capital rates
δk for k = t, t + 1, . . . , T − 1

RM(t) :=
T−1∑

k=t

δk BEt [SCRk[�L(k + 1)]] . (3.6)

In formula 3.6, it seems that RM(t) is a sum of expected annual SCRs. However,
if we analyse the formula more carefully, we note that the RM contains iterated VaRs
(or equivalently SCRs), that correspond to the capital-on-capital effects. We illustrate
this effect, looking at the full backward iterated formula defined in 3.1 in a two period
case with t = T − 2 years. In this case the RM at time t = T − 2 is equal to

RM(T − 2) = δT−1 BET−2
[
SCRT−1[�Z(T )]]

+δT−2SCRT−2 [�Z(T − 1)

+�BET−1[Z(T )] + δT−1�SCRT−1[�Z(T )]] . (3.7)

In the previous formula, the SCR at time T −2 is calculated not only on the variation of
the best estimate of liability cash-flows but also on the variation of SCR at time T −1,
�SCRT−1. This is due to the capital-on-capital effect, that is, at any time the capital
requirement should cover also the risk of variation of future capital buffers. Thismeans
that a quote of the regulatory capital is self-generated, growing from year to year and
becoming a consistent source of cost for long term liabilities. In the next sections, we
give a formal mathematical definition of the cost of capital-on-capital for a general
multi-period case. Moreover, we illustrate that time consistency can be achieved even
without the cost of capital-on-capital, considering in the liability valuation the expected
futures SCRs on the variation of cash-flows best estimate. This means that the cost of
capital-on-capital does not necessary coincide with a time consistency risk premium,
as instead suggested by [34].

123



A. M. Gambaro

3.2 Definition of the additive-SCR

In this section, inspired from the result of Proposition 3.2, we propose a new time
consistent dynamic extension of the one-period SCR formula, defined in 2.2, that we
call Additive-SCR or ASCR.

Definition 3.3 (Additive solvency capital requirement) We define the additive-SCR
(ASCR) and the expected-SCR (ESCR) at time t as

ESCRt (k) = BEt

[
SCRk[�LBE (k + 1)]

]
,

ASCR(t, T ) :=
T−1∑

k=t

E SCRt (k), (3.8)

where SCRk[·] is defined in 2.6, the variation �LBE (k + 1) is defined in 2.5 and the
best estimate of liabilities LBE is defined in 3.5.

The ASCR answers to a fundamental request of the Solvency II directive: the
amount of eligible own funds equal to the SCR necessary to support the insurance
and reinsurance obligations over the lifetime thereof, see [18, TP.5.3]. The ASCR
indicates the best estimate of the total capital requirement for the period from time
zero to the liabilities maturity. The ASCR can be decomposed in the annual expected-
SCRs (ESCR), which represent the best estimates of the regulatory capital for the next
year, not only at time zero but also at the futures payment dates, that is, we build a term
structure of expected annual SCRs. This is important for the regulatory application
of the dynamic risk measures, in fact the insurance companies should public their
balance sheet at the end of each year, hence they have to be solvent each year and they
can hardly postpone liabilities payments. Instead, using the iterated approach, the RM
defined in Eq. 3.6 cannot be decomposed in annual components, in fact each expected
SCRt at time t depends on all futures SCRs for t ≤ s ≤ T .

As already remarked in Sect. 2.3, SCRt [·] is a conditional risk mapping, see
Appendix A, Definition A.1. Then, the ASCR defined in 3.8 fits the additive struc-
ture of SEC conditional mapping, see Appendix B, Definition B.1. Then, the ASCR
owns the same properties of the SEC risk mappings, including recursiveness and time
consistency, as illustrated in the following proposition.

Proposition 3.4 The ASCR defined in Eq. 3.8 is time consistent and satisfies the fol-
lowing backward recursive formulation for any 0 ≤ t ≤ T − 1

ASCR(t, T ) = ESCRt (t) + BEt [ASCR(t + 1, T )]
= SCRt

[
�LBE (t + 1) + BEt

[
SCRt+1

[
�LBE (t + 2)

+ · · · + BET−2

[
SCRT−1

[
�LBE (T )

]]
· · ·

]]]
, (3.9)

where BEt and SCRt are defined in 2.4 and 2.6, respectively.
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The proof is based on the properties of Separable Expected Conditional (SEC) risk
mappings reported in Appendix B, see also [11, 25] and references therein. In partic-
ular, Theorem A.4 in Appendix A states the equivalence between recursive and time
consistent dynamic multi-period risk mappings. We remark that SEC risk mappings,
as the ASCR, are recursive, but are not self-recursive. This means that ASCR is not
obtained iterating the conditional risk mapping SCRt [·].

3.3 An alternative time consistent valuation formula of liabilities

In this section, we build a valuation procedure for liabilities based on the definition of
ASCR in Sect. 3.2.

Definition 3.5 (Timeandmarket consistent valuationof liabilities, TMCV-2)Wedefine
the following alternative market and time consistent valuation formula for the liabili-
ties

L̂(t) := LBE (t) + R̂M(t), (3.10)

where the Best Estimate LBE (t) is defined in formula 3.5 and R̂M(t) is defined in
analogy with formula 3.6 as

R̂M(t) :=
T−1∑

k=t

δk ESCRt (k)

=
T−1∑

k=t

δk BEt

[
SCRk[�LBE (k + 1)]

]
, (3.11)

with ESCRt (k) and SCRk[·] defined in formula 3.8 and 2.6, respectively.

If the cost of capital rate δ is constant, the previous formula 3.10 reduces to

L̂(t) = LBE (t) + δ ASCR(t, T ), (3.12)

where ASCR(t, T ) in defined in 3.8.
The following proposition proves that the liabilities valuation formula proposed in

3.10 is time consistent.

Proposition 3.6 The valuation formula of liabilities defined in equation 3.10 is time
consistent and satisfies the following backward recursive formula for 0 ≤ t ≤ T − 1

L̂(t) = Z(t) + BEt
[
L̂(t + 1)

] + δt E SCRt (t), (3.13)

where Z(t), E SCRt (t) are defined in Eqs. 2.1, 3.8, respectively.
The proof is a simple application of the recursive formulas of SEC risk measure,

reported in Appendix B for reader convenience.
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3.4 The capital-on-capital cost

In the previous section, we build a time consistent valuation formula for liabilities
without iterating the VaR risk measure. This means that at time t we do not consider
the SCR on futures RMs, but only on the BE of liabilities. In other words, we avoid
the capital-to-capital effect, induced by backward iterating the one-period valuation
formula. Then, we can estimate the cost of capital on capital effect, as the difference
between the two different TMCVs of liabilities, or equivalently between the two RMs.

Definition 3.7 (Cost of the capital on capital effect) The capital on capital cost C(t)
is defined as

C(t) = L(t) − L̂(t) = RM(t) − R̂M(t), (3.14)

where L(t) and L̂(t) are defined in equations 3.4 and 3.10, respectively. Moreover,
RM(t) and R̂M(t) are defined in 3.6 and 3.11, respectively.

We illustrate the structure of the capital-on-capital cost in a two period case with
t = T − 2 years. In this simplified case, we calculate the cost of capital-on-capital
C(T − 2) as

C(T − 2) = RM(T − 2) − R̂M(T − 2)

= δT−2 SCRT−2
[
�Z(T − 1) + �BET−1[Z(T )] + δT−1 �SCRT−1[�Z(T )]]

−δT−2 SCRT−2
[
�Z(T − 1) + �BET−1[Z(T )]] . (3.15)

In the iterated approach, the RM(T−2)depends on thevariationof the future SCRT−1.
This generates an extra cost, namely the capital-on-capital cost, that is not presented
in our proposed RM approach, R̂M(T − 2), based on ASCR.

4 Application to a portfolio of equity-linked life-insurance contracts

In this section, we present an illustrative example of the proposed approach for a
portfolio of equity-linked life-insurance contracts. We compare the two TMCVs of
liabilities presented in Sects. 3.1 and 3.3, and we estimate the capital-on-capital cost
by calculating the difference between them.

4.1 The financial and actuarial model

For the remainder of this section, we consider a financial market that consists of a risk
free asset X0(t) = ert and a risky asset X1(t), t = 0, 1, . . . , T , where r is the risk
free rate.5 Moreover, we assume that the insurance liability has a single cash-flow at

5 For sake of simplicity, the risk free rate is assumed to be constant over time. However, the presented
approach can be extended to a time varying and stochastic rate.
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maturity T , that has the following form

Z(T ) = max(X1(T ), K ) N (T ), (4.1)

where N (T ) counts the number of survivors at time T given by a mortality process,
X1(T ) is the risky asset value at maturity and K is a fixed guarantee level.

For simplicity of illustration,6 we assume that the stock follows a geometric Brow-
nian motion under P:

dX1(t) = X1(t)(μdt + σdW1(t)). (4.2)

Under this specification, the financial market is complete and the filtration F X
T corre-

sponds to the usual augmented filtration generated by the Brownian motionW1. Then,
under the unique equivalent martingale measure Q, the dynamic of the risky asset is
the following

dX1(t) = X1(t)(rdt + σdW1(t)).

Themortality process N (t) counts the number of survivals among an initial popula-
tion of Nx

0 policyholders of age x . The mortality intensity is assumed to be stochastic
and follows the dynamics under P given by

dλx (t) = cλx (t)dt + ηdW2(t), (4.3)

with c, η > 0 and W2(t) a standard Brownian motion. The two Brownian motions
W1(t) of the risky stock and W2(t) of the mortality intensity are correlated, that is,
W2(t) = ρW1(t) + √

1 − ρ2W3(t), with W1(t) and W3(t) independent Brownian
motions and correlation parameter ρ ∈ [−1, 1]. The survival function is defined as

Sx (t) := P(Tx > t) = e− ∫ x+t
x λx (s)ds, (4.4)

where Tx is the remaining lifetime of an individual who is aged x at time 0. Moreover,
deaths of individuals are assumed to be independent events conditional on knowing
population mortality, see [28] for similar assumptions. Further, if we denote D(t + 1)
the number of deaths during year [t, t + 1], the dynamics of the number of active
contracts can be described as a nested binomial process as follows: N (t + 1) =
N (t)−D(t+1)with D(t+1)|N (t), px+t ∼ Bin(N (t), px+t ). Here, px+t represents
the one-year death probability

px+t := P(Tx ≤ t + 1|Tx > t) = 1 − Sx (t + 1)

Sx (t)
, (4.5)

6 The presented approach can be easily adapted to other stock dynamics, e.g. stochastic volatility or Lévy
models.
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for t = 0, ·, T − 1. In particular, the number of deaths during year [t, t + 1] can be
obtained in the following way:

D(t + 1) =
Nx
0∑

k=1

I(k < N (t)) I(Uk(t) < px+t ),

where I (·) si the indicator function and U (t) = (Uk(t))k=1,...,Nx
0
is a vector of inde-

pendent and identically distributed uniform random variables in [0, 1]. The process
U1,T is independent from the market process X0,T under P and it represents together
with the Brownian motion W3 a pure actuarial risk factor. Then, using the notation
of previous sections, the actuarial risk factor at time t is the vector composed by the
components of the mortality process and the intensity, i.e. Y (t) = (U (t),W3(t)).

4.2 Numerical study

In this section, we calculate the TMCVs L(0) and L̂(0) in formulas 3.4 and 3.10 for
differentmaturities T ; the BE of liabilities LBE (0) in equation 3.5 and the riskmargins
RM(0) and R̂M(0) defined in Eqs. 3.6 and 3.11. Then, we estimate the cost of capital
C(0) defined in equation 3.14 as the difference between the two risk margins RM(0)
and R̂M(0). Moreover, we compare the time consistent results with the industry rule-
of-thumb of SCR projections. The TP by SCR projections, that we call LNTC , is
obtained through the following formula

LNTC (t) = LBE (t) + RMNTC (t) (4.6)

where LBE is in 3.5. The RMNTC is defined as

RMNTC (t)=
T−1∑

k=t

e−r(k−t) δk E
Q

[
VaRP

α

[
LBE (k+1)−LBE (k)| (X(k+1), Ȳ k

t )
] ∣∣∣ X(t)

]
,

(4.7)

where Ȳ k
t = BEt [Y (k)] is the best estimate projection of the actuarial risk factor from

time t to time k. The RM and the fair value obtained through the SCR projections are
not time consistent, as discussed in [34].

The benchmark parameters for the financial market and the actuarial risk factor are
the following. Following [9], the risk free rate is r = 1.0%, the risky stock volatility
value is σ = 0.1 and the fixed guaranteed level is equal to the initial value of the risky
stock, K = X1(0) = 1. The mortality parameters (λx (0) = 0.0087, c = 0.0750, η =
0.000597) follow from [27] and correspond to UKmale individuals who are aged 55 at
time 0. We assume that there are Nx

0 = 1000 initial contracts at time 0. The correlation
assumes four different values ρ = [0, 0.5, 0.75, 1]. We consider contract maturities T
from 1 year to 40 years and a confidence level α = 99.5%. In particular, we investigate
the impact of maturity T and of the correlation parameter between the risky asset and
the force of mortality ρ on the risk margins and hence on the cost of capital-on-capital.
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Fig. 1 The graphs show: the best
estimate of liabilities LBE

defined in Eq. 3.5, varying the
liability maturities for ρ = 0

To numerically estimate the quantities of interest, we use the Least Square Monte
Carlo (LSMC) approach, a popular numerical technique widely applied in finance
and insurance. The LSMC method was firstly proposed by [26] for the valuation of
American-type options. The main concept is to perform a regression of conditional
expectations on the cross-sectional information of the underlying risk drivers, such as
mortality and equity risks, in order to obtain insights into the valuation of liabilities.
For estimating the regressions, we use 100 outer scenarios for X0,T and 1000 inner
simulations for Y0,T and polynomial of degree two, using the product of X1(t)·N (t) as
regressor.Moreover, to calculate the conditionalVaR,we suppose that for short periods
(a one-year horizon), the expected number of survivors is approximately normally
distributed. Hence, the conditional α-quantile can be approximated by its mean and
standard deviation.7

Figure 1 reports the exact analytical calculation of the best estimate LBE in case
of independence, that is ρ = 0.

Figure 2 illustrates the risk loading, that is the ratio betweenRMandBEof liabilities,
for the two time consistent risk margins RM and R̂M in formulas 3.6 and 3.11 and
for RMNTC in formula 4.7. The time consistent risk margins always exceed the
inconsistent one. For long term liabilities, that is T > 20 years, the RM obtained
through backward iteration is appreciably larger than R̂M . This means that the cost
of capital-on-capital increases with respect to the maturity. All three RMs decrease,
increasing the correlation value. However, for ρ = 1, the RMs are not exactly equals
to zero. In fact, unless the stock X1 and the force of mortality λx are comonotonic, the
stock X1 and the mortality process N are not perfectly correlated, due to the nested
binomial process.

Finally, Fig. 3 reports the ratio between the cost of capital-on-capital and the RM,

that is, C(0)
RM(0) = RM(0)−̂RM(0)

RM(0) for differentmaturities of the liabilities and correlations.
As shown in Fig. 3, the capital-on-capital cost increases with maturity and decreases
with correlation. Moreover, in the uncorrelated case and for long term liabilities with

7 A similar simplifying approximation is used also in [34], to make the problem tractable. In our numerical
experiments, we verify that the probability of a negative expected number of survivors is negligible.
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(a) (b)

(c) (d)

Fig. 2 The graphs show the trend of risk loading, as the ratio between RM and BE of liabilities with respect
to maturity for different values of correlation ρ

Fig. 3 The plot shows the ratio
of the cost of capital-on capital
to the RM with respect to
maturity for different values of
correlation ρ

a maturities equal to 30 and 40 years, the capital-on-capital cost can reach the 5% and
12% of the RM value obtained with backward iteration method.

The Matlab code used to obtain the numerical results reported in this section is
public available at [19].
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5 Conclusion

In recent times, practitioners have engaged in discussions about potential revisions to
the calculation of the Solvency II risk margin. In particular, insurance companies have
expressed discontent with the excessively high value of the risk margin for long-term
life insurance portfolios. Additionally, the requirement to calculate the risk margin
using a time consistent valuation of liabilities has led to an increase in its value,
introducing a time consistent risk premium.Ourworkmainly focuses ondemonstrating
how it is possible to limit the self-generation effect of regulatory capital, called capital-
on-capital effect, in the framework of a dynamic valuation that remains consistent
over time. We achieve this objective by replacing the iterative approach with the
development of time-consistent SEC risk mappings. This approach provides a novel
and effective way to manage the impact of capital regulatory requirements within a
dynamic time-consistent framework. Moreover, we formally define the concept of
capital-on-capital cost as the difference between the two RMs calculated using the
backward iterationmethod or the valuation based onSEC riskmappings, calledESCRs
valutation method. Finally, we apply the two time consistent valuation formulas to a
portfolio of equity-linked life-insurance contracts and we compare them also with
a non-time consistent valuation formula based on SCR projections. Our numerical
experiments show that the capital-on-capital cost is a non-negligible component of
the RM value, especially for long term liabilities, and that it does not coincide with a
time consistent risk premium. Future researches could explore the application of time
consistent ESCRs valuation method in conjunction with the market-consistent hedge-
based approach of [16]. In particular, it could be interesting to investigate the relation
between the cost of capital-on-capital and the different hedging strategies adopted in
the backward iteration and in the ESCRs valuation methods.

A Dynamic risk mappings

A conditional risk mapping at time t provides a risk estimate conditional to the infor-
mation at time t of a random variable with realization in 0 ≤ t ≤ s. A formal definition
is the following.

Definition A.1 (Conditional risk mapping, see [11]) Consider a canonical probability
space (�,F , P) and let Lt := L(�,Ft , P) be the space of Ft -measurable random
variables.8 A conditional risk mapping is a function ρt (·|Ft ) : Ls → Lt , that is
translation invariant, i.e., for X(s) ∈ Ls and ct ∈ Lt ,

ρt (ct + X(s)|Ft ) = ct + ρt (X(s)|Ft ).

Moreover, we consider conditional risk mapping that are normalized, i.e. centred at
zero ρt (0|Ft ) = 0.

8 We precise that L2
t , that is the space of square integrable random variables, is contained in Lt . Then, the

results presented in this section and in Appendix B are valid also for square integrable random variables
considered in the paper.
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A multi-period risk mapping ρ̃t (Xt+1,T ) provides a risk estimate at time t of a
process with realizations in t+1, t+2, . . . , T . We formalize the definition as follows.

Definition A.2 (Multi-period conditional risk mapping, see [11]) A multi-period risk
mapping is a functional ρ̃t,T (·) : Lt,T → Lt , that is translation invariant, i.e., for any
t = 0, 1, . . . , T and Xt,T ∈ Lt,T ,

ρ̃t,T (Xt,T ) = X(t) + ρ̃t,T
(
(0, Xt+1,T )

)
,

where (0, Xt+1,T ) ∈ Lt,T represents a process whose value at time t is equal to zero.

Then, the sequence of multi-period risk mappings {ρ̃t,T }T−1
t=0 is a dynamic risk

mapping.

Definition A.3 (Dynamic time consistent risk mapping, see [11]) Let 0 ≤ u ≤ t ≤ T
and Xu,T ,Yu,T ∈ Lu,T for all u. If for any u the conditions

X(k) = Y (k), almost surely (a.s.) for k = u, u + 1, . . . , t − 1

and

ρ̃t,T (Xt,T ) = ρ̃t,T (Yt,T ) a.s.,

imply

ρ̃u,T (Xu,T ) = ρ̃u,T (Yu,T ) a.s.,

then {ρ̃t,T }T−1
t=0 is a time consistent dynamic risk mapping.

The previous definition of time consistency is formulated by [6] for risk measures
adding the monotonicity property and it is largely applied in the literature, see for
instance [2, 11, 14, 15, 33].

Theorem A.4 [11, 33] A dynamic risk mapping is time consistent, as in Definitions
A.2 and A.3, if and only if it can be equivalently expressed in a recursive form, i.e. for
0 ≤ t ≤ θ ≤ T

ρ̃t,T (Xt,T ) = ρ̃t,θ
((
Xt,θ−1, ρ̃θ,T (Xθ,T )

))
, (A.1)

where
(
Xt,θ−1, ρ̃θ,T (Xθ,T )

) ∈ Lt,θ is a process, whose final value at time θ is equal
to ρ̃θ,T (Xθ,T ).

B Separable expected conditional risk mapping

Consider a random vector Xt,T := (X(t), X(t + 1), . . . , X(T )) with X(t) ∈ Lt and
one-period conditional risk mapping ρt (·|Ft ) : Lt+1 → Lt , for t = 1, 2, . . . , T ,
defined in A.1.
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Definition B.1 (Separable expected conditional (SEC) risk mapping) A multi-period
riskmapping ρ̃t,T is a SEC-RM, if there exists a sequence of conditional riskmappings
{ρk(·|Fk)}k=t,...,T−1 such that

ρ̃t,T (Xt+1,T ) :=
T∑

k=t+1

E[ρk−1(X(k)|Fk−1)|Ft ].

In literature, there exist three main definitions of separable expected conditional
functional. All three definitions share the same additive structure reported in Defini-
tion B.1. In [25], ρ̃t,T is called SEC acceptability mappings and ρk−1 are conditional
acceptability mappings, that satisfy: normalization, translation invariance, monotonic-
ity and concavity. Then the definition of [25] cannot be applied to VaR. Similarly [14]
apply the definition of [25], using the AVaR. Finally, [11] propose a broader definition
of ρ̃t,T as SEC risk mappings and ρk−1 are conditional risk mappings that satisfy only
normalization and translation invariance. Then, we decided to adopt the definition of
[11] that is the less restrictive one, without loosing the time consistency property. As
shown in [11, 14, 25], SEC risk mapping are time consistent. In particular, the time
consistency is proved using the following recursive formulation, see for instance [25,
Proposition 3.3.11.], [14, Sect. 1.3] and [11, Sect. 3]

ρ̃t,T (Xt+1,T ) = ρt (X(t + 1)|Ft ) + E[ρ̃t+1,T (Xt+2,T )|Ft ];

in fact, Theorem A.4 states the equivalence between recursive and time consistent
multi-period conditional risk mapping.
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